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Simplified field wave equations for the nonlinear propagation of extremely short light pulses
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We suggest a method to derive the nonlinear wave equations suitable for describing the propagation of light
pulses as short as two optical cycles in transparent nonlinear optical media. The equations are suitable for
efficient numerical simulation of the propagation of extremely short pulses without the need to resort to any
type of envelope approximation, although they contain these as a limiting case. We demonstrate the power of
this approach by modeling some recent experiments in which ultrabroadband radiation was generated upon
propagating 150 fs duration 390 nm pulses in a deuterium-gas-filled hollow-core waveguide. The calculated
spectrum agrees well with the measured spectrum.
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I. INTRODUCTION

Since the initial demonstrations of pulsed lasers, sign
cant effort has been focused on generating shorter
shorter pulses of light from them. Recently, pulses of 4.5
duration have been created in the laboratory, correspon
to about 2–3 periods of oscillation of the electromagne
field in the near-ir region of the spectrum@1–3#. The mea-
surement of the pulse shape and even the pulse duratio
this regime is itself a difficult technical problem@4#. For the
purposes of this work we will label pulses containing a
proximately ten or fewer cycles extremely short pulses.
distinguish them from pico- and femtosecond optical pul
containing many field oscillations, which are classified
ultrashort. The defining characteristic of extreme brevity
the number of oscillations of the field, not the pulse durat
per se. Using our definition, both subpicosecond ir puls
@5,6# and attosecond uv pulses@7,8# are also extremely short

The usual approximations made in deriving equations
describe the interaction of such brief pulses with matter m
be reexamined. This is because of both the inadequacy o
standard approaches to the slowly varying envelope appr
mation @9,10# and the important role played by space-tim
coupling even in linear propagation problems. Although it
mathematically possible to introduce the concept of an en
lope for a pulse consisting of one or two field oscillation
the notion of a slowly varying pulse envelope becomes l
fruitful. For this reason a great deal of attention has be
paid in the past few years to modifying the envelope
proximation ~see, for example,@11–15#! and to developing
another theoretical methods for analysis of laser pulse fi
propagation and dynamics in optical media@16–25#.

In this paper we formulate principles for constructin
nonlinear wave equations describing directly the dynamic
the electric field~but not the envelope! of extremely short
pulses in transparent optical media. We show that our eq
tions automatically include the known equations for the
velope as a special case. The resulting system is use
model experimental effects that have been demonstrate
occur when extremely short pulses propagate in transpa
nonlinear media. Some outstanding theoretical problem
the optics of extremely short pulses are discussed.
1050-2947/2002/66~1!/013811~10!/$20.00 66 0138
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II. WAVE EQUATIONS FOR EXTREMELY SHORT
PULSES

Extremely short light pulses are usually generated
means of nonlinear optics@1–3,7,8#. Such pulses are ame
nable to description within the framework of classical ele
tromagnetism. Classical theory can also be used for the
scription of extremely short pulses that are generated b
laser interacting with free electrons@6#. For the important
case of pulse propagation in a nonmagnetic dielectric m
dium, Maxwell’s equations are easily reduced to the form
@26#

“3“3E1m0

]2D

]t2
50, ~1!

whereE is the electric field of the light wave, the electr
inductionD characterizes the response of the medium, wh
is usually nonlinear in the strong field of the extremely sh
pulse, andm0 is the magnetic permeability of vacuum. Th
first term on the left hand side of Eq.~1! accounts for dif-
fraction and the second for dispersion and the nonlinear c
acter of the light-matter interaction.

Even though it is well known that the theoretical analy
of the nonlinear dynamics of light fields extremely localiz
in time and space is fully contained in the solutions of E
~1! it is important to note that such solutions have not be
investigated fully even in the particular case of the propa
tion of a monochromatic wave through a transparent iso
pic medium with a cubic nonlinearity. This problem has be
considered only within the paraxial approximation, whe
Eq. ~1! becomes a cubic Schro¨dinger equation@27#. But in
this approximation the theory predicts that the beam w
collapse, in which case the propagation becomes highly n
paraxial. Theoretical research into nonlinear light field d
namics is still a very active area for the case when the be
diameter is comparable to the wavelength of the radiat
even for monochromatic radiation@27,28#. The problem of
self-focusing of extremely short pulse in the highly no
paraxial regime remains to be solved.

At present, theoretical studies of extremely short pu
self-action are most fully developed for plane waves, i.e.
©2002 The American Physical Society11-1
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the (111)-dimensional approximation. The approximatio
is adequate for the fundamental mode in guiding structu
such as hollow-core waveguides, where it is possible to
glect the existence of a longitudinal field component, a
when the input power is below the critical power for se
focusing. In this approximation the wave equation~1! can be
transformed to

]2E

]z2
2

1

c2

]2E

]t2
5m0

]2Pl

]t2
1m0

]2Pnl

]t2
, ~2!

wherez is the spatial coordinate in the direction of propag
tion, Pl is the linear part of the medium polarization, andPnl
is the nonlinear component.

A. Principles of constructing equations for extremely short
pulses

Any mathematical model of the self-action of an e
tremely short pulse in an optical medium must properly
count for the linear and nonlinear dispersion of the medi
over a wide spectral range.~For example, in supercontinuum
generation, the spectral width of the generated light cov
more than one octave.! We begin by modifying Eq.~2! to
describe the propagation of ultrabroadband spectrum pu
in a linear medium (Pnl50) @29,30#. The dependence of th
linear index of refractionn of an isotropic optical medium on
the optical frequencyv within the transparency region ca
be described by the following equation@31#:

n2~v!5N0
212cN0av212cN0a1v41•••22cN0bv22

22cN0b1v24
•••, ~3!

whereN0 , a, a1 , . . . , b, b1 , . . . are the empirical disper
sion constants of the medium. This provides the requi
precision in the range of transparency of the medium. T
dispersion relation~3! produces a wave equation of the for

]2E

]z2
2

N0
2

c2

]2E

]t2
52

2N0

c
a

]4E

]t4
1

2N0

c
a1

]6E

]t6
2•••

1
2N0

c
bE2

2N0

c
b1E

2`

t

dt8E
2`

t8
Edt9

1•••. ~4!

This statement is satisfied by finding the particular so
tion to Eq.~4! for a monochromatic wave

E5
1

2
Evei (kz2vt)1c.c., ~5!

whereEv is the amplitude of a spectral component of t
radiation andk(v) is the wave number. It can be easi
shown that Eq.~5! is a solution of Eq.~4! if the refractive
index n(v)5k(v)c/v depends on frequency according
relation ~3!.

Equation~4! describes the propagation of pulses along
z axis in both forward and backward directions. If we a
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interested in the evolution of the electric field of light puls
propagating in one~for example positive! direction of thez
axis, it is expedient to transform the equation to the n
variablesz85z andt5t2(N0 /c)z, leading to the form

]2E

]z82
2

2N0

c

]2E

]z8]t
52

2N0

c
a

]4E

]t4
1

2N0

c
a1

]6E

]t6
2•••

1
2N0

c
bE2

2N0

c

3b1E
2`

t

dt8E
2`

t8
Edt91•••. ~6!

Using the approximation of a slowly varying tempor
profile of the pulse field@26#, which is often used in the
theory of acoustic waves~i.e., assuming that the variations o
the pulse field profile are small at a distance commensu
with the central wavelength!, we can neglect the second d
rivative term ]2E/]z82. Then, integrating Eq.~6! over the
time t, we obtain the wave equation in the form

]E

]z8
2a

]3E

]t3
1a1

]5E

]t5
2•••1bE

2`

t

Edt8

2b1E
2`

t

dt8E
2`

t8
dt9E

2`

t9
Edt-1•••50. ~7!

The wave equation~7!, which is truncated with respect t
the firstz8 derivative, is equivalent to the one derived usi
the dispersion relation

n~v!5N01cav21ca1v41•••2cbv222cb1v242•••.
~8!

Thus, in our case the approximation of a slowly varyi
profile is associated with replacement ofn22N0

2 in the dis-
persion relation~3! by 2N0(n2N0). Since Eq.~8! also de-
scribes the dispersion of the refractive index of optical m
terials in their transparency range with good accuracy@31#
the approximation of a slowly varying wave profile, which
fruitful, for example, in acoustics, is also fully justified in th
optics of transparent media.

It should be noted that Eq.~7! could be used to describ
not only the propagation of a transversely homogene
plane wave, but also that of a spatially transversely inhom
geneous mode in a hollow waveguide. The waveguide c
tribution can be introduced into Eq.~7! by addition of a new
coefficientb85cu2/(2N0r 2) @24# to the coefficientb associ-
ated with the matter dispersion. Herer is the radius of the
hollow core andu is a mode-related constant~one of the
roots of the Bessel function!. For the minimum loss TE01
modeu52.405.

The waveguide dispersion can significantly modify t
dispersion compared to that of the dilute gas in the core.
instance, if the capillary is filled with a noble gas with no
mal dispersion in the relevant spectral region, then the wa
guide structure can exhibit anomalous dispersion in so
range of the spectrum. Comparing Eqs.~2! and ~4! we can
1-2
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easily see that the generalization of Eq.~4! to the case of a
nonlinear medium is an equation of the form

]2E

]z2
2

N0
2

c2

]2E

]t2
52

2N0

c
a

]4E

]t4
1

2N0

c
a1

]6E

]t6
2•••

1
2N0

c
bE2

2N0

c
b1E

2`

t

dt8E
2`

t8
Edt9

1•••1m0

]2Pnl

]t2
. ~9!

If the nonlinearity of the polarization response does
lead to the generation of radiation propagating in the ba
ward ~negativez8) direction, then applying the approxima
tion of a slowly varying profile~which physically means the
approximation of forward propagation, see Sec. II D! to Eq.
~9! we obtain the truncated nonlinear wave equation

]E

]z8
2a

]3E

]t3
1a1

]5E

]t5
2•••1bE

2`

t

Edt8

2b1E
2`

t

dt8E
2`

t8
dt9E

2`

t9
Edt-1•••1

m0c

2N0

]Pnl

]t
50.

~10!

An analysis of the solutions of the system of the wa
equation~10! simultaneously with the equations for the no
linear polarization responsePnl determines the features of th
propagation of extremely short pulses as a function of th
initial energy, polarization, and temporal and spectral p
files.

B. Nonlinear equations for interaction of extremely short
pulses with matter

The next requirement for a description of the nonline
part of the polarization response is an account of its disp
sive properties. The material equations for isotropic diel
tric media were derived from a density matrix description
the matter in@32,33#. The major mechanisms leading to a
optical nonlinearityPnl for an extremely short pulse are th
electronic and electronic-vibrational polarizabilities. Each
these rapidly responding mechanisms was described b
three-level nonresonant approximation for the interaction
the optical field with a molecule. It was demonstrated in@34#
that this approximation is the minimum necessary for an
equate description of the dispersion of a nonlinear index
refraction of a dielectric medium in the range of transp
ency. This model was based on the idea of matter as
parametrically excited bound nonlinear oscillators. In t
case, as in the Lorentz model for linear dispersion, the
pendence of the nonlinear refraction index of an optical m
dium on the frequency of a light wave will have the sam
form as in quantum theory. It was shown that the nonlin
polarization response of a dielectric mediumPnl can be de-
scribed by a system of matter equations:
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]2Pnl

]t2
1

2

Te1

]Pnl

]t
1ve1

2 Pnl5«0~Re1Rn!E,

]2Re

]t2
1

2

Te2

]Re

]t
1ve2

2 Re5geE
2, ~11!

]2Rn

]t2
1

2

Tn

]Rn

]t
1vn

2Rn5gnE2,

whereRe andRv describe the nonlinear parametric conne
tion between the pulse electric field and the polarization
the medium. The dynamic parameterRe is responsible for
the electronic nonlinearity, andRv for the Raman or
electronic-vibrational contribution. The phenomenologic
parameters of the mediumTe1 , ve1 , Te2 , ve2 , ge andTv ,
vv , gv characterize the respective dispersions of the non
ear polarization responses, and«0 is the dielectric permeabil-
ity of vacuum.

Thus the theoretical problem of propagation of extrem
short optical pulses, whose spectrum is in the transpare
range of the dielectric medium, can be reduced to a stud
solutions of the wave equation~10! with the matter equations
~11!. The model~10!,~11! describes phase self- and cro
modulation, stimulated Raman scattering, high-harmo
generation, and other nonlinear phenomena, which for
tremely short pulses cannot be observed separately.

In conclusion we remark that even in gaseous media
field of an extremely short pulse in experiments can be
strong that a plasma of free electrons may be created.
resulting plasma nonlinearity will also influence the pul
evolution @8,35#. The system of equations in~11! does not
include this effect and in this case they should be supp
mented by the appropriate equations.

C. Primary equation for extremely short pulses
and its modifications

In many practical situations the model of the self-acti
of extremely short pulses in an optical medium~10!,~11! can
be simplified into a single equation. For the analysis of line
propagation of extremely short pulses by Eqs.~7! it is nec-
essary to describe the refractive index using only the fi
two and the fourth terms of Eq.~8!. For example, for fused
silica, Eq. ~8! with these three terms describes the dep
dence of the linear refraction index to an accuracy of th
decimal places in the spectral range from 460 nm to 2500
~with N051.4508, a52.7401310242 s3 m21, b53.9437
31019 s21 m21). Thus Eq.~8! describes a considerable pa
of the region of normal dispersion of this material as well
the anomalous group dispersion in the near-ir region. N
that the high-frequency end of the dispersion range is limi
by the onset of two-photon absorption. Due to the nonre
nant character of the electronic nonlinearity in fused silica
this spectral range, it is possible, as a first approximation
neglect the dispersion of the nonlinear refractive index@33#.
For extremely short pulses we can also ignore Raman eff
@20,33#, since the response time of the vibrational motio
1-3
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the phonon oscillation period, is rarely less than 100 fs or
Hence, for the propagation of linearly polarized extrem
short pulses with spectra in the transparency range of a w
band-gap isotropic dielectric medium, the matter equati
~11! can usually be simplified to the relationPnl

5(«0ge /ve1
2 ve2

2 )E3, and the set of equations~10!,~11! to

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt81gE2
]E

]t
50, ~12!

whereg5(3/2cN0)(ge /ve1
2 ve2

2 ). Equation~12! was derived
earlier in @20# by direct reduction of the wave equation an
matter oscillator equations accounting for the linear el
tronic and vibration and nonlinear electronic polarizations

This equation plays the same role for extremely sh
pulses as the cubic Schro¨dinger equation@9,10# does in the
nonlinear optics of ultrashort pulses~pico- and femtosecond
pulses with many field oscillations! and describes all majo
physical phenomena relevant to the field dynamics in a
persive dielectric medium with an instantaneous nonlinea

The Schro¨dinger equation describing the self-action of u
trashort pulses has been modified in different ways for v
ous media, and to include the polarization, harmonic gen
tion, and other features of light pulse propagation@9,10#. The
wide range of experimentally attainable parameters of
tremely short pulses makes it necessary to discuss sim
modifications of the nonlinear wave equation~12!.

In the case of extremely short pulses with arbitrary pol
ization, Eq.~12! becomes@36,37#

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt81g~E,E!
]E

]t
1hE3S E3

]E

]t D50,

~13!

where h and g characterize the magnitude of the instan
neous nonlinearity of the medium polarization response
@25,38# a similar vector equation is deduced for the field
the approximation of a two-level medium withb50 andg
,0. However, for the case of a transparent medium be
considered here, we haveg.0 @33# ~at least if the spectrum
of the extremely short pulse does not cover a two-pho
absorptive resonance of the medium@39#!, and for the analy-
sis of polarization field dynamics it is necessary to solve
~13!.

If it is necessary to take into account the effect
electronic-vibrational nonlinearity on the pulse evolutio
then Eqs.~10! and ~11! can be reduced to the form

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt81gE2
]E

]t
1q

]

]t
~RnE!50,

]2Rn

]t2
1

2

Tn

]Rn

]t
1vn

2Rn5gnE2, ~14!

whereq51/2cN0ve1
2 .

In addition to the features described by Eqs.~12!, Eqs.
~14! also incorporate the stimulated Raman effect. The s
action of extremely short pulses in Raman-active media
01381
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analyzed in Refs.@40,41# by including additional terms de
scribing the population dynamics of the vibration leve
However, the linear dispersion of the medium due to el
tronic resonances was not taken into account.

In the presence of a high-frequency spectral componen
the spectrum of an extremely short pulse which is reson
with a two-photon electronic transition, Eqs.~12! can be
modified and written in the following form:

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt81g8E2
]E

]t
1q

]

]t
~ReE!50,

]2Re

]t2
1

2

Te2

]Re

]t
1ve2

2 Re5geE
2, ~15!

whereg8 describes the instantaneous contribution of exci
electronic states that do not have a two-photon resonanc

It is straightforward to take into account linear absorpti
of the medium in Eq.~12!. In this case the equation contain
additional terms describing the damping of the electric fie
quantified by the parametersG0 , G1, andG2:

]E

]z
1G0E2a

]3E

]t3
1bE

2`

t

Edt81gE2
]E

]t
2G1

]2E

]t2

2G2E
2`

t

dt8E
2`

t8
Edt950. ~16!

By making a comparison with the usual formalism for t
complex index of refractionn85n1 ik @consideringE in the
form of Eq. ~5!# these terms can be identified with the spe
tral dependence of the linear absorption of the medium
the equationk(v)5c(G0 /v1G1v1G2 /v3).

The diffraction of extremely short pulses can be describ
in the paraxial limit by a modified version of Eq.~12! @20#:

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt81gE2
]E

]t
5

c

2N0
D'E

2`

t

Edt8,

~17!

whereD'5]2/]x21]2/]y2 is the transverse Laplacian. A
far as we are aware, Eq.~17! was first suggested in the con
text of space-time coupling in free space (a5b5g50) in
Ref. @42#.

If we suppose that the parametersN0 , a, b, andg in Eq.
~17! are dependent on the spatial coordinate then weak in
mogeneity of a medium can be taken into account. T
would encompass, for example, waveguiding in a glass fi

We emphasize that in the limit of ‘‘long’’ pulses with
durations of more than about ten cycles Eq.~12! can be
transformed into a modified form of the cubic nonline
Schrödinger equation when higher dispersion orders are
counted for@20#. That is, Eq.~12! includes the commonly
accepted fundamental equation describing the nonlinear
tics of ultrashort pulses as a special case. In@36# the corre-
sponding envelope equations are derived from Eqs.~13!.

In fact, any of the above equations~12!–~17! can be trans-
formed to the equivalent equations forE by using the substi-
1-4
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tution ~5!. For example, by taking a specific frequencyv in
Eq. ~5! as the mean frequency of the input pulse spectrum
is possible to labelE as an ‘‘envelope’’ even for an extremel
short pulse@11#. This makes a direct connection to the sta
ment of Ref.@11# that the dynamics of extremely short puls
can be considered using traditional analytical methods
the propagation of the pulse envelope. However, the eq
tions for the ‘‘envelope’’E in the case of extremely sho
pulses become much more cumbersome than the equatio
the field E. For example, the self-action of extremely sho
pulses in media with a normal group dispersion and ins
cubic nonlinearity~in inertial gases with nonresonant ele
tronic interactions! is described compactly by a modifie
Korteweg–de Vries equation@43#:

]E

]z
2a

]3E

]t3
1gE2

]E

]t
50. ~18!

However, the equation for the ‘‘envelope’’E obtained by
substituting Eq.~5! in Eq. ~18! is a cumbersome modifie
nonlinear Schro¨dinger equation with additional terms de
scribing the generation of new harmonics:

]E
]z

1
1

V

]E
]t

1 i
a2

2

]2E
]t2

2
a3

6

]3E
]t3

2 ib1uEu2E1b2

]

]t
~ uEu2E!

2 ib1E 3exp@2i ~k0z2v0t !#1b2E 2
]E
]t

3exp@2i ~k0z2v0t !#50, ~19!

where V5(]k/]v)v0

21, a25(]2k/]v2)v0
, a35(]3k/

]v3)v0
, k5(N0 /c)v1av3, k05v0N0 /c, b153gv0/4,

b253g/4, andv0 is the central frequency of input radiation
Equation ~18! ‘‘automatically’’ describes generation o

new harmonics via self-phase- and cross-phase modula
To describe the phenomena using the envelope concept
should generalize Eq.~19! @omitting the exponential terms in
Eq. ~19!# and write down additional equations characterizi
the evolution and interactions of the harmonics.

The concept of the pulse field envelope can be incon
nient not only for extremely short pulses but also for long
pulses. For instance, it is not useful for the description
self-action in Raman-active media when propagation is
companied by the generation of a nonuniform spectral su
continuum. In Sec. III B we will show that Eqs.~14! ad-
equately describe these nonlinear effects.

D. Spectral equations for extremely short pulses

Strong changes in the spectral structure of extremely s
pulses can occur when they propagate in nonlinear m
01381
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~see, for example, the effects described in Sec. III B!. It
therefore seems natural to present spectral analogs of
time-domain partial differential equations. In addition, b
analyzing the dynamics of the pulse spectrumG(v)
5*2`

1`E(t)e2 ivtdt, we will gain further insight into the ap-
proximations made in deriving the temporal equations. F
simplicity we restrict ourselves to consideration of the sp
tral dynamics of linearly polarized radiation in th
(111)-dimensional approximation.

The linear equation~4! has a simple spectral analog

]2G

]z2
1

v2n2

c2
G50, ~20!

wheren2 is defined by Eq.~3!. It is important to note that
almost any dispersion formula for a specific medium can
used in Eq.~20! instead of the expansion ofn2(v) given in
Eq. ~3!.

The solution to Eq.~20! is

G~v,z!5C1~v!e2 i [vn(v)/c]z1C2~v!ei [vn(v)/c]z. ~21!

The first term in Eq.~21! describes radiation propagatin
in the positivez direction; the second term is for the oppos
direction. The unidirectional propagation of radiation~i.e.,
for C250) is described by the equation

]G

]z
1 i

vn

c
G50, ~22!

which is an analog of the field equation~7! but written in a
fixed rather than a moving frame. Heren(v) is given by Eq.
~8!.

It is clear that the solution to the reduced equation~22! is
simultaneously an exact particular solution to Eq.~20!.
Hence, the physical meaning of the reduction of Eq.~20! to
Eq. ~22! retaining only the lowest order derivatives inz is
that we are dealing only with unidirectional propagation. T
slowness of the variation of the field profile is not a nec
sary condition of the formulation.

The spectral analog of Eq.~9! with the simplest nonlinear
polarization response Pnl5«0(ge /ve1

2 ve2
2 )E35«0xE3,

wherex is a cubic nonlinear susceptibility, is

]2G

]z2
1

v2n~v!2

c2
G1

xv2

4p2c2E2`

` E
2`

`

G~v2a!

3G~a2b!G~b!dadb50. ~23!

We can derive a reduced analog of Eq.~23! in a similar
manner to the transition from Eq.~20! to Eq. ~22! using the
technique suggested in@28#. This yields
]G

]z
1 i

vn~v!

c
G1 i

xv2

4p2c
E

2`

` E
2`

` G~v2a!G~a2b!G~b!

vn~v!1~v2a!n~v2a!1~a2b!n~a2b!1bn~b!
dadb50. ~24!
1-5
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BESPALOV, KOZLOV, SHPOLYANSKIY, AND WALMSLEY PHYSICAL REVIEW A66, 013811 ~2002!
Unidirectional solutions to Eq.~24! are the particular so
lutions to Eq.~23!. According to the method of Ref.@28# the
reduction is based only on the assumption of the smallnes
the third term of Eq.~23! compared to the second one. Th
is, we assume that the nonlinear addition to the refrac
index is much less than the total linear refractive index.
practice, this condition is usually met.

It is easy to derive generalizations of the spectral eq
tions ~23! and ~24! for more complex polarizations.

For a linear refractive index of the form of Eq.~8! using
the N0 , a, andb coefficients only and under the assumpti
of weak linear dispersion, Eq.~24! becomes

]G

]z
1 i S N0

v

c
1av32

b

v DG1 i
gv

12p2E2`

` E
2`

`

G~v2a!

3G~a2b!G~b!dadb50, ~25!

whereg53x/2cN0. Equation~25! is the spectral analog o
Eq. ~12!.

We emphasize that Eq.~24! is more general than Eqs.~12!
and ~25! because it does not impose a restriction on me
with weak linear dispersion.

Finally, we note that the spectral approach has some w
known advantages and disadvantages in comparison with
temporal approach. The nonlinear convolution in Eq.~25! is
more difficult to compute than the nonlinear term in Eq.~12!.
But the description of the dispersion of the refraction ind
is easier in the spectral approach. The field analog of
~24! is simple if the dispersion dependencen(w) is a series
whose zero-order term is the largest. If this dependenc
more complicated, for example, in the form of the Sellme
formula, the temporal analog of Eq.~24! is either a complex
integro-differential equation which can be derived from E
~24! by inverse Fourier transform or a coupled set of fie
and oscillation equations for the medium polarizati
@17,33,44#. However, the conclusion of Oughstun and Xi
@45# that the Sellmeier formulas are incorrectly approxima
by an expansion into a Taylor series in the vicinity of som
fixed reference frequency does not imply that they canno
fitted by series of the form of Eq.~8! with empirically chosen
factors~see the description of the linear dispersion of fus
silica in series form in Sec. II C!.

In Sec. III B we simulate the generation of superco
tinuum radiation in a gas-filled hollow-core fiber. We use t
field rather than the more general spectral equations, bec
the dispersion of the refractive index is weak and the se
~8! required only a few teams.

E. Numerical modeling

At present there is no known analytical procedure to so
Eq. ~12! and its variants. These equations must therefore
solved numerically, but are already cast in a form that
appropriate for standard methods. In our computations
use the split-step Fourier transform technique@9# because it
combines the advantages of both field and spectral prop
tion methods. We calculate the effect of linear terms in
frequency domain, which allows us to incorporate explici
01381
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any dispersion relation for the propagation constantk(v)
that satisfies the unidirectional approximation. A Cran
Nicholson method is used to calculate the effects of the n
linearities in the time domain. The use of a fast Fourier tra
form makes the method computationally efficient.

The similarity of these methods to those used in the c
ventional envelope approaches belies the fact that the
duced field equations lead to a five- to ten-fold increase
accuracy for the same computational effort~comparing the
results for both approaches for supercontinuum generatio
hollow-core fibers!. Even so, the (111)-dimensional mod-
eling of spectral supercontinuum generation by a few-cy
optical pulse takes from several minutes to half an hour o
standard microcomputer.

F. Experimental measurements

The electric field is the fundamental entity that enters
propagation equations derived above. Even in the cas
linear propagation, knowledge of the temporal intensity
two individual pulses is not sufficient to allow any inferen
of the temporal intensity of their combination. Moreover, t
presence of space-time coupling demands that measurem
are available for the field rather than the temporal or spec
intensity. Because the equations are nonlinear, this beco
critical, since even small changes in the input pulse sh
may affect the nonlinear propagation dramatically. For t
reason it is important to employ methods for complete pu
characterization to compare with the output of the numer
models. There are now several methods that have been d
onstrated to be effective in measuring the electric fields
extremely short optical pulses, in the regime of two cycles
so. One of these, frequency-resolved optical gating~FROG!
@46# measures the spectrum of the intensity autocorrela
function of the pulse, and uses an iterative deconvolut
algorithm to extract the field@47#. Geometries for use with
very broadband pulses have been developed by sev
groups@48,49#.

Another method that provides the same information
spectral interferometry for direct electric field reconstructi
~SPIDER! @50#. This technique measures the spectral int
ferogram of the input pulse and its frequency-shifted repl
~generated by means of nonlinear optics!. The spectral phase
can be extracted from this interferogram using standard
niterative algorithms that enable rapid reconstruction of
pulse shape@51,52#. The apparatus is easily adapted for u
with extremely short duration pulses@53#.

To date there have been very few experimental studie
the propagation of short pulses in nonlinear media that p
vide the required detail needed for comparison with simu
tion @54–56#, and this remains an area ripe for study.

III. THE ELECTRICAL FIELD DYNAMICS
OF EXTREMELY SHORT PULSES

Using the wave equations derived above we conside
this section some important features of the propagation
namics of extremely short pulses in optical media under b
linear and nonlinear conditions.
1-6
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SIMPLIFIED FIELD WAVE EQUATIONS FOR . . . PHYSICAL REVIEW A 66, 013811 ~2002!
A. Dispersive broadening of extremely short pulses

The nonlinear term in the wave equation~12! can be ne-
glected for weak optical fields. The equation reduces to

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt850. ~26!

Solutions to Eq.~26! demonstrating dispersive broadenin
of extremely short input pulses are shown in Fig. 1. T
input pulse profile is given by

E~0,t!5E0e2(ln2/2)(2t/tp)2
cos~v0t!, ~27!

whereE0 is the maximum value of the input electric field;tp
is the full width at half maximum pulse duration; andv0 is
the mean frequency of the pulse. The propagation of a t
cycle input pulse (tp52T andT52p/v0) was analyzed by

FIG. 1. The linear temporal broadening of an extremely sh
pulse with the spectrum in the range of~a! normal;~b! anomalous;
~c! zero dispersion of fused silica.E is the pulse electrical field and
E0 is its maximum at the medium input (z50).
01381
e

o-

numerical simulation using Eq.~26!. The input pulse~27!
was numerically truncated outside the region where the fi
was less than 1026 of the peak and the dc spectral comp
nent was set to zero.

Figure 1~a! depicts the dispersive broadening of this pu
when its spectrum is largely in a range of normal dispersi
The carrier frequencyv051.63 v th , where v th5A4 b/3a
is the frequency of zero group dispersion@i.e., the frequency
at which]2k/]v250 in the dispersion relation~8!#. In fused
silica, for example, these correspond to wavelengthsl0
52pc/v050.78 mm and l th52p/v th51.27 mm @9,10#.
The changes of shape of extremely short pulses during lin
propagation in fused silica are illustrated in Fig. 1. The ze
of the electric field at the front of the pulse are spaced fart
apart in time than in the input pulse, and those at the rear
closer together, as shown in Fig. 1~a!. As expected, tempora
broadening is accompanied by a chirp of the pulse due
positive group velocity dispersion.

When the spectrum of the extremely short pulse is p
dominantly in a region of anomalous dispersion the oppo
chirp is seen, as in Fig. 1~b!. For this casev050.85 v th
(l051.5 mm) andl th51.27 mm. The ‘‘period’’ is shorter
at the front of an output pulse and increases toward its t

The evolution of an input pulse with spectrum in th
range of zero group dispersion is shown in Fig. 1~c!. The
dynamics differs qualitatively from those shown in Fig. 1~a!
and Fig. 1~b!, because in this case the higher-order dispers
terms dominate. First, the dispersive pulse broadening oc
much more slowly. Second, as the main part of the pu
broadens, rapid oscillations appear at the pulse tail, and
gin to extend over quite a long duration. These subpu
oscillations have a complicated structure, and adjacent s
pulses differ from one another by ap phase jump.

The self-action of extremely short pulses in nonlinear o
tical media differs qualitatively from the examples discuss
above. It is also different from that of longer pulses char
terized by an envelope@9,10#. In particular, the pulse spectra
density does not vary during dispersive propagation in lin
media, while spectral broadening may occur in nonlinear m
dia. Using the equations derived in Sec. II we may study
spectral superbroadening of intense femtosecond pulses
nonlinear waveguide.

B. Generation of spectral supercontinua

In this section we analyze the development of the spec
supercontinuum when a femtosecond pulse propagates
hollow waveguide filled with a pressurized gas. The gas c
sidered here is deuterium, which has a significant Ram
nonlinearity in addition to the electronic nonlinearity.

If the spectrum during superbroadening contains frequ
cies significantly smaller than the frequencies of electro
transitions in gas then the nonlinear part of the electro
polarization response can be considered dispersionless i
first approximation. Taking into consideration that the pop
lation of excited vibrational states in Raman scattering c
usually be neglected in moderately intense femtosec
pulses, we can use the system of wave equations in the f
of ~14!.

rt
1-7
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BESPALOV, KOZLOV, SHPOLYANSKIY, AND WALMSLEY PHYSICAL REVIEW A66, 013811 ~2002!
For the purposes of computation the system~14! can be
written in normalized units as

]Ẽ

] z̃
2

]3Ẽ

]t̃3
1BE

2`

t̃
Ẽdt̃81GẼ2

]Ẽ

]t̃
1H

]Q̃Ẽ

] z̃
50,

]2Q̃

]t̃2
1

1

Tnv0

]Q̃

]t̃
1S vn

v0
D 2

Q̃5S vn

v0
D 2

Ẽ, ~28!

where Ẽ5E/E0 , Q̃5Q/E0
2, z̃5av0

3z, and t̃5v0t. In Eq.
~28! B53(v th /v0)4, G54DnNL

e /av0
2c, H52DnNL

R /av0
2c,

wherev th5A4 b8/3a is the frequency of zero group dispe
sion; a andb8 characterize the material and waveguide d
persion andb8 corresponds to the TE01 mode~see Sec. II A!;
DnNL

e 5gcE0
2/4 andDnNL

R 5qgcE0
2/2vn

2 are actually the non-
linear additions to the index of refraction, i.e.,DnNL

e,R

5n2
e,RI , whereI is the radiation intensity andn2

e5gc/2 and
n2

R5qgc/vn
2 are the coefficients characterizing th

electronic- and Raman-nature contributions to the nonlin
refractive index of the medium. The input pulse in the n
merical calculations is given in the form~27!.

Figures 2 and 3~solid line! present the results of a simu
lation corresponding to the conditions of an experiment
scribed in Ref.@57# where supercontinuum generation w
observed. A pulse generated from the second harmonic
Ti:sapphire laser with central frequencyv054.83
31015 s21, intensity I 5931012 W/cm2, and input pulse
durationtp5150 fs was input to hollow capillaries with
diameter of 0.18 mm and lengths of 17, 33, and 50 cm fil
with deuterium under pressureP of 45 atm. Experimenta
settings corresponding to the parameters of the mathema
model ~28! are B50.22, G5831022, H5531023, tpv0
573102, 1/Tvv053.431026, andvv /v050.12.

FIG. 2. Spectral evolution of a 150 fs second harmonic pulse
a Ti:sapphire laser with input intensity of 931012 W/cm2 during
propagation in a hollow waveguide filled with deuterium und
pressure of 45 atm.G is the pulse spectral density, anduG0u is its
maximum at the medium input (z50). Arrows indicate first (1S)
and second (2S) Stokes frequencies.
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Figure 2 shows the evolution of the spectrum of the pu
as it propagates in capillaries. According to both experim
tal and simulation data, nonuniform broadening of the pu
spectrum~by a factor of 5–7! dominates due to phase mod
lation in the initial stage of supercontinuum generation at
sectionz517 cm in the capillary. After that the spectrum
broadens nonuniformly with an intensity of 3–5 % of th
maximum arising in the broadened pulse close to the Sto
shifted frequencies. For a capillary length of 33 cm, the in
spectrum broadens 10–12 times. Spectral components c
parable in intensity with the central pulse frequency app
near the first Stokes frequency. The most intense compon
in turn generate Raman-shifted frequencies~see, for ex-
ample, the component near 490 nm!. At the output of a 50
cm capillary the pump spectrum and the first Stokes a
anti-Stokes components merge, forming a spectral super
tinuum extending from 350 to 470 nm (10 000 cmÀ1) at an
intensity of 3% of maximum. This numerical simulation co
responds to the experimentally observed supercontinu
spectra@58#.

For instance, Fig. 3~dotted line! presents the supercon
tinuum spectrum experimentally observed at the output o
50 cm capillary. Note that the spectrum was registered
averaging over 1000 laser pulses with fluctuations of
pulse energy. The result of the numerical simulation us
similar averaging is presented in Fig. 3 by the solid line. T
comparison of the numerical and experimental data dem
strates not only a qualitative but also a reasonable quan
tive fit of the calculated and measured supercontinuum sp
tra. This provides preliminary evidence supporting t
validity of the mathematical model.

It is evident that in the presence of Raman resonances
emission spectrum is broadened via sequential generatio
Stokes and anti-Stokes components. Each spectral com
nent is broadened by self-phase and cross-phase mo
tions, which cause partially overlapped spectra of neighb
ing Raman components and thereby form a quasidisc
spectrum. An analysis of a similar problem using a slow
varying envelope approach would require the simultane
solution of about ten coupled nonlinear equations for en
lopes of each of the individual sidebands.

f

r

FIG. 3. Spectral supercontinuum generated in 50 cm sectio
hollow waveguide filled with deuterium under pressure of 45 a
Input pulse parameters are the same as in Fig. 2. The solid
represents the numerical simulation, and the dotted one is for
experimental data.
1-8
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IV. CONCLUSION

The nonlinear dynamics of pulses consisting of only a f
oscillations of an optical field may not be correctly describ
by the formalism of the slowly varying envelope approxim
tion. This approximation applies primarily to quasimon
chromatic radiation which is not applicable to extreme
short pulses with a corresponding broad spectrum. Altho
modifications to the envelope approach are possible that
vide good agreement with experimental data, the deriva
of these equations from Maxwell’s equations, and their ra
of applicability, has yet to be established.

We have outlined in this paper the derivation of wa
equations describing the evolution of femtosecond elec
fields directly. Techniques for constructing nonlinear evo
tion equations for the electric field of extremely short lig
pulses propagating in bulk and waveguide optical media w
nonlinearities of various natures are formulated. A system
equations which takes into account the material and wa
guide dispersions of the medium that are linear with resp
to the field in the transparency range, as well as nonline
ties of electronic and vibronic nature, is obtained. Seve
effects arising in the propagation of extremely short pul
and the characteristic features of these effects have been
lyzed on the basis of these equations, among them dispe
broadening of extremely short pulses and the generation
a

n-

et

.P.
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spectral supercontinuum in a hollow fiber filled with gaseo
deuterium.

There are a number of unsolved problems in the theory
the nonlinear propagation of extremely short light pulses
is a subject in which it is difficult to gain insight because
the complex interplay of dispersion and nonlinearities. No
theless, the area is rich with new physics, and is likely to
technologically important as the boundaries of ultrash
pulse generation and spectroscopy are pushed back.

The solution of similar problems is of great importan
for applications in technology. We can expect that femto- a
subfemtosecond pulses may be efficiently used in inform
tion systems, in fabricating materials with new properties,
diagnostics of superfast processes, and in other area
physics, chemistry, and optics.
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