PHYSICAL REVIEW A 66, 013811 (2002
Simplified field wave equations for the nonlinear propagation of extremely short light pulses
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We suggest a method to derive the nonlinear wave equations suitable for describing the propagation of light
pulses as short as two optical cycles in transparent nonlinear optical media. The equations are suitable for
efficient numerical simulation of the propagation of extremely short pulses without the need to resort to any
type of envelope approximation, although they contain these as a limiting case. We demonstrate the power of
this approach by modeling some recent experiments in which ultrabroadband radiation was generated upon
propagating 150 fs duration 390 nm pulses in a deuterium-gas-filled hollow-core waveguide. The calculated
spectrum agrees well with the measured spectrum.
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I. INTRODUCTION Il. WAVE EQUATIONS FOR EXTREMELY SHORT
PULSES

Since the initial demonstrations of pulsed lasers, signifi-

cant effort has been focused on generating shorter ang.-n< of nonlinear optids—3,7,8. Such pulses are ame-
shorter pulses of light from them. Recently, pulses of 4.5 f§,5pe to description within the framework of classical elec-
duration have been created in the laboratory, correspondingomagnetism. Classical theory can also be used for the de-
to about 2-3 periods of oscillation of the electromagneticscription of extremely short pulses that are generated by a
field in the near-ir region of the spectrufi—3|. The mea-  |qer interacting with free electror§]. For the important
surement of the pulse shape and even the pulse duration g}se of pulse propagation in a nonmagnetic dielectric me-

this regime is itself a difficult technical problefd]. For the dium, Maxwell's equations are easily reduced to the form of
purposes of this work we will label pulses containing ap- 26]

proximately ten or fewer cycles extremely short pulses. We
distinguish them from pico- and femtosecond optical pulses 52
containing many field oscillations, which are classified as VXVXE+ug— =0, (1)
ultrashort. The defining characteristic of extreme brevity is 2
the number of oscillations of the field, not the pulse duration
per se Using our definition, both subpicosecond ir pulseswhereE is the electric field of the light wave, the electric
[5,6] and attosecond uv pulsgg,8] are also extremely short. inductionD characterizes the response of the medium, which
The usual approximations made in deriving equations tds usually nonlinear in the strong field of the extremely short
describe the interaction of such brief pulses with matter muspulse, andu, is the magnetic permeability of vacuum. The
be reexamined. This is because of both the inadequacy of tH&st term on the left hand side of Eql) accounts for dif-
standard approaches to the slowly varying envelope approxiraction and the second for dispersion and the nonlinear char-
mation[9,10] and the important role played by space-timeacter of the light-matter interaction.
coupling even in linear propagation problems. Although itis  Even though it is well known that the theoretical analysis
mathematically possible to introduce the concept of an enveaf the nonlinear dynamics of light fields extremely localized
lope for a pulse consisting of one or two field oscillations,in time and space is fully contained in the solutions of Eqg.
the notion of a slowly varying pulse envelope becomes les§l) it is important to note that such solutions have not been
fruitful. For this reason a great deal of attention has beerinvestigated fully even in the particular case of the propaga-
paid in the past few years to modifying the envelope aption of a monochromatic wave through a transparent isotro-
proximation (see, for examplg,11-15) and to developing pic medium with a cubic nonlinearity. This problem has been
another theoretical methods for analysis of laser pulse fieldonsidered only within the paraxial approximation, where
propagation and dynamics in optical megi#®—25. Eqg. (1) becomes a cubic Schitimger equatiof27]. But in
In this paper we formulate principles for constructing this approximation the theory predicts that the beam will
nonlinear wave equations describing directly the dynamics o€ollapse, in which case the propagation becomes highly non-
the electric field(but not the envelopeof extremely short paraxial. Theoretical research into nonlinear light field dy-
pulses in transparent optical media. We show that our equaramics is still a very active area for the case when the beam
tions automatically include the known equations for the endiameter is comparable to the wavelength of the radiation
velope as a special case. The resulting system is used &ven for monochromatic radiatidi27,28. The problem of
model experimental effects that have been demonstrated &elf-focusing of extremely short pulse in the highly non-
occur when extremely short pulses propagate in transpareparaxial regime remains to be solved.
nonlinear media. Some outstanding theoretical problems in At present, theoretical studies of extremely short pulse
the optics of extremely short pulses are discussed. self-action are most fully developed for plane waves, i.e., in

Extremely short light pulses are usually generated by
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the (1+1)-dimensional approximation. The approximation interested in the evolution of the electric field of light pulses
is adequate for the fundamental mode in guiding structuregropagating in onéfor example positivedirection of thez
such as hollow-core waveguides, where it is possible to neaxis, it is expedient to transform the equation to the new
glect the existence of a longitudinal field component, andvariablesz’ =z and r=t—(Ngy/c)z, leading to the form

when the input power is below the critical power for self-

focusing. In this approximation the wave equati@hcan be #E 2N, ¢°E 2N, J*E 2N, °E

- = — JR— —_— a—
transformed to 97'2 C 97'dr c ot c 1 975
P’E 1 ¢°E 9P, 9%Py 2N 2N
— - S e ) + =2 pE- =2
02 2 o2 Ou2 MO c c
wherez is the spatial coordinate in the direction of propaga- ’ 7 :
tion, P, is the linear part of the medium polarization, aRg xb dr Edr+ ©

is the nonlinear component.
Using the approximation of a slowly varying temporal
A. Principles of constructing equations for extremely short profile of the pulse field26], which is often used in the

pulses theory of acoustic waves.e., assuming that the variations of
the pulse field profile are small at a distance commensurate
" with the central wavelengihwe can neglect the second de-
rivative term 9°E/dz'2. Then, integrating Eq(6) over the
ime 7, we obtain the wave equation in the form

Any mathematical model of the self-action of an ex
tremely short pulse in an optical medium must properly ac-
count for the linear and nonlinear dispersion of the mediu
over a wide spectral rangé-or example, in supercontinuum
generation, the spectral width of the generated light covers

3 5 -
more than one octayeWe begin by modifying Eq(2) to E—a£+a1£— '+bf Ed+'
describe the propagation of ultrabroadband spectrum pulses az’' ar ar —w
in a linear medium P, =0) [29,30. The dependence of the . , P
linear |r_1dex of refractiom pf an isotropic optical med!um on _blf dr’fT dH,f Edr"+..-=0. (7)
the optical frequencyw within the transparency region can —oo - —o

be described by the following equatid81]:
The wave equatiofi7), which is truncated with respect to

n?(w)=NZ+2cNpaw?+2cNga0*+ - - - —2cNghw 2 the firstz’ derivative, is equivalent to the one derived using
4 the dispersion relation
—2cNgbyw % -, 3)
N(w)=Ny+caw’+ca,w*+ - —cbw 2—cbjo 4~ .
whereNg, a, a¢, ..., b, by, ... are the empirical disper- (@)=No © 1@ © 1 (8)

sion constants of the medium. This provides the required

precision in the range of transparency of the medium. The Thus, in our case the approximation of a slowly varying

dispersion relatiori3) produces a wave equation of the form profile is associated with replacementrgf— N3 in the dis-
persion relation3) by 2Ng(n—Np). Since Eq.(8) also de-

PE  N§ &°E _ 2Ng J'E 2N, °E scribes the dispersion of the refractive index of optical ma-
92 2 a2 c aﬁ S alﬁ_ o terials in their transparency range with good accurigd
the approximation of a slowly varying wave profile, which is
2NO 2N0 , , fruitful, for example, in acoustics, is also fully justified in the
— PE-——b f dt f Edt optics of transparent media.

It should be noted that Eq7) could be used to describe
N (4) not only the propagation of a transversely homogeneous
plane wave, but also that of a spatially transversely inhomo-
This statement is satisfied by finding the particular solu-geneous mode in a hollow waveguide. The waveguide con-
tion to Eq.(4) for a monochromatic wave tribution can be introduced into E¢?) by addition of a new
coefficientb’ = cu?/(2Nyr?) [24] to the coefficienb associ-
ated with the matter dispersion. Herds the radius of the
hollow core andu is a mode-related constafbne of the
roots of the Bessel functionFor the minimum loss T§&
where €, is the amplitude of a spectral component of themodeu=2.405.
radiation andk(w) is the wave number. It can be easily = The waveguide dispersion can significantly modify the
shown that Eq(5) is a solution of Eq.(4) if the refractive  dispersion compared to that of the dilute gas in the core. For
index n(w) =k(w)c/w depends on frequency according to instance, if the capillary is filled with a noble gas with nor-
relation (3). mal dispersion in the relevant spectral region, then the wave-
Equation(4) describes the propagation of pulses along theguide structure can exhibit anomalous dispersion in some
z axis in both forward and backward directions. If we arerange of the spectrum. Comparing E¢8) and (4) we can

1 .
E= Eswe'('“* “Dyc.c, (5)
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easily see that the generalization of E4) to the case of a PPy 2 Py
nonlinear medium is an equation of the form T+ —— — T+ w4 Py=go(Re+R,)E,
o2 Ter ot
PE N3#E 2N, d°E 2N, J°E ,
— 2= 0 4T — PRy 2 iR
07> c? ot? c gt ¢ at® S — 2+ w%Re= y.E? 11
&tz Te2 ot weZ e= Ye ’ ( )
2No 2N0 t t’
+— bE—— by dt’ Edt”
c ¢ —e ) PR, 2 iR, 2 o 2
+——+ =
2 (9t2 TV dt RS ,
oot g 9)
DRI M .
° gt

whereR, andR, describe the nonlinear parametric connec-
) ) o tion between the pulse electric field and the polarization of

If the nonlinearity of the polarization response does Notne medium. The dynamic parameteg is responsible for
lead to the _generati_on o_f radiation propagating in the_bac:kthe electronic nonlinearity, andR, for the Raman or
ward (negativez') direction, then applying the approxima- g|ectronic-vibrational contribution. The phenomenological
tion of a slqwly varying proﬂle(whmh physically means the parameters of the mediuffy; , e, Tez, Wep, Yo andT,,
approximation of forward propagation, see Sec. JItOEq.  , . characterize the respective dispersions of the nonlin-
(9) we obtain the truncated nonlinear wave equation ear polarization responses, asglis the dielectric permeabil-
ity of vacuum.

JE  PE P°E T Thus the theoretical problem of propagation of extremely
o Ta gtai——o - +b| Ed7 short optical pul h trum is in the t
97! P a7 . p pulses, whose spectrum is in the transparency
range of the dielectric medium, can be reduced to a study of
LR A I ., MaC Py solutions of the wave equati@0) with the matter equations
—lelde Jlde' J'%EdT' +”.+2_No 9 O (11). The model(10),(11) describes phase self- and cross

modulation, stimulated Raman scattering, high-harmonic
(10 generation, and other nonlinear phenomena, which for ex-
tremely short pulses cannot be observed separately.

An analysis of the solutions of the system of the wave In conclusion we remark that even in gaseous media the
equation(10) simultaneously with the equations for the non- field of an extremely short pulse in experiments can be so
linear polarization respong®, determines the features of the strong that a plasma of free electrons may be created. The
propagation of extremely short pulses as a function of theiresulting plasma nonlinearity will also influence the pulse
initial energy, polarization, and temporal and spectral proevolution[8,35]. The system of equations if11) does not
files. include this effect and in this case they should be supple-

mented by the appropriate equations.

B. Nonlinear equations for interaction of extremely short
pulses with matter C. Primary equation for extremely short pulses

The next requirement for a description of the nonlinear and its modifications

part of the polarization response is an account of its disper- In many practical situations the model of the self-action
sive properties. The material equations for isotropic dielecof extremely short pulses in an optical medigh),(11) can

tric media were derived from a density matrix description ofbe simplified into a single equation. For the analysis of linear
the matter in[32,33. The major mechanisms leading to an propagation of extremely short pulses by E@g.it is nec-
optical nonlinearityP,, for an extremely short pulse are the essary to describe the refractive index using only the first
electronic and electronic-vibrational polarizabilities. Each oftwo and the fourth terms of E¢8). For example, for fused
these rapidly responding mechanisms was described by glica, Eq. (8) with these three terms describes the depen-
three-level nonresonant approximation for the interaction oflence of the linear refraction index to an accuracy of three
the optical field with a molecule. It was demonstratefidd]  decimal places in the spectral range from 460 nm to 2500 nm
that this approximation is the minimum necessary for an ad¢with No=1.4508, a=2.7401x 10" %2 $m™!, b=3.9437
equate description of the dispersion of a nonlinear index o< 10'° s"*m™1). Thus Eq.8) describes a considerable part
refraction of a dielectric medium in the range of transpar-of the region of normal dispersion of this material as well as
ency. This model was based on the idea of matter as twthe anomalous group dispersion in the near-ir region. Note
parametrically excited bound nonlinear oscillators. In thisthat the high-frequency end of the dispersion range is limited
case, as in the Lorentz model for linear dispersion, the deby the onset of two-photon absorption. Due to the nonreso-
pendence of the nonlinear refraction index of an optical menant character of the electronic nonlinearity in fused silica in
dium on the frequency of a light wave will have the samethis spectral range, it is possible, as a first approximation, to
form as in quantum theory. It was shown that the nonlineaneglect the dispersion of the nonlinear refractive inf&¥.
polarization response of a dielectric medilfy can be de- For extremely short pulses we can also ignore Raman effects
scribed by a system of matter equations: [20,33, since the response time of the vibrational motion,
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the phonon oscillation period, is rarely less than 100 fs or soanalyzed in Refs[40,41] by including additional terms de-

Hence, for the propagation of linearly polarized extremelyscribing the population dynamics of the vibration levels.

short pulses with spectra in the transparency range of a widddowever, the linear dispersion of the medium due to elec-

band-gap isotropic dielectric medium, the matter equationsronic resonances was not taken into account.

(1)) can wusually be simplified to the relatiorP In the presence of a high-frequency spectral component in

= (g07el 0%, 02%,)E®, and the set of equatiorig0),(11) to the spectrum of an extremely short pulse which is resonant
with a two-photon electronic transition, Eq€l2) can be

JE P°E T JE modified and written in the following form:

——a——+b| Edr'+gE2—=0, (12

0z 673 — JaT 3

JE J°E T 5 JE J
s o _ _ ——a——+b| Edr'+g'E°—+qg—=(RE)=0,
whereg=(3/2cNp)(ve/ wg ws,) . Equation(12) was derived Jz a7 —o Jr  dT
earlier in[20] by direct reduction of the wave equation and
matter oscillator equations accounting for the linear elec- #PRs 2 IR, ) )
tronic and vibration and nonlinear electronic polarizations. 972 + Ter ¥+wezRe= veE%, (15
T (S

This equation plays the same role for extremely short
pulses as the cubic Scliimger equatiori9,10] does in the
nonlinear optics of ultrashort pulségico- and femtosecond
pulses with many field oscillatiohgnd describes all major

physical phenomena relevant to the field dynamics in a dis(')f the medium in Eq(12). In this case the equation contains

persive dielediric medium with an Instanianeous noninearty, yditional terms describing the damping of the electric field,
€ Schrainger equation aescribing the selr-action or u _.quantified by the parameteF,, T'1, ansz:

trashort pulses has been modified in different ways for vari-

whereg’ describes the instantaneous contribution of excited
electronic states that do not have a two-photon resonance.
It is straightforward to take into account linear absorption

ous media, and to include the polarization, harmonic genera- PE . JE 2E
tion, and other features of light pulse propagaf{i®riQ]. The —+F0E—a—+bf Edr’ +gE2— T, —
wide range of experimentally attainable parameters of ex- z a7 - aT ar?

r

tremely short pulses makes it necessary to discuss similar . ,

modifications of the nonlinear wave equatici®). - _sz dT’f Ed7"=0. (16)
In the case of extremely short pulses with arbitrary polar- —o —o

ization, Eq.(12) becomeg36,3
912 1 7" By making a comparison with the usual formalism for the

JE  O°E T JE JE complex index of refraction’ =n+i« [consideringe in the
&——a—3+b Ed7'+g(E,E)—— +hEX| EX—|=0, form of Eq. (5)] these terms can be identified with the spec-
Y4 or o aT or . . . .
(13 tral dependence of the linear absorption of the medium via

the equatiork(w)=c(I'g/w+T10+T,/wd).

whereh and g characterize the magnitude of the instanta- 1 e diffraction of extremely short pulses can be described
neous nonlinearity of the medium polarization response. 14" the paraxial limit by a modified version of E¢L2) [20]:
[25,38 a similar vector equation is deduced for the field in

imati : : JE  J°E T JE ¢ T
the approximation of a two-level medium witi=0 andg _ ——a—+bJ Edr +gE2 — = _AJ_J Edr.
<0. However, for the case of a transparent medium being dz ar —w dr 2N —w
considered here, we hage>0 [33] (at least if the spectrum (17)

of the extremely short pulse does not cover a two-photon

absorptive resonance of the medi{®9]), and for the analy- WhereA, =d%/9x*+ 3%y is the transverse Laplacian. As

sis of polarization field dynamics it is necessary to solve Eqfar as we are aware, E4L7) was first suggested in the con-

(13). text of space-time coupling in free space<b=g=0) in

If it is necessary to take into account the effect of Ref.[42].

electronic-vibrational nonlinearity on the pulse evolution, If we suppose that the parametéts, a, b, andg in Eq.

then Eqgs(10) and(11) can be reduced to the form (17) are dependent on the spatial coordinate then weak inho-
mogeneity of a medium can be taken into account. This

JE 93E 7 , ,0E d would encompass, for example, waveguiding in a glass fiber.

E—aﬁw %EdT +oE ——+q--(R,E)=0, We emphasize that in the limit of “long” pulses with
durations of more than about ten cycles Ef2) can be

) transformed into a modified form of the cubic nonlinear

IR + 3 IR, + w?R = v E2 (14) Schralinger equation when higher dispersion orders are ac-

g2 T, 9t VT Y counted for[20]. That is, Eqg.(12) includes the commonly

accepted fundamental equation describing the nonlinear op-
whereq=1/2cNyw?;. tics of ultrashort pulses as a special casel.36] the corre-
In addition to the features described by E@k2), Eqs. sponding envelope equations are derived from EH3.
(14) also incorporate the stimulated Raman effect. The self- In fact, any of the above equatiofi2)—(17) can be trans-
action of extremely short pulses in Raman-active media wafrmed to the equivalent equations by using the substi-

14
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tution (5). For example, by taking a specific frequengyin (see, for example, the effects described in Sec. Il B

Eq. (5) as the mean frequency of the input pulse spectrum itherefore seems natural to present spectral analogs of the
is possible to labef as an “envelope” even for an extremely time-domain partial differential equations. In addition, by
short pulsg11]. This makes a direct connection to the state-analyzing the dynamics of the pulse spectruB(w)

ment of Ref[11] that the dynamics of extremely short pulses = [ " “E(t)e~'“'dt, we will gain further insight into the ap-
can be considered using traditional analytical methods foproximations made in deriving the temporal equations. For
the propagation of the pulse envelope. However, the equaimplicity we restrict ourselves to consideration of the spec-
tions for the “envelope”¢ in the case of extremely short tral dynamics of linearly polarized radiation in the
pulses become much more cumbersome than the equation ot + 1)-dimensional approximation.

the field E. For example, the self-action of extremely short  The linear equatiori4) has a simple spectral analog

pulses in media with a normal group dispersion and instant

cubic nonlinearity(in inertial gases with nonresonant elec- #G  »’n?
tronic interactions is described compactly by a modified E+ 2
Korteweg—de Vries equatiom3]:

G=0, (20)

3 wheren? is defined by Eq(3). It is important to note that
E_aE+ 2E_ almost any dispersion formula for a specific medium can be
gE =0. (18 i : ! : .
Jz o ar used in Eq(20) instead of the expansion of(w) given in
Eqg. (3).

However, the equation for the “envelop&” obtained by the solution to Eq(20) is
substituting Eq.(5) in Eq. (18) is a cumbersome modified
nonlinear Schrdinger equation with additional terms de- G(0,2)=Cy(w)e [en@/dzi . (g)gilon(@/elz (27
scribing the generation of new harmonics:

The first term in Eq(21) describes radiation propagating
in the positivez direction; the second term is for the opposite
direction. The unidirectional propagation of radiatidre.,
for C,=0) is described by the equation

aE
—iB,E%ex 2i (koz— wot) ]+ BrE% — J9G n
B1€ %exi 2i (koz— wot) |+ Bof*— 2 i 6=0, (22

85+105+_a2828 az P . d o2s
Zivatis 2 6 o0 1B1|€] ,Bzat(| 26)

X exd 2i(kgz— wgt)]=0, (19
which is an analog of the field equati@¢r) but written in a
where v:(aklaw);ol, a,=(9%kldw?),,, az=(3°kl fixed rather than a moving frame. Hem¢w) is given by Eq.
90%),., k=(No/c)o+aw®, ko=woNo/c, B1=3gwo/4, (®)- _ _
B>=30/4, andwy is the central frequency of input radiation. _. I IIS clear t?at the solution o thf redureq equaﬂm)os

Equation (18) “automatically” describes generation of sHlmu tarlﬁoushy an Iexact .part|ch[Jhar sg utt|pn t? Ha t)'
new harmonics via self-phase- and cross-phase modulatio eng:zez,) rgta?in?/nsminlmetﬁglrl]gv:est grzjeeruc(j:elz\r/]a?iveaf?zﬁg
To describe the phenomena using the envelope concept, 0 g.t d I'g yl th umidirectional tion. Th
should generalize Eq19) [omitting the exponential terms in Ia we aref ialng only wi f uhm f'.relg |0na;_|pr_opaga lon. The
Eqg. (19)] and write down additional equations characterizingS owness o the variation o t. e field profile Is not a neces-
the evolution and interactions of the harmonics. sary condition of the formulatlon.. . .

The concept of the pulse field envelope can be inconve- Th_e spectral analog of E() with thezsmzlplegt nonllnsar
nient not only for extremely short pulses but also for longerPClarization  response Pp= eo( ve/ weywey) E*=eoxE,
pulses. For instance, it is not useful for the description ofVNerex is a cubic nonlinear susceptibility, is
self-action in Raman-active media when propagation is ac- PG wn(w)? 2 ru
companied by the generation of a nonuniform spectral super- _ 4 G+ X® J f G(w—a)
continuum. In Sec. Il B we will show that Eq$14) ad- i c? 47%c%) =) -
equately describe these nonlinear effects.

X G(a—p)G(B)dadB=0. (23)

D. Spectral equations for extremely short pulses We can derive a reduced analog of EB3) in a similar

Strong changes in the spectral structure of extremely shorhanner to the transition from EQO) to Eq. (22) using the
pulses can occur when they propagate in nonlinear medigechnique suggested [28]. This yields

2 e _ _
dG .wn(w)G_H)(w J f Glo—a)G(a—B)G(B) dadB=0. (24)

AR 4720 (@) (w—a)n(o—a)+(a—B)n(a—B)+ Bn(B)
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Unidirectional solutions to Eq24) are the particular so- any dispersion relation for the propagation constaf)
lutions to Eq.(23). According to the method of Reff28] the  that satisfies the unidirectional approximation. A Crank-
reduction is based only on the assumption of the smallness ¢®ficholson method is used to calculate the effects of the non-
the third term of Eq(23) compared to the second one. That |inearities in the time domain. The use of a fast Fourier trans-
is, we assume that the nonlinear addition to the refractiveégrm makes the method computationally efficient.
index is much less than the total linear refractive index. In The similarity of these methods to those used in the con-

practice, this condition is usually met. ventional envelope approaches belies the fact that the re-
_ Itis easy to derive generalizations of the spectral equagyced field equations lead to a five- to ten-fold increase in
tions (23) and(24) for more complex polarizations. accuracy for the same computational effeeobmparing the

For a linear refractive index of the form of E() using
the Ny, a, andb coefficients only and under the assumption
of weak linear dispersion, Eq24) becomes

results for both approaches for supercontinuum generation in
hollow-core fibers Even so, the (% 1)-dimensional mod-

eling of spectral supercontinuum generation by a few-cycle
optical pulse takes from several minutes to half an hour on a

NO%Jrawg_ g>G+i go f“ f‘” Glw—a) standard microcomputer.

G
—+i
1272

0z

X G(a—B)G(B)dadB=0, (25) F. Experimental measurements

The electric field is the fundamental entity that enters the

whereg=3y/2cN,. Equation(25) is the spectral analog of Propagation equations derived above. Even in the case of
Eq. (12). linear propagation, knowledge of the temporal intensity of

We emphasize that E(R4) is more general than Eqel2) two individual pulses is not sufficient to allow any inference
and (25) because it does not impose a restriction on medi®f the temporal intensity of their combination. Moreover, the
with weak linear dispersion. presence of space-time coupling demands that measurements

Finally, we note that the spectral approach has some wellare available for the field rather than the temporal or spectral
known advantages and disadvantages in comparison with thetensity. Because the equations are nonlinear, this becomes
temporal approach. The nonlinear convolution in B§) is  critical, since even small changes in the input pulse shape
more difficult to compute than the nonlinear term in EtR).  may affect the nonlinear propagation dramatically. For this
But the description of the dispersion of the refraction indexreason it is important to employ methods for complete pulse
is easier in the spectral approach. The field analog of Eccharacterization to compare with the output of the numerical
(24) is simple if the dispersion dependenc@w) is a series models. There are now several methods that have been dem-
whose zero-order term is the largest. If this dependence isnstrated to be effective in measuring the electric fields of
more complicated, for example, in the form of the Sellmeierextremely short optical pulses, in the regime of two cycles or
formula, the temporal analog of E(R4) is either a complex so. One of these, frequency-resolved optical gatfgOG
integro-differential equation which can be derived from Eq.[46] measures the spectrum of the intensity autocorrelation
(24) by inverse Fourier transform or a coupled set of fieldfunction of the pulse, and uses an iterative deconvolution
and oscillation equations for the medium polarizationalgorithm to extract the fieli47]. Geometries for use with
[17,33,44. However, the conclusion of Oughstun and Xiaovery broadband pulses have been developed by several
[45] that the Sellmeier formulas are incorrectly approximatedgroups[48,49.
by an expansion into a Taylor series in the vicinity of some Another method that provides the same information is
fixed reference frequency does not imply that they cannot bepectral interferometry for direct electric field reconstruction
fitted by series of the form of E@8) with empirically chosen (SPIDER [50]. This technique measures the spectral inter-
factors(see the description of the linear dispersion of fusedferogram of the input pulse and its frequency-shifted replica
silica in series form in Sec. II C (generated by means of nonlinear optickhe spectral phase

In Sec. Il B we simulate the generation of supercon-can be extracted from this interferogram using standard no-
tinuum radiation in a gas-filled hollow-core fiber. We use theniterative algorithms that enable rapid reconstruction of the
field rather than the more general spectral equations, becaupelse shap¢51,52. The apparatus is easily adapted for use
the dispersion of the refractive index is weak and the seriewith extremely short duration puls¢s3].
(8) required only a few teams. To date there have been very few experimental studies of
the propagation of short pulses in nonlinear media that pro-
vide the required detail needed for comparison with simula-

. . tion [54-56, and this remains an area ripe for study.
At present there is no known analytical procedure to solve

E. Numerical modeling

qu. (1d2) and |t_s Vlc’Tll’Iatl;ltS. Thesle eqduatlons _mustftherefﬁre _be Ill. THE ELECTRICAL EIELD DYNAMICS

solved numerically, but are already cast in a form that is OF EXTREMELY SHORT PULSES

appropriate for standard methods. In our computations we

use the split-step Fourier transform technid@gbecause it Using the wave equations derived above we consider in

combines the advantages of both field and spectral propag#iis section some important features of the propagation dy-
tion methods. We calculate the effect of linear terms in thenamics of extremely short pulses in optical media under both
frequency domain, which allows us to incorporate explicitly linear and nonlinear conditions.
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numerical simulation using Eq26). The input pulse(27)
was numerically truncated outside the region where the field
was less than 10 of the peak and the dc spectral compo-
nent was set to zero.

Figure Xa) depicts the dispersive broadening of this pulse
when its spectrum is largely in a range of normal dispersion.
The carrier frequencywy=1.63 wy,, where wy,=%/b/3a
is the frequency of zero group dispersiao®., the frequency
at which?k/ dw?=0 in the dispersion relatio8)]. In fused
silica, for example, these correspond to wavelengths
=27clwy=0.78 um and \,= 27/ w,=1.27 um [9,10].

The changes of shape of extremely short pulses during linear
propagation in fused silica are illustrated in Fig. 1. The zeros
of the electric field at the front of the pulse are spaced farther
apart in time than in the input pulse, and those at the rear are
closer together, as shown in Figal As expected, temporal
broadening is accompanied by a chirp of the pulse due to
positive group velocity dispersion.

When the spectrum of the extremely short pulse is pre-
dominantly in a region of anomalous dispersion the opposite
chirp is seen, as in Fig.(f). For this casewy=0.85 w;,
(Ng=1.5 um) and\,=1.27 um. The “period” is shorter
at the front of an output pulse and increases toward its tail.

The evolution of an input pulse with spectrum in the
range of zero group dispersion is shown in Figc)1The
dynamics differs qualitatively from those shown in Figa)l
and Fig. 1b), because in this case the higher-order dispersive
terms dominate. First, the dispersive pulse broadening occurs
much more slowly. Second, as the main part of the pulse
broadens, rapid oscillations appear at the pulse tail, and be-
gin to extend over quite a long duration. These subpulse
oscillations have a complicated structure, and adjacent sub-
pulses differ from one another byza phase jump.

The self-action of extremely short pulses in nonlinear op-
tical media differs qualitatively from the examples discussed
above. It is also different from that of longer pulses charac-

) ) terized by an envelog®,10]. In particular, the pulse spectral

FIG. 1. The linear temporal broadening of an extremely shortygnqiry Goes not vary during dispersive propagation in linear
pulse with the spectrum in the range @ normal; (b) anomalous; 0 ia \hile spectral broadening may occur in nonlinear me-
(c) zero dispersion of fused silick is the pulse electrical field and dia. Usina the equations derived in Sec. Il we mav study the
E, is its maximum at the medium inpuz€0). 1a. Using q . . ) y y .

spectral superbroadening of intense femtosecond pulses in a
nonlinear waveguide.

A. Dispersive broadening of extremely short pulses

The nonlinear term in the wave equati¢?) can be ne-
glected for weak optical fields. The equation reduces to B. Generation of spectral supercontinua

In this section we analyze the development of the spectral
Edr =0. (26) supercontinuum when a femtosecond pulse propagates in a
o hollow waveguide filled with a pressurized gas. The gas con-
sidered here is deuterium, which has a significant Raman
Solutions to Eq(26) demonstrating dispersive broadening nonlinearity in addition to the electronic nonlinearity.
of extremely short input pulses are shown in Fig. 1. The If the spectrum during superbroadening contains frequen-

= _aftyp
Jz a7

JE  O°E f

input pulse profile is given by cies significantly smaller than the frequencies of electronic
. transitions in gas then the nonlinear part of the electronic
E(0,7)=Eq e A7) coq wq7), (27)  polarization response can be considered dispersionless in the

first approximation. Taking into consideration that the popu-
whereE, is the maximum value of the input electric field;  lation of excited vibrational states in Raman scattering can
is the full width at half maximum pulse duration; aag) is  usually be neglected in moderately intense femtosecond
the mean frequency of the pulse. The propagation of a twopulses, we can use the system of wave equations in the form
cycle input pulse t,=2T andT=27/w,) was analyzed by of (14).
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i, V7 . . : : : : . . . FIG. 3. Spectral supercontinuum generated in 50 cm section of
/60271 hollow waveguide filled with deuterium under pressure of 45 atm.
Input pulse parameters are the same as in Fig. 2. The solid line
represents the numerical simulation, and the dotted one is for the

350 370 390 410 430 450 470 490 510 A (mw experimental data.

FIG. 2. Spectral evolution of a 150 fs second harmonic pulse of Ei 2 sh h luti fth fth |
a Ti:sapphire laser with input intensity ofxa10' W/cn? during igure 2 shows the evolution of the spectrum of the pulse

propagation in a hollow waveguide filled with deuterium under @S it propagates in capillaries. According to both experimen-
pressure of 45 atnG is the pulse spectral density, at@| is its tal and simulation data, nonuniform broadening of the pump

maximum at the medium inpuiz&0). Arrows indicate first ()  spectrum(by a factor of 5-Y dominates due to phase modu-
and second (8) Stokes frequencies. lation in the initial stage of supercontinuum generation at the

sectionz=17 cm in the capillary. After that the spectrum
For the purposes of computation the systéi) can be broadens nonuniformly with an intensity of 3—5% of the

written in normalized units as maximum arising in the broadened pulse close to the Stokes-
5 _ ~ s shifted frequencies. For a capillary length of 33 cm, the input
JE &°E T~ o~ ~,JE JQE spectrum broadens 10-12 times. Spectral components com-
————+B EdT""GE _~+H_~:O, in i H H
5y g3 C Ir 5 parable in intensity with the central pulse frequency appear

near the first Stokes frequency. The most intense components
in turn generate Raman-shifted frequencisse, for ex-
w,)\ % ample, the component near 490 nrAt the output of a 50
( ) E, 28  cm capillary the pump spectrum and the first Stokes and
anti-Stokes components merge, forming a spectral supercon-
_ _ _ _ tinuum extending from 350 to 470 nm (10000 Cthat an
whereE=E/Ey, Q=Q/E}, z=awpz, and7=wor. In Eq.  intensity of 3% of maximum. This numerical simulation cor-
(28) B=3(wi/wo)*, G=4An% /awic, H=2Ang /awic, responds to the experimentally observed supercontinuum

where wy,=4/b’/3a is the frequency of zero group disper- SPectra58].
sion;a andb’ characterize the material and waveguide dis- For instance, Fig. 3dotted ling presents the supercon-
persion and’ corresponds to the TEmode(see Sec. |1 &  tinuum spectrum experimentally observed at the output of a
Ang, =gcE%4 andAnR, = qycE3/20? are actually the non- 50 ¢m capillary. Note that the spectrum was registered by
linear additions to the index of refraction, i.eAnSR averaging over 1000 laser pulses with ﬂuc.tuations of fthe
=nSRI, wherel is the radiation intensity and=gc/2 and p_ulge energy. _Thg result of th_e ngmencal S|mulgt|qn using
nR=qyc/w? are the coefficients characterizing the similar averaging is presepted in Fig. 3 py the solid line. The
electronic- and Raman-nature contributions to the nonlineaf®mparison of the numerical and experimental data demon-
refractive index of the medium. The input pulse in the nu-Strates not only a qualitative but also a reasonable quantita-
merical calculations is given in the forf@7). tive fit of the calculated and measured supercontinuum spec-
Figures 2 and 3solid line) present the results of a simu- tra. This provides preliminary evidence supporting the
lation corresponding to the conditions of an experiment devalidity of the mathematical model.
scribed in Ref[57] where supercontinuum generation was It is evident that in the presence of Raman resonances the
observed. A pulse generated from the second harmonic of @nission spectrum is broadened via sequential generation of
Ti:sapphire laser with central frequencywy,=4.83 Stokes and anti-Stokes components. Each spectral compo-
X 10'° s, intensity | =9x 10 W/cn?, and input pulse nent is broadened by self-phase and cross-phase modula-
duration 7,= 150 fs was input to hollow capillaries with a tions, which cause partially overlapped spectra of neighbor-
diameter of 0.18 mm and lengths of 17, 33, and 50 cm filledng Raman components and thereby form a quasidiscrete
with deuterium under pressui of 45 atm. Experimental spectrum. An analysis of a similar problem using a slowly
settings corresponding to the parameters of the mathematicearying envelope approach would require the simultaneous
model (28) areB=0.22, G=8%10 2, H=5X10"3, Towo  Solution of about ten coupled nonlinear equations for enve-
=7X10%, 1T, wo=3.4x10"% andw,/wy=0.12. lopes of each of the individual sidebands.

2 A 2
i NE

o T,wo g7 \wo g
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IV. CONCLUSION spectral supercontinuum in a hollow fiber filled with gaseous

The nonlinear dynamics of pulses consisting of only a fewdeuterium.
d b g y There are a number of unsolved problems in the theory of

oscillations Of. an opical field may not be correctly desc.ribedthe nonlinear propagation of extremely short light pulses. It
by the formalism of the slowly varying envelope approxima-;q o subject in which it is difficult to gain insight because of

tion. This approximation applies primarily to quasimono- the complex interplay of dispersion and nonlinearities. None-

chromatic radi_ation which Is not applicable to extremely heless, the area is rich with new physics, and is likely to be
short pulses with a corresponding broad spectrum. AIthoug6ec:hnologically important as the boundaries of ultrashort

modifications to the envelope approach are possible that pro- !
vide good agreement with experimental data, the derivatio ulse generation and spectroscopy are pushed back.

of these equations from Maxwell's equations, and their ran The solution of similar problems is of great importance
© equ q ' or applications in technology. We can expect that femto- and
of applicability, has yet to be established.

We have outlined in this paper the derivation of WaVesubfemtosecond pulses may be efficiently used in informa-
pap -tion systems, in fabricating materials with new properties, in

gquatio_ns describing_ the evolution of femtosec_:ond elecm%iagnostics of superfast processes, and in other areas of
fields directly. Techniques for constructing nonlinear eVOIU'physics, chemistry, and optics.

tion equations for the electric field of extremely short light
pulses propagating in bulk and waveguide optical media with
nonlinearities of various natures are formulated. A system of
equations which takes into account the material and wave-
guide dispersions of the medium that are linear with respect This work was supported by Grant Nos. RP1-2249 of the
to the field in the transparency range, as well as nonlinearit).S. Civilian Research and Development Foundation, Nos.
ties of electronic and vibronic nature, is obtained. SeveraD1-02-17841 and 02-02-06885 of the Russian Foundation of
effects arising in the propagation of extremely short pulse8asic Research, and No. UR.01.01.030 of the Program of the
and the characteristic features of these effects have been arRussian Education Ministry “Universities of Russia.” [.LA.W.
lyzed on the basis of these equations, among them dispersieeknowledges the support of the National Science Founda-
broadening of extremely short pulses and the generation of #on, and informative conversations with Alex Gaeta.
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