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Quantum three-body Coulomb problem in two dimensions
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We study the three-body Coulomb problem in two dimensions and show how to calculate very accurately its
guantum properties. The use of a convenient set of coordinates makes it possible to write flign§ehro
equation using only annihilation and creation operators of four harmonic oscillators, coupled by various terms
of degree up to 12. We analyze in detail the discrete symmetry properties of the eigenstates. The energy levels
and eigenstates of the two-dimensional helium atom are obtained numerically, by expanding tling§ehro
equation on a convenient basis set that gives sparse banded matrices, and thus opens up the way to accurate and
efficient calculations. We give some very accurate values of the energy levels of the first bound Rydberg series.
Using the complex coordinate method, we are also able to calculate energies and widths of doubly excited
states, i.e., resonances above the first ionization threshold. For the two-dimensioitad, kdnly one bound
state is found.
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I. INTRODUCTION helium atom with low(or zerg initial momentum is exposed
to an external perturbation, its response will not be very dif-
Since the very beginning of quantum mechanics, the heferent from that of the 2D atom, provided angular momen-
lium atom has attracted much attention as it is one of theum does not play a crucial role in the physical processes
simplest system where the ScHioger equation cannot be involved. For example, when a helium atom is exposed to a
solved exactly. Recently, it has been understood that the lacitrong nonresonant low-frequency electromagnetic field, it
of an exact solution is the direct quantum counterpart of thenay absorb a large number of photons leading eventually to
nonintegrable character of the corresponding classical dysingle or even double ionization. It seems likely that the
namics[1]. Indeed, it has been discovered that, for mostcorrelation between the two electrons plays a major role in
initial conditions (positions and velocities of the two elec- this procesgespecially in the generation of high harmonics
trong, the classical dynamics is chaotic, with the total energyof the electromagnetic fieJdwhile the total angular momen-
and the total angular momentum being the only constants atim remains relatively small. Another example is the produc-
motion. Together with the development of sophisticated nution of doubly ionized atoms where a process involving sym-
merical methods for computing the quantum energy levelsnetric excitation of the two electroriwith zero total angular
[2-7], there have been major improvements in semiclassicahomentum has recently been proposé8l. In these situa-
techniques which allow one to compute approximate valuesions, the full 3D quantum calculation for such a system is
of the energy levels from knowledge of the classical dynamnot presently feasible, except for the very lowest states. On
ics. The most dramatic success is the use of periodic orbthe other hand, a 2D quantum calculation seems reachable.
theory, where the energy levels are calculated from simpl&his would allow one to determine whether the proposed
properties (action, period, stability, etg.of a (preferably  process is relevant or not. It is thus highly desirable to be
large) set of classical periodic orbi{d]. Most of the quan- able to compute accurately the quantum properties of the 2D
tum and semiclassical calculations concentrated on statdglium atom.
with low total angular momentum for at least two reasons: A second motivation to study the 2D three-body Coulomb
first, these are the states experimentally prepared when usimgoblem comes from semiconductor physics. The study of
an optical excitation from a low excited state and, secondlyexcitons—the bound aggregate of an electron from the con-
this is the situation where the classical dynamics is wellduction band and a hole from the valence band, each particle
known. with a given effective mass—is an important tool to study
Of special interest are th@states with zero total angular semiconductors. In 1958, Lampd®] showed that three-
momentum. Classically, the motion of the two electronsbody complexes called triorian electron or a hole bound to
takes place in a fixed plane. Thus, the classical dynamics ian exciton should be observable at low temperatures, and
fully identical with the classical dynamics of the two- this was confirmed later by variational calculations, showing
dimensional(2D) helium atom. It turns out that, although it the stability of trions against dissociation into an exciton and
seems to be a simpler system, there has been only very little free electron or a holeee[10] for references Since then,
interest in this 2D three-body Coulomb problem and essenthe progress in semiconductor technology has made possible
tially no quantum calculation. It is the aim of this paper to fill the fabrication of quasi-2D systems. It was then realized
this hole. It can also be expected that, when a “real” 3D[11,1Q that in such systems trions would have an increased
stability due to the 2D confinement, and should thus be more
easily observable. The trions are responsible for satellites on
*Electronic address: hilico@spectro.jussieu.fr the excitonic lines in luminescence spectra. Several observa-
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Ay h, 4mey, the masan of the electron and the elementary

oM charge are all gqugl to unijtythe Hamiltonian is, neglecting
QED and relativistic effects,
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rl where m; is the mass of the third particlén units of the

electron mass and w13 (m29) is the reduced mass of par-
m, @ X ' ticle 1 (2) and particle 3Q;, Q,, andQj are the charges of
""""""""" - the particles in units of the elementary charge, is the
X2 distance between the particles 1 and 2. The 2D helium atom

with a fixed nucleus corresponds to the case whmgeis
inﬁnite, M13= U23= 1, le Q2: - 1, andQ3: 2

As for the 3D three-body problefi20], we regularize the

FIG. 1. The relative Cartesian coordinates of particles 1 and ZSChr.cmr?ger. equation, l.e., rempve the denqmmators, by
with respect to particle 3 are{,y;) and (x»,Y,). The interparticle multiplying it by 16r;rors,. The elgenstaté{’> with energy

e

\ &

distances are,, r,, andr,. E then satisfies the generalized linear eigenequation
. . . . 2 2

tions have been reported since the first one in 1923-17, 1601 ar P1 P> n Pi-P2 Y+ VW)
and compared with theoretical predictiofts0,18. In this V212 Qi 2up3 Mg

context, a precise calculation of the energy levels of the ex-

citonic trions in a 2D system as a function of the ratio of the =160 41,0 1 E[ W), )
effective masses, with and without external field, is highly
valuable, and justifies the methods and calculations introwhere
duced in this paper. The 2D hydrogen molecular igii Has

also been studied in the frame of the Born-Oppenheimer ap-
proximation in Ref.[19], where the first two electronic en-

ergy curves are given.

The paper is organized as follows. In Sec. I, we discuss B. Symmetries
the physical symmetries of the 2D three-body Coulomb
problem. We then introduce a set of paraboliclike coordi-
nates, give the expression of the Hamiltonian operator, an ) . . .
show that we can find a basis in which the Schinger equa- plane, the parifI, and, when partlcle_s 1 an_d 2 are |dent!cal,
tion involves sparse banded matrices, allowing accurate n’® €xchange symmetry;,. In two dimensions, the parity
merical calculations. In Sec. Ill, we analyze the group strucOPeratorl coincides with a rotation of angte arounda, so
ture of the discrete symmetries of the Hamiltonian, showinghatll and the angular momentuty, are related by
that the complications introduced by the not one-to-one char- M=(-1)t (4)
acter of the change of coordinates can be taken into account '
exactly and actually do not lead to any difficulty. In Sec. IV,
we first explain the detailed structure of the basis set that w¥Ve also introduce the two commuting symmetrigg (sym-
use. We then discuss the structure of the expected energgetry with respect to thex axis) and I1, (symmetry with
spectrum in the case of a 2D helium atom with an infiniterespect to thg axis). They are related to total parity through
mass nucleus, and give the energies of the lowest levels iH,II,=II,IT,=II. The group generated bM,, II,, and
the bound Rydberg series, as well as—using the technique &12is the so called ,, point group. It is an invariance group
complex coordinates—the energy and width of the first douof the Hamiltonian(1), for identical particles 1 and 2. The
bly excited resonance. symmetriesll, andIl, both commute with parity, but not

with the angular momentum, since, for instanég,L,=
—L,II,. As a consequence, the eigenstates of the 2D three-
Il. THE SCHRO DINGER EQUATION body Coulomb problem can be labeled by their angular mo-
mentumM =0,=1,+2, ... and by theexchange symmetry
when particles 1 and 2 are identical. The spectrum corre-

The three-body problem in two dimensions has six desponding toM, and —M, angular momenta are identical:
grees of freedom that can be reduced to four in the center ahis (Kramers degeneracy is a direct consequence of the
mass frame. Here, as depicted in Figriandr, denote the time reversal invariance of the problgi@l]. Alternatively,
positions of particle 1 and 2 with respect to particle 3, ppd  the eigenstates could also be labeled by parity with respect to
andp, are the conjugate momenta. In atomic uiésch that  the x axis and the absolute value of the angular momentum.

V=16(Q1Q3r ol 12+ Q2Q3r 1112+ Q1Q2r 11 5). 3

The symmetries of the 2D three-body problem are the
[]otational invariance around an axi& ) perpendicular to the

A. Hamiltonian
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When the system is exposed to an external uniform elec-
tric field along thex axis, the angular momentum is no 2=
longer preserved. The only remaining symmetrieslafand
Plz.

N

1B pE ml®. €)

As a consequence, the three distances have polynomial ex-
C. Parabolic coordinates pressions when they are expressed with the coordinates

In order to perform efficient and accurate numerical cal- ( p,yp,xm,ym) defined by E,=x,+iy, and Epn=Xp .
culations, we wish to obtain a sparse banded matrix repre. +iy,. Those coordinates are related to the initial cartesian
sentation of the linear problef®) where the nonzero matrix coordinates X;,y1.,Xz,Y2) by
elements are known in a closed form. We thus have to find a
basis set in which the various terms of the Hamiltonian have

1
strong selection rules. This can be achieved, for example, if X1= 1—6(x§—y§—2xpyp+ X2 —y2 = 2XmYm)
all terms of the Hamiltonian can be expanded in polynomial
combinations of position an@onjugat¢ momentum coordi- X (XS_ y'23+ 2XpYp+ X2~ Y2+ 2XmYm),

nates: in such a case, the set of eigenstates of a harmonic

oscillator is convenient. Our situation is slightly more com-

plicated, because the Hamiltonian involves the interparticle 1, o o

distance. How to deal with such a problem is well known for Y1= 7 (= Yp Xm= Vi) (XpYp - XmYm),
the hydrogen atom: by introducing a set of so-called para-

bolic or semiparabolic coordinat§®2], one can map the 2D

hydrogen atom on an harmonic oscillator. The method used 1
here for the 2D helium atom is inspired by such a treatment, Xp= E(x%—yfﬁ 2XpYp— X+ Yo 2XmYm)
although it is technically more complicated.

If x andy are the Cartesian coordinates of a point in a 2D ><(xg—y;—zxpyp—xﬁpL Yo+ 2XmYm)s

space andz=x+iy is the associated complex number, the
distance from the origin is=|z|= x?>+y?, and its expres-
sion involves a square root function. The square root can be 1, 5
removed if we introduce the complex variatife= X+iY Y2= 7 (= Yo~ Xm+ Yim) (XpYp = XY m). 9
defined byz=2?%2, sincer =|Z|%/2=(X?+Y?)/2. X and Y
are the parabolic coordinates, relatedtandy by
and the three distances are

X2_Y2
X= > and y=XY. (5)
_ 2 2
The parabolic coordinates are extremely convenient to rep- r1= 76l (X~ Ym) "+ (¥p+ Xm)“]
resent the hydrogen atom in two dimensid®], or the
Stark effet of the 3D hydrogen atofi21]. Of course, the X[(Xp+Ym)?+ (Yp—Xm)?1,

correspondence betweeK,(Y) and (x,y) given in Eq.(5) is
not one to one. The difficulties related to that choice of co-
ordinates are discussed in Sec. Il B.

We now come to the case of three particles. The complex
positions of particles 1 and 2 with respect to particle 3zare ) )
andz,, andZ, andZ, are the associated parabolic coordi- X[(Xp=Xm) "+ (Yp=Ym)“],
nates. The interparticle distances are thgr:|Z,|%/2, r,

I?|ZZ| 12, ang thusrrl]z |21—2,|= |(|Zl+22)||(bzl ZZZ)(VZZ 1

we introduce the two complex number 1 — T (%21 y2) (%2 42
+2,)/\2 andz,,=(Z,—Z,)/\/2, the distance, appears as 127 7 (% Yp) Ot Vi) 10
the product of the moduli oZ, andZ,. Since we want to
express 1, using square moduli we introduce a second para-
bolic transformation on botlZ, and Z,, by setting Z,
= ~2/2 and Z,=E2/2. The three dlstances are then ex- The Schrdinger equatior(2) can be written as
pressed as the square moduli

1
ro= 16 (X +Xm) +(yp+ym) ]

D. The Schradinger equation

T Ty XY
r=—|E2+E22 (6) 2pu13 2p23 Mg p>7prmeym
16'"P
=EB|W(Xy,Yp Xm:Ym)), (11)
1
= |=52_=F2)2
ERET L Enl® ™ where the kinetic energy terms are

022101-3



HILICO, GREI\/IAUD, JONCKHEERE, BILLY, AND DELANDE

1
T=- 1_6[(Xp+xm)2+ (yp+ym)2][(xp_xm)2+ (yp_ym)z]

(92 2 (92 (92
X{(X2m+Yﬁ1)(_2+_2 +(Xr2J+y123)(_2+_2)
axe  ay’ axe,  ayh
92 32
+2(prm+ypym)(&xp&xm+ 5Yp5ym) _2(Xpym
& &2
—ypxm)( IXpdYm B aypaxm> '
1 2 2 2 2
T2:_1_6[(Xp_ym) +(yp+xm) ][(Xp+ym) +(yp_xm) ]
| (92 2 2 g2
(Xt Ya) — |+ (XE+y5) +—)
Nod " oy Tl ovh
2
Z(XPX’“+ypym< gD aypaym)
72
+2(XpYm= prm)(ax Y &ypaxm”

1 2 5P
Ti=— E[<x§+y§>2—<xé+yé>2][ O tym| -~z
b IVp
N 1
—(XptYyp) ﬁ Eﬁq ~ 5 (XpXm*+ YpYm)
92 92
X (Xpym_ypxm)[ (XpXm+ypym)( (?Ypfyxm - é’Xpé’ym)
92 92
- (Xpym_ypxm)< (9Xpr9Xm + aYpaym) ] )
B:16r1r2r12. (12)

The expressions dB andV can be deduced from Eg&3)

and (10). The Jacobian of the coordinate transformation is

16r4r,rq,. The scalar product of the two wave functions is
given in Appendix B.

The various terms in the Schiimger equation(11) are
polynomials in the coordinate(,y,,Xn,Ym) and their as-
sociated momenta (partial ~ derivatives —id/d{x,,Y,,
Xm,Ym}p). The operator§;, Ty, Tq,, V, andB can thus be

PHYSICAL REVIEW A66, 022101 (2002

sequently, it will be possible to choose a basis of tensorial
products of Fock states of each harmonic oscillator, for
which the operators involved in the Schinger equation
exhibit strong coupling rules.

From the annihilation and creation operators associated
with the new coordinates, we introduce the right and left
circular operators in the planes(,y,) and Xn,,ym) defined
by

al_(axp_

iay )/+2,
= (axp+ iayp)/\/ia

az= (axm_ iaym)/\/za

a,=(a,_+ia, )/\2. (14)

Using the symbolic calculation languagepPLE v, we have
calculated the normal ordered expression of the various op-
erators involved in the Hamiltonian. Those expressions are
too long to be published here. Indeed, the operaigrand

T, contain 625 termsJ ;, 331, the potential operatorgr {,
andr,rq,517,r,r, 159, andB 1463. When particles 1 and 2
are identical, the Hamiltonian involves the kinetic tefim
+T, and the potential termr{+r,)r4, that have only 335
and 275 terms, because the termsTefand T, that do not
commute with the exchange opera®y, cancel out.

E. Angular momentum

The angular momenturh, has a very simple expression
when expressed with the(,y, ,Xn,Ym) coordinates:

. _ 3 3 . d d
= 1 X1 Y1 Y1 X, X2 Yy Y2 axy)’
i Jd J N J J
=— = Xg——Yy— +Xp——Ym—| -
£ 4\"Pay, Yp Xy Y Ym IXm

(15

The relationz=Z?/2 between the cartesian and parabolic
complex numbers shows that a rotation of anglm Z is a

rotation of 29 in z. Consequently, a factor of 2 appears in the
expression of the angular momentum in parabolic coordi-
nates[22]. Since we have performed two successive para-

expressed using the corresponding annihiliation and creatiopolic transformations to define thex{,y, ,Xm,ym) coordi-

operators:

d

1 of = 1
' X
X,

J
E(Xp'i‘ p_E<Xp_ (9_Xp) (13

axp=

nates, we have a factor of 4 in the denominator of @§).
With the annihilation and creation operat¢igl), the angular
momentum is simply

L,=(N;—=Ny+N3z—

Ny)/4, (16)

This shows that the 2D three-body Coulomb problem can be

described using the annihilation and creation operators oivhere the number operators ah:le=a a;. They are related
four harmonic oscillators. The Hamiltonian is a polynomial to the number operators corresponding the the annihilation
of degree 12 in the annihilation and creation operators. Conand creation operatoag(p, ... given in Eq.(13) by

022101-4
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N1+ N2: pr+ Nyp'

N3+ N4: Nxm+ Nym'

17

Ill. DISCRETE SYMMETRIES
A. Physical symmetries

The Hamiltonian(1) has two discrete symmetrield,, and

PHYSICAL REVIEW A66, 022101 (2002

In the particular case where the wave function is ex-
panded on a basis built with tensorial products of harmonic
oscillator eigenstates,

(W)= 2 Cp,nlmoelny), (20)

the physical wave function expansion of Eg0) is restricted
to the even values ofy+ny, because the parity of the Fock

I1,, which are the symmetries with respect to two orthogo-State|n) is (—1)" [22].

nal axis in the physical plane. Using the,(y, ,Xm,Ym) CO-
ordinates, they can be expressed, for instance, as

I, Xp—=Xp, Iy iXp— (Xpt+Yp)/ V2,
Yo— " Yp, yp"(xp_yp)/ \/E:
X (Xt Ym) V2,

Xm—Xm >

Ym— (Xm=Ym)/ \/5 (18

ymm:

Moreover, if particles 1 and 2 are identical, the Hamiltonian

commutes with the exchange opera®g,. The effect ofP4,
on the Kp,Yp ,Xm,Ym) coordinates is

P12 Xp—Xp,
Yp—Yps
Xm—Ym,
Ym— = Xm. (19

Obviously, the Schrdinger equation(11) written with the

(Xp,Yp:Xm,Ym) coordinates is invariant under these transfor-

mations.

B. “Additional” symmetries

This property can be extended to the case of the transfor-
mation given in Eq(9) that gives the Cartesian coordinates
versus the coordinateg(,y,,Xm,Ym). Because we perform
four parabolic transformations to obtain the,(y,,Xm,Ym)
coordinates from the initial Cartesian coordinates, there are
four “additionnal” discrete symmetries which leave the
Schralinger equatior(11) invariant. We denote them ki,
defined as X1,Y1) —(=Xy,—Yy), I, I, andIl,. The
effects of those symmetries on the,(y,,Xm,Ym) coordi-
nates are

Iy Xp—==Ym,  aiXp—Xn,
Y= Xm: Yp—Ym>
Xm——Yp: Xm—Xp,
Ym—Xps  Ym—Yp>
Hp:xp—>—xp, Hm:xp—>xp,
Y= Yo Yp—Yps
Xm—Xms  Xm— X,

Ym— " Ym- (21)

Ym—Ym»

C. Symmetries of the wave function

The group G generated by thH,,II,,P;, and the
I1,,1I,,11,,1T,, symmetries is an invariance group of the

In this section, we analyze the constraints that the physiSchralinger equation(11). It is studied in details and its
cal wave functions must satisfy. We first recall what happengharacter table is given in Appendix A.

in the case of a single parabolic transformation. The para- In order to be single valued in the geometrical space

bolic transformation X,Y)—(x,y) defined in Eq.(5) is a
one-to-one mapping of the quarter of plang€=0,Y=0)
onto the half plane X,y=0). Here, the transformation is
used to represent the full Cartesian plargyj by extending
the domains oKX andY to | — o, + o[ . In that way, we obtain
a double mapping of the Cartesian plane singeY() and

(X1,Y1,X2,Y2), the wave functionV (X, ,Y ,Xm,Ym) Must be
invariant under any “additional” symmetry introduced by
the non one-to-one change of coordinates, i.e., under any of
the transformationdl,,I1,,I1,,I1,,. Then, the wave func-
tion must belong to an irreductible representation of G for
which the character of any “additional” symmetry is equal to

(—X,—Y) are mapped on the same point. Consequently, th&s dimension. There are only eight representations with this
Hamiltonian written with the parabolic coordinates has aproperty, all being one dimensional, that correspond to the

new discrete symmetryX,Y)—(—X,—-Y), i.e., the parity

first eight lines of the character table given in Appendix A.

with respect to X, Y). The physical wave function must be a Consequently, the physical eigenfunctiob$x,,y ,Xm,Ym)

single-valued function of the initial coordinates,y), i.e.,
must satisfy V(X,Y)="¥(—X,-Y). Any function of
W (X,Y) that satisfies the Schdinger equation written in the

can be distinguished only by their symmetry properties with
respect tdl,, IT,, andPq,. The eight physical irreductible
representations of G are those of the gr@up, (or mmn),

(X,Y) coordinates but does not obey the constraintof order 8, already mentionned in Sec. I B. The application
T(X,Y)=V¥(—X,—Y) is to be rejected as an unphysical that maps each “additional” symmetry on the identity is a

solution.

group homomorphic mapping of G dh,, .

022101-5
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Finally, we have shown here that all energy levels belongerators commutes with the Hamiltonian and corresponds to
to a one-dimensional representation of the discrete symmetithe identity in physical space, the basis functions have to be
group of the Schidinger equation, and are thus expected tochosen as the symmetric combinations:
be nondegeneratgexcept for the M, ,—M ) mentioned
abovg. Moreover, using the Xg,Yp,Xm,Ym) coordinates In1,n2,n3,n4) " =|n1,n5,n3,n4) +[N3,n4,Nn1,05).
does not introduce extra representations which cannot be dis- 24)
tinguished from the physical ones. The wave functions cali

be described using a basis exhibiting the relevant symmetr; . .
g g Y e angular momentum, with the same eigenvlye Tak-

properties with respect t,, II,, andP;,, orL, andP,. o )
The second feature will be extensively used in the numerica'tfs]%s'n;?naccgur:ntgﬁ evr?n g?\?it){hzflzxgzr:sns?:r?wm 5\‘/{/‘2
1~ 2 37 g, L

implementation. . !
In other words, among all solutions of the Satirmer obtain than, =n, (mod 4 andn,—n, (mod 4 are simulta-
neously equal to either 0 or 2. We then set

equation(11) in the (X, ,Yp,Xm,Ym) Ccoordinates, sorting out
the unphysical solutions is rather straightforward and one is
left only with the physical symmetries of the initial system.

f course, this symmetrized state remains an eigenstate of

Cio=(ny—ny)(mod 4)=(nz—ny)(mod 4). (25

When patrticles 1 and 2 are identical, the Hilbert space can be

IV. NUMERICAL SOLUTION split into a singlet subspace correspondingXtg=0, and a
A. Basis set triplet subspacg cqrresponding ©,,=2. Here, singlet
_ means symmetric with respect to the exchange opertpr

1. Basis structure whereas triplet means antisymmetric.

To perform numerical calculations of the eigenenergies We can now define precisely the basis set corresponding
and eigenstates of the three-body Coulomb problem, we exo0 the physical states with angular momentivip and either
pand the Schidinger equation on a convenient basis, andsinglet or triplet exchange symmetry. Since the quadruplet of
then solve a linear eigenvalue problem. Because the differeffidices @11,n»,n3,n;) and (3,n,4,n1,n;) give the same
terms of the Hamiltonian have polynomial expressions in thesymmetrized ket in E¢24), we have only to consider one of
annihilation and creation operators, we obtain strong sele¢he two quadruplets to uniquely label the symmetrized basis.
tion rules if we choose basis functions that are tensorial prodConsequently, for singlet states, we set
ucts of Fock statefn;) of the harmonic oscillator described sm .
by the circular annihilation operata; , namely, we set Bi"=1In1,n2,n3,n4) ", N1 =Ny +N3—ny=4M ,n;=0,

IN1,n2,Nn3,n4)=[N1) ®[N5) ® [N3) ® [Ny). (22 C1,=0,(n;>nz or (n;=nz andn,=ny,))},

The indicesn; are then positive integers. The basis functions (26)

are eigenfunctions of the angular momentum, correspondingng for triplet states
to the integer eigenvalue

anti sym_ + —
By, YM={n1,n,,N3,n4) " ,N;—Ny+N3—Nn,=4M ,n;=0,

|\/||_=(n1—n2+n3—n4)/4. (23)

The wave functions of these basis states are simple. In- C1,=2,(ny>nz or (n;=nz andny,>ny))}.
deed, they are just eigenstates of a harmonic oscillator along (27)
the various coordinates. In the&,y,,Xn,Ym) coordinates,
they should appear as products of Hermite polynomials and 2. Selection rules and matrix elements

Gaussian functions of the coordinates. As we use circular
creation-annihilation operators, Ed14), the associated
eigenstates of the two-dimensional harmonic oscillators i
the (x,,yp) and Kn,ym) planes are easily written in polar
coordinates as the product of an axf)(term with an expo-

nential and a Laguerre polynomial of the squared radius. Th mong them, 159 rules preserve the exchange symetry while

explicit EXpressions of such states can be founEQR].. 66 do not. The 159 rules that appear for the operalgrs

We have previously shown that the two successive para; (F 1)1 rir, and B obey on;— Sn,=
bolic transformations introduce “additional” unphysical —(56 —1§r,1 ):10 ér ;ﬁ _15:':_(&1 sn ):1+4 zzmd
states. The physical solutions can be selected using a basj 3 04 o2 -

Fe shown in Fig. 2. The 66 rules verifgn,— sn,=
set that is even with respect to all the “additional” symme- ="~ > """ 7 * 3 = . too2
tries. This choice is performed in two steps. First, both (o5 —ong)= =2. They appear if the exchange symmetry is

+n, andn;+n, have to be even numbers. Indeed, from Eq‘broken ny #m, or Q;# Qo) in the kinetic termsTy T, and

the potential termsqr, andr,r (5.
17), n;+n,=n, +n, andny+ny,=n, +n, and the even ; 112 212 . .
(A7), ny+ng Xp " Vp andns+ny X+ My, @ d the eve Since the Hamiltonian has been written in normal order,

representations fdil , andII,, correspond to even values of the derivation of the matrix elements is straightforward.
ne,tny andn, +ny, . Secondly, because the transforma-They are too numerous to be written explicitly hg8e]. We
tion (1,2,3,4}-(3,4,1,2) on the annihilation and creation op- only give two matrix elements of the kinetic operator of the

Two basis vectors|n,,n,,n3,ny) and |[ny+dng,n,

+ 8n,,nz+ dng,ny+ 8n,) are coupled by the Hamiltonian if
The shiftsén; correspond to one of the 225 allowed coupling
rules. Because the Hamiltonian commutes with the total an-
ular momentum, they all obeyn;— én,+ énz3— dn,=0.

022101-6



QUANTUM THREE-BODY COULOMB PROBLEM IN TWO . ..

on

PHYSICAL REVIEW A66, 022101 (2002

4. Variational parameter

So far, the natural length scale of the problem is the Bohr
radiusay. Because it is not necessarilly the best suited one,
we introduce the length scale *“a,. The Schrdinger
equation(11) is written

T T, Tp
014( ! — +018V] )
{ 213 2pp3 Mg )
=a’EB| V). (30)

When the basis is truncated, the length saalbecomes a
variational parameterii.e., the calculated energy levels
should not depend oa if the basis set is large enougtiat

has to be numerically optimized. All the numerical results
presented in this paper are obtained witltlose to 0.4. All

the digits of the energy levels given in the tables are signifi-
cant. The uncertainty on the results is thus 1 on the last

FIG. 2. The 159 selection rules that preserve the exchange synfigure, and the relative accuracy reaches the'dtevel.

metry are depicted in theng,n3) space. The dark circles corre-
spond to the 61 ruledn,= én, and snz= &n,, the full line circles
to the 49 rulesén, — én,=4 and énz;— én,= —4, and the dashed
line circles to the 49 rulegn,— dn,= —4 andénz— dn,=4.

2D helium T+ T, between two unsymmetrized basis vec-
tors:

(N1,N2,N3,N4|(T1+T2)[N1,N5,n3,N,)
= (14 (ny+ny+1)(ng+ny+1)(n?+4nn,—nyng
+n1ny4+ N3+ NN —Nong+ N3+ 4ngn,+na+3n,

+3n,+3n3+3n,+8), (29

as well as the matrix element corresponding to the selection

rule 51: 52: 53: 54:1:

(n1+1ny+1ng+1n,+1|(Ty+T,)[Ng,Nz,N3,Ny)

= — (1/4)Jns+1yng+1yn,+1yn; +1(n?+5n;n,
—2n;n,4+N5—2n,n53+ N3+ 5n3n,+Nn2+5n;+5n,

+5n53+5n,+12). (29

3. Numerical implementation

For the numerical calculations, we have chosen to trun-

cate the basis defined by E@6) or (27) using the condition
n;+n,+n;+n,<Np,s.. Because the angular momentum is

B. The 2D helium atom without electron interaction

Let us consider 2D helium with a fixed nucleus of charge
Q3=2 (the masam; is infinite). The Schrdinger equation
(30) is simply

o

where V= —32(r{+r,)ro+16rr,. If the 16 ,r, term in

the potential energy is removed, the three-body problem cor-
responds to two independent 2D hydrogen atoms with a
nucleus of charg€®=2. The spectrum of the 2D hydrogen
atom is well known, and is given by the ser{&2]:

JT1it T2

5 (31)

+a8V} |W) = o?EB|V),

QZ

" 2(N-1/2)2’ (32

EN,M:

whereN=1 is the principal quantum number areN+ 1
<M=N-1 the angular momentum of the electron; the de-
generacy is Rl—1. The structure of the energy spectrum is
very similar to the 3D energy spectrum, the only difference
being that the effective quantum numhbér1/2 is a half
integer ranging from 1/2 to infinity rather than a non-
negative integer.

For the helium atom without electronic interaction, the
spectrum is thus given by

4 4

2N —1/2)2  2(N,—1/2)2’
(33

+ =—
ENl'Ml ENZ'MZ

fixed, we have only three independent indices, and the sizeghereN; andN, are the principal quantum numbers of the

of the basis is roughli3,./192. The basi# is then ordered
in order to represent the Schiinger equation using band
matrices as narrow as possible. The eigenvalue problem
then solved using the Lanczos algorith&8] which makes it

two electrons. The essential degeneracy isNy(21)(2N,
—1) if N;#N, and (2N;—1)? otherwise[31]. The total
sngular momentum is simply given by, =M+ M,. The
states of total angular momentulh, correspond to the in-

possible to compute a few eigenvalues in the range of interdices N;,M,N,,M,) and (N,,M,,N;,M,). Those degen-

est.

erate states give symmetfisingled and antisymmetri¢trip-
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let) states when the two quadruplets are different and only TABLE I. Energy levels of the singlet states of the 2D helium
one symmetric state if they are equal. Finally, the energytom(with infinite mass of the nucleysbelow the first ionization
levels can be labeled y;, N,, M, , andP,,. The degen- threshold. The optimum variational parameteis close to 0.4. For
eracy of this configuration is given by the number of solu-most of the states, the basis truncation is giverNgys.=200. The
tions of M, =M, + M, taking into account the boundaries on basis size is then 43 626 for singhet, =0 states, and slightly de-
M, and M. creases withM, . For (1,0,4,0), (1,0,5,0), and (1,0,6,0) we use
By solving the Schidinger equation for an angular mo- Npase= 240 and a basis size of 74 801. In the fourth coludyy, is
mentum between-3 and 3, and for the two exchange sym- € uantum defect of the state, as deduced from(Es).
metries, we have checked that_ our method gives the expect?\ﬂM m M, Energy(a.u) 5
eigenenergies and degeneracies. '

We have then checked the effect of the electronic interaci,0,1,0 0 -11.899 822 342 953 0.1419
tion by introducing it perturbatively as/r,,. We have nu- 1,0,2,0 0 -8.250 463 875 379 0.0871
merically computed the ground state energy of the threei 03,0 0 -8.085 842 792 777 0.0866
body problem as a function oé and observed a linear 104,0 0 -8.042 911 011 139 0.0865
behavior, as expected from first-order perturbation theory; g 5 o 0 -8.025 668 309 76 0.0864
The slope in atomic units is 4.7D), in agreement with the 1 56 g 0 -8.017 061 08 0.0864
slope 3r/2 predicted by first-order perturbation thedsee 151 1 -8.211 542 089 886 -0.0374
Appendix B. 1,031 1 -8.077 637 328 985 -0.0378

1,04,1 1 -8.039 947 878 -0.0378
C. The 2D helium atom 1,051 1 -8.024 280 94 -0.0379
o . L 1,0,3,2 2 -8.079 805 619 119 -0.0030

The 1f,, term describing the electronic repulsion is now 4 4 4 » 2 -8.040 745 817 -0.0030
taken into account. This does not affect the positions of thg s, 5 -8.024 657 76 -0.0031
various ionization thresholdgs the electron interaction van- .’ '’ ' .

. . . e . 1,0,6,2 2 -8.016 51 -0.0031
ishes at large distangelhere is an infinite number of single- 1072 5 -8.011 80
ionization thresholds associated with the principal quantum”™" "’ '
number of the hydrogenic state of the resulting™Hien,
given by energies proximation. Deviations from it can be measured through the
quantum defecb,, ., defined directly from the energy levels
= L through
In= > (39
2(N—-1/2 1
E =8 35
Lomm 2(n—1/2= 6, m) (39

These single-ionization thresholds form a series that con- |t {he previous approximation were exact, the quantum

verges to the double-ionization threshold at zero energy. gefects would all be zero. Hence, deviations from zero and
Consequently, one expects bound states below eregrgy

=—8 a.u., resonandeloubly excited statedetweeri; and TABLE II. Energies of the triplet states of the 2D helium atom

zero, and only continua above. (with infinite mass of the nuclelisbelow the first ionization thresh-

old. The optimum variational parameteris close to 0.4. The basis

truncation is given byNy,sc=200. The basis size is 43550 for

. . triplet M_ =0 states. In the fourth columnrg, , is the quantum
The lowest energy levels of the 2D helium below the firstyefect of the state, as deduced from E3F). '

ionization limit are given in Table | for the singlet states and

1. Bound states

in Table Il for the triplet states. For each valueMf , we N M,n,m M, Energy(a.u) Snm
obtain a Rydberg series converging to te=1 threshold.

For such excited states, the outer electron lies far from thé 02,0 0 -8.295 963 728 090 0.2002
nucleus while the inner electron is essentially in its ground!.0.3,0 0 -8.094 583 618 582 0.2008
state and lies very close to the nucleus. Because this pictudg0.4,0 0 -8.045 941 305 572 0.2010
gives two very different roles to the two electrons, it results1,0,5,0 0 -8.027 055 169 0.2011
in a different set of quantum numbers, namely, ) for ~ 1,0,6,0 0 -8.017 807 0.2011
the inner electron andn(m) for the outer one. A brutal but 1,0,2,1 1 -8.225 772 173 259 0.0118
useful approximation is to neglect the effect of the outer1,0,3,1 1 -8.080 919 691 737 0.0142
electron on the inner one, i.e., consider the inner electron in,0,4,1 1 -8.041 165 882 92 0.0149
the hydrogenic statdN=1M =0 while the outer electron 1,0,5,1 1 -8.024 858 500 0.0152
experiences a point charg®@=1 (the charge+2 of the 1,0,3,2 2 -8.079 819 688 304 -0.0028
nucleus screened by the chargd of the inner electronat  1,0,4,2 2 -8.040 751 693 48 -0.0028
the origin, resulting in an energy spectrum8—1/[2(n 1,0,5,2 2 -8.024 661 158 -0.0028
—1/2)?], wheren is the principal quantum number of the 1,0,6,2 2 -8.016 512 -0.0028

(hydrogeni¢ outer electron. This is of course only an ap-
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TABLE Ill. Quantum defects for various series of the 2D and
3D helium atoms below the first ionization threshold. The values in -10 =
the 3D case are calculated from the energies givef2#. The
values in the 2D case are the limits &f ,, for large values oh. 3
3D Rydberg series 2D Rydberg series %3
=}
) N,M_ S 15 &
lge 0.140 1,0 0.0864
5ge 0.299 1,0 0.2011
1po -0.012 1,1 -0.0379
3pe 0.068 1,1 0.0152
pe 0.0021 1,2 -0.0031 . L iH
3pe 0.0028 1,2 -0.0028 70 02040608 1 "7 0 0204 0608 1

FIG. 3. Energy levels of the singl&t, =0 resonances of the 2D
evolutions withn andm directly measure the breaking of the helium atom (nucleus with infinite mags between the first
approximation. The results shown in Tables | and Il show{~8 au.) and the second-(0.888 - - a.u.) ionization thresholds
that—as for the 3D helium atom—the quantum defects in fsa function of the magnitude of the electronic interaction in-
given series tend to a constant valuenasc. When|m| is cluded in the potential energy asr,,. The right part of the figure
increased, the outer electron is repelled from the nucleus b a magnification close to the second ionization threshold. All the
the centrif'ugal energy barrier and fills less the area occupie nergies presented in this picture are well converged and obtained
by the inner electron. It is th wpected that th nt with «=0.5, #=0.12, andNy,s~150. The basis size is 18 696.

y the er electron. It 1S thus expecte at the quantungq-ause the method of complex coordinates is used, these energy

defe_cts will decre“ase V\{,'th_ |ncrea§||1|g1| and this is fully levels are not bound states, but resonances. At the scale of this
confirmed by our “exact” diagonalizationgsee Tables I, I, figure, their widths are very small.

and Ill). Also, in the triplet states, the wave function in con-
figuration space is antisymmetric, so that the two electrons

cannot be at the same place. Consequently, they are 1€ss ¢fiated by an angle of @ around the ionization thresholds.
ficiently affected by each other, resulting in a lower interac-The first resonance of the 2D helium atdginfinite mass of

tion energy and con.sequentl)_/alarger quantum defect. Againyq nucleus is obtained for zero angular momentum and
our “exact” calculations confirm this behavior. singlet exchange symmetry. Its energy is

Finally, it is interesting to compare the 2D and 3D situa-

tions. Although the Rydberg series are similar in both cases, E=—1.411496 3281)—i0.0012417341) a.u. (36)
this is not true for the ground state. Indeed, the binding en- ' ' o

ergy of the inner electron in its ground state is 8 dseg Eq. It is obtained for a rotation anglé~0.4, a length scaler
(32)], in 2D, that is, four times more than in the 3D helium ~0.35, Np,o= 150, and a basis size of, 18696

H H . 1 ase 1 .
atom. Almost the same ratio 4 is observed between the total The energy structure of the resonances is illustrated in the

binding energies of the ground state: 11.90 a.u. in 2D VErsUs. <o of the singleM, =0 states in Fig. 3. The electronic

2.9Flo?.i.inml3Déxcited states, the core is also four times€PUISION IS included in the potential energy &s;, with
gy ' 0=<e=<1. One can follow the energy levels as a functiore of

smaller in 2D. Wq then exp.ect. a smaller core pe_netrano om the independent electron cage=0) to the helium case
because the centrifugal barrier is almost the same in the 2D~ "
e=1). Fore=0, the levels correspond to the Rydberg se-

and 3D systems, and also a smaller core polarization by th o . 0

outer electron, resulting in smaller quantum defects in the 2 lesN=2, n=2 converging td 2 3/9 au. The degen-

case. The comparison of the 2D and the 3D quantum defec acy of the l=2,n=2) configuration is 9, with three states
of zero total angular momentum. Two of them have the sin-

in Table Ill is consistent with this interpretation. :
P glet symmetry and one the triplet symmetry. For 2, the
> Resonances degeneracy of the configuration is 18, with six states corre-

S ~ sponding toM =0 (three singlet and three ftriplet states

resonances embedded into the continuum. They can be nHpypbly degenerate, and the following ones are triply degen-

merically separated using the complex rotation methodrate. The introduction of the electronic interaction removes
[25,26 (also known as the method of complex coordingtes the degeneracy.

where the positions and momentaand p are respectively
changed intae'? andpe'?. Here, it is simply implemented
using a complex length scate=|a|e'? (in order to preserve
their canonical commutation relationsThis results in a The H™ ion with a fixed nucleus is obtained by setting
“complex rotated” non-Hermitian Hamiltonian whose eigen- Q;=1. We obtain only one bound state below the first ion-
values are complex. In the complex energy plane, the resazation limit [at —2 a.u. from Eq.(32)], with zero angular

nances do not depend on the anglevhile the continua are  momentum and singlet exchange symmetry. Its energy is

D. The 2D H™ ion
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E=-2.240275363584) a.u. (37 group can be seen as a permutation among the 16 quantitites
Xp:Yp Xm ayma(Xp+yp)/\/ii(Xp_yp)/\/ia(xm+ym)/\/§v(xm
It is obtained fora=~0.4, Ny,se= 220, the basis size being —y,)/\/2 and the opposite values, the G group appears as a
57 820. subgroup of the permutation group of 16 elements. Because
of this property, it is easily studied using the permutation
V. CONCLUSION group package provided by theapPLE language.

) ) ] The group G contains 128 elements, in 29 classes. It has
We have introduced a different set of coordinates to rep1g one-dimensional, eight two-dimensional, and five four-
resent the 2D three-body Coulomb problem and given thgjimensional irreductible representations. Table IV represents
resulting Schrdinger equation. We have discussed the disyts complete character table. It has been obtained using the
crete symmetry group properties of the equation and shoWpethod described ifi28]. Let the classes of G bi; with
that it can be numerically solved very efficiently, using aj<j<p. The setk K., the set of the products of any ele-
convenient basis set for which the Solirger equation in-  ant of the clask; b)J/ any element of the clagé , is made

volves sparse banded matrices. The convergence of the cgf complete classes. Calling; the number of occurrences

culations is very go_od_ and the numer.ical results are eXyf the classK, in the productk K., one can symbolically
tremely accurate. This is demonstrated in the case of the 2{) ..o J

helium atom(with inifinite mass of the nucleysfor which
the lowest energy levels in the boung Rydblegrg series are
given with a relative accuracy in the 10to 10 *° range. _

The method developed in this paper provides an efficient K‘Kj_2| Cijt K- (A1)
tool for studying the dynamics of the 2D helium atom in an
external electric field aligned along theaxis. Indeed, with a
field of strengthF, we must add the external potential energy
termVey= 161 11 o 1o(X1+X5) F to Eq.(3). The only remain-
ing symmetries are then the exchange symmetryand the
symmetry with respect to theCartesian axigl,. In such a
case, the convenient basis set can be defined, fron(22y. gingi(R)X,(R)ZX(ER)IEl cipaix®, (A2)
by -

This property is used to obtain relations between characters
x® of the clas; in an irreductible representatid®

29

IN1,N2,N3,N4)€=|N1,N2,N3,N4) "+ €[Nz,N1,N4,N3) ", whereg; is the number of elements of the clagsand y

(38) is the character of the identity E, i.e., the dimension of the
representatioR. Then characters of an irreducible represen-
tation appear to be the solutions of thén+1)/2 quadratic
equations obtained from E@A2) for any couple of {,j).

with e=*1 for even or odd states with respectliq. Be-
causeV.,; is a polynomial in these coordinates, it exhibits

selection rules, making an accurate diagonalization of thei’hen to construct the character table of the group, three

Schrcmnger_ equation still possible. . . steps are necessary. First, the group has to be separated into
The motion of the nucleus can easily be taken into ac- .
. ) o ...~ classes, and the numbgrare obtained. Second, the numbers

count, including theT 1, contribution to the Hamiltonian in

Eq. (12). In that way, it will be possible to determine very il &€ computed, and last the system of equatiex® is

N solved. Obviously, there aredifferent sets of solutions, cor-
accurately the ground state energy of excitonic trions, as a

function of the electron to hole mass ratio. This work is inrespondlng to the irreductible representations.
progress.
APPENDIX B: SCALAR PRODUCT
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escot for stimulating discussions on the trion problem.

X (Xp1Yp Xm»Ym) dXpdYpdXmd Y, (B1)
APPENDIX A: CHARACTER TABLE

The discrete symmetry group G of the Sdfirmer equa- whereB is given by Eq.(12). The integrals are calculated
tion (11) written in the &,y ,Xm,Ym) coordinates is studied from — to +. The factor 1/16- 1/2* comes from the four
here. It is generated by tHé, ,II, P, physical symmetries double mappings of the space introduced by the change to
and thell, ,I1,,I1,,,I1,, “additional” symmetries, defined in parabolic coordinates.

Egs.(18), (19), and(21). Its structure has been studied fol- We now calculate the average value of .}/for the
lowing standard methods of the theory of finite grogpse, ground statdW, o of a 2D helium atom without electronic
for example,[27,28). Because all the generators of the repulsion, that is
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TABLE IV. Character table of the discrete symmetry group G of the &tihger equation(11). The classes and the irreducible
representations have been organized in order to obtain the character tabl®gf tieup in the upper left cornéin bold figures. The last
three classes are those of the “additional” symmetiibs, II,, andIl, (II, andIl, belong to the same classThe first line gives the
number of elements in each class. We finally give one element of each of the 29 clas$gs: Hy, II,I1,, Py, I1,Pq,, T1,P4,,

M ILPy,, Hplly,, HLILIT,, Py, T30, TP, I TP, T15P1,, TLIL,, IILI0,, TILII I, ITA0200m, TILIT I,
ML TP, TILIT Py, TI LT, T I IL I, THH T TP , HyHXPl’zl, IT,, I1,, II,; some of them are reported in the second line
of the table.

18 8 2 4 8 8 4 1 4828 2 444824484 2 4 2 4 4 2
E [, II, 1,0, Py, II,Py, Py, ILILP, I, 1, I,
Iy
1 1 1 1 1 1 1 111111 1111111111 11 11 1 1
1 -1 1 101 -1 1 411111 1111-11-1-1-1-1 -1-1 -1 1 1 1
1 1 -1 101 1 -1 111111 -11-11-111-11-1 -1-1 -1 1 1 1
1 -1 -1 1 1 -1 -1 11-11 1-1 11-1-111-11-11 11 1 1 1 1
1 1 1 1 -1 -1 -1 111-11-1 -1-111111-1-11 1-1 -1 1 1 1
1 -1 1 11 1 -1 11 1-1 1-1 1-11-1-11-111-1 -11 11 1 1
1 1 -1 11 -1 1 11-1-1 11 1-1-11-1111-1-1 -11 11 1 1
1 -1 -1 1 -1 1 1 11-1-111 -1-1-1-111-1-111 1-1 -1 1 1 1
1 1 1 1 1 1 1 1 1-1-11-1 11-1-1-11-1-1-11 1-1 1 -1 -1 1
1 -1 1 1001 -1 1 411111 -11-1111111-1 -11 -1 -1 -1 1
1 1 -1 101 1 -1 4111211 -111-111-11-1-1 -11 -1 -1 -1 1
1 -1 -1 1 1 -1 -1 111-1 11 1111-111-111 1-1 1 -1 -1 1
1 1 1 1 -1 -1 -1 111111 -1-1-1-1-11-1111 11 -1 -1 -1 1
1 -1 1 11 1 -1 111111 1-1-11111-1-1-1 -1-1 1 -1 -1 1
1 1 -1 11 -1 1 1111 1-1 1-11-111-1-11-1 -1-1 1 -1 -1 1
1 -1 -1 1 -1 1 1 1411111 -1-111-1111-11 11 -1 -1 -1 1
2 00 -2 0 0 0 022020 0022022002 20 0 0 0 -2
2 0 0 2 0 0 0 022020 002-20-22200-2 20 0 0 0 -2
2 0 0 2 0 0 0 022020 002 20-2-200-2 20 0 0 0 -2
2 00 -2 0 0 0 022020 0022022002 20 0 0 0 -2
2 0 0 0 o0 0 0 2 200-20 2 000020-200 0 2 2 2 2 -2
2 0 0 0 o0 0 0 2 200-20 2000020200 0 -2 2 2 2 -2
2 0 0 0 0 0 0 220020 2000020200 0-2 -2 2 -2 =2
2 0 0 0 0 0 0 220020 -2000020-200 02 2 -2 2 =2
4 0 0 0 0 0 0 040040 000O0O0-40000 00 0 0 0 4
4 0 0 -8 2 0 0 040000 82 00000O0O0O0J80-y8 0 0 O
4 0 0 8 -2 0 0 040000 y820000O0O0O0O0DL-80-8 0 0 O
4 0 0 8 2 0 0 0-40000-8-20000000W0-y80 V8 0 0 O
4 0 0 -8 -2 0 0 040000-y82000000O0OO0SVJ80 V8 0 0 O
1 We now evaluater using the &;,Yp,Xm,Ym) coordinates.
0=<‘I’o,o r—lz‘I’o,o>- (B2)  Since the Jacobian of the coordinate transformatiorB is

=16ryr,ry,, o becomes

The normalized wave function of the ground state of a 2D
hydrogenic atom with a nucleus of char@eis

2
\Po(rl):\[;ZQeerl, (83) O-Zf f ff16rlr2|“P0,0(vayvamvym)|2

so that X dx,dypdXmdym, (B5)
2

8Q ’
= — < a=2Q(ry+ry)
Vodrr2)=Wodr)Wodrz)=—"-€ s wherer; andr, are given by Eqs(10). The integrals are

(B4) calculated from—oo to +oo.
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To evaluateo, we represent thex(,y,) and Kmy,Ym)
planes using polar coordinates,(6,) and (,¢y) and ob-
tain from Eq.(10)

1
r= 1—6[rg+ Mt 20515 cog260,— 20,1,

1
= g2t o520, 20,),

2.2
rer
_'pm
1= 7 B6)
The ground state wave function is then
8Q? . 4, 4
Wodllp.0p Tm,bm) =~ —e 2CpTW%  (BT)

so that

PHYSICAL REVIEW A66, 022101 (2002

Q4
U:ﬁf f f f{rg+r8m+2rgrfn

X[1~2 co2(20,~ 20, J}e” Ap* 2

X1 odr ol ydryd6,d 6y, (B8)
The integration ove®, and 6, gives 0 for the angular de-
pendent term and#? for the independent one. The integra-
tion overr, andr, involves Gaussian integrals that give

37

e (89

(o

which is 37/2 whenQ=2. In the 3D casey is evaluated to
5Q/8 in[29]. The ratioo,p /o3p=6m/5=3.77 is close to 4,
because the 2D ground state wave function is four times
smaller than the 3D wave function.
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