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Quantum three-body Coulomb problem in two dimensions
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We study the three-body Coulomb problem in two dimensions and show how to calculate very accurately its
quantum properties. The use of a convenient set of coordinates makes it possible to write the Schro¨dinger
equation using only annihilation and creation operators of four harmonic oscillators, coupled by various terms
of degree up to 12. We analyze in detail the discrete symmetry properties of the eigenstates. The energy levels
and eigenstates of the two-dimensional helium atom are obtained numerically, by expanding the Schro¨dinger
equation on a convenient basis set that gives sparse banded matrices, and thus opens up the way to accurate and
efficient calculations. We give some very accurate values of the energy levels of the first bound Rydberg series.
Using the complex coordinate method, we are also able to calculate energies and widths of doubly excited
states, i.e., resonances above the first ionization threshold. For the two-dimensional H2 ion, only one bound
state is found.
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I. INTRODUCTION

Since the very beginning of quantum mechanics, the
lium atom has attracted much attention as it is one of
simplest system where the Schro¨dinger equation cannot b
solved exactly. Recently, it has been understood that the
of an exact solution is the direct quantum counterpart of
nonintegrable character of the corresponding classical
namics @1#. Indeed, it has been discovered that, for m
initial conditions ~positions and velocities of the two elec
trons!, the classical dynamics is chaotic, with the total ene
and the total angular momentum being the only constant
motion. Together with the development of sophisticated
merical methods for computing the quantum energy lev
@2–7#, there have been major improvements in semiclass
techniques which allow one to compute approximate val
of the energy levels from knowledge of the classical dyna
ics. The most dramatic success is the use of periodic o
theory, where the energy levels are calculated from sim
properties ~action, period, stability, etc.! of a ~preferably
large! set of classical periodic orbits@1#. Most of the quan-
tum and semiclassical calculations concentrated on st
with low total angular momentum for at least two reaso
first, these are the states experimentally prepared when u
an optical excitation from a low excited state and, secon
this is the situation where the classical dynamics is w
known.

Of special interest are theS states with zero total angula
momentum. Classically, the motion of the two electro
takes place in a fixed plane. Thus, the classical dynamic
fully identical with the classical dynamics of the two
dimensional~2D! helium atom. It turns out that, although
seems to be a simpler system, there has been only very
interest in this 2D three-body Coulomb problem and ess
tially no quantum calculation. It is the aim of this paper to fi
this hole. It can also be expected that, when a ‘‘real’’ 3
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helium atom with low~or zero! initial momentum is exposed
to an external perturbation, its response will not be very d
ferent from that of the 2D atom, provided angular mome
tum does not play a crucial role in the physical proces
involved. For example, when a helium atom is exposed t
strong nonresonant low-frequency electromagnetic field
may absorb a large number of photons leading eventuall
single or even double ionization. It seems likely that t
correlation between the two electrons plays a major role
this process~especially in the generation of high harmoni
of the electromagnetic field!, while the total angular momen
tum remains relatively small. Another example is the prod
tion of doubly ionized atoms where a process involving sy
metric excitation of the two electrons~with zero total angular
momentum! has recently been proposed@8#. In these situa-
tions, the full 3D quantum calculation for such a system
not presently feasible, except for the very lowest states.
the other hand, a 2D quantum calculation seems reacha
This would allow one to determine whether the propos
process is relevant or not. It is thus highly desirable to
able to compute accurately the quantum properties of the
helium atom.

A second motivation to study the 2D three-body Coulom
problem comes from semiconductor physics. The study
excitons—the bound aggregate of an electron from the c
duction band and a hole from the valence band, each par
with a given effective mass—is an important tool to stu
semiconductors. In 1958, Lampert@9# showed that three-
body complexes called trions~an electron or a hole bound t
an exciton! should be observable at low temperatures, a
this was confirmed later by variational calculations, show
the stability of trions against dissociation into an exciton a
a free electron or a hole~see@10# for references!. Since then,
the progress in semiconductor technology has made pos
the fabrication of quasi-2D systems. It was then realiz
@11,10# that in such systems trions would have an increa
stability due to the 2D confinement, and should thus be m
easily observable. The trions are responsible for satellites
the excitonic lines in luminescence spectra. Several obse
©2002 The American Physical Society01-1
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HILICO, GRÉMAUD, JONCKHEERE, BILLY, AND DELANDE PHYSICAL REVIEW A66, 022101 ~2002!
tions have been reported since the first one in 1993@12–17#,
and compared with theoretical predictions@10,18#. In this
context, a precise calculation of the energy levels of the
citonic trions in a 2D system as a function of the ratio of t
effective masses, with and without external field, is high
valuable, and justifies the methods and calculations in
duced in this paper. The 2D hydrogen molecular ion H2

1 has
also been studied in the frame of the Born-Oppenheimer
proximation in Ref.@19#, where the first two electronic en
ergy curves are given.

The paper is organized as follows. In Sec. II, we disc
the physical symmetries of the 2D three-body Coulo
problem. We then introduce a set of paraboliclike coor
nates, give the expression of the Hamiltonian operator,
show that we can find a basis in which the Schro¨dinger equa-
tion involves sparse banded matrices, allowing accurate
merical calculations. In Sec. III, we analyze the group str
ture of the discrete symmetries of the Hamiltonian, show
that the complications introduced by the not one-to-one ch
acter of the change of coordinates can be taken into acc
exactly and actually do not lead to any difficulty. In Sec. I
we first explain the detailed structure of the basis set that
use. We then discuss the structure of the expected en
spectrum in the case of a 2D helium atom with an infin
mass nucleus, and give the energies of the lowest leve
the bound Rydberg series, as well as—using the techniqu
complex coordinates—the energy and width of the first d
bly excited resonance.

II. THE SCHRÖ DINGER EQUATION

A. Hamiltonian

The three-body problem in two dimensions has six
grees of freedom that can be reduced to four in the cente
mass frame. Here, as depicted in Fig. 1,r1 andr2 denote the
positions of particle 1 and 2 with respect to particle 3, andp1
andp2 are the conjugate momenta. In atomic units~such that

FIG. 1. The relative Cartesian coordinates of particles 1 an
with respect to particle 3 are (x1 ,y1) and (x2 ,y2). The interparticle
distances arer 1 , r 2, andr 12.
02210
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\, 4pe0, the massm of the electron and the elementa
charge are all equal to unity!, the Hamiltonian is, neglecting
QED and relativistic effects,

H5
p1

2

2m13
1

p2
2

2m23
1

p1•p2

m3
1

Q1Q3

r 1
1

Q2Q3

r 2
1

Q1Q2

r 12
,

~1!

wherem3 is the mass of the third particle~in units of the
electron mass!, and m13 (m23) is the reduced mass of pa
ticle 1 ~2! and particle 3.Q1 , Q2, andQ3 are the charges o
the particles in units of the elementary charge.r 12 is the
distance between the particles 1 and 2. The 2D helium a
with a fixed nucleus corresponds to the case wherem3 is
infinite, m135m2351, Q15Q2521, andQ352.

As for the 3D three-body problem@20#, we regularize the
Schrödinger equation, i.e., remove the denominators,
multiplying it by 16r 1r 2r 12. The eigenstateuC& with energy
E then satisfies the generalized linear eigenequation

16r 1r 2r 12S p1
2

2m13
1

p2
2

2m23
1

p1•p2

m3
D uC&1VuC&

516r 1r 2r 12EuC&, ~2!

where

V516~Q1Q3r 2r 121Q2Q3r 1r 121Q1Q2r 1r 2!. ~3!

B. Symmetries

The symmetries of the 2D three-body problem are
rotational invariance around an axis (D) perpendicular to the
plane, the parityP, and, when particles 1 and 2 are identic
the exchange symmetryP12. In two dimensions, the parity
operatorP coincides with a rotation of anglep aroundD, so
that P and the angular momentumLz are related by

P5~21!Lz. ~4!

We also introduce the two commuting symmetriesPx ~sym-
metry with respect to thex axis! and Py ~symmetry with
respect to they axis!. They are related to total parity throug
PxPy5PyPx5P. The group generated byPx , Py , and
P12 is the so calledD2h point group. It is an invariance grou
of the Hamiltonian~1!, for identical particles 1 and 2. Th
symmetriesPx and Py both commute with parity, but no
with the angular momentum, since, for instance,PxLz5
2LzPx . As a consequence, the eigenstates of the 2D th
body Coulomb problem can be labeled by their angular m
mentumML50,61,62, . . . and by theexchange symmetry
when particles 1 and 2 are identical. The spectrum co
sponding toML and 2ML angular momenta are identica
this ~Kramers! degeneracy is a direct consequence of
time reversal invariance of the problem@21#. Alternatively,
the eigenstates could also be labeled by parity with respe
the x axis and the absolute value of the angular momentu

2

1-2



le
o

al
pr

d
av
e,
ia

o

ic
fo
ra

se
n

2D
he

b

re

o

le

i-

ra

x

l ex-
ates

ian
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When the system is exposed to an external uniform e
tric field along thex axis, the angular momentum is n
longer preserved. The only remaining symmetries arePx and
P12.

C. Parabolic coordinates

In order to perform efficient and accurate numerical c
culations, we wish to obtain a sparse banded matrix re
sentation of the linear problem~2! where the nonzero matrix
elements are known in a closed form. We thus have to fin
basis set in which the various terms of the Hamiltonian h
strong selection rules. This can be achieved, for exampl
all terms of the Hamiltonian can be expanded in polynom
combinations of position and~conjugate! momentum coordi-
nates: in such a case, the set of eigenstates of a harm
oscillator is convenient. Our situation is slightly more com
plicated, because the Hamiltonian involves the interpart
distance. How to deal with such a problem is well known
the hydrogen atom: by introducing a set of so-called pa
bolic or semiparabolic coordinates@22#, one can map the 2D
hydrogen atom on an harmonic oscillator. The method u
here for the 2D helium atom is inspired by such a treatme
although it is technically more complicated.

If x andy are the Cartesian coordinates of a point in a
space andz5x1 iy is the associated complex number, t
distance from the origin isr 5uzu5Ax21y2, and its expres-
sion involves a square root function. The square root can
removed if we introduce the complex variableZ5X1 iY
defined byz5Z2/2, sincer 5uZu2/25(X21Y2)/2. X and Y
are the parabolic coordinates, related tox andy by

x5
X22Y2

2
and y5XY. ~5!

The parabolic coordinates are extremely convenient to
resent the hydrogen atom in two dimensions@22#, or the
Stark effet of the 3D hydrogen atom@21#. Of course, the
correspondence between (X,Y) and (x,y) given in Eq.~5! is
not one to one. The difficulties related to that choice of c
ordinates are discussed in Sec. III B.

We now come to the case of three particles. The comp
positions of particles 1 and 2 with respect to particle 3 arez1
and z2, andZ1 and Z2 are the associated parabolic coord
nates. The interparticle distances are thenr 15uZ1u2/2, r 2
5uZ2u2/2, and thusr 125uz12z2u5u(Z11Z2)uu(Z12Z2)u/2.
If we introduce the two complex numbersZp5(Z1

1Z2)/A2 andZm5(Z12Z2)/A2, the distancer 12 appears as
the product of the moduli ofZp andZm . Since we want to
expressr 12 using square moduli, we introduce a second pa
bolic transformation on bothZp and Zm by setting Zp

5Jp
2/2 and Zm5Jm

2 /2. The three distances are then e
pressed as the square moduli

r 15
1

16
uJp

21Jm
2 u2, ~6!

r 25
1

16
uJp

22Jm
2 u2, ~7!
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r 125
1

4
uJpJmu2. ~8!

As a consequence, the three distances have polynomia
pressions when they are expressed with the coordin
(xp ,yp ,xm ,ym) defined by Jp5xp1 iyp and Jm5xm
1 iym . Those coordinates are related to the initial cartes
coordinates (x1 ,y1 ,x2 ,y2) by

x15
1

16
~xp

22yp
222xpyp1xm

2 2ym
2 22xmym!

3~xp
22yp

212xpyp1xm
2 2ym

2 12xmym!,

y15
1

4
~xp

22yp
21xm

2 2ym
2 !~xpyp1xmym!,

x25
1

16
~xp

22yp
212xpyp2xm

2 1ym
2 22xmym!

3~xp
22yp

222xpyp2xm
2 1ym

2 12xmym!,

y25
1

4
~xp

22yp
22xm

2 1ym
2 !~xpyp2xmym!, ~9!

and the three distances are

r 15
1

16
@~xp2ym!21~yp1xm!2#

3@~xp1ym!21~yp2xm!2#,

r 25
1

16
@~xp1xm!21~yp1ym!2#

3@~xp2xm!21~yp2ym!2#,

r 125
1

4
~xp

21yp
2!~xm

2 1ym
2 !. ~10!

D. The Schrödinger equation

The Schro¨dinger equation~2! can be written as

H T1

2m13
1

T2

2m23
1

T12

m3
1VJ uC~xp ,yp ,xm ,ym!&

5EBuC~xp ,yp ,xm ,ym!&, ~11!

where the kinetic energy terms are
1-3
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T152
1

16
@~xp1xm!21~yp1ym!2#@~xp2xm!21~yp2ym!2#

3H ~xm
2 1ym

2 !S ]2

]xp
2

1
]2

]yp
2D 1~xp

21yp
2!S ]2

]xm
2

1
]2

]ym
2 D

12~xpxm1ypym!S ]2

]xp]xm
1

]2

]yp]ym
D22~xpym

2ypxm!S ]2

]xp]ym
2

]2

]yp]xm
D J ,

T252
1

16
@~xp2ym!21~yp1xm!2#@~xp1ym!21~yp2xm!2#

3H ~xm
2 1ym

2 !S ]2

]xp
2

1
]2

]yp
2D 1~xp

21yp
2!S ]2

]xm
2

1
]2

]ym
2 D

22~xpxm1ypym!S ]2

]xp]xm
1

]2

]yp]ym
D

12~xpym2ypxm!S ]2

]xp]ym
2

]2

]yp]xm
D J ,

T1252
1

16
@~xp

21yp
2!22~xm

2 1ym
2 !2#H ~xm

2 1ym
2 !S ]2

]xp
2

1
]2

]yp
2D

2~xp
21yp

2!S ]2

]xm
2

1
]2

]ym
2 D J 2

1

2
~xpxm1ypym!

3~xpym2ypxm!H ~xpxm1ypym!S ]2

]yp]xm
2

]2

]xp]ym
D

2~xpym2ypxm!S ]2

]xp]xm
1

]2

]yp]ym
D J ,

B516r 1r 2r 12. ~12!

The expressions ofB and V can be deduced from Eqs.~3!
and ~10!. The Jacobian of the coordinate transformation
16r 1r 2r 12. The scalar product of the two wave functions
given in Appendix B.

The various terms in the Schro¨dinger equation~11! are
polynomials in the coordinates (xp ,yp ,xm ,ym) and their as-
sociated momenta ~partial derivatives 2 i ]/]$xp ,yp ,
xm ,ym%). The operatorsT1 , T2 , T12, V, andB can thus be
expressed using the corresponding annihiliation and crea
operators:

axp
5

1

A2
S xp1

]

]xp
D , axp

† 5
1

A2
S xp2

]

]xp
D . ~13!

This shows that the 2D three-body Coulomb problem can
described using the annihilation and creation operators
four harmonic oscillators. The Hamiltonian is a polynom
of degree 12 in the annihilation and creation operators. C
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sequently, it will be possible to choose a basis of tenso
products of Fock states of each harmonic oscillator,
which the operators involved in the Schro¨dinger equation
exhibit strong coupling rules.

From the annihilation and creation operators associa
with the new coordinates, we introduce the right and l
circular operators in the planes (xp ,yp) and (xm ,ym) defined
by

a15~axp
2 iayp

!/A2,

a25~axp
1 iayp

!/A2,

a35~axm
2 iaym

!/A2,

a45~axm
1 iaym

!/A2. ~14!

Using the symbolic calculation languageMAPLE V, we have
calculated the normal ordered expression of the various
erators involved in the Hamiltonian. Those expressions
too long to be published here. Indeed, the operatorsT1 and
T2 contain 625 terms,T12 331, the potential operatorsr 1r 12
andr 2r 12 517,r 1r 2 159, andB 1463. When particles 1 and
are identical, the Hamiltonian involves the kinetic termT1
1T2 and the potential term (r 11r 2)r 12 that have only 335
and 275 terms, because the terms ofT1 and T2 that do not
commute with the exchange operatorP12 cancel out.

E. Angular momentum

The angular momentumLz has a very simple expressio
when expressed with the (xp ,yp ,xm ,ym) coordinates:

Lz52 i S x1

]

]y1
2y1

]

]x1
1x2

]

]y2
2y2

]

]x2
D ,

Lz52
i

4 S xp

]

]yp
2yp

]

]xp
1xm

]

]ym
2ym

]

]xm
D .

~15!

The relationz5Z2/2 between the cartesian and parabo
complex numbers shows that a rotation of angleu in Z is a
rotation of 2u in z. Consequently, a factor of 2 appears in t
expression of the angular momentum in parabolic coo
nates@22#. Since we have performed two successive pa
bolic transformations to define the (xp ,yp ,xm ,ym) coordi-
nates, we have a factor of 4 in the denominator of Eq.~15!.
With the annihilation and creation operators~14!, the angular
momentum is simply

Lz5~N12N21N32N4!/4, ~16!

where the number operators areNi5ai
†ai . They are related

to the number operators corresponding the the annihila
and creation operatorsaxp

, . . . given in Eq.~13! by
1-4
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N11N25Nxp
1Nyp

,

N31N45Nxm
1Nym

. ~17!

III. DISCRETE SYMMETRIES

A. Physical symmetries

The Hamiltonian~1! has two discrete symmetries,Px and
Py , which are the symmetries with respect to two orthog
nal axis in the physical plane. Using the (xp ,yp ,xm ,ym) co-
ordinates, they can be expressed, for instance, as

Px :xp→xp , Py :xp→~xp1yp!/A2,

yp→2yp , yp→~xp2yp!/A2,

xm→xm , xm→~xm1ym!/A2,

ymm, ym→~xm2ym!/A2. ~18!

Moreover, if particles 1 and 2 are identical, the Hamiltoni
commutes with the exchange operatorP12. The effect ofP12
on the (xp ,yp ,xm ,ym) coordinates is

P12:xp→xp ,

yp→yp ,

xm→ym ,

ym→2xm . ~19!

Obviously, the Schro¨dinger equation~11! written with the
(xp ,yp ,xm ,ym) coordinates is invariant under these transf
mations.

B. ‘‘Additional’’ symmetries

In this section, we analyze the constraints that the ph
cal wave functions must satisfy. We first recall what happ
in the case of a single parabolic transformation. The pa
bolic transformation (X,Y)→(x,y) defined in Eq.~5! is a
one-to-one mapping of the quarter of plane (X>0,Y>0)
onto the half plane (x,y>0). Here, the transformation i
used to represent the full Cartesian plane (x,y) by extending
the domains ofX andY to ]2`,1`@ . In that way, we obtain
a double mapping of the Cartesian plane since (X,Y) and
(2X,2Y) are mapped on the same point. Consequently,
Hamiltonian written with the parabolic coordinates has
new discrete symmetry (X,Y)→(2X,2Y), i.e., the parity
with respect to (X,Y). The physical wave function must be
single-valued function of the initial coordinates (x,y), i.e.,
must satisfy C(X,Y)5C(2X,2Y). Any function of
C(X,Y) that satisfies the Schro¨dinger equation written in the
(X,Y) coordinates but does not obey the constra
C(X,Y)5C(2X,2Y) is to be rejected as an unphysic
solution.
02210
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In the particular case where the wave function is e
panded on a basis built with tensorial products of harmo
oscillator eigenstates,

uC&5 (
nX ,nY

CnX ,nY
unX& ^ unY&, ~20!

the physical wave function expansion of Eq.~20! is restricted
to the even values ofnX1nY , because the parity of the Foc
stateun& is (21)n @22#.

This property can be extended to the case of the trans
mation given in Eq.~9! that gives the Cartesian coordinat
versus the coordinates (xp ,yp ,xm ,ym). Because we perform
four parabolic transformations to obtain the (xp ,yp ,xm ,ym)
coordinates from the initial Cartesian coordinates, there
four ‘‘additionnal’’ discrete symmetries which leave th
Schrödinger equation~11! invariant. We denote them byP1
defined as (X1 ,Y1)→(2X1 ,2Y1), P2 , Pp , andPm . The
effects of those symmetries on the (xp ,yp ,xm ,ym) coordi-
nates are

P1 :xp→2ym , P2 :xp→xm ,

yp→xm , yp→ym ,

xm→2yp , xm→xp ,

ym→xp , ym→yp ,

Pp :xp→2xp , Pm :xp→xp ,

yp→2yp , yp→yp ,

xm→xm , xm→2xm ,

ym→ym , ym→2ym . ~21!

C. Symmetries of the wave function

The group G generated by thePx ,Py ,P12 and the
P1 ,P2 ,Pp ,Pm symmetries is an invariance group of th
Schrödinger equation~11!. It is studied in details and its
character table is given in Appendix A.

In order to be single valued in the geometrical spa
(x1 ,y1 ,x2 ,y2), the wave functionC(xp ,yp ,xm ,ym) must be
invariant under any ‘‘additional’’ symmetry introduced b
the non one-to-one change of coordinates, i.e., under an
the transformationsP1 ,P2 ,Pp ,Pm . Then, the wave func-
tion must belong to an irreductible representation of G
which the character of any ‘‘additional’’ symmetry is equal
its dimension. There are only eight representations with
property, all being one dimensional, that correspond to
first eight lines of the character table given in Appendix
Consequently, the physical eigenfunctionsC(xp ,yp ,xm ,ym)
can be distinguished only by their symmetry properties w
respect toPx , Py , andP12. The eight physical irreductible
representations of G are those of the groupD2h ~or mmm),
of order 8, already mentionned in Sec. II B. The applicati
that maps each ‘‘additional’’ symmetry on the identity is
group homomorphic mapping of G onD2h .
1-5
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Finally, we have shown here that all energy levels belo
to a one-dimensional representation of the discrete symm
group of the Schro¨dinger equation, and are thus expected
be nondegenerate@except for the (ML ,2ML) mentioned
above#. Moreover, using the (xp ,yp ,xm ,ym) coordinates
does not introduce extra representations which cannot be
tinguished from the physical ones. The wave functions
be described using a basis exhibiting the relevant symm
properties with respect toPx , Py , andP12, or Lz andP12.
The second feature will be extensively used in the numer
implementation.

In other words, among all solutions of the Schro¨dinger
equation~11! in the (xp ,yp ,xm ,ym) coordinates, sorting ou
the unphysical solutions is rather straightforward and on
left only with the physical symmetries of the initial system

IV. NUMERICAL SOLUTION

A. Basis set

1. Basis structure

To perform numerical calculations of the eigenenerg
and eigenstates of the three-body Coulomb problem, we
pand the Schro¨dinger equation on a convenient basis, a
then solve a linear eigenvalue problem. Because the diffe
terms of the Hamiltonian have polynomial expressions in
annihilation and creation operators, we obtain strong se
tion rules if we choose basis functions that are tensorial pr
ucts of Fock statesuni& of the harmonic oscillator describe
by the circular annihilation operatorai , namely, we set

un1 ,n2 ,n3 ,n4&5un1& ^ un2& ^ un3& ^ un4&. ~22!

The indicesni are then positive integers. The basis functio
are eigenfunctions of the angular momentum, correspond
to the integer eigenvalue

ML5~n12n21n32n4!/4. ~23!

The wave functions of these basis states are simple.
deed, they are just eigenstates of a harmonic oscillator a
the various coordinates. In the (xp ,yp ,xm ,ym) coordinates,
they should appear as products of Hermite polynomials
Gaussian functions of the coordinates. As we use circ
creation-annihilation operators, Eq.~14!, the associated
eigenstates of the two-dimensional harmonic oscillators
the (xp ,yp) and (xm ,ym) planes are easily written in pola
coordinates as the product of an exp(if) term with an expo-
nential and a Laguerre polynomial of the squared radius.
explicit expressions of such states can be found in@22#.

We have previously shown that the two successive p
bolic transformations introduce ‘‘additional’’ unphysica
states. The physical solutions can be selected using a b
set that is even with respect to all the ‘‘additional’’ symm
tries. This choice is performed in two steps. First, bothn1
1n2 andn31n4 have to be even numbers. Indeed, from E
~17!, n11n25nxp

1nyp
andn31n45nxm

1nym
and the even

representations forPp andPm correspond to even values o
nxp

1nyp
and nxm

1nym
. Secondly, because the transform

tion (1,2,3,4)→(3,4,1,2) on the annihilation and creation o
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erators commutes with the Hamiltonian and correspond
the identity in physical space, the basis functions have to
chosen as the symmetric combinations:

un1 ,n2 ,n3 ,n4&
15un1 ,n2 ,n3 ,n4&1un3 ,n4 ,n1 ,n2&.

~24!

Of course, this symmetrized state remains an eigenstat
the angular momentum, with the same eigenvalueML . Tak-
ing into account the even parity ofn11n2 andn31n4, and
thus of n12n2 and n32n4, and the expression ofML , we
obtain thatn12n2 ~mod 4! andn32n4 ~mod 4! are simulta-
neously equal to either 0 or 2. We then set

C125~n12n2!~mod 4!5~n32n4!~mod 4!. ~25!

When particles 1 and 2 are identical, the Hilbert space can
split into a singlet subspace corresponding toC1250, and a
triplet subspace corresponding toC1252. Here, singlet
means symmetric with respect to the exchange operatorP12
whereas triplet means antisymmetric.

We can now define precisely the basis set correspond
to the physical states with angular momentumML and either
singlet or triplet exchange symmetry. Since the quadruple
indices (n1 ,n2 ,n3 ,n4) and (n3 ,n4 ,n1 ,n2) give the same
symmetrized ket in Eq.~24!, we have only to consider one o
the two quadruplets to uniquely label the symmetrized ba
Consequently, for singlet states, we set

BML

sym5$un1 ,n2 ,n3 ,n4&
1,n12n21n32n454ML ,ni>0,

C1250,„n1.n3 or ~n15n3 andn2>n4!…%,
~26!

and for triplet states

BML

anti sym5$un1 ,n2 ,n3 ,n4&
1,n12n21n32n454ML ,ni>0,

C1252,„n1.n3 or ~n15n3 andn2.n4!…%.
~27!

2. Selection rules and matrix elements

Two basis vectors un1 ,n2 ,n3 ,n4& and un11dn1 ,n2
1dn2 ,n31dn3 ,n41dn4& are coupled by the Hamiltonian i
the shiftsdni correspond to one of the 225 allowed couplin
rules. Because the Hamiltonian commutes with the total
gular momentum, they all obeydn12dn21dn32dn450.
Among them, 159 rules preserve the exchange symetry w
66 do not. The 159 rules that appear for the operatorsT1
1T2 , T12, (r 11r 2)r 12, r 1r 2, and B obey dn12dn25
2(dn32dn4)50 or dn12dn252(dn32dn4)564, and
are shown in Fig. 2. The 66 rules verifydn12dn25
2(dn32dn4)562. They appear if the exchange symmetry
broken (m15” m2 or Q15” Q2) in the kinetic termsT1 ,T2, and
the potential termsr 1r 12 and r 2r 12.

Since the Hamiltonian has been written in normal ord
the derivation of the matrix elements is straightforwa
They are too numerous to be written explicitly here@30#. We
only give two matrix elements of the kinetic operator of t
1-6
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2D helium T11T2 between two unsymmetrized basis ve
tors:

^n1 ,n2 ,n3 ,n4u~T11T2!un1 ,n2 ,n3 ,n4&

5~1/4!~n11n211!~n31n411!~n1
214n1n22n1n3

1n1n41n2
21n2n32n2n41n3

214n3n41n4
213n1

13n213n313n418!, ~28!

as well as the matrix element corresponding to the selec
rule d15d25d35d451:

^n111,n211,n311,n411u~T11T2!un1 ,n2 ,n3 ,n4&

52~1/4!An411An311An211An111~n1
215n1n2

22n1n41n2
222n2n31n3

215n3n41n4
215n115n2

15n315n4112!. ~29!

3. Numerical implementation

For the numerical calculations, we have chosen to tr
cate the basis defined by Eq.~26! or ~27! using the condition
n11n21n31n4<Nbase. Because the angular momentum
fixed, we have only three independent indices, and the
of the basis is roughlyNbase

3 /192. The basisB is then ordered
in order to represent the Schro¨dinger equation using ban
matrices as narrow as possible. The eigenvalue proble
then solved using the Lanczos algorithm@23# which makes it
possible to compute a few eigenvalues in the range of in
est.

FIG. 2. The 159 selection rules that preserve the exchange s
metry are depicted in the (n1 ,n3) space. The dark circles corre
spond to the 61 rulesdn15dn2 anddn35dn4, the full line circles
to the 49 rulesdn12dn254 anddn32dn4524, and the dashed
line circles to the 49 rulesdn12dn2524 anddn32dn454.
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4. Variational parameter

So far, the natural length scale of the problem is the B
radiusa0. Because it is not necessarilly the best suited o
we introduce the length scalea21/4a0. The Schro¨dinger
equation~11! is written

H a4S T1

2m13
1

T2

2m23
1

T12

m3
D1a8VJ uC&

5a12EBuC&. ~30!

When the basis is truncated, the length scalea becomes a
variational parameter~i.e., the calculated energy leve
should not depend ona if the basis set is large enough! that
has to be numerically optimized. All the numerical resu
presented in this paper are obtained witha close to 0.4. All
the digits of the energy levels given in the tables are sign
cant. The uncertainty on the results is thus 1 on the
figure, and the relative accuracy reaches the 10213 level.

B. The 2D helium atom without electron interaction

Let us consider 2D helium with a fixed nucleus of char
Q352 ~the massm3 is infinite!. The Schro¨dinger equation
~30! is simply

H a4
T11T2

2
1a8VJ uC&5a12EBuC&, ~31!

where V5232(r 11r 2)r 12116r 1r 2. If the 16r 1r 2 term in
the potential energy is removed, the three-body problem
responds to two independent 2D hydrogen atoms with
nucleus of chargeQ52. The spectrum of the 2D hydroge
atom is well known, and is given by the series@22#:

EN,M52
Q2

2~N21/2!2
, ~32!

whereN>1 is the principal quantum number and2N11
<M<N21 the angular momentum of the electron; the d
generacy is 2N21. The structure of the energy spectrum
very similar to the 3D energy spectrum, the only differen
being that the effective quantum numberN21/2 is a half
integer ranging from 1/2 to infinity rather than a no
negative integer.

For the helium atom without electronic interaction, th
spectrum is thus given by

EN1 ,M1
1EN2 ,M2

52
4

2~N121/2!2
2

4

2~N221/2!2
,

~33!

whereN1 andN2 are the principal quantum numbers of th
two electrons. The essential degeneracy is 2(2N121)(2N2
21) if N1ÞN2 and (2N121)2 otherwise@31#. The total
angular momentum is simply given byML5M11M2. The
states of total angular momentumML correspond to the in-
dices (N1 ,M1 ,N2 ,M2) and (N2 ,M2 ,N1 ,M1). Those degen-
erate states give symmetric~singlet! and antisymmetric~trip-

m-
1-7
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HILICO, GRÉMAUD, JONCKHEERE, BILLY, AND DELANDE PHYSICAL REVIEW A66, 022101 ~2002!
let! states when the two quadruplets are different and o
one symmetric state if they are equal. Finally, the ene
levels can be labeled byN1 , N2 , ML , andP12. The degen-
eracy of this configuration is given by the number of so
tions ofML5M11M2 taking into account the boundaries o
M1 andM2.

By solving the Schro¨dinger equation for an angular mo
mentum between23 and 3, and for the two exchange sym
metries, we have checked that our method gives the expe
eigenenergies and degeneracies.

We have then checked the effect of the electronic inter
tion by introducing it perturbatively ase/r 12. We have nu-
merically computed the ground state energy of the thr
body problem as a function ofe and observed a linea
behavior, as expected from first-order perturbation the
The slope in atomic units is 4.70(1), in agreement with the
slope 3p/2 predicted by first-order perturbation theory~see
Appendix B!.

C. The 2D helium atom

The 1/r 12 term describing the electronic repulsion is no
taken into account. This does not affect the positions of
various ionization thresholds~as the electron interaction van
ishes at large distance!. There is an infinite number of single
ionization thresholds associated with the principal quant
number of the hydrogenic state of the resulting He1 ion,
given by energies

I N52
4

2~N21/2!2
. ~34!

These single-ionization thresholds form a series that c
verges to the double-ionization threshold at zero energy.

Consequently, one expects bound states below energI 1
528 a.u., resonance~doubly excited states! betweenI 1 and
zero, and only continua above.

1. Bound states

The lowest energy levels of the 2D helium below the fi
ionization limit are given in Table I for the singlet states a
in Table II for the triplet states. For each value ofML , we
obtain a Rydberg series converging to theN51 threshold.
For such excited states, the outer electron lies far from
nucleus while the inner electron is essentially in its grou
state and lies very close to the nucleus. Because this pic
gives two very different roles to the two electrons, it resu
in a different set of quantum numbers, namely, (N,M ) for
the inner electron and (n,m) for the outer one. A brutal bu
useful approximation is to neglect the effect of the ou
electron on the inner one, i.e., consider the inner electro
the hydrogenic stateN51,M50 while the outer electron
experiences a point chargeQ51 ~the charge12 of the
nucleus screened by the charge21 of the inner electron! at
the origin, resulting in an energy spectrum2821/@2(n
21/2)2#, wheren is the principal quantum number of th
~hydrogenic! outer electron. This is of course only an a
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proximation. Deviations from it can be measured through
quantum defectdn,m defined directly from the energy level
through

E1,0,n,m5282
1

2~n21/22dn,m!
. ~35!

If the previous approximation were exact, the quantu
defects would all be zero. Hence, deviations from zero a

TABLE I. Energy levels of the singlet states of the 2D heliu
atom ~with infinite mass of the nucleus!, below the first ionization
threshold. The optimum variational parametera is close to 0.4. For
most of the states, the basis truncation is given byNbase5200. The
basis size is then 43 626 for singletML50 states, and slightly de
creases withML . For (1,0,4,0), (1,0,5,0), and (1,0,6,0) we u
Nbase5240 and a basis size of 74 801. In the fourth column,dn,m is
the quantum defect of the state, as deduced from Eq.~35!.

N,M ,n,m ML Energy~a.u.! dn,m

1,0,1,0 0 -11.899 822 342 953 0.141
1,0,2,0 0 -8.250 463 875 379 0.087
1,0,3,0 0 -8.085 842 792 777 0.086
1,0,4,0 0 -8.042 911 011 139 0.086
1,0,5,0 0 -8.025 668 309 76 0.086
1,0,6,0 0 -8.017 061 08 0.086
1,0,2,1 1 -8.211 542 089 886 -0.037
1,0,3,1 1 -8.077 637 328 985 -0.037
1,0,4,1 1 -8.039 947 878 -0.037
1,0,5,1 1 -8.024 280 94 -0.037
1,0,3,2 2 -8.079 805 619 119 -0.003
1,0,4,2 2 -8.040 745 817 -0.003
1,0,5,2 2 -8.024 657 76 -0.003
1,0,6,2 2 -8.016 51 -0.0031
1,0,7,2 2 -8.011 80

TABLE II. Energies of the triplet states of the 2D helium ato
~with infinite mass of the nucleus!, below the first ionization thresh
old. The optimum variational parametera is close to 0.4. The basis
truncation is given byNbase5200. The basis size is 43 550 fo
triplet ML50 states. In the fourth column,dn,m is the quantum
defect of the state, as deduced from Eq.~35!.

N,M ,n,m ML Energy~a.u.! dn,m

1,0,2,0 0 -8.295 963 728 090 0.200
1,0,3,0 0 -8.094 583 618 582 0.200
1,0,4,0 0 -8.045 941 305 572 0.201
1,0,5,0 0 -8.027 055 169 0.201
1,0,6,0 0 -8.017 807 0.2011
1,0,2,1 1 -8.225 772 173 259 0.011
1,0,3,1 1 -8.080 919 691 737 0.014
1,0,4,1 1 -8.041 165 882 92 0.014
1,0,5,1 1 -8.024 858 500 0.015
1,0,3,2 2 -8.079 819 688 304 -0.002
1,0,4,2 2 -8.040 751 693 48 -0.002
1,0,5,2 2 -8.024 661 158 -0.002
1,0,6,2 2 -8.016 512 -0.0028
1-8
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evolutions withn andm directly measure the breaking of th
approximation. The results shown in Tables I and II sh
that—as for the 3D helium atom—the quantum defects i
given series tend to a constant value asn→`. Whenumu is
increased, the outer electron is repelled from the nucleus
the centrifugal energy barrier and fills less the area occup
by the inner electron. It is thus expected that the quan
defects will decrease with increasingumu and this is fully
confirmed by our ‘‘exact’’ diagonalizations,~see Tables I, II,
and III!. Also, in the triplet states, the wave function in co
figuration space is antisymmetric, so that the two electr
cannot be at the same place. Consequently, they are les
ficiently affected by each other, resulting in a lower intera
tion energy and consequently a larger quantum defect. Ag
our ‘‘exact’’ calculations confirm this behavior.

Finally, it is interesting to compare the 2D and 3D situ
tions. Although the Rydberg series are similar in both cas
this is not true for the ground state. Indeed, the binding
ergy of the inner electron in its ground state is 8 a.u.,@see Eq.
~32!#, in 2D, that is, four times more than in the 3D heliu
atom. Almost the same ratio 4 is observed between the t
binding energies of the ground state: 11.90 a.u. in 2D ver
2.91 a.u. in 3D.

For singly excited states, the core is also four tim
smaller in 2D. We then expect a smaller core penetra
because the centrifugal barrier is almost the same in the
and 3D systems, and also a smaller core polarization by
outer electron, resulting in smaller quantum defects in the
case. The comparison of the 2D and the 3D quantum def
in Table III is consistent with this interpretation.

2. Resonances

Above the first ionization threshold, the spectrum conta
resonances embedded into the continuum. They can be
merically separated using the complex rotation meth
@25,26# ~also known as the method of complex coordinate!,
where the positions and momentar and p are respectively
changed intoreiu andpe2 iu. Here, it is simply implemented
using a complex length scalea5uaueiu ~in order to preserve
their canonical commutation relations!. This results in a
‘‘complex rotated’’ non-Hermitian Hamiltonian whose eige
values are complex. In the complex energy plane, the re
nances do not depend on the angleu while the continua are

TABLE III. Quantum defects for various series of the 2D a
3D helium atoms below the first ionization threshold. The values
the 3D case are calculated from the energies given in@24#. The
values in the 2D case are the limits ofdn,m for large values ofn.

3D Rydberg series 2D Rydberg series

d N,ML d
1Se 0.140 1,0 0.0864
3Se 0.299 1,0 0.2011
1Po -0.012 1,1 -0.0379
3Po 0.068 1,1 0.0152
1De 0.0021 1,2 -0.0031
3De 0.0028 1,2 -0.0028
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rotated by an angle of 2u around the ionization thresholds
The first resonance of the 2D helium atom~infinite mass of
the nucleus! is obtained for zero angular momentum a
singlet exchange symmetry. Its energy is

E521.411 496 328~1!2 i0.001 241 734~1! a.u. ~36!

It is obtained for a rotation angleu'0.4, a length scalea
'0.35, Nbase5150, and a basis size of 18 696.

The energy structure of the resonances is illustrated in
case of the singletML50 states in Fig. 3. The electroni
repulsion is included in the potential energy ase/r 12 with
0<e<1. One can follow the energy levels as a function oe
from the independent electron case (e50) to the helium case
(e51). For e50, the levels correspond to the Rydberg s
ries N52, n>2 converging toI 2528/9 a.u. The degen
eracy of the (N52,n52) configuration is 9, with three state
of zero total angular momentum. Two of them have the s
glet symmetry and one the triplet symmetry. Forn.2, the
degeneracy of the configuration is 18, with six states co
sponding toML50 ~three singlet and three triplet states!.
Consequently, fore50, the firstML50 singlet resonance is
doubly degenerate, and the following ones are triply deg
erate. The introduction of the electronic interaction remov
the degeneracy.

D. The 2D HÀ ion

The H2 ion with a fixed nucleus is obtained by settin
Q351. We obtain only one bound state below the first io
ization limit @at 22 a.u. from Eq.~32!#, with zero angular
momentum and singlet exchange symmetry. Its energy is

n

FIG. 3. Energy levels of the singletML50 resonances of the 2D
helium atom ~nucleus with infinite mass! between the first
(28 a.u.) and the second (20.888••• a.u.) ionization thresholds
as a function of the magnitudee of the electronic interaction in-
cluded in the potential energy ase/r 12. The right part of the figure
is a magnification close to the second ionization threshold. All
energies presented in this picture are well converged and obta
with a50.5, u50.12, andNbase5150. The basis size is 18 696
Because the method of complex coordinates is used, these en
levels are not bound states, but resonances. At the scale of
figure, their widths are very small.
1-9
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E522.240 275 363 589~1! a.u. ~37!

It is obtained fora'0.4, Nbase5220, the basis size bein
57 820.

V. CONCLUSION

We have introduced a different set of coordinates to r
resent the 2D three-body Coulomb problem and given
resulting Schro¨dinger equation. We have discussed the d
crete symmetry group properties of the equation and sh
that it can be numerically solved very efficiently, using
convenient basis set for which the Schro¨dinger equation in-
volves sparse banded matrices. The convergence of the
culations is very good and the numerical results are
tremely accurate. This is demonstrated in the case of the
helium atom~with inifinite mass of the nucleus!, for which
the lowest energy levels in the bound Rydberg series
given with a relative accuracy in the 1029 to 10213 range.

The method developed in this paper provides an effic
tool for studying the dynamics of the 2D helium atom in
external electric field aligned along thex axis. Indeed, with a
field of strengthF, we must add the external potential ener
termVext516r 1r 2r 12(x11x2)F to Eq.~3!. The only remain-
ing symmetries are then the exchange symmetryP12 and the
symmetry with respect to thex Cartesian axisPx . In such a
case, the convenient basis set can be defined, from Eq.~24!,
by

un1 ,n2 ,n3 ,n4&
e5un1 ,n2 ,n3 ,n4&

11eun2 ,n1 ,n4 ,n3&
1,
~38!

with e561 for even or odd states with respect toPx . Be-
causeVext is a polynomial in these coordinates, it exhib
selection rules, making an accurate diagonalization of
Schrödinger equation still possible.

The motion of the nucleus can easily be taken into
count, including theT12 contribution to the Hamiltonian in
Eq. ~11!. In that way, it will be possible to determine ver
accurately the ground state energy of excitonic trions, a
function of the electron to hole mass ratio. This work is
progress.
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APPENDIX A: CHARACTER TABLE

The discrete symmetry group G of the Schro¨dinger equa-
tion ~11! written in the (xp ,yp ,xm ,ym) coordinates is studied
here. It is generated by thePx ,Py ,P12 physical symmetries
and theP1 ,P2 ,Pp ,Pm ‘‘additional’’ symmetries, defined in
Eqs. ~18!, ~19!, and ~21!. Its structure has been studied fo
lowing standard methods of the theory of finite groups~see,
for example, @27,28#!. Because all the generators of th
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group can be seen as a permutation among the 16 quant
xp ,yp ,xm ,ym ,(xp1yp)/A2,(xp2yp)/A2,(xm1ym)/A2,(xm

2ym)/A2 and the opposite values, the G group appears
subgroup of the permutation group of 16 elements. Beca
of this property, it is easily studied using the permutati
group package provided by theMAPLE language.

The group G contains 128 elements, in 29 classes. It
16 one-dimensional, eight two-dimensional, and five fo
dimensional irreductible representations. Table IV represe
its complete character table. It has been obtained using
method described in@28#. Let the classes of G beKi with
1< i<n. The setKiK j , the set of the products of any ele
ment of the classKi by any element of the classK j , is made
of complete classes. Callingci j l the number of occurrence
of the classKl in the productKiK j , one can symbolically
write

KiK j5(
l

ci j l Kl . ~A1!

This property is used to obtain relations between charac
x i

(R) of the classKi in an irreductible representationR:

gigjx i
(R)x j

(R)5xE
(R)(

l 51

29

ci j l glx l
(R) , ~A2!

wheregi is the number of elements of the classKi andxE
(R)

is the character of the identity E, i.e., the dimension of
representationR. Then characters of an irreducible represe
tation appear to be the solutions of then(n11)/2 quadratic
equations obtained from Eq.~A2! for any couple of (i , j ).
Then, to construct the character table of the group, th
steps are necessary. First, the group has to be separate
classes, and the numbergi are obtained. Second, the numbe
ci j l are computed, and last the system of equations~A2! is
solved. Obviously, there aren different sets of solutions, cor
responding to then irreductible representations.

APPENDIX B: SCALAR PRODUCT

The scalar product of two wave functionsuC (1)& and
uC (2)& in the (xp ,yp ,xm ,ym) coordinates is

^C (1)uC (2)&5
1

16E E E E C (1)~xp ,yp ,xm ,ym!* BC (2)

3~xp ,yp ,xm ,ym!dxpdypdxmdym , ~B1!

whereB is given by Eq.~12!. The integrals are calculate
from 2` to 1`. The factor 1/1651/24 comes from the four
double mappings of the space introduced by the chang
parabolic coordinates.

We now calculate the average value of 1/r 12 for the
ground stateuC0,0& of a 2D helium atom without electronic
repulsion, that is
1-10
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TABLE IV. Character table of the discrete symmetry group G of the Schro¨dinger equation~11!. The classes and the irreducib
representations have been organized in order to obtain the character table of theD2h group in the upper left corner~in bold figures!. The last
three classes are those of the ‘‘additional’’ symmetriesP2 , P1, andPp (Pp and Pm belong to the same class!. The first line gives the
number of elements in each class. We finally give one element of each of the 29 classes: E,Py , Px , PyPx , P12, PyP12, PxP12,
PyPxP12, PpPm , P2PxPm , P2P12, P1P2 , P2PxP12, PpPyPxP12, PpP12, P2Px , P2Py , P2PyPx , P1P2Pm , P2PyPm ,
P2PyPxP12, P2PyP12, PyPxPm , PpPyPxPm , P1PyPxP12, PyPxP12

21 , P2 , P1 , Pp ; some of them are reported in the second li
of the table.

1 8 8 2 4 8 8 4 1 4 8 2 8 2 4 4 4 8 2 4 4 8 4 2 4 2 4 4 2
E Py Px PyPx P12 PyP12 PxP12 PyPxP12 P2 P1 Pp

Pm

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1
1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 1 1
1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 1 1 1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1

1 1 1 1 1 1 1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1
1 1 -1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 1 1 1 1 -1 1 1 -1 1 1 1 -1 1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1
1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1
1 -1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1
2 0 0 -2 0 0 0 0 2 2 0 2 0 0 0 -2 2 0 -2 -2 0 0 2 -2 0 0 0 0
2 0 0 2 0 0 0 0 2 2 0 2 0 0 0 -2 -2 0 -2 2 0 0 -2 2 0 0 0 0
2 0 0 2 0 0 0 0 2 -2 0 2 0 0 0 2 2 0 -2 -2 0 0 -2 2 0 0 0 0
2 0 0 -2 0 0 0 0 2 -2 0 2 0 0 0 2 -2 0 -2 2 0 0 2 -2 0 0 0 0
2 0 0 0 0 0 0 -2 2 0 0 -2 0 2 0 0 0 0 2 0 -2 0 0 0 2 2 2 -2
2 0 0 0 0 0 0 -2 2 0 0 -2 0 2 0 0 0 0 2 0 2 0 0 0 -2 2 -2 2
2 0 0 0 0 0 0 2 2 0 0 -2 0 -2 0 0 0 0 2 0 2 0 0 0 -2 -2 2 -2
2 0 0 0 0 0 0 2 2 0 0 -2 0 -2 0 0 0 0 2 0 -2 0 0 0 2 -2 -2 2
4 0 0 0 0 0 0 0 4 0 0 -4 0 0 0 0 0 0 -4 0 0 0 0 0 0 0 0 0
4 0 0 2A8 2 0 0 0 -4 0 0 0 0 A8 -2 0 0 0 0 0 0 0 0 A8 0 2A8 0 0 0
4 0 0 A8 -2 0 0 0 -4 0 0 0 0 A8 2 0 0 0 0 0 0 0 02A8 0 2A8 0 0 0
4 0 0 A8 2 0 0 0 -4 0 0 0 02A8 -2 0 0 0 0 0 0 0 02A8 0 A8 0 0 0
4 0 0 2A8 -2 0 0 0 -4 0 0 0 02A8 2 0 0 0 0 0 0 0 0 A8 0 A8 0 0 0
2D
s5 K C0,0U 1

r 12
UC0,0L . ~B2!

The normalized wave function of the ground state of a
hydrogenic atom with a nucleus of chargeQ is

C0~r 1!5A2

p
2Qe22Qr1, ~B3!

so that

C0,0~r 1 ,r 2!5C0,0~r 1!C0,0~r 2!5
8Q2

p
e22Q(r 11r 2).

~B4!
02210
We now evaluates using the (xp ,yp ,xm ,ym) coordinates.
Since the Jacobian of the coordinate transformation isB
516r 1r 2r 12, s becomes

s5E E E E 16r 1r 2uC0,0~xp ,yp ,xm ,ym!u2

3dxpdypdxmdym , ~B5!

where r 1 and r 2 are given by Eqs.~10!. The integrals are
calculated from2` to 1`.
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To evaluates, we represent the (xp ,yp) and (xm ,ym)
planes using polar coordinates (r p ,up) and (r m ,um) and ob-
tain from Eq.~10!

r 15
1

16
@r p

41r m
4 12r p

2r m
2 cos~2up22um!#,

r 25
1

16
@r p

41r m
4 22r p

2r m
2 cos~2up22um!#,

r 125
r p

2r m
2

4
. ~B6!

The ground state wave function is then

C0,0~r p ,up ,r m ,um!5
8Q2

p
e2Q(r p

4
1r m

4 )/2, ~B7!

so that
,

. B

s.

e

L.

nd

as

a-

02210
s5
Q4

4p2E E E E $r p
81r m

8 12r p
4r m

4

3@122 cos2~2up22um!#%e2Q(r p
4

1r m
4 )/2

3r pdrpr mdrmdupdum . ~B8!

The integration overup and um gives 0 for the angular de
pendent term and 4p2 for the independent one. The integr
tion over r p and r m involves Gaussian integrals that give

s5
3pQ

4
, ~B9!

which is 3p/2 whenQ52. In the 3D case,s is evaluated to
5Q/8 in @29#. The ratios2D /s3D56p/5.3.77 is close to 4,
because the 2D ground state wave function is four tim
smaller than the 3D wave function.
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