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Measuring the elements of the optical density matrix

K. L. Pregnell* and D. T. Pegg†

School of Science, Griffith University, Brisbane 4111, Australia
~Received 11 September 2001; published 22 July 2002!

Most methods for experimentally reconstructing the quantum state of light involve determining a quasiprob-
ability distribution such as the Wigner function. In this paper we present a scheme for measuring individual
density matrix elements in the photon number state representation. Remarkably, the scheme is simple, involv-
ing two beam splitters and a reference field in a coherent state.
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I. INTRODUCTION

It is now well established that the quantum state of lig
can be measured. The first experimental evidence of this@1#
followed the work of Vogel and Risken@2#, where it was
shown that the Wigner function could be reconstructed fr
a complete ensemble of measured quadrature amplitude
tributions. The authors of@1# measured the quadrature dist
butions using balanced homodyne techniques. In the cas
inefficient homodyne detectors, a more gene
s-parametrized quasiprobability distribution is obtained,
sulting in a smoothed Wigner function. In either case,
obtain the quasiprobability phase space distribution from
measured data a rather complicated inverse transformati
required.

Techniques that avoid this transformation are aimed
measuring the quasiprobability distribution more direct
This can be achieved, for example, in unbalanced homod
counting experiments@3,4#, where a weighted sum of photo
count statistics is combined to obtain a single point in
phase space distribution. The entire distribution is then
tained by scanning the magnitude and phase of the l
oscillator over the region of interest while repeating the p
ton counting at each point. Perhaps the most direct metho
obtaining a quasiprobability distribution is to use heterody
@5# or double homodyne@6,7# detection techniques where th
Q function is measured. TheQ function is related to the
Wigner function through a convolution with a Gaussian d
tribution which effectively washes out many of the intere
ing quantum features. It is possible to recover these feat
by deconvoluting theQ function; however, this requires mu
tiplying by an exponentially increasing function, thereby i
troducing a crucial dependence on sampling noise@8#. Other
nontomographic state reconstruction schemes are prop
in @9# for fields in a cavity, in@10# for trapped atoms, and in
@11# where use of a Schro¨dinger-cat state probe is suggeste
Further discussion of such techniques can be found in
recent review by Welschet al. @12#, in the book by Leonhard
@13#, and in@14#.

A different approach has been suggested by Steuern
and Vaccaro@15#, who proposed an interesting nonrecursi
scheme to measure not the quasiprobability distribution,
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rather the density operator in the photon number basis.
scheme is relatively direct in that only a finite number
different measurements are required to determine each
trix element. However, the major disadvantage of t
scheme is that determination of each matrix elementrMN
requires the preparation of a two-state superposition ofuN&
anduM & for use as a probe field. Not only has the preparat
of such fields not yet been achieved, but also the experim
requires a change of the probe field for the measuremen
each matrix element.

In this paper we investigate an alternative nonrecurs
scheme to that of Steuernagel and Vaccaro that also mea
the individual density matrix elements in the photon numb
basis. Remarkably, we find that this can be achieved wit
single reference field that can be in an easily prepared co
ent state. The only changes to the reference field neede
measure all the matrix elements are simple phase shifts.
integral transformation required in the tomographic tec
nique is avoided and is replaced by a summation of only f
easily measurable probabilities. We find that this techniqu
particularly suited for measurements of low intensity stat
such as that used in@16#, where it offers some simplification
over the tomographic methods.

II. MEASUREMENT TECHNIQUE

The density matrix elementrMN in the number state rep
resentation of a density operatorr̂ is given by

rMN5Tr~ r̂uN&^M u!. ~2.1!

This can be compared with the probability for an outcom
evente of a measurement on a system in stater̂, which is
given from general quantum measurement theory@17# by

P~e!5Tr@ r̂P̂~e!#, ~2.2!

whereP̂(e) is the element of a probability operator measu
~POM! associated with the evente. Comparing Eqs.~2.1!
and~2.2! suggests that if we could find a POM element eq
to the operatoruN&^M u then we could find the matrix ele
mentrMN simply by measuring the probabilityP(e). This of
course is not possible as the probability must be betw
zero and 1 but the matrix element need not even be r
However, if we could synthesize the operatoruN&^M u by a
linear combination of different POM elements then we cou
©2002 The American Physical Society10-1
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find the matrix element from the same linear combination
the associated measurable probabilities. We adopt thisopera-
tor synthesisapproach in this paper.

The proposed measurement technique uses the arra
ment shown in Fig. 1. It consists of two symmetric bea
splitters labeled BS1 with input modesb andc and BS2 with
input modesb and a. BS2 is a 50/50 beam splitter but w
keep the transmission to reflection coefficient ratio for B
general for now. In the output modes are photodetectorsDa ,
Db , andDc . The input fields in modesb anda are, respec-
tively, in a vacuum stateu0&b and a coherent stateua&a . The
optimum value of the amplitude of the coherent state will
discussed later. The field to be measured, in stater̂c , is in
the input modec of BS1. In the entry port of BS2 is a phas
shifter PS capable of altering the phase of the coherent s
thereby changing the argument of the coherent state am
tude. We let the amplitude of the coherent state bea
5uauexp(iw) at the entry of BS2, that is, the argumentw of
a incorporates the phase shift. We letw be a function of two
numbersb andj, that is,w5w(b, j ), which will be specified
later.

For simplicity, we assume that the distance between
beam splitters is an integer number of wavelengths of
light, which allows us to ignore the evolution of the ligh
which is just a phase shift, between the beam splitters. If
is difficult experimentally, the discrepancy can be offset
an adjustment of the phase shifter. The complete time ev
tion operator is thenR̂2R̂1 whereR̂2 and R̂1 are the unitary
operators for the action of beam splitters BS2 and BS1.
e5(na ,nb ,nc) be the event that photodetectorsDa , Db ,
and Dc registerna , nb , and nc photocounts, respectively
The probability for this event is

Pb j~e!5Trabc~R̂2R̂1ŝR̂1
†R̂2

†una&aa^nau ^ unb&bb^nbu

^ unc&cc^ncu!, ~2.3!

where we have written the combined density operator for
three input fields as

ŝ5ua&aa^au ^ u0&bb^0u ^ r̂c ~2.4!

FIG. 1. Apparatus for measuring the density matrix elements
light. BS1 and BS2 are beam splitters. The field to be measured
a reference field in a coherent state are in the input modesc anda
of BS1 and BS2, respectively. A vacuum is in the input modeb and
photon counters are in the output modes. The phase shifter PS
justs the phase of the coherent state.
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and, as the subscripts imply, the trace is over the state sp
for all three modes. The subscriptb j on the probability in
Eq. ~2.3! is to show explicitly that the probability is a func
tion of the argumentw(b, j ) of a, that is, it is a function of
the setting of the phase shifter. Using the cyclic property
the trace we can write Eq.~2.3! as

Pb j~e!5Trc@ r̂cP̂b j~e!#, ~2.5!

where

P̂b j~e!5uq&cc^qu, ~2.6!

with

uq&c5 b^0uR̂1
†

a^auR̂2
†una&aunb&bunc&c . ~2.7!

From Eq.~2.5! we see thatP̂b j (e) is an element of the POM
for the measuring device that comprises all of the arran
ment depicted in Fig. 1 except for the field to be measur

In general the elements ofP̂b j (e) are not necessarily or

thogonal in thatP̂b j (e)P̂b j (e8) is not necessarily zero fo
eÞe8. The origin of the nonorthogonality is the introductio
of the two reference modesa andb. The effect of these two
ancillary modes is to cube the dimensionality of the syst
space. In considering the measuring apparatus to consi
everything in Fig. 1 except the state to be measured,
effectively reduce the apparatus to a single mode measu
device with many more POM elements than the dimensi
ality of the single mode. This means that the POM eleme
cannot all be orthogonal to one another.

Our aim is to find a linear combination of POM elemen
equal to the operatoruN&^M u. It is convenient to write this
operator asuN&^N1lu and consider separately the cas
wherel is even and odd. We examine first the case wherl
is even. Consider the particular detection evente1
5(l/2,l/2,N) in which the photodetectorsDa , Db , andDc
detectl/2, l/2, andN photocounts, respectively. As show
in the Appendix, this turns out to be the optimum detecti
event forl even. The unitary operatorR̂1 for BS1 is given
by @18#

R̂15exp@ ih~ ĉ†b̂1b̂†ĉ!#, ~2.8!

where cosh5t and sinh5r are the transmission and refle
tion coefficients of BS1.R̂2 for the 50/50 beam splitter BS2
is a similar function ofâ and b̂ with h5p/4. Using these
expressions withna , nb , andnc equal tol/2, l/2, andN,
we find from the Appendix that Eq.~2.7! becomes

uq&c5 (
n5N

N1l

f n exp@2 i ~N1l2n!w~b, j !#un&c ~2.9!

where

f n5
~2i !2l/2tNuaul1N2n~2 ir !n2NAn!

exp~ uau2/2!@~l1N2n!/2#! @~n2N!/2#!AN!
~2.10!
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if n2N is even andf n50 if n2N is odd. The POM elemen
~2.6! for the detection evente1 then becomes

P̂b j~e1!5 (
n,m5N

N1l

f nf m* exp@ i ~n2m!w~b, j !#un&cc^mu.

~2.11!

The terms withn2m odd are all zero.
For l50 we find from Eq.~2.11! that the POM elemen

in Eq. ~2.6! is just proportional touN&cc^Nu, allowing us to
find the diagonal elementsrNN of the density matrix from
the probability of detecting the event (0,0,N).

For l even and nonzero, we letw(b, j ) take particular
values

w~b, j !5
bp

l
1

2p j

l
~2.12!

and consider a modified measurement procedure in whicb
is held constant but the value ofj is cycled so that it takes al
the integer values from 0 to (l/2)21 with equal probability.
This measurement procedure will have its own probabi

operator measure comprised of elementsP̂b(e). This will be

different from our previous POM with elementsP̂b j (e) be-
cause it describes a different measurement process.
POM element for detecting the evente1 by means of this
cycling procedure will be given by

P̂b~e1!5
2

l (
j 50

l/221

P̂b j~e1!

5
2

l (
n,m5N

N1l H f nf m* exp@ i ~n2m!~bp/l!#

3 (
j 50

l/221

exp@ i ~n2m!2p j /l#un&cc^muJ .

~2.13!

The associated probability can be obtained in practice fr
the occurrence frequency of the evente1 as we cycle through
the values ofj with the experiment being repeated an eq
number of times for each value ofj. Because we need onl
consider terms in Eq.~2.13! for which n2m is even, we can
take the factor involving the summation overj as zero unless
n2m is zero or6l, in which case it equalsl/2. This gives
us

P̂b~e1!5 (
n5N

N1l

u f nu2un&cc^nu1@ f Nf N1l*

3exp~2 ipb!uN&cc^N1lu1H.c.#. ~2.14!

By choosing different values forb, we obtain different
cycling experiments, each with its own POM. Experime
tally this means cycling through a different set of phase s
tings. It is not difficult to see from Eq.~2.14! that a linear
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combination of POM elementsP̂b(e1) with b taking the
values 0, 1, 1/2, and 3/2 is required to synthesize the oper
uN&^N1lu. Specifically,

uN&^N1lu5
P̂0~e1!2P̂1~e1!1 i @P̂1/2~e1!2P̂3/2~e1!#

4 f Nf N1l*
,

~2.15!

where

f Nf N1l* 5t2N~ ir /2!lua0al* uS l

l/2D S N1l

N D 1/2

~2.16!

is a normalization constant withan5^nua&.
Taking the trace of the product of the density operatorr̂c

of the field to be measured with both sides of Eq.~2.15!
gives the desired matrix element in terms of the measura
probabilitiesPb(e1) for detecting the event (e1),

^N1lur̂cuN&5
P0~e1!2P1~e1!1 i @P1/2~e1!2P3/2~e1!#

4 f Nf N1l*
~2.17!

for l nonzero and even. The complex conjugate of Eq.~2.17!
is ^Nur̂cuN1l&.

To find the density matrix element forl odd, we consider
the detection evente25@(l11)/2,(l21)/2,N#, which is
shown in the Appendix to be the optimum detection event
this case. A derivation similar to that above eventually yie
the associated POM element of the form

P̂b j~e2!5 (
n,m5N

N1l

gngm* exp@ i ~n2m!w~b, j !#un&cc^mu.

~2.18!

In Eq. ~2.18! n2m takes all integer values from1l to
2l. We consider a measurement procedure whereb is held
constant butj takes all values from 0 tol21 with equal

probability. The POM elementP̂b(e2) for detecting the
evente2 with this procedure will be given by

P̂b~e2!5
1

l (
j 50

l21

P̂b j~e2!

5
1

l (
n,m5N

N1l H gngm* exp@ i ~n2m!~bp/l!#

3 (
j 50

l21

exp@ i ~n2m!2p j /l#un&cc^muJ .

~2.19!

The factor involving the summation overj is zero unlessn
2m50 or 6l and is then equal tol. We find that the
formula for the density matrix element in terms of the me
surable probabilitiesPb(e2) for detecting the evente2 is, for
l odd,
0-3
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K. L. PREGNELL AND D. T. PEGG PHYSICAL REVIEW A66, 013810 ~2002!
^N1lur̂cuN&5
P0~e2!2P1~e2!1 i @P1/2~e2!2P3/2~e2!#

4gNgN1l*
,

~2.20!

where

gNgN1l* 5 i t 2N~ ir /2!lua0al* uS l

~l21!/2D S N1l

N D 1/2

.

~2.21!

We note the number of phase settings required for each
periment for the odd-l case is about twice that required fo
the even-l case with a similar value ofl. The number of
experiments needed for the odd-l case can, however, be re
duced by a factor of 2 as follows. While measuring the pro
ability for the evente2, we can also measure the probabili
for another evente35@(l21)/2,(l11)/2,N#. It is possible
to show that the probabilityPb(e3) is equal toPb11(e2).
Thus we need only two experiments with different values
b to obtain all four terms in the numerator of Eq.~2.20!.

III. SOME PRACTICAL CONSIDERATIONS

To illustrate the viability of our proposal we shall, in th
section, show the extent to which physical imperfectio
such as a noisy local oscillator, detector inefficiency, a
dark counts, can be ignored or compensated for in a prac
experiment.

A more general measurement scheme would have an
bitrarily mixed reference state at the input of modea in Fig.
1. That is, ua&a , with a5uauexp(iw) at the entry of BS2,
would be replaced by a density operator

exp~ iN̂aw!r̂aexp~2 iN̂aw!.

This could represent, as a specific example, a noisy lo
oscillator. Following the derivation outlined above, it
straightforward to show that the effect of this is to repla
the termua0al* u in Eqs. ~2.16! and ~2.21! with the density

matrix element̂ 0ur̂aul&. This is interesting because it show
how the density matrix element̂N1lur̂cuN& of the un-
known field can be obtained directly from the density mat
element^0ur̂aul& of the reference field. Thus, provided w
know the noise characteristics of the reference state, we
not require it to be a noiseless coherent state, or indeed
particular pure state, to use it to find the density matrix e
ments of the unknown field. So we find in general tha
noisy local oscillator can easily be used in the measurem
scheme. A problem arises, however, if^0ur̂aul& is vanish-
ingly small in that the measured probabilities will coincid
with rare events as indicated by Eqs.~2.17! and~2.20!. This
is the case when phase diffusion in the local oscillator
prominent, effectively diagonalizing the density matrixr̂a
and removing all phase information. This can be avoide
both the reference field and the measured fieldr̂c are derived
from a common source, a technique commonly exploited
experiments of this kind.
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Another practical issue concerns the extent to which in
ficient photodetectors degrade the reliability of the measu
data. The effect of inefficient photodetectors is to make
measurement process uncertain. For a given detector
ciency h, the probability of detectingn photons,pn(h), is
related to the probability of detectingm photons with a per-
fect detector,pm(1), by @19#

pn~h!5 (
m50

` S n1m

n Dhn~12h!mpn1m~1!. ~3.1!

To illustrate what effect inefficient photodetectors have
the outcome of the experiment, some numerical calculati
were performed for a low intensity coherent input state w
a mean photon number of 0.5. An example of the results
summarized in Tables I and II, where the measured den
matrix is displayed for a detector efficiency ofh50.9. The
reference state used in each simulation was a coherent
with a mean photon number ofuau250.5. As expected, as th
efficiency decreases the relative error in the individual ma
elements increases. Fortunately it is possible to invert
~3.1! through a Bernoulli transformation and recover the e
act probabilities from the detection statistics with sufficien
good detectors@19#. This would allow accurate reconstruc
tion of the density matrix.

In addition, for weak fields in the quantum regime, wi
sufficiently long gating times, dead times need not be sign
cant. If dead times are significant, more sophisticated de
tion methods are required for photon number discriminati
such as replacing each detector with a multiport device s
as described in@20#.

So far we have not specified the value ofuau or t/r . The
optimum values of these should maximize the denomina
of Eqs.~2.17! and~2.20!, thereby avoiding quotients of sma
numbers. We find that the optimum value ofuau2 is l/2 and
that of (t/r )2 is 2N/l. As these are optimum values onl
they need not be changed for the measurement of each
trix element and a reasonable compromise value should
fice, for example, for weak fields where the spread of val
of N andl is not large.

TABLE I. Truncated density matrix for a coherent state with
mean photon number of 0.5.

0.6065 0.4289 0.2145 0.0870 0.0336
0.4289 0.3033 0.1517 0.0615 0.0238
0.2145 0.1517 0.0759 0.0308 0.0119
0.0870 0.0615 0.0308 0.0125 0.0048
0.0336 0.0238 0.0119 0.0048 0.0019

TABLE II. Simulation of measured density matrix for a cohe
ent state with a mean photon number of 0.5 and detector in
ciencyh50.9.

0.6592 0.4195 0.1888 0.0692 0.0220
0.4195 0.2967 0.1335 0.0489 0.0161
0.1888 0.1335 0.0668 0.0244 0.0081
0.0692 0.0489 0.0244 0.0100 0.0033
0.0220 0.0161 0.0081 0.0033 0.0013
0-4
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While the method proposed in this paper can be use
measure any individual density matrix element, it is not n
essary to perform the same number of cycling experiment
matrix elements to find the density matrix. The matrix e
mentŝ N1lur̂cuN& and their complex conjugates for all va
ues ofN can be found from the same four cycling expe
ments. Also many phase settings can be used as par
different cycling experiments, allowing further efficiencie
For example, the settingw(b, j )5p/2 can be used forb
50, j 51, l54 and b50, j 52, l58 as well as forb
51, j 50, l52, and so on.

IV. CONCLUSION

In this paper, we have extended the method of projec
synthesis@21#, in which a projector is synthesized by use
an exotic reference state, to a more general techniqu
operator synthesis in which an operator is synthesized b
linear combination of POM elements. This provides a no
recursive method for measuring individual density matrix
ements of a light field. Remarkably, the technique is reas
ably simple, involving only two beam splitters and
reference field which can be in an easily prepared cohe
state. In particular, for states that can be represented
finite dimensional Hilbert space, this technique appears s
pler than the tomographic methods in that only a finite nu
ber of different measurements are required to ascertain
complete density matrix. We have shown how detector in
ficiency can be allowed for and have considered the effec
noise in the local oscillator. We found that the local oscilla
noise can be readily accounted for provided we know
corresponding mixed state description of the local oscilla
Interestingly, our method allows the density matrix eleme
of the unknown field to be obtained quite simply from t
density matrix elements of a noisy local oscillator field, ev
when the unknown field is in a pure state.
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APPENDIX

In this appendix we derive the general form ofuq&c de-
fined by Eq.~2.7!,

uq&c5 b^0uR̂1
†

a^auR̂2
†una&aunb&bunc&c . ~A1!

With the unitary operator of a beam splitter given by@18#

R̂5exp@ ih~ â†b̂1b̂†â!#, ~A2!

where a and b are the annihilation operators for the inp
field modes, it can be shown that the beam splitter transfo
the corresponding creation operatorsa† and b† and the
double mode vacuum according to

R̂†â†R̂5tâ†2 irb̂ †, ~A3!

R̂†b̂†R̂5tb̂†2 irâ †, ~A4!

R̂†u0&bu0&c5u0&bu0&c , ~A5!

wheret andr are the transmission and reflection coefficien
of the beam splitter. In the case of BS2, a 50/50 beam s
ter, t5r 51/A2. By writing una&a as (â†na/Ana!) u0&a , and
similarly for unb&b , we obtain

R̂2
†una&aunb&b5

~ â†2 i b̂†!na~ b̂†2 i â†!nb

2(na1nb)/2Ana! nb!
u0&au0&b ~A6!

and thus

a^auR̂2
†una&aunb&buN&c

5
~a* 2 i b̂†!na~ b̂†2 ia* !nb

2(na1nb)/2exp~ uau2/2!Ana! nb!
u0&buN&c .

~A7!

Writing uN&c as (ĉ†N/AN!) u0&c and using an equivalen
form of Eqs.~A3!–~A5!, we obtain
R̂1
†

a^auR̂2
†una&aunb&buN&c5

@a* 2 i ~ tb̂†2 ir ĉ †!#na@ tb̂†2 ir ĉ †2 ia* #nb~ t ĉ†2 irb̂ †!N

2(na1nb)/2exp~ uau2/2!Ana! nb!N!
u0&bu0&c ~A8!
for
where we have left the transmission and reflection coe
cients of BS1 ast andr. Finally, projecting onto the vacuum
state in modeb gives us

uq&c5
~2 i !nbtN@a* 2rĉ†#na@a* 1rĉ†#nb

2(na1nb)/2exp~ uau2/2!Ana! nb!
uN&c

5 (
m5N

N1l

qm~na ,nb!um&c ~A9!
-wherel5na1nb . The specific notation

f m5qm~l/2,l/2!exp@ i ~N1l2m!w#,

gm5qm@~l11!/2,~l21!/2#exp@ i ~N1l2m!w#
~A10!

is used in the text. The explicit form ofqm(na ,nb) is not
actually needed. What is important is an expression
0-5
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qN(na ,nb)qN1l* (na ,nb). This can be derived from Eq.~A9!
by evaluatingqN(na ,nb) and qN1l(na ,nb) separately to
give

qN~na ,nb!qN1l* ~na ,nb!

5~21!naa0al* t2N~r /2!lS l

na
D S N1l

N D 1/2

, ~A11!
s
,

.

01381
wherean5^nua&. For a mixed reference state with densi
operator exp(iN̂aw)r̂aexp(2iN̂aw) at the entry of BS2,a0al*

in Eq. ~A11! is replaced bŷ 0ur̂aul&exp(2ilw).
It is not difficult to see that the modulus of Eq.~A11! is

maximized whenna5l/2 if l is even and whenna5(l
61)/2 if l is odd. Thus the quotients in Eqs.~2.17! and
~2.20! will have optimum numerators and denominators
the values ofna andnb we have used in this paper.
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