
PHYSICAL REVIEW A 66, 014103 ~2002!
Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities
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We show that it is possible to demonstrate quantum nonlocality for three particles in a nonmaximally
entangled state without using inequality. The nonlocal effect might be much stronger than that which a
two-particle nonmaximally entangled state can exhibit, as described by Hardy@Phys. Rev. Lett.71, 1665
~1993!#.
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In recent years, much attention has been paid to quan
entanglement, one of the most striking features of quan
mechanics. If two subsystems are in an entangled state
Bell’s inequalities@1# may be violated, supporting quantu
mechanics over local hidden variable theories. A few ye
ago, Greenberger, Horne, and Zeilinger~GHZ! @2# showed
that much stronger refutations of local realism can be p
vided by entangled states involving three or more partic
For the GHZ states, a single set of measurements is suffic
to demolish local realistic theories.

Proofs of quantum nonlocality without inequality for tw
spin-1 particles have been given@3,4#. The argument has
been generalized to two spin-s particles@5# and N spin-1/2
particles@6#. Several years ago, Hardy showed that it is p
sible to demonstrate nonlocality without using the Bell
equality for two spin-1/2 particles prepared in nonmaxima
entangled states@7#. Hardy proposed an experiment to reali
his argument using the parametric down-conversion proc
@8#. In the context of cavity QED, Freyberger@9# presented a
simple example along the lines of Ref.@7#. The probability of
obtaining a nonlocality proof of the Hardy type is no larg
than 0.09. In an experiment it might be difficult to disti
guish an event with a probability of 0.09 from errors. So
nonlocality without inequality has not been proved for
maximally entangled state of two spin-1/2 particles@10#. On
the other hand, a proof of the Hardy type based on t
copies of maximally entangled states of two spin-1/2 p
ticles has been presented@11#. It works for 100% of the runs
of an experiment. In this paper, we show that a three-part
nonmaximally entangled state may also reveal quantum n
locality without using inequality, and the probability of ob
taining the nonlocality proof might be much larger than 0.0

We assume that we cannot get a maximally entang
state for three spin-1/2 particles due to some experime
problems; instead, we can prepare these particles in the
maximally entangled state

uc1,2,3&5cosuu11&u12&u13&1 i sinuu21&u22&u23&,
~1!

whereu1& and u2& are the spin-up and -down states alo
the z axis, and the superscripts 1,2,3 characterize the th
particles. We here assume that 0,u,p/4. We define the
following bases:
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uw i&5 i sinuu1 i&1cosuu2 i&, ~2!

uw i
†&5cosuu1 i&1 i sinuu2 i& ~3!

and

uf i&5 1
2 ~ u1 i&1u2 i&), ~4!

uf i
†&5 1

2 ~ u1 i&2u2 i&). ~5!

Consider the physical observablesEi andUi ( i 51,2,3) cor-
responding to the operators

Êi5uw i&^w i u2uw i
†&^w i

†u, ~6!

Û i5uf i&^f i u2uf i
†&^f i

†u. ~7!

In order to measureEi and Ui we have to perform state
selective measurement on thei th particle with respect to the
corresponding bases. The physical quantitiesEi andUi can
take values 1 or21 corresponding to the eigenvalues ofÊi

and Û i .
We can expanduc1,2,3& in terms ofuw1& and uw1

†&:

uc1,2,3&52 i sinu cosuuw1&~ u12&u13&2u22&u23&)

1uw1
†&~cos2uu12&u13&1sin2uu22&u23&). ~8!

On the other hand, we can expanduc1,2,3& in terms ofuw2&
and uw2

†&:

uc1,2,3&52 i sinu cosuuw2&~ u11&u13&2u21&u23&)

1uw2
†&~cos2uu11&u13&1sin2uu21&u23&). ~9!

We can also expanduc1,2,3& in terms ofuw2& and uw2
†&:

uc1,2,3&52 i sinu cosuuw3&~ u11&u12&2u21&u22&)

1uw3
†&~cos2uu11&u12&1sin2uu21&u22&).

~10!

We now measureE1 on particle 1. Suppose we obtain th
resultE151. In this case particles 2 and 3 will collapse on
the state
©2002 The American Physical Society03-1
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uc2,3&5
1

A2
~ u12&u13&2u22&u23&). ~11!

If we now measureU2 on particle 2 andU3 on particle 3 we
will have the resultU2U3521. This means

if E151, thenU2U3521. ~12!

By symmetry, if we measureE2 on particle 2,U1 on particle
1, andU3 on particle 3, we have

if E251, thenU1U3521. ~13!

On the other hand, if we measureE3 on particle 3,U1 on
particle 1, andU3 on particle 3, we obtain

if E351, thenU1U2521. ~14!

We now measureE1 , E2, andE3. The probability of obtain-
ing the resultE15E25E351 is

P5Tr1,2,3$uw1w2w3&^w1w2w3uuc1,2,3&^c1,2,3u%

5cos2u sin2u

5
1

4
sin2~2u!. ~15!

Consider a run of measurements in which the predicti
~12!, ~13!, and ~14! are verified andE15E25E351 is ob-
tained. According to local hidden theory, from the resultE1
51 and Eq.~12! one can conclude that ifU2 and U3 had
been measured one should have obtainedU2U3521. On
the other hand, from the resultE251 and Eq.~13! one can
conclude that ifU1 and U3 had been measured one shou
have obtainedU1U3521. From the resultE351 and Eq.
~14! one can conclude that ifU1 andU2 had been measure
one should have obtainedU1U2521. This leads to

~U2U3!~U1U2!~U1U3!521. ~16!

However, according to local hidden theory these element
reality Ui have values 1 or21 and thusUiUi51. This leads
to

~U2U3!~U1U2!~U1U3!51, ~17!

contradicting Eq.~15!. We thus have revealed the incons
tency hidden in the local hidden variable theory. The se
contradiction arises from the assumption that there ex
some element of reality corresponding to each ofUi even
when these quantities are not measured and regardles
what is done to other systems.

We note that the probabilityP of obtainingE15E25E3
51 depends on the degree of entanglement we can get. E
if cos2u is much larger than sin2u such a probability might be
much larger than the probability of revealing the nonloca
using a two-particle nonmaximally entangled state with
inequality@7#. We here give an example. Assume that we c
get a nonmaximally entangled state of Eq.~1! with cos2 u
54/5 and sin2 u51/5. Then we haveP50.16. Such a prob-
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ability of success is almost twice the maximal probability
getting the proof of nonlocality using a two-particle no
maximally entangled state.

We now turn to another kind of three-particle nonma
mally entangled state, i.e., theW states@12#

uc1,2,3&5
1

A3
@ u11&u22&u23&1u21&u12&u23&

1u21&u22&u13&]. ~18!

Now we consider the physical observablesEi and Ui ( i
51,2,3) corresponding to the operators

Êi5u1 i&^1 i u, ~19!

Û i5
1
2 ~ u1 i&1u2 i&)~^1 i u1^2 i u!. ~20!

We have the following predictions. If we measureE1 , E2,
andE3 we have

EiEj50, iÞ j . ~21!

This is due to the fact that there is only one particle in t
stateu1&.

We now measureU1 and U2 and E3. If we find U151
and U250, the density operator of particle 3 will collaps
onto

r̂35
Tr1,2$Û2

†Û1uc1,2,3&^c1,2,3u%

Tr1,2,3$Û2
†Û1uc1,2,3&^c1,2,3u%

, ~22!

where

Û2
†5 1

2 ~ u12&2u22&)~^12u2^22u!. ~23!

Tr1,2 denotes the trace over particles 1 and 2, while Tr1,2,3
denotes the trace over particles 1, 2, and 3. Substituting
~20! and ~23! into Eq. ~22! we obtain

r̂35u13&^13u. ~24!

Therefore, we have

if U151, U250, thenE351. ~25!

By symmetry we can draw the conclusion that, if we me
sureUi , U j , andEk ( iÞ j Þk) on atomsi, j, andk, respec-
tively, we have

if Ui51, U j50, thenEk51. ~26!

We now measureU1 , U2, and U3. The probability of
obtaining the resultU151, U250, U350 is

P1,0,05Tr1,2,3$Û3
†Û2

†Û1uc1,2,3&^c1,2,3u%5 1
24 . ~27!

By symmetry we obtainP0,1,05P0,0,15
1

24 . The probability
of obtaining the resultU151, U251, andU350 is
3-2
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P1,1,05Tr1,2,3$Û3
†Û2Û1uc1,2,3&^c1,2,3u%5 1

24 . ~28!

Again, we haveP1,0,15P0,1,15
1

24 .
Consider a run of measurements, in which the predicti

~21! and ~26! are verified andUi51,U j50,Uk50 is ob-
tained. According to local hidden theory, from the resultUi
51,U j50, and Eq.~26! one can conclude that ifEk had
been measured one should have obtainedEk51. On the
other hand, from the resultUi51,Uk50, and Eq.~26! one
can conclude that ifEj had been measured one should ha
obtainedEj51. This means that, if we had measuredEj and
Ek , instead ofU j and Uk , we would have obtainedEjEk
51, contradicting Eq.~21!. Consider another case, in whic
prediction ~26! is verified andUi51,U j51,Uk50 are ob-
tained. Then the local hidden theory claimed that ifEi andEj
had been measured the result should have beenEjEk51,
again contradicting Eq.~21!. Thus, the local hidden theory i
demolished. The probability of obtaining the outcome viol
ing the local hidden variable theory is

P5P1,0,01P0,1,01P0,0,11P1,1,01P1,0,11P0,1,150.25.
~29!

We now discuss the possibility of getting an even stron
nonlocality for the state of Eq.~18! using more genera
J.
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physical observablesUi , with the corresponding operator
Û i given by

Û i5~cosuu1 i&1sinueifu2 i&)~^1 i ucosu1^2 i usinue2 if!,
~30!

where 0<u,p/2 and 0<f,p. In order to verify predic-
tion ~26! we should satisfyu5p/4 andf50. Therefore,Û i
should be given by Eq.~20! and we cannot get a stronge
nonlocality.

In summary, we have shown that the inconsistency in
local hidden theory can be revealed using two types of thr
particle nonmaximally entangled states. In the first type
state, either each particle is in the spin-up state or it is in
spin-down state along some axis. The second type of st
are theW states. The quantum nonlocality is revealed pro
bilistically. The probability of obtaining an outcome viola
ing the local hidden variable theory is much larger than t
using two-particle nonmaximally entangled states.
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