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Statistical theory of Fano resonances in atomic and molecular photoabsorption

Wolfgang Ihra
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A statistical theory of Fano resonances is presented for highly excited atomic and molecular systems with a
classical chaotic limit. The probability distribution of the Fano parameter, which characterizes the asymmetry
profile of a single resonance, is derived both for the case when the quantum system obeys time-reversal
symmetry and when time-reversal symmetry is broken. Applications of the theory to photodissociation spectra
of molecules and autoionization of Rydberg atoms are discussed.
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I. INTRODUCTION

Resonance phenomena are ubiquitous in highly exc
quantum systems. Typical examples are autoionizing ato
resonances@1#, photodissociation of rovibrational molecula
states@2#, excitons in semiconductor quantum wells@3#, and
resonant transport through nanostructures@4#. Since the
seminal work of Fano@5# it is known that the line shapes o
resonances may differ considerably from the Breit-Wign
form in a resonant excitation process. Interference betw
the indirect and the direct decay process results in a Beu
Fano resonance profile of the photoabsorption cross sec
@1,6#.

This Rapid Communication is aimed towards a statisti
theory of Fano resonances in highly excited quantum s
tems. From a classical point of view, these systems o
exhibit chaotic behavior. It is now common practice to e
tract information from such quantum systems by analyz
their statistical properties@7–9#. Work so far has concen
trated on level spacing statistics@10#, resonance width distri-
butions @11,12#, and correlation functions@13#. Fano reso-
nances on the other hand are best characterized by
asymmetry properties since maxima or minima in the re
nant part of the cross section do not coincide with the form
energy positions of resonances, which are difficult to de
mine. A statistical description of Fano resonances is also
tivated by the increased availabilty of high-resolution expe
ments on highly excited atomic systems, such as
diamagnetic hydrogen atom@14#, and small molecules, suc
as NO2 and SO2 @15#. Furthermore, it will be demonstrate
that even low-resolution experiments which do not fully r
solve the line shape of individual resonances contain sig
cant information on the statistics of line shapes.

The theory is formulated within the framework of phot
dissociation of molecules. Since photoabsorption can
viewed as a half collision process we anticipate that it c
easily be related to full scattering problems such as quan
transport through nanodevices@16#. In order to demonstrate
the broad applicability of the theory, we discuss briefly t
diamagnetic Kepler problem, a paradigmatic atomic syst
as a further potential candidate in order to test our pre
tions.

II. THEORY

For the process of molecular photodissociation, Fig. 1
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picts schematically the situation envisaged. Consider a
atomic molecule with two-dimensional potential surfaces
the diabatic representation. The molecule is coherently la
excited from the ground state or a low-lying stateu0& of
energyE0 onto two two-dimensional electronic potential su
faces. The transition is accomplished by the dipole opera
D. Electronic surfaceS1 is the open channel—the energyE
of the molecular complex is above the dissociati
threshold—while the motion on the potential surfaceS2 is
bound~closed channel!. The dipole matrix element for tran
sition to the open channel is given byd1[^0uDucE

(reg)&,
whereucE

(reg)& is the regular continuum solution at energyE
in the open channel, normalized in energy. WhenE coincides
with the energyEn of a bound stateufn& in channel 2, the
closed channel carries the transition amplitude^0uDufn& in
the absence of coupling to the continuum. In the following
is assumed that transitions between the two excited m
folds are possible. In the diabatic representation the coup
between the two surfaces is given by a nondiagonal poten
V. Then the eigenstateufn& turns into a resonance with widt
Gn52p z^cE

(reg)uVufn& z2.
In the regimeGn!D of isolated resonances (D being the

mean energy spacing of resonances! the oscillator strength
D f (E) for the dipole transition is given by@1#

FIG. 1. Schematic sketch of the photodissociation process:
ser excitation takes place from a low-lying electronic potential s
face ~dipole operatorD). The classical dynamics on surfaceS2 is
bound and chaotic. Dissociation can take place directly by dip
excitation to channel 1 or indirectly by excitation to channel 2, w
the couplingV between the surfacesS1 andS2.
©2002 The American Physical Society01-1
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D f ~E!5D f (bg)
uqn1enu2

11en
2

, ~1!

whereD f (bg)[2m(E2E0)ud1u2/\2 is the background oscil
lator strength for the transition to the open channel in
absence of coupling to the closed channel,m is the reduced
mass of the excited complex, and the reduced energy is
noted byen[2(E2En2Dn)/Gn . The energy shiftDn of the
resonance is neglected in the following. The line shape of
resonance is parametrized by the Fano parameterqn . For a
nondegenerate continuum it is given by@1#

qn5
^0uDufn&

pd1^cE
(reg)uVufn&

1q̄ q̄52
^0uDucE

(irr)&

^0uDucE
(reg)&

. ~2!

ucE
(irr)& is the irregular continuum solution whose phase

shifted asymptotically byp/2 with respect to the regular so
lution ucE

(reg)& @1#. It appears in the expression forqn because
near resonance the wave function in the open channel
quires a strong admixture of the irregular continuum so
tion. Both d1 and q̄ depend only weakly onE and are as-
sumed to be constant within the energy window over whic
sample of resonances is taken. From Eq.~2! it is seen that the
distribution of a set of Fano parameters$qn% taken over a
stretch of the energy spectrum is determined by the statis
properties of the set of eigenstates$ufn&% of the closed chan-
nel.

The distribution of the Fano parameter is derived un
the following two conditions: First, the classical motion
the excited molecular complex on the electronic surfaceS1
of the closed channel is chaotic. This ensures that the st
tical properties of generic wave functions in chaotic syste
apply and that the closed channel subspace can be mod
by random matrix theory@7#. Second, the excitation proces
and the coupling between the two electronic surfaces
assumed to be spatially well separated: the overlap of
initial wave packet̂ r uDu0& and the coupling potentialV(r )
in coordinate representation is negligible. Thereforex
[^0uDufn&/d1 and y[p^cE

(reg)uVufn& can be taken as sta
tistically independent random variables.

III. DISTRIBUTION OF THE FANO PARAMETER

The calculation of the probability distributionP(q) of the
Fano parameter is now straightforward.~The indexn of the
resonance is omitted in the following.! In the case of time-
reversal symmetry the wave functions and thereforex andy
can be chosen real. The closed-channel subspace is mo
by N3N matrices taken from the Gaussian orthogonal
semble ~GOE!. All results are understood in the lim
N→`, wherex and y are Gaussian random variables wi
zero mean and variancessx

2 andsy
2 . The probability distri-

bution is given by

PGOE~q!5E
2`

`

dxE
2`

`

dy Psx
~x!Psy

~y!dS q2q̄2
x

yD
~3!
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andPsx
(x) is the probability distribution ofx ~and likewise

for y). Integrating Eq.~3! results in

PGOE~q;s!5
1

p

s

s21~q2q̄!2
, s[sx /sy . ~4!

The probability distribution of the Fano parameter in t
GOE case thus turns out to be Lorentzian with mean valuq̄
and widths.

The widths of the probability distribution is related to th
coupling strengthV between the closed channel and the co
tinuum channel and the ratio of the dipole transition mat
elements in both channels. Assume thatV can be written in
the form V5lV0, where l characterizes the couplin
strength andV0 is fixed. Thensy;l and therefores;1/l.
For strong coupling to the continuum, the Lorentz distrib
tion acquires a small width centered aroundq̄. The same
holds if direct photoexcitation dominates over the indire
process, since thensx becomes small.

In the case of broken time-reversal symmetry the Ham
tonian of the closed channel is modeled byN3N matrices
from the Gaussian unitary ensemble~GUE!. In this casex
andy are complex Gaussian random variables with indep
dent real and imaginary parts and the Fano parameter i
general, complex. Most conveniently the distribution ofq is
characterized by the probability distribution of the phasewq
and the modulusr q of the quantityq2^q&. The phaseswx of
x and wy of y are uniformly distributed, mod(2p), and the
same holds forwq5wx2wy . Denoting the modulus ofx by
r x and of y by r y the probability distributionPGUE(r q) is
given by

PGUE~r q!5E
0

`

drxE
0

`

dryP~r x!P~r y!dS r q2
r x

r y
D , ~5!

where r x ~and likewise r y) has the probability distri-
bution P(r x)5s r x

22r x exp(2rx
2/2s r x

2 ). @Notice that P(r x
2)

;exp(2rx
2/2s r x

2 ) has the form of a Porter-Thomas distrib

tion for GUE.# The final result for Eq.~5! reads

PGUE~r q!5d~r q!1
sr

2r q

~sr
21r q

2!2
~r q>0!, ~6!

where sr[s r x
/s r y

. The distribution isd –peaked atr q50

and has a local maximum atr q
(0)5sr /A3 with P(r q

(0))
53A3/(16sr). Again, as discussed for the GOE case, t
width sr of the probability distributionPGUE(r q) is deter-
mined by the strength of the coupling between the two ch
nels and the ratio of the strength between the dipole tra
tion to the closed and to the open channel.

IV. PROFILE AREA DISTRIBUTION FOR GOE

In low-resolution experiments the experimental quant
of interest often is the distribution of the profile area attr
uted to a single resonance rather than the distribution of
Fano parameter itself. To be more specific, assume that
1-2
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bandwidthdE of the exciting laser beam is larger than t
width G of the resonance but still smaller than the me
spacingD between adjacent resonances (G,dE,D). As-
suming a rectangular laser profile, the excess oscilla
strength averaged over the resonance profile with respe
the background strength is given by@17#

D f̄ (res)~E!5
1

dEEE2dE/2

E1dE/2

D f (bg)~E8!@F~q;e!21#dE8,

~7!

where F(q;e)[uq1eu2/(11e2) is the profile function of
the resonance@cf. ~1!#. SinceG,dE, the range of integra-
tion in Eq. ~7! can be extended to infinity andD f̄ (res)(E) is
given by

D f̄ (res)~E!5D f (bg)
G

2dEE2`

` q212qe21

11e2
de, ~8!

which, after performing the integration, givesD f̄ (res)/D f (bg)

5pG(q221)/2[Q. In the following, the statistical distri-
bution of the observableQ is discussed. It can be written a
Q5x212q̄xy1(q̄221)y2[ f (x,y) in terms of the matrix
elementsx, y and the mean valueq̄ of the Fano parameter
The probability distribution ofQ is given by

P~Q!5E
2`

`

dx Psx
~x!E

2`

`

dy Psy
~y!d„Q2 f ~x,y!….

~9!

Introducing the scaled area Q̂[aQ with a

5(sxsy)
21A1/41b2 andb5@s1s21(q̄221)#/4, the distri-

bution P(Q̂) can be written as

P~Q̂ !5
1

pA114b2
exp~mQ̂!K0~ uQ̂u!, ~10!

FIG. 2. Distribution P(Q̂) of the scaled resonance areaQ̂
5aQ, see discussion after Eq.~10!. The average value of the Fan

parameter is fixed atq̄50 ands is varied.
02070
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whereK0 is the MacDonald function. Additionally theasym-

metry parameterm5b@ 1
4 1b2#21/2 has been introduced

which determines how muchP(Q̂) deviates from a symmet

ric distribution. P(Q̂) diverges logarithmically asQ̂ ap-
proaches zero.

Figure 2 demonstrates the dependence ofP(Q̂) at fixed

q̄50 in the three characteristic regimesm,0, m50, and
m.0 by varyings. For m50 the probability distribution is

symmetric with respect toQ̂50 ~solid line!. For m,0 the
area distribution is asymmetric with the flat side at negat

values ofQ̂ ~dashed line!. The opposite holds form.0 ~dot-
dashed line!.

Sincem depends both ons and q̄, a contour plot ofm as
a function of (q̄,1/s) is presented in Fig. 3. The variable 1s
instead ofs has been chosen for purposes of discussion s
1/s→` corresponds to the limit of strong coupling betwe
the closed and the continuum channel. The range ofm is
21,m,1. The white dashed line marks the subspace

parameters whereP(Q̂) is symmetric (m50), given byq̄2

1s251. If uq̄u>1 the asymmetry parameterm is always
positive regardless of 1/s. For fixed uq̄u,1 and weak cou-
pling (1/s small! the asymmetry parameterm is positive, too.
If the coupling is enlargedm becomes negative above a ce
tain value of 1/s which depends onq̄.

The expectation value of the scaled area distribution

given by ^Q̂&5m(114b2). Thus ^Q̂& is always positive
when uq̄u>1. Note that the area under anindividual reso-
nance is positive ifuqu.1 holds for its Fano paramete
When uqu,1 the area associated with an individual res

nance is negative. In contrast^Q̂& can either be positive o
negative foruq̄u,1 depending on the coupling strength to t
continuum. Strong coupling to the continuum (1/s→`) re-

sults in a negative value of^Q̂&. In the limit m→11 Breit-

FIG. 3. Asymmetry parameterm of the area distribution, Eq

~10!, as a function of the average shape parameterq̄ ands21. The

white dashed line marks the values (q̄, 1/s), wherem50.
1-3
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Wigner resonances dominate the spectrum. For fixeduq̄u.1
this limit is reached both for weak and large coupling to t
continuum. Foruq̄u,1 the Breit-Wigner limit is reached only
for weak coupling (1/s→0). For uq̄u,1 and strong coupling
to the continuum (1/s→`) the expectation value of the are
distribution is negative and window resonances with ne
tive area dominate the spectrum in the limitm→21.

V. POSSIBLE EXPERIMENTAL TESTS

While the theory was formulated for molecular photoa
sorption it is applicable to any quantum system with a clo
subspace coupled to a single open channel, provided
classical motion in the closed subspace is chaotic. Here
focus on another prominent example, the hydrogen atom
uniform magnetic field. Diamagnetic Rydberg atoms belo
to the experimentally best studied systems in quantum ch
and high-precision measurements of photoabsorption spe
are available@14#. The system can be described as a se
coupled Rydberg series with each series converging t
single Landau threshold in each subspace of given azimu
symmetry @1#. At intermediate magnetic-field strengths th
different Rydberg series overlap~the spacing between neigh
boring Landau thresholds is proportional to the magne
field strength!. The corresponding classical system beha
chaotically in this regime. At energies between the first a
second Landau threshold a single channel is open and
Rydberg electron forms an autoionizing state. The set
closed channels can be modeled as a Gaussian orthog
ensemble@11#. The situation is then analogous to the case
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molecular photodissociation discussed above. If one fits
resonances between the first and second threshold to
profiles, the statistical distribution of the Fano parameter
expected to obey Eq.~4!.

VI. SUMMARY

A statistical theory of Fano resonances for highly excit
atomic and molecular systems is presented. It provides a
terion to test the predictions of quantum chaos through
statistical distribution of the Fano parameter. The broad
plicability of the theory to mesoscopic, molecular, a
atomic resonance phenomena is emphasized. Two pote
applications, photodissociation of triatomic molecules a
autoionization of the diamagnetic hydrogen atom, have b
discussed in detail. It has been shown that even lo
resolution experiments are capable of providing valuable
formation on the statistical properties of Fano resonance
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@17# A. Böhm, Quantum Mechanics: Foundations and Applicatio
~Springer-Verlag, Berlin, 1986!.
1-4


