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Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities
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We show that it is possible to demonstrate quantum nonlocality for three particles in a nonmaximally
entangled state without using inequality. The nonlocal effect might be much stronger than that which a
two-particle nonmaximally entangled state can exhibit, as described by HBfs. Rev. Lett71, 1665
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In recent years, much attention has been paid to quantum l@iy=isin6|+;)+cosb|—;), 2)
entanglement, one of the most striking features of quantum
mechanics. If two subsystems are in an entangled state the |ely=cos6|+)+ising|—;) (3)

Bell's inequalities[1] may be violated, supporting quantum

mechanics over local hidden variable theories. A few yeargnd

ago, Greenberger, Horne, and Zeilind&HZ) [2] showed

that much stronger refutati_ons o_f local realism can be_ pro- l¢)y= 5 (|+)+]=1)), (4)

vided by entangled states involving three or more particles.

For the GHZ states, a single set of measurements is sufficient N1

to demolish local realistic theories. lpi)=2(+D—1-)) )
Proofs of quantum nonlocality without inequality for two ) ) )

spin-1 particles have been givéB,4]. The argument has Consider the physical observabEsandU; (i=1,2,3) cor-

been generalized to two spinparticles[5] and N spin-1/2  esponding to the operators

particles[6]. Several years ago, Hardy showed that it is pos-

sible to demonstrate nonlocality without using the Bell in- Ei=le)(eil—leN ) e, (6)
equality for two spin-1/2 particles prepared in nonmaximally
entangled statd9’]. Hardy proposed an experiment to realize U, =| i) | —| ¢i‘f><¢i‘r|_ 7)

his argument using the parametric down-conversion process

[8]. In the context of cavity QED, Freybergid] presented a |n order to measur&; and U; we have to perform state-
simple example along the lines of RET]. The probability of  selective measurement on tih particle with respect to the
obtaining a nonlocality proof of the Hardy type is no larger corresponding bases. The physical quantiesand U; can

than 0.09. In an experiment it might be difficult to distin- ; - e
guish an event with a probability of 0.09 from errors. So far::]k(;aovalues 1 or-1 corresponding to the eigenvalueskqf
i .

nonlocality without inequality has not been proved for a _

; : i We can expandii , 3 in terms of|¢;) and|e]):
maximally entangled state of two spin-1/2 partid@8]. On 12, 1 1

the other hand, a proof of the Hardy type based on two L

copies of maximally entangled states of two spin-1/2 par- |¥122= ~18iN0cosle)(|+2)[+3)—[=2)[~3))

. o .

ticles has b_een presen_t[étil]. It works for 100% of the runs +|<PI>(CO§9| +,)]+ 5) +SirPl =) —5)). (8)
of an experiment. In this paper, we show that a three-particle

nonmaximally entangled state may also reveal quantum Norh, the other hand. we can expath , 9 in terms of|¢,)

locality without using inequality, and the probability of ob- and|¢‘r>.
taining the nonlocality proof might be much larger than 0.09. 2
We assume that we cannot get a maximally entangled — _isindcosd == —
state for three spin-1/2 particles due to some experimental 129 le2)(I+ 0l +s) =70l =3)
problems; instead, we can prepare these particles in the non- +]@n)(cof0]+ )| +3) +siP6] — )| —3)). (9)

maximally entangled state

o We can also expan in terms of and|el):
[ 2= 086+ 1) + )|+ 3+ sinbl )|~ — ), Pand 23 [¢2) and]ez)

| | |¢h129)=—1siN0cosb|3)(|+ 1) +2)—[—1)]—2))
where|+) and|—) are the spin-up and -down states alon .
the z axis>, and thi} superscri%ts 1p,2,3 characterize the th?ee +|‘P~I>>(C0529|+1>|+2>+5m20|_1>|_2>)'
particles. We here assume that@<w/4. We define the (10)
following bases:
We now measurd; on particle 1. Suppose we obtain the
resultE,;=1. In this case particles 2 and 3 will collapse onto
*Email address: shzheng@pub5.fz.fj.cn the state

1050-2947/2002/66)/0141033)/$20.00 66 014103-1 ©2002 The American Physical Society



BRIEF REPORT

1
|¢//2,3>:E(|+2>|+3>_|_2>|_3>)- (11)

If we now measuréJ, on particle 2 andJ5 on particle 3 we
will have the resulU,U;=—1. This means

if Elzl, thenU2U3:_1. (12)

By symmetry, if we measurg, on particle 2U, on particle
1, andU; on particle 3, we have

if E2:1, thenU1U3:_1. (13)

On the other hand, if we measuks on particle 3,U; on
particle 1, andJ; on particle 3, we obtain

if E3:1, thenU1U2:_1. (14)

We now measur&,, E,, andE;. The probability of obtain-
ing the resultE;=E,=E;=1 is

P=Tri 4l e10203)(010203|[¥129(¥124}
=cog4sirtd

(19

1.
ZSInZ(ZG).
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ability of success is almost twice the maximal probability of
getting the proof of nonlocality using a two-particle non-
maximally entangled state.

We now turn to another kind of three-particle nonmaxi-
mally entangled state, i.e., thW stateq 12]

|w1,2,3>=%u+1>|—2>|—3>+|—1>|+2>|—3>

+H=Dl=2+3)] (18

Now we consider the physical observables and U; (i
=1,2,3) corresponding to the operators

Ei=l+)(+il, (19
Ui=3 ([+)+ =)D+l +(=iD.

We have the following predictions. If we measike, E,,
andE; we have

(20

This is due to the fact that there is only one particle in the
state| +).

We now measurdJ; andU, and E;. If we find U;=1
and U,=0, the density operator of particle 3 will collapse

Consider a run of measurements in which the prediction®nto

(12), (13), and (14) are verified andE,=E,=E3=1 is ob-
tained. According to local hidden theory, from the redtjt
=1 and Eq.(12) one can conclude that 1§, and U; had
been measured one should have obtaibetl;=—1. On
the other hand, from the resil,=1 and Eq.(13) one can
conclude that ifU; andU3; had been measured one should
have obtainedJ,U;=—1. From the resulE;=1 and Eq.
(14) one can conclude that @, andU, had been measured
one should have obtaindd;U,=—1. This leads to

(UpU3)(U1U3) (U Ug)=—1. (16)

However, according to local hidden theory these elements of

reality U; have values 1 or-1 and thudJ;U;=1. This leads
to
(UpU3) (U Uy) (U U3z =1, 17

contradicting Eq(15). We thus have revealed the inconsis-

tency hidden in the local hidden variable theory. The self-

. Try U0 ¢y 2 (#1204}
° Tr1,2,3{0;01| Y1214} ,

(22

where

U3=3 (I+2) =1 =20 ((+2l = (=) (23

Try , denotes the trace over particles 1 and 2, whilg,Er
denotes the trace over particles 1, 2, and 3. Substituting Egs.
(20) and (23) into Eqg. (22) we obtain

p3=|+3)(+3l. (24)

Therefore, we have
if Uj_:l, U2:0, thenE3:1. (25)

By symmetry we can draw the conclusion that, if we mea-
sureU;, U;, andE, (i#]j#k) on atoms, j, andk, respec-

contradiction arises from the assumption that there existﬁve|y we have

some element of reality corresponding to eachUpfeven
when these quantities are not measured and regardless
what is done to other systems.

We note that the probabilit? of obtainingE;=E,=E3

=1 depends on the degree of entanglement we can get. Eve

if cos?6 is much larger than sf# such a probability might be

much larger than the probability of revealing the nonlocality
using a two-particle nonmaximally entangled state without

of

if Ui=1, U;=0, thenE,=1. (26)

nWe now measurdJ,, U,, and U;. The probability of

obtaining the result,=1, U,=0, U3;=0 is

P1oo=Trod U030 g o) (h10d}= 2. (27)

inequality[ 7]. We here give an example. Assume that we can

get a nonmaximally entangled state of Hd) with cos 0
=4/5 and sif §=1/5. Then we havé=0.16. Such a prob-

By symmetry we obtairPg; o= Pgo1=33. The probability
of obtaining the resuly;=1, U,=1, andU3=0 is
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physical observablell;, with the corresponding operators

(28)
U; given by

P110= Triof U300 g o (10} = 54 -

Again, we hanDI,O,l: PO,l,lz 2i4

Consider a run of measurements, in which the prediction
(21) and (26) are verified andU;=1,U;=0,U,=0 is ob-
tained. According to local hidden theory, from the redujt
=1U;=0, and Eq.(26) one can conclude that &, had
been measured one should have obtaiige-1. On the should be given by Eq(20) and we cannot get a stronger
other hand, from the resuli;=1,U,=0, and EQq.(26) one  nonlocality.
can conclude that iE; had been measured one should have In summary, we have shown that the inconsistency in the
obtainedE;= 1. This means that, if we had measutgdand local hidden theory can be revealed using two types of three-
Ex, instead ofU; and Uy, we would have obtaine&;E,  particle nonmaximally entangled states. In the first type of
=1, contradicting Eq(21). Consider another case, in which state, either each particle is in the spin-up state or it is in the
prediction (26) is verified andU;=1,U;=1,U,=0 are ob- spin-down state along some axis. The second type of states
tained. Then the local hidden theory claimed thd;iandE; are theW states. The quantum nonlocality is revealed proba-
had been measured the result should have Wg&n=1, bilistically. The probability of obtaining an outcome violat-
again contradicting Eq21). Thus, the local hidden theory is ing the local hidden variable theory is much larger than that
demolished. The probability of obtaining the outcome violat-using two-particle nonmaximally entangled states.
ing the local hidden variable theory is

gJi=(cos€|+i>+sin0e‘¢’|—i>)(<+i|cos¢9+<—i|sin ge~ %),
(30)

where 0< 9<w/2 and O< ¢<r. In order to verify predic-
tion (26) we should satisfyg= 7/4 and¢=0. ThereforeJ;
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P=P100%Po10t PooitP110tP1o1tPo11= 025(’-29)
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