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Generation of entangled photon states by using linear optical elements
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We present a scheme to generate the polarization-entangled two-photon &edtel1/V) +|V)|H)), which
is of much interest in the field of quantum information processing. Furthermore, we demonstrate the capability
of this concept in respect of a generalization to entafgjghoton states for interferometry and lithography.
This scheme requires single-photon sources, linear optical elements, and a multifold coincidence detection.
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The generation of entangled quantum states plays aondetection19,20. Kok et al. presented a linear optical
prominent role in quantum optics. An experimental realiza-scheme to generate the stéte, which is based on &l-fold
tion in this context can be achieved with trapped iph§ photon coincidence detection.
cavity QED[2], or Bose-Einstein condensati¢8]. Experi- At first we show that two-photon polarization entangle-
ments with polarization-entangled photons opened a wholgnent can be generated with our scheme, if the initial state is
field of research. Polarization entanglement was used to tegj),|H),. We use the abbreviatiorts andV to denote the
the Bell inequality{4] and to implement quantum informa- qrizontal and vertical linear polarization of each photon. In

tion protoqols such as quantum teleportat{a, quantum Fig. 1 the required symmetric experimental setup of our pro-
dense coding6], and quantum cryptograpliy]. The experi- 400 is shown. Two optical input modes are entangled by a

mental ger:e(agaio_;_]hof GH% s_tatte_s of tthreel %r fﬁutr ph?t?n%eam splitter BS. In each of these entangled branches a po-
were reportedc]. These polarization-entangied photon states, ;, -, , rotator, a single-photon injection block and another

were only bemg produced rqndpmly, since there was no Wa¥stator is inserted. Finally these branches pass a polarization
of demonsirating that polarization entanglement was gene'Beam splittePBS). This setup looks like an optical interfer-

ated without measuring and destroying the outgoing $€dte ) o
Some quantum protocols such as error correction were gq&meter with the possibility to vary the angle of the rotators

signed for maximally entangled quantum states without ranS0ntinuously, to inject a photon and to get classical informa-
dom entanglemenit10]. Thus, a photon source is needed, ion with the aid of the detecto®; andD,.

which produces maximally polarization-entangled outgoing N the following the performance of this arrangement of
photons. Remarkably, an efficient quantum computation witdinear optical devices will be analyzed in detail. The action
linear optics was put forward.1]. Such schemes can be used Of the symmetric BS can be described by the unitary operator
directly to generate polarization-entangled quantum states. It
was suggested to arrange an array of beam splitters in orde-
to implement a basic nondeterministic gald]. A feasible
linear optical schemgl2] was proposed to generate polar-
ization entanglement by making use of single-photon quan-
tum nondemolition measurements based on an atom-cavit
system[13]. There is a potential interest in generating en- R,
tanglement of optical modes with greater photon numbers. PBS
EntangledN-photon states of the form 3

PBS

1 D
¥=-"—(JON)+|N,0 1 2
\/§(| )+[N.0)) .Y pas, QI/BS

are of much interest in respect of the phase sensitivity in a r

two-mode interferometgn4]. They should allow a measure- R, =—— 6 /‘ 1)
ment at the Heisenberg uncertainty liniit5]. Recently it 1 2 2
was shown that such states allow subdiffraction limited li-
thography[16]. In the case oN=2 the entangled\-photon BS
state(1) can be generated easily by using linear optical ele-
ments. For higher values &, a scheme was proposed by

using nonlinear medigl7]. It was assumed that the genera- k. 1. This figure shows the required experimental setup to
tion of quantum states of this type is possible by using lineagenerate polarization-entangled two-photon states. The polarization
optical schemes. Recently, the first linear optical scheme waseam splitter{PBS, PB$ (i=1,2,3,4)] transmitH photons and
proposed to entangle four-photon stéte8]. Furthermore, it reflect V Photons. Four polarization rotatoR; (i=1,2,3,4) are
was shown that any two-mode photon states can, in prinrequired. BS and BS(i=1,2) denote symmetric beam splitters.
ciple, be generated using a linear optical scheme based dfe scheme requires three photon-number dete€igrandD,.

6'
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After passing the BS the initial state is transferred into the | J | — ] 9 N
other mode, ’ A | — | _
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W1=—=(|2H)10),~0)1]2H),). @ 4]
V2 alpy

The two output modes of the beam splitter pass through two g, 2. The basic element to entangiephoton statesé de-
polarization rotators with the rotation angée These linear notes the parameter of the beam splitter.
optical devices can be described by the transformation

T, + . + 1
B (cosnaTisnfay. 7= (M= V)IH). (10

5

. : . In order to present the principal idea of our scheme to gen-
In order to obtain a maximum efficiency of our scheme the P P P g

. . _ erate entangleN-photon states we introduce in Fig. 2 simple
rotation anglesg are calibrated to fulfill cog=1/3. The building blocks® as optical two-mode devices. Two sepa-
two-photon state transforms to

rate single-photon injections and two photon-number detec-

al— (cos)al,—(sinf)a/; . (4)

V2 tors are involved in this device. In the following, we will

2 S -
\pzz?[o_qu>l,|o>2,+|HV>1,|0>2,+|2V>1,|0>2, demonstrate the generallzatlon.capab|.llty c_>f the concept to
entangleN-photon states. A detailed estimation of the gener-
—0.50)1/|2H)5 — [0Y1,[HV) 5 —|0)1/|2V) 1] alized scheme will be presented in the following. It will be

shown how the quantum stat#) can be generated and how
(5)  the different terms of thé\-photon state can be deleted.

o We consider an arbitrari{-photon state
The two output modes of the rotators pass two polarization

beam splitters: PBSand PBS. Since the polarization beam N
splitters transmit only the horizontal polarization component v, = 2 Caln)alN=n)y, (11)
and reflect the vertical component, the state evolves into n=0 é

V2 to be the input mode of the basic blo€k In contrast to the
\P3=?[0'32H>3+|H>3|V>4+|2V>4_0'5|2H>5 previously analyzed two-photon system we label in Fig. 2
the four input modes 1,2,3,4 with the letterd,c,d. In or-
—[H)s[V)e—[2V)sl. (6)  der to formulate the functionality of this basic block for ar-

bitrary photon-number states transformation we relate to
The scheme uses the output modes 4 and 6 to couple seq y b

. . flese modes the annihilation operatarb,c,d and the cre-
rately a single-photon source as the second input port of th P .¢,

: . &tion operatora’,b',ct,d". The interaction with the beam
symmetric beam splitters 5$md BSZ'.We assume that these splitters B§ and BS can be formulated with the unitary
single-photon sources are in the single-photon dtae If

> : . . operators
the twofold coincidence detection results in one photon in P

each detectoD,; andD, the quantum state is projected into U,=exd f(ac’—a'c)], (12)

W,=3[12H)s— [2V)g —[2H)s+[2V)e]. (D)
U,=exd 8(bd"—b'd)]. (13
Conditioned on this outcome the polarization beam splitters
PBS and PBg transform the two-photon quantum state into The output of these beam splitters is the four-mode state

—1 _ _
\P5_2[|2H>7 |2V>7 |2H>8+|2V>8]- (8) (I):U1U2|‘I’in>|1>c|1>d
These two output modes 7 and 8 pass through two polariza- N c
tion rotators which are calibrated to fulfili,= /4. Finally => ——___(cosfa’+sinach)"
the quantum state n=0 \n!(N—n)
1 X (cosfc’—sinfa’)(cosob’+singdHN "
WG:E[|HV>7’_|HV>3’] ©) X (cosfdT—sinAcT)[0),]0),|0)|0)q. (14)

is incident on a polarization beam splitter in order to obtainThe function of the building block is based on postselection.
the two-photon polarization-entangled quantum state A twofold coincidence detection projects the four-mode state
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1) ) 2) tons in the mode 1 and 0 photons in the mode 2. The spa-
| | | tially separated output photons of the beam splitter are inci-
IN) || ] | dent onN basic elements whose parameter is chosen to be
@{ 8 g | co 6, tand,=.fi, (i=1,...N). Based on the ®-fold photon
|¥) — — — — coincidence  detection, the maximally entangled
| | |— (2N+1)-ph_oton statd1) will be obtained. The probability
i) i) i) of success i§(2N)!12/4N(N+ 1)2N*INI(N+1)!]2.
In summary, we have suggested a feasible scheme to pre-
pare polarization-entangled quantum states and entangled
FIG. 3. If M basic blocks are arrangéd-photon states can be N-photon states by using linear optical devices. In the case of
entangled in a very efficient way. Therefore the choice of the pathe polarization-entangled two-photon states the probability
rameterd; and a M-fold coincidence detection is needed. of the outcome will be 1/18. This is a slightly smaller value
than 1/16, which the scheme with the nondeterministic gate
[11] makes possible. But the experimental setup of our
@ into the two-mode state¥. Conditioned on the coinci- scheme is simpler. Instead of four detectors only a twofold
dence of one photon in each detector thet normalizedl  coincidence detection is required. Thus, the number of detec-
quantum state tors is reduced to the half. In the case of entangled
2N-photon states it is shown that not more thdudetectors
N are required, which is definitely less than other scherh@s
= C,cod ?(coff—nsint) 21] need. An entangled six-photon state can be generated
n=0 with the probability of 9.7%. This probability of the outcome
is three times larger than that of the scheme given in Ref.
[19] and much larger than that of the schemes given in Refs.
[20,21.
is generated. We intend to demonstrate that the {&yphN A generalization to a multimode block can be made easily,
—i)p and the term{N—i),|i), of the input statg11) (with  because the building blocks, which are introduced with the
n=i andn=N—i) can be deleted by changing the valge Fig. 2, do not couple the input modes. The multiphoton co-
of the beam splitters appropriately. This can be achieved bincidence detection requires only the classical information,
choosing the parameterto satisfy targ= \ﬂ which each detector provides. This is a main difference to the
Now we propose the generation of the maximally en-building blocks, which Dowling and co-workers suggested in
tangledN-photon state1) by arranging the building blocks their papeff21]. In our scheme, entanglement is only gener-
as it is shown in Fig. 3. For simplicity, we consider the ated in the first beam splitter, which is shown in Fig. 3.
2N-photon state 4/2(]0,2N)+|2N,0)), but the same Thus, four-mode entangled photon states in the form of
scheme can also be used to generate the entangld (2 (|N)IN—m)[0)|0)+|N—m)[N)[0)|0) + |0)|0)|N)[N—k)
+1)-photon state 42(/0,2N+1)+|2N+1,0). As the in-  + |0)|0)|N—k)|N)) can be generated within the generalized
put mode of the symmetric BS we ulsgphotons in the mode ©Oncept. These quantum states were employed to create two-
1 andN photons in the mode 2. The output of this first beamdimensional patterns on a suitable substrate in quantum op-

splitter is the entangledN-photon state, tical lithography[16]. .
One of the difficulties of our scheme with respect to an

experimental demonstration consists in the requirement of

X (cogH—(N—n)sirfd)|n),/N—n), (15)

1 N " J(2m)!(2N—2m)! the sensitivity of the detectors. Other scherfie&21], which
q’zﬁmzo (-1 m!(N—m)! are based on a multifold coincidence detection, pose the
same requirements on the capability of the detectors. Re-
X[2N—=2m)q/|2m), . (16)  cently, the experimental techniques for single-photon detec-

tion made tremendous progress. A photon detector based on
i a visible-light photon counter was reported, which can dis-
In order to generate the maximally entangled stdeM  {inguish between a single-photon incidence and the two-
basic elements are requir¢!=N/2, if N'is even;M=(N  photon incidence with high quantum efficiency, good time
—1)/2, if N is odd. Conditioned on the B-fold coinci-  resplution, and low bit-error ratg22]. Another difficulty is
dence detection the state=1/y2(|0,2N)+|2N,0)) can be  the availability of photon-number sources. Currently avail-
generated, if the parameters are chosen appropriately; tanable triggered single-photon sources operate by means of
=\2i, (i=1,...M). The probability of this outcome is fluorescence from a single molec(izS] or a single quantum
CN)IL(2N=2)NTA(N=1)!1 2NN 2N AN 2N, if - dot [24,25 and they exhibit very good performance. The
N is odd. Otherwise the probability of this outcome generation of entangled photon states by means of our
will be (2N)![(2N—2)IT[NIT2N22N"L(N—-1)1)?[(N  scheme requires the synchronized arrival of photons on the
+ I[N+ 1)1172MN), beam splitter input ports. This will be experimentally chal-
In order to demonstrate, how entangled\N(21)-photon  lenging. However, the generated entangled-photon states can
states can be generated, we require that the input of the symet as a kind of valuable source for quantum computation
metric beam splitter is in a quantum state witN-21 pho-  and quantum communication.
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