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Measuring the elements of the optical density matrix
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Most methods for experimentally reconstructing the quantum state of light involve determining a quasiprob-
ability distribution such as the Wigner function. In this paper we present a scheme for measuring individual
density matrix elements in the photon number state representation. Remarkably, the scheme is simple, involv-
ing two beam splitters and a reference field in a coherent state.
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[. INTRODUCTION rather the density operator in the photon number basis. The
scheme is relatively direct in that only a finite number of

It is now well established that the quantum state of lightdifferent measurements are required to determine each ma-
can be measured. The first experimental evidence oftis trix element. However, the major disadvantage of this
followed the work of Vogel and Riskef2], where it was scheme is that determination of each matrix elemagp,
shown that the Wigner function could be reconstructed fronfequires the preparation of a two-state superpositiofNof
a complete ensemble of measured quadrature amplitude dignd|M) for use as a probe field. Not only has the preparation
tributions. The authors dfL] measured the quadrature distri- of such fields not yet been achieved, but also the experiment
butions using balanced homodyne techniques. In the case &#quires a change of the probe field for the measurement of
inefficient homodyne detectors, a more generaleach matrix element.
s-parametrized quasiprobability distribution is obtained, re- In this paper we investigate an alternative nonrecursive
sulting in a smoothed Wigner function. In either case, toscheme to that of Steuernagel and Vaccaro that also measures
obtain the quasiprobability phase space distribution from théhe individual density matrix elements in the photon number
measured data a rather complicated inverse transformation iasis. Remarkably, we find that this can be achieved with a
required. single reference field that can be in an easily prepared coher-

Techniques that avoid this transformation are aimed aent state. The only changes to the reference field needed to
measuring the quasiprobability distribution more directly. measure all the matrix elements are simple phase shifts. The
This can be achieved, for example, in unbalanced homodynigtegral transformation required in the tomographic tech-
counting experimentg3,4], where a weighted sum of photo- hique is avoided and is replaced by a summation of only four
count statistics is combined to obtain a single point in theeasily measurable probabilities. We find that this technique is
phase space distribution. The entire distribution is then obparticularly suited for measurements of low intensity states,
tained by scanning the magnitude and phase of the localuch as that used [116], where it offers some simplifications
oscillator over the region of interest while repeating the pho-over the tomographic methods.
ton counting at each point. Perhaps the most direct method of
obtaining a quasiprobability distribution is to use heterodyne Il. MEASUREMENT TECHNIQUE
[5] or double homodyngS, 7] detection techniques where the ) . .

Q function is measured. Th® function is related to the The density matrix elementy in the number state rep-
Wigner function through a convolution with a Gaussian dis-resentation of a density operateris given by

tribution which effectively washes out many of the interest- .

ing quantum features. It is possible to recover these features pun=Tr(p|N){M]). (2.9

by deconvoluting th€) function; however, this requires mul- , ) .

tiplying by an exponentially increasing function, thereby in- 11iS can be compared with the probability for an outcome
troducing a crucial dependence on sampling nf@§eOther ~ evente of a measurement on a system in statewhich is
nontomographic state reconstruction schemes are proposééven from general quantum measurement thgaig} by

in [9] for fields in a cavity, i 10] for trapped atoms, and in .

[11] where use of a Schdinger-cat state probe is suggested. P(e)=Tr[pll(e)], 2.2
Further discussion of such techniques can be found in the .

recent review by Welscht al. [12], in the book by Leonhardt wherelI(e) is the element of a probability operator measure
[13], and in[14]. (POM) associated with the evert Comparing Eqs(2.1)

A different approach has been suggested by Steuernagahd(2.2) suggests that if we could find a POM element equal
and Vaccard 15], who proposed an interesting nonrecursiveto the operatotN)(M| then we could find the matrix ele-
scheme to measure not the quasiprobability distribution, butnentp,, simply by measuring the probabili®(e). This of

course is not possible as the probability must be between

zero and 1 but the matrix element need not even be real.
*Electronic address: K.Pregnell@mailbox.gu.edu.au However, if we could synthesize the operathih(M| by a
"Electronic address: D.Pegg@sct.gu.edu.au linear combination of different POM elements then we could
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D, D, and, as the subscripts imply, the trace is over the state spaces
él d) for all three modes. The subscripj on the probability in
Eq. (2.3 is to show explicitly that the probability is a func-
c a tion of the argumentp(B,j) of a, that is, it is a function of
BS1 BS2 the setting of the phase shifter. Using the cyclic property of
b D{)b the trace we can write Eq2.3) as
|0>b ~ N
. |a> Pﬁj(e):Trc[chBj(e)]: (2.9
P @
PS where
FIG. 1. Apparatus for measuring the density matrix elements of I 5(e)=[a)cc(al, (2.6

light. BS1 and BS2 are beam splitters. The field to be measured and.th
a reference field in a coherent state are in the input modesla wi

of BS1 and BS2, respectively. A vacuum is in the input mbded _ . a4

photon counters are in the output modes. The phase shifter PS ad- |@)e= b(OIR a{@|Rz[Na)alNp)p[Nc)e (2.7)

justs the phase of the coherent state. “ )
From Eq.(2.5 we see thatl 4 (e) is an element of the POM

find the matrix element from the same linear combination offor the measuring device that comprises all of the arrange-
the associated measurable probabilities. We adopbfigsa- ~ ment depicted in Fig. 1 except for the field to be measured.
tor synthesisapproach in this paper. In general the elements dfi 5(e) are not necessarily or-

T?e rf)ropo.sedF.mei\Slljtremen.t ttecr;n;que uses tthg %rrangtﬂbgonal in thatlT gi(€)Ilg(e") is not necessarily zero for
ment shown 1n F1g. L. 't CONSISIS OF WO SymmEtrc beamg, or 1pe origin of the nonorthogonality is the introduction
splitters labeled BS1 with input modbsandc and BS2 with of the two reference modesandb. The effect of these two

anut {EOdteSb anda. B?Z |sﬂa ?.0/50 bef?m S?“ttf.r ?Ut \gglancillary modes is to cube the dimensionality of the system
eep the transmission o refiection coetlicient ralio tor space. In considering the measuring apparatus to consist of
general for now. In the output modes are photodetedqrs

. . : everything in Fig. 1 except the state to be measured, we
Dy, andD.. The input fields in modeb anda are, respec- ying g P

; . effectively reduce the apparatus to a single mode measurin
tively, in a vacuum statf0), and a coherent state),. The y PD J g

device with many more POM elements than the dimension-

optimum value of the amplitude of the coherent state will beality of the single mode. This means that the POM elements

discussed later. The field to be measured, in stateis in  cannot all be orthogonal to one another.

the input modee of BS1. In the entry port of BS2 is a phase  Qur aim is to find a linear combination of POM elements
shifter PS capable of altering the phase of the coherent statggual to the operatdiN)(M|. It is convenient to write this
thereby changing the argument of the coherent state amplgperator as|N)(N+\| and consider separately the cases
tude. We let the amplitude of the coherent state de here\ is even and odd. We examine first the case where
=|a|exp(¢) at the entry of BS2, that is, the argumendf s even. Consider the particular detection eveet

a incorporates the phase shift. We lebe a function of two = (/2 \/2,N) in which the photodetecto®,, D}, andD,
numberss andj, that is,¢ = ¢(,]), which will be specified  detect\/2, /2, andN photocounts, respectively. As shown
later. in the Appendix, this turns out to be the optimum detection

For simplicity, we assume that the distance between th%vent for\ even. The unitary operat(fil for BS1 is given
beam splitters is an integer number of wavelengths of th v [18]

light, which allows us to ignore the evolution of the light,

which is just a phase shift, between the beam splitters. If this R.=exdin(cb+bfe 28

is difficult experimentally, the discrepancy can be offset by ! Hin( ) 28
an adjustment of the phase shifter. The complete time evoluyhere cosy=t and siny=r are the transmission and reflec-

tion operator is theiR,R; whereR, andR; are the unitary tion coefficients of BS1R, for the 50/50 beam splitter BS2
operators for the action of beam splitters BS2 and BS1. Le{s 5 similar function ofa and b with n=ml4. Using these
e=(na,Ny,Nc) be the event that photodetectdds, Dy, gxpressions witn,, n,, andn, equal tox/2, A/2, andN,

and D registern,, ny, andn. photocounts, respectively. \va find from the Appendix that Eq2.7) becomes
The probability for this event is

N+A
P i(€) = Trand RaR1oRIRINa)aa(Nal & M) | la)e= 2 fo X —i(N+X=me(B,)IIMe (2.9
®|n ngl), 2.3
| C>CC< C|) ( ) Where
where we have written the combined density operator for the N NI N
three input fields as B (2i) MM of (—ir)" Nynt
=
. . expl(|a|22)[(A+N—n)/2]1[(n—N)/2]! YNI
o=|a)aa(a|®[0)pr(0]® pc (2.9 (2.10
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if n—Nis even and,=0 if n—N is odd. The POM element -ompination of POM elementﬁ[ﬁ(el) with B taking the
(2.6) for the detection everg,; then becomes values 0, 1, 1/2, and 3/2 is required to synthesize the operator
INY(N+X\|. Specifically,

N+X\
M 4i(e,) = f. f* exdi(n—m ) 1IN ee(m. - - - -
(o= 20 foffn exei(n=m) (B ) IIMec(m O (S LG Ra 1LL1 Coe FP )
(217 AfNFRLn ,
The terms withn—m odd are all zero. (219
For A=0 we find from Eq.(2.1) that the POM element \yhere
in Eq. (2.6) is just proportional tdN).(N|, allowing us to
find the diagonal elementsyy of the density matrix from . e N+ | Y2
the probability of detecting the event (Q\), fufR =t (ir/2) M agay | NI (2.16
For A even and nonzero, we let(B,]) take particular
values is a normalization constant with,=(n|a).
i Taking the trace of the product of the density operator
o(B.])= Bm 27 (212  of the field to be measured with both sides of E2.15
A A gives the desired matrix element in terms of the measurable

probabilitiesP 5(e,) for detecting the eventey),
and consider a modified measurement procedure in which

is h_eld constant but the value pis cycl_ed so that it take?s_ all R Po(e1)—Pi(e)) +i[Pyyer) — Paqer)]
the integer values from 0 to\(2)— 1 with equal probability. ~ (N+X|p|N)=
This measurement procedure will have its own probability 2.17
operator measure comprised of elemdige). This will be '
different from our previous POM with elemerifbg;(e) be- ~ for A nonzero and even. The complex conjugate of @dL7)
cause it describes a different measurement process. Tli®(N|p/N+X\).
POM element for detecting the eveet by means of this To find the density matrix element farodd, we consider
cycling procedure will be given by the detection evene,=[(N+1)/2,(\—1)/2N], which is
shown in the Appendix to be the optimum detection event for

TN

. M2oL this case. A derivation similar to that above eventually yields
Ig(e1)= N ]Zo ITg(e1) the associated POM element of the form
2 N+A . N+A
== fof% exdi(n—m)(Bm/N)] Mg(e)= X dnGh exdi(n—m)e(B,j)][n)e(ml.
N nm=nN nm=N (2.18
M2-1 '
x > exgi(n—m)2aj/\]|nYe(m| ;. In Eg. (2.18 n—m takes all integer values from-\ to
<o

—\. We consider a measurement procedure witere held
(2.13  constant buf takes all values from 0 ta —1 with equal
. - . _ _ probability. The POM elementlg(e,) for detecting the
The associated probability can be obtained in practice frongyente, with this procedure will be given by
the occurrence frequency of the eventas we cycle through
the values of with the experiment being repeated an equal . LM
number of times for each value pfBecause we need only Ig(ey)= N E I 4i(e;)
consider terms in E¢2.13 for whichn—m is even, we can 1=0
take the factor involving the summation oyeas zero unless
n—m is zero orx \, in which case it equals/2. This gives o
us

>| -

N+
nm2=N 9ng% exdi(n—m)(Bm/\)]

1

)\_
X 20 expli(n—m)2j/\]|n)ee(m] .
=

N-+X\
e =2 |falmectnl+[Fnfien
(219

The factor involving the summation ovelis zero unless
By choosing different values foB, we obtain different —m=0 or =\ and is then equal ta.. We find that the
cycling experiments, each with its own POM. Experimen-formula for the density matrix element in terms of the mea-
tally this means cycling through a different set of phase setsurable probabilitie® ;(e,) for detecting the everd, is, for
tings. It is not difficult to see from Eq2.14 that a linear A odd,

xexp(—imB)|N).(N+X|[+H.c]. (2.19
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_ . _ TABLE I. Truncated density matrix for a coherent state with a
(N Aol N) = Po(e2) —Pi(e) +i[Py€z) = Paa(es)] , mean photon number of 0.5.
AgNON+ )
(2.20 0.6065 0.4289 0.2145 0.0870 0.0336
0.4289 0.3033 0.1517 0.0615 0.0238
where 0.2145 0.1517 0.0759 0.0308 0.0119
N N4 )| 22 0.0870 0.0615 0.0308 0.0125 0.0048
ONGE s = itZN(irIZ))‘|aoa§f | 0.0336 0.0238 0.0119 0.0048 0.0019
(AN=1)/2 N
(2.2)

Another practical issue concerns the extent to which inef-
)Ei_cient photodetectors degrade the reliability of the measured
data. The effect of inefficient photodetectors is to make the
measurement process uncertain. For a given detector effi-

We note the number of phase settings required for each e
periment for the odd- case is about twice that required for

the evenk case with a similar value of. The number of ciency 7, the probability of detecting photons,p,(7), is

experiments needed for the oddease can, however, be re- roataq to the probability of detectimg photons with a per-
duced by a factor of 2 as follows. While measuring the prob+gct detectorp, (1), by [19]

ability for the evente,, we can also measure the probability

for another evene;=[(A—1)/2,(\+1)/2N]. It is possible S(n+m) .
to show that the probability? 5(e3) is equal toP . 1(e,). Pn(7)= 2 7'(1=7)"Prsm(1). (3.1
A . . m=0 n
Thus we need only two experiments with different values of
B to obtain all four terms in the numerator of EQ.20. To illustrate what effect inefficient photodetectors have on
the outcome of the experiment, some numerical calculations
IIl. SOME PRACTICAL CONSIDERATIONS were performed for a low intensity coherent input state with

a mean photon number of 0.5. An example of the results are

To illustrate the viability of our proposal we shall, in this summarized in Tables | and Il, where the measured density
section, show the extent to which physical imperfectionsmatrix is displayed for a detector efficiency §&=0.9. The
such as a noisy local oscillator, detector inefficiency, andeference state used in each simulation was a coherent state
dark counts, can be ignored or compensated for in a practicalith a mean photon number pf|2=0.5. As expected, as the
experiment. efficiency decreases the relative error in the individual matrix

A more general measurement scheme would have an aelements increases. Fortunately it is possible to invert Eq.
bitrarily mixed reference state at the input of mad Fig.  (3.1) through a Bernoulli transformation and recover the ex-
1. That is,|@),, with a=|alexpl¢) at the entry of BS2, act probabilities from the detection statistics with sufficiently

would be replaced by a density operator good detector$19]. This would allow accurate reconstruc-
tion of the density matrix.
exp(iN,¢)paexp —iN,¢). In addition, for weak fields in the quantum regime, with

sufficiently long gating times, dead times need not be signifi-
This could represent, as a specific example, a noisy locatant. If dead times are significant, more sophisticated detec-
oscillator. Following the derivation outlined above, it is tion methods are required for photon number discrimination,
straightforward to show that the effect of this is to replacesuch as replacing each detector with a multiport device such
the term|aga’| in Egs.(2.16 and (2.21) with the density ~as described ih20].

matrix element0|p,|\). This is interesting because it shows So far we have not specified the v_all_Je|at or t/r. The
. . N optimum values of these should maximize the denominators
how the density matrix elementN+ \|pc/N) of the un-

i . . ) . of Egs.(2.17) and(2.20), thereby avoiding quotients of small
known field can be obtained directly from the density matnxnum%egs V\7/)e fincg thzgr) the opti);num val?ngﬂz is \/2 and
element(0]pa|\) of the reference field. Thus, provided we that of (t/r)? is 2N/\. As these are optimum values only,
know the noise characteristics of the reference state, we d@ey need not be changed for the measurement of each ma-
not require it to be a noiseless coherent state, or indeed anx element and a reasonable compromise value should suf-

particular pure state, to use it to find the density matrix elefice, for example, for weak fields where the spread of values
ments of the unknown field. So we find in general that apf N and\ is not large.

noisy local oscillator can easily be used in the measurement
scheme. A problem arises, however,(@p,|\) is vanish-
ingly small in that the measured probabilities will coincide
with rare events as indicated by Eq2.17) and(2.20. This

TABLE Il. Simulation of measured density matrix for a coher-
ent state with a mean photon number of 0.5 and detector ineffi-
ciency =0.9.

is the case when phase diffusion in the local oscillgtor is 0.6592 0.4195 0.1888 0.0692 0.0220
prominent, effectively diagonalizing the density matyx 0.4195 0.2967 0.1335 0.0489 0.0161
and removing all phase information. This can be avoided if 1ggg 0.1335 0.0668 0.0244 0.0081
both the reference field and the measured fﬁgldre derived 0.0692 0.0489 0.0244 0.0100 0.0033
from a common source, a technique commonly exploited in 0.0220 0.0161 0.0081 0.0033 0.0013

experiments of this kind.
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While the method proposed in this paper can be used to APPENDIX
measure any individual density matrix element, it is not nec- In this appendix we derive the general form |gh, de-
essary to perform the same number of cycling experiments s ed by E p(pz 7 9 ¢
matrix elements to find the density matrix. The matrix ele- ined by £q.(<.1,
ments(N+ \|p¢|N) and their complex conjugates_for all vaI-_ la)e= b<0||§q a<a|§;|na>a|nb>b|nc>c_ (A1)
ues ofN can be found from the same four cycling experi-

ments. Also many phase settings can be used as parts Wfith the unitary operator of a beam splitter given [iyg]
different cycling experiments, allowing further efficiencies.

For example, the setting(B,j)==/2 can be used foB R=exfdin(a’b+b'a)], (A2)
=0, j=1, A=4 andB=0, j=2, A=8 as well as forg R )
=1,j=0, A=2, and so on. wherea and b are the annihilation operators for the input
field modes, it can be shown that the beam splitter transforms
IV. CONCLUSION the corresponding creation operataa$ and b’ and the

double mode vacuum according to
In this paper, we have extended the method of projection

synthesig21], in which a projector is synthesized by use of Rfa'R=ta’—irb", (A3)
an exotic reference state, to a more general technique of

operator synthesis in which an operator is synthesized by a R'b'R=tb"—iraf, (A4)
linear combination of POM elements. This provides a non-

recursive method for measuring individual density matrix el- ﬁTlo>b|O>c: |0Y]0)e, (A5)

ements of a light field. Remarkably, the technique is reason-

ably simple, involving only two beam splitters and a wheret andr are the transmission and reflection coefficients
reference field which can be in an easily prepared coherer@if the beam splitter. In the case of BS2, a 50/50 beam split-
state. In particular, for states that can be represented in tar, t=r=1/\/2. By writing |n,), as @™/n,!)|0),, and
finite dimensional Hilbert space, this technique appears simsimilarly for Iny)p, We obtain

pler than the tomographic methods in that only a finite num- . . . )

ber of different measurements are required to ascertain the ., (aT—ib")"a(bT—ia™M

complete density matrix. We have shown how detector inef- RyINa)alNp)p= S 2 [y el 0)al0), (AB)
ficiency can be allowed for and have considered the effect of ar b

noise in the local oscillator. We found that the local oscillatorgng thus

noise can be readily accounted for provided we know the

corresponding mixed state description of the local oscillator. (RN ngYsINYe

Interestingly, our method allows the density matrix elements

of the unknown field to be obtained quite simply from the (a* —ibMH"a(bT—ia*)™

density matrix elements of a noisy local oscillator field, even :2(”a*”b)’2exp(|a|2/2)\/mm)blmc'

when the unknown field is in a pure state.
(A7)

ACKNOWLEDGMENT ~
Writing |[N), as €™/\/N!)|0), and using an equivalent

D.T.P. thanks the Australian Research Council for supportform of Eqgs.(A3)—(A5), we obtain

[a* —i(tbT—irch)]a[tbT—ircT—ia* ™(tcT—irb "N

2t M) 2ex | a|?/2) V! NI NI

IQI a<a|§;|na>a|nb>b|N>c: |O>b|o>c (A8)

where we have left the transmission and reflection coeffiwhereA=n,+n,. The specific notation
cients of BS1 as$ andr. Finally, projecting onto the vacuum

state in modée gives us fmn=0m(AM2X/2)exdi(N+X—m)e],

| >:(—i)“bt”[oz*—r?:*]”a[a*Jrrf:T]“b| > Om= [ (N +1)72,(A— 1)/2]exd i (N+ X —m) ¢]
e 20at M) Zexn(|a|?2/2)\n,! Ny ¢ (A10)
N-+N
_ 2 Q(Na M) | MY (A9) is used in the text. The _explicit form _ajm(na,nb) is not
m=N actually needed. What is important is an expression for
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an(Na,Np) AN, (Na,Np). This can be derived from EGA9)
by evaluatingqn(na,np) and gy, \(na,ny) Separately to
give

AN(Na M) AR+ A (Na s M)
112
: (A11)

N+
N

A
(—1)“aa0a;‘t2'\‘(r/2)*( .

a

PHYSICAL REVIEW A66, 013810 (2002

wherea,=(n|«). For a mixed reference state with density
operator exall,¢)p.exp(—iNa¢) at the entry of BS2aqal
in Eq. (A11) is replaced by 0|pa|\)exp(—irg).

It is not difficult to see that the modulus of EGALl) is
maximized whenn,=\/2 if \ is even and whem,= (A
+1)/2 if N\ is odd. Thus the quotients in Eq&.17) and
(2.20 will have optimum numerators and denominators for
the values ofh, andn, we have used in this paper.
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