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Class-A lasers with injected signal: Bifurcation set and Lyapunov–potential function
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We describe the bifurcation set for a class-A laser with an external injected signal in terms of the amplitude
and the frequency of the applied field. We explain the dynamical behavior of this kind of lasers in terms of a
Lyapunov potential in the case where such a description is possible. In particular, a full description for the
deterministic and nondeterministic dynamics can be given by using the Lyapunov potential for some of the
external parameters. Depending also on the value of these parameters, the phase of the electric field drifts with
time in the stochastic case.
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I. INTRODUCTION

To control a laser using an injected signal is an active a
of research with a great variety of applications. Experime
show that a very rich behavior~locking, pulses, multistabil-
ity, etc.! can appear depending on the range of parame
considered@1–4#. This paper studies the dynamics of a cla
A lasers in the presence of an external electric field.
means of analytical and numerical studies, we obtain
complete deterministic bifurcation set for this system. As
main result, we determine the locking range, i.e., the rang
parameters for which the frequency of the emitted lig
equals that of the injected signal, as well as the differ
regions of multistability. In the case that the stochastic ter
corresponding to the spontaneous emission are consid
we predict the existence of a noise-induced shift of the la
frequency.

Our starting point will be a simple description of las
dynamics in terms of rate equations for the temporal evo
tion of the different system variables. It is usual to class
lasers according to the decay rate of photons, carriers,
material polarization@1,5,6#. In the so-called class-A lasers
the material variables decay to the steady state much fa
than the electric field, and can therefore be adiabatic
eliminated. The resulting equation for the electric field s
fices to describe the dynamical evolution of the laser. T
equation contains a white-noise term accounting for the
chastic nature of the spontaneous emission. Some prope
of typical class-A lasers, such as a dye laser, are discusse
Refs.@7,8#.

In a previous paper@9# we have analyzed the dynamics
class-A lasers, in the absence of an external forcing, by us
a Lyapunov-potential function@10#. The deterministic dy-
namics~neglecting the spontaneous emission noise! has been
completely understood as a movement of a fictitious test
ticle on the surface of the Lyapunov potential. In the pr
ence of spontaneous emission noise, the probability den
function obtained from the potential makes possible the
culation of stationary averages of interest@11,12#, such as the
above-mentioned noise-induced frequency shift of the em
ted light.
1050-2947/2002/66~1!/013808~12!/$20.00 66 0138
a
ts

rs
-
y
e

a
of
t
t
s
ed,
er

-

nd

ter
ly
-
is
o-
ies
in

g

r-
-
ity
l-

t-

It is the aim of this paper to study class-A lasers with an
injected field in order to determine the bifurcation set and
describe the deterministic dynamics, whenever possible
terms of a Lyapunov potential. In the stochastic case,
same Lyapunov potential will allow us to calculate me
values in the steady-state limit. We will consider both t
cases where the detuning frequency between the injected
nal and the unperturbed laser is equal to zero and diffe
from zero.

The paper is organized as follows. In Sec. II, we pres
the model equations for a class-A laser with injected signa
used in the remaining sections. In Sec. III, we determine
bifurcation set in terms of the amplitude and frequency of
injected signal. In Sec. IV, we describe the laser dynamic
terms of a potential function, valid for the case of a ze
detuning injected signal, and discuss its relevance both in
deterministic and stochastic dynamics. Finally, we summ
rize the main results in Sec. V.

II. EQUATIONS

We consider a class-A laser @5# whose dynamics can b
described in terms of the slowly varying complex amplitu
E of the electric field. The physical electric field is given b
E(t)5eiV0tE(t)1c.c. To this system we inject a monochr
matic optical fieldSeiVt of amplitudeS and frequencyV.
The resulting evolution equation is@13,14#

Ė~ t !5~11 ia!S G

11buEu2
2k D E1sSe2 iDVt1z~ t !,

~1!

where DV5V02V is the detuning between the extern
field and the unperturbed laser operating frequencyV0 . k,
G, b, a, ands are~real! intrinsic laser parameters:k is the
cavity decay rate,G the gain parameter,b the saturation-
intensity parameter,a the atomic detuningparameter, ands
the amplitude feed-in rate, proportional to the inverse of
round–trip timet in @15#. Another widely used model ex
pands the nonlinear gain term, proportional tob, to give a
cubic dependence on the field~third-order Lamb theory
@16#!. z(t) is a complex Langevin source term accounting
©2002 The American Physical Society08-1
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the stochastic nature of spontaneous emission. It is taken
Gaussian white noise of zero mean and correlations

^z~ t !z* ~ t8!&54Dd~ t2t8!, ~2!

whereD measures the strength of the noise.
In the nonforcing situation,S50, the deterministic ver-

sion,D50, of Eq. ~1! has two fixed points. The fixed poin
E50, the off solution, corresponds to a situation in whic
the laser is not emitting light. This solution is unstable f
G.k when the laser switches to theon solution ~or lasing
modeof operation! with a nonzero light intensity given by
uEu25(G2k)/(kb).

By writing E5(x11 ix2)e2 iDVt, i.e., (x1 ,x2) are the real
and imaginary parts of the electric fieldE in the reference
system that rotates with frequency2DV, and introducing a
new dimensionless time such thatt→kt, the evolution equa-
tions become

ẋ15S a

b1x1
21x2

2
21D ~x12ax2!1r2vx21j1~ t ! cos~vt !

2j2~ t ! sin~vt !, ~3!

ẋ25S a

b1x1
21x2

2
21D ~ax11x2!1vx11j1~ t ! sin~vt !

1j2~ t ! cos~vt !, ~4!

wherea5G/(kb), b51/b, r5sS/k, v5DV/k, andz(t)
5j1(t)1 i j2(t) introduces real white-noise processes w
zero mean and correlations,

^j i~ t !j j~ t8!&52ed i j d~ t2t8!, ~5!

with e5D/k. The statistical properties that follow from th
set of equations~3!–~4! are contained in the Fokker-Planc
equation for the time evolution of the probability dens
function @17#. A simpler, yet equivalent set of equations,
the sense that they give rise to the same Fokker-Planck e
tion, is @8#:

ẋ15S a

b1x1
21x2

2
21D ~x12ax2!1r2vx21j1~ t !, ~6!

ẋ25S a

b1x1
21x2

2
21D ~ax11x2!1vx11j2~ t !. ~7!

These equations can be written in terms of the intensityI and
phasef, by making the change of variablesx15AI cos (f)
andx25AI sin (f),

İ 52F a

b1I
21G I 12rAI cos~f!12AI j I~ t !, ~8!

ḟ5aF a

b1I
21G2

r

AI
sin~f!1v1

1

AI
jf~ t !, ~9!
01380
s a

r

a-

where j I(t) and jf(t) are white-noise processes of me
zero and correlations~5!. The multiplicative terms of these
equations have to be understood in the Stratonovich se
@17#. We remind the reader that, in this interpretation,
integral of the form, e.g.,* t

t1hF„I (s)…j I(s)ds has to be un-
derstood, in the limit of h→0, as 1

2 @F„I (t)…1F„I (t
1h)…#* t

t1hj I(s)ds, for any arbitrary functionF(I ).
In the next sections, the system of equations~6!,~7! is

studied. For convenience, we will switch between the
scriptions~6!,~7! and ~8!,~9! whenever it simplifies the dis
cussion.

III. BIFURCATION SET

We consider throughout this section the deterministic v
sion of Eqs.~6!,~7! or ~8!,~9! obtained by neglecting all the
stochastic terms or, equivalently, by settinge50. It is easy to
observe that any trajectory remains bounded in the (x1 ,x2)
plane. This comes from the asymptotic form of Eq.~8! in the
limit I→`, namely, İ 522I , which shows that trajectorie
with a large intensityI are restored towards the origin. Con
sequently, the only asymptotic behavior of Eqs.~6!,~7! can
be a fixed point or a periodic orbit. Remember that E
~6!,~7! are written in the reference frame that rotates w
frequency2v. Therefore, a fixed point solution represents
situation in which the frequency of the laser electric fieldE
equals that of the injected electric field. We are interested
finding the locking range, i.e., the set of parameters (r,v)
for the injected field, such that there existstablefixed point
solutions, also calledlocking solutions.

A. The fixed point solutions

The intensityI s and phasefs of the fixed points are found
by settingİ 5ḟ50 in Eqs.~8! and ~9!. The resulting equa-
tions can be rewritten as

r25I sF a

b1I s
21G2

~11a2!12avI sF a

b1I s
21G1I sv

2,

~10!

v5
r

AI s

A11a2 sin@fs1arctan~a!#. ~11!

We consider henceforth the casea.b ~corresponding to the
lasing mode of operationG.k). For given (r,v), the third
degree-polynomial equation~10! can have either one or thre
real ~always non-negative! solutions for the intensityI s . For
any of those solutions it is straightforward to show that t
condition

uvu<
r

AI s

A11a2 ~12!

is always satisfied, hence ensuring that there will be the
responding solution forfs obtained from Eq.~11!.
8-2
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FIG. 1. Bifurcation set for a class-A laser with an injected signa
for a52, b51, and a52. In ~a! and ~b! the solid line is the
saddle-node curve separating regions 1, 6, 7, 9 with one fixed p
solution from regions 2, 3, 4, 5, 8, 10 with three fixed point so
tions; the short-dashed lines separating the pairs of regions 8
2-3; 7-9; and 1-6, are Hopf bifurcations, as given by Eq.~20!,
where a periodic orbit is created; the dotted lines are homocl
bifurcations where the periodic orbits of regions 4 and 10 disapp
when going to region 5, and one periodic orbit in region 3 disa
pears when going to region 4; the coincidence of the curve
homoclinic orbits with the saddle-node curve mark the existenc
Andronov-Leontovich bifurcations where the periodic orbit of r
gions 9 and 1 disappears when crossing to 5; the dashed line
saddle node of periodic orbits and going from region 7 to 6 t
periodic orbits of different stability are created; the two big so
dots are Takens-Bogdanov points. There exist also homoc
saddle-node codimension-2 points, in the intersection between
saddle-node curves and the homoclinic orbits~squares and tri-
angle!. In ~c! we indicate the different regions of stability: inL, one
fixed point is the stable solution; inNL, one periodic orbit is the
stable solution; inC there is coexistence of a stable fixed point a
a periodic orbit; finally, inB there are two stable fixed points. Th
dotted line is the approximate locking range given by Eq.~18!.
Dimensionless units.
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The lines separating the one fixed point solution reg
from the three fixed point solutions region can be found
using standard methods of algebra. These lines form the
called saddle-nodecurve. It turns out that the three fixe
points region is a connected set enclosing regions labele
3, 4, 5, 8, 10 shown in Fig. 1~a! for a typical casea52,
b51, anda52. In regions 1, 6, 7, 9 only one fixed point
present. For moderate values of the intensityr, there is a
range of values for the frequencyvP(v1 ,v2) for which
three fixed points exist, whereas for very large intensity, o
one fixed point is present for all values ofv. A similar sce-
nario occurs fora50, see Fig. 2 where the three fixed poin
region is labeled as 5, and only one fixed point appear
regions 1, 7, 9.
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B. The periodic orbit solutions

At the saddle-node curve, a saddle point and another fi
point merge and disappear. In some cases this gives rise
periodic orbit through an Andronov-Leontovich bifurcatio
Near the bifurcation, it is possible to obtain approximate
the evolution equation for the angle variablef(t) by assum-
ing that the intensity of the periodic orbit is constant. Th
approximation, which can be obtained via perturbati
theory on the laser equations to lowest order@18#, is derived
here heuristically by neglecting fluctuations in the intens

setting İ 50 in Eq. ~8!, but allowing for a time-dependen
phase in Eq.~9! for f. SettingI 5I 0 constant in Eq.~8! and
replacing in Eq.~9! we obtain
8-3
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MAYOL, TORAL, MIRASSO, AND NATIELLO PHYSICAL REVIEW A 66, 013808 ~2002!
ḟ5v2
rA11a2

AI 0

sin@f1arctan~a!#. ~13!

The next approximation is to consider thatI 0 is the intensity
of the field at the nearest point (r,v) in the saddle-node
curve with the same value of the external field amplituder.
Hence,I 0 is computed as the double root of Eq.~10! taking
v5v1 or v5v2.

Equation~13! is known as Adler’s equation@19# and it
can be easily analyzed by writing it as

ḟ52
dU

df
, ~14!

using the potential function

U~f!52vL cos@f1arctan~a!#2vf, ~15!

where we have introduced

vL5
rA11a2

AI 0

. ~16!

The dynamics off can then be explained in terms of rela
ation in the potentialU. For uvu,vL the potential has loca
minima and the phase eventually stops in one of them. T
is a fixed point solution that has been discussed in the
ceding subsection. A periodic orbit solution is obtained o
in the caseuvu>vL where the phasef varies monotonically
with time. The explicit solution is

f~ t !52 arctanFve f

v
tanS ve f

2
t D1

vL

v G2arctan~a!2vt,

~17!

whereve f5Av22vL
2.

FIG. 2. Bifurcation set for a class-A laser with an injected signa
for a52, b51, anda50. The solid line is the saddle-node curv
separating regions 1, 7, 9 with one fixed point solution from reg
5 with three fixed point solutions. The dotted lines separating
pairs of regions 7-9 and 7-1 are Hopf bifurcations, as given by
~20!, where a periodic orbit is created. The locking range is form
by regions 5, 7 where a single fixed point is the only stable solut
In regions 1 and 9 the stable solution is a periodic orbit. Dim
sionless units.
01380
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Therefore, within this approximation, the line separating
fixed point from a periodic orbit solution is given byuvu
5vL . Notice that our derivation of this relation is differen
from the usual one in which one derives it by demanding t
Eq. ~12! can be satisfied. We have shown that Eq.~12! is
indeed satisfied for all values ofv and r and that the con-
dition uvu5vL to determine the locking range is an approx
mate one. By using Eq.~10! this condition can be rewritten
as

r5uvuA a

11a22av
2

b

11a2
. ~18!

The range of validity of this approximation has to b
checked numerically. In Fig. 1~c! we compare the exact re
sult with the approximate one in the typical casea52, b
51, anda52. It can be seen that the approximation is qu
good for small values ofr but it worsens as the intensityr is
increased.

When crossing the saddle-node curve, for example, cr
ing from region 9 or 1 to region 5 in Fig. 1~a!, the periodic
orbit disappears. As a precursor of this disappearance,
period of the periodic orbit,T, grows in regions 1, 9 until it
finally diverges at the saddle-node curve. The divergence
be fitted, for a fixed value ofv to the lawT;(r r2r)21/2

@20#, with r r the value ofr where the bifurcation occurs.

C. The bifurcation set

In the following we will perform the stability analysis o
the different fixed point and periodic orbit solutions. Th
fixed points forI are given by Eq.~10! and this equation can

FIG. 3. Sketch of the partial bifurcation set for a class-A laser
with injected signala52, b51, anda52. Different regions and
intersection points detailed in Fig. 1 and Table I. SH stands
homoclinic saddle-node codimension-2 points. F stands for in
section of the saddle-node bifurcation of periodic orbits, the
moclinic orbit, and the continuation of the Hopf bifurcation~dotted
line, which is not a bifurcation!. Dimensionless units.
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have either one or three real roots depending onr and v.
The stability of these fixed points defines the different
gions of interest. Stability properties can be established
terms of the eigenvalues of the linearization matrix~Jaco-
bian! of Eqs.~6!,~7! at the fixed points. A fixed point is stabl
if both eigenvalues have a negative real part. We will ca
fixed point unstable if both eigenvalues have positive r
part, while a saddle fixed point will be characterized by ha
ing one eigenvalue with positive real part and the other w
negative real part. The local bifurcation takes place when
real part of some eigenvalue crosses zero.

The results of the stability analysis depend on the value
the parametera. For a50, the only possibility is to have
regions in which either a stable fixed point or a stable p
odic orbit exist, see Fig. 2. However, fora.0 a much richer
behavior appears. We summarize the results for one inte
ing typical case, namelya52, b51, anda52, shown in
Fig. 1. In regions 5, 7 there exists only one locking~stable
fixed point! solution. In region 8 there exist two lockin
solutions with different intensity. In regions 1, 2, 9 the
exists one stable periodic orbit solution. Finally, in regions
4, 6, 10, and 11~appearing in Fig. 3! one locking solution
coexists with a stable periodic orbit solution. While some
the lines of this bifurcation set shown in Fig. 1 can be eva
ated analytically, others have to be obtained numerically.
now give details of the calculations of those lines. The rea
not interested in the technical details can skip directly to S
III C 6.

1. Saddle-node bifurcation

A saddle-node bifurcation occurs when two fixed poin
are created/annihilated. The saddle-node curve separate
this case, a region with one fixed point from another w
three fixed points. On the saddle-node curve, two fix
points coincide~or equivalently, one of the eigenvalues
the Jacobian is zero!. From another point of view, the saddle
node bifurcation curve can be obtained as the lines in
(r,v) plane in which the third degree equation~10! has a
double root. The saddle–node bifurcation curve is indica
by a solid line in Figs. 1~a!, 1~b!, and 2.

2. Hopf bifurcation

In a Hopf bifurcation of a two-dimensional system su
as ours, a fixed point changes its stability~from stable to
unstable, or vice versa! and a periodic orbit with opposite
stability to the coexistent fixed point is born/disappears.
the bifurcation point, the eigenvalues of the Jacobian ma
J associated with the deterministic system~6! and ~7! @or,
equivalently and somewhat easier,~8! and ~9!# are complex
conjugated and pure imaginary. This condition can be writ
as Tr(J)50, Det(J).0. Hence,

~b1I !~a2b2I !2aI50. ~19!

This equation combined with the one for the fixed poin
~10! leads to the Hopf bifurcation curve,
01380
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v212avSAa

b
21D 1SAa

b
21D 2

~11a2!5
r2

2b1Aba
.

~20!

The resulting Hopf bifurcation is also shown in Figs. 1~a!
and 1~b! ~short-dashed line!. From regions 8 to 10 and from
2 to 3 a periodic orbit is born and a fixed point changes
stability. The disappearance of those periodic orbits will
explained in the following subsections.

3. Takens-Bogdanov singularities

At the points (rHs ,vHs) where the Hopf and the saddle
node bifurcation curves intersect, the eigenvalues of
Jacobian matrix are strictly equal to zero. This conditi
gives

vHs56SAa

b
21DA11a2, ~21!

rHs5A2bSAa

b
21D 3

A11a2~A11a26a!. ~22!

For the parameters considered in Fig. 1 (a52, b51, and
a52), it is (rHs ,vHs)5(0.274,20.926) and (rHs ,vHs)
5(1.160,0.926). At these intersection points, the Jacob
matrix is different from zero, and its normal form is

S 0 1

0 0D . ~23!

These points correspond to Takens-Bogdanov singular
@21#. At these codimension-3 points, indicated in the figure
homoclinic orbit is also born. These orbits have been co
puted numerically and they are discussed in the follow
subsection.

4. Homoclinic orbits

When~some branch of! the stable and unstable manifold
of a saddle point coincide we are in the presence of a
moclinic orbit. Homoclinic orbits have been obtained n
merically using the programAUTO97 @22# as the ‘‘infinite-

TABLE I. Different regions in the bifurcation set for a class-A
laser with injected signal. fp stands for fixed point, po stands
periodic orbit, St. stands for stable, and Unst. stands for unstab

1→ 1 fp Unst., 1 po St.
2→ 2 fp Unst., 1 fp Saddle, 1 po St.
3→ 1 fp Unst., 1 fp Saddle, 1 fp St., 1 po St., 1 po Unst.
4→ 1 fp Unst., 1 fp Saddle, 1 fp St., 1 po St.
5→ 1 fp Unst., 1 fp Saddle, 1 fp St.
6→ 1 fp St., 1 po St., 1 po Unst.
7→ 1 fp St.
8→ 2 fp St., 1 fp Saddle
9→ 1 fp Unst., 1 po St.
10→ 1 fp Unst., 1 fp Saddle, 1 fp St., 1 po St.
11→ 1 fp Unst., 1 fp Saddle, 1 fp St., 1 po St., 1 po Unst.
8-5
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period limit’’ of periodic orbits. The resulting curves o
homoclinic orbits are displayed as dotted lines in Figs. 1~a!
and 1~b!. Their location in parameter space coincides p
tially with the saddle-node curve.

The intersections of the saddle-node curve and a
moclinic bifurcation occur at codimension-2 points. The
exist intersection homoclinic saddle-node codimensio
points~SH! at each of the saddle-node branches, see Fig
and 3. The bifurcation structure near to these points w
described in Ref.@23#. Note that the location of thes
codimension-2 points cannot be completely exact due to
fact that the homoclinic orbits are obtained numerically. T
bifurcation branch emerging from these points with coin
dence of the curve of homoclinic orbits with the saddle-no
curve is called the Andronov-Leontovich bifurcation@24#, or
more generally calledsaddle-node bifurcation on a limi
cycleor saddle-node infinite period bifurcation@20#.

5. Saddle-node of periodic orbits

Besides the bifurcation curves described so far, there
ists yet another curve of saddle-node bifurcations of perio
01380
-

o-

2
. 1
s

e
e
-
e

x-
ic

orbits. This is indicated by the the long-dashed curve in F
1~a! and 1~b!, which has been obtained also numerical
When crossing this curve, the two periodic orbits of region
disappear. The point were the saddle-node of periodic orb
the homoclinic and the neutral saddle curve intersect i
codimension-2 point, labeled asF, @21#, in Fig. 3. This point
is not found exactly at Fig. 1~b! due to numerical evaluation
The presence of this point gives rise to a small region,
beled as 11, where two periodic orbits, and three fixed po
exist, see Figs. 3 and 6. Forv'25 @not shown in the scale
of Fig. 1~a!# the Hopf bifurcation and the saddle-node
periodic orbits collide and regions 1 and 7 are directly se
rated by the Hopf bifurcation, this kind of bifurcation ap
pears in other systems, as in Ref.@25#.

6. Summary

We summarize in Table I the results of the previous s
sections concerning the different regions separated by
bifurcation lines. In Fig. 4, the phase portrait of differe
regions is shown, namely, regions 3, 4, 5, 6. In the first li
d
t;
,
le

-

FIG. 4. Phase portraits (x1 ,x2)
in different regions. Dimension-
less units. Triangle, stable fixe
point; square, unstable fixed poin
cross, saddle point. Solid line
stable orbit; dashed line, unstab
orbit; points, trajectories.~a! Re-
gion 4, (r,v)5(0.33,21); ~b!
near homoclinic 4, 5, (r,v)
5(0.33,20.95); ~c! region 5,
(r,v)5(0.33,20.9); ~d! close to
homoclinic 3, 4, (r,v)5(0.33,
21.03); ~e! close to Andronov bi-
furcation 4, 6, (r,v)5(0.34,21);
~f! close to the saddle node of pe
riodic orbits 6, 7, (r,v)5(0.352,
21); ~g! region 3, (r,v)5(0.32,
21.07); ~h! close to the saddle
node 3, 6, (r,v)5(0.3321.065,);
~i! region 6, (r,v)5(0.345,21).
8-6
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FIG. 5. Phase portraits (x1 ,x2)
in different regions of the bifurca-
tion set. Dimensionless units. Tri
angle, stable fixed point; square
unstable fixed point; cross, sadd
point. ~a! region 1, (r,v)5(0.25,
21.1); ~b! region 2, (r,v)
5(0.3,21.1); ~c! region 3,
(r,v)5(0.315,21.08);~d! region
4, (r,v)5(0.3,20.95);~e! region
5, (r,v)5(0.3,20.6); ~f! region
6, (r,v)5(0.4,21.2); ~g! region
7, (r,v)5(1,0); ~h! region 8,
(r,v)5(1.8,1.8); ~i! region 10,
(r,v)5(1.5,1.6).
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from left to right the transition from region 4 to 5 is show
In the first column, one can observe the transition form
gion 4 to 3 through an homoclinic orbit. The transition fro
region 3 to 6, as a saddle-node bifurcation, appears in
last line. In the diagonal@Figs. 4~a!, 4~e! and 4~i!# one can
observe the transition through an Andronov bifurcation. T
saddle-node of periodic orbits is reflected in Fig. 4~f!. In
Figs. 5 and 6, there appear the phase portraits of the diffe
regions obtained, region 11 has also been sketched to ma
more representative plot.

Many of the bifurcation features found in this system a
present in other studies, we mention in particular the pa
by Khibnik et al. @25,26# and more importantly the book b
Kuznetsov@21# where a bifurcation diagram topologicall
equivalent to ours is displayed in Fig. 8.10, p. 285 in co
nection with the analysis of a predator-prey model
Bazykin.

These results allow us to identify the stability regions
dicated in Fig. 1~c!: in L , one fixed point is the only stabl
solution; inNL , one periodic orbit is the only stable solutio
in C there is coexistence of a stable fixed point and a p
odic orbit; finally, inB there are two stable fixed points.

7. Comparison with the bifurcation set for class-B lasers

The bifurcation set obtained in the previous analysis
veals the complexity of the system and the importance of
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parameter choice in experiments. Class-A lasers with in-
jected signal are the simplest example one can conside
more complex situation arises when considering clasB
@3,27–31# lasers with injected signal~described with equa-
tions for the electric field and carriers number!. The main
difference between class-A and class-B lasers from the dy-
namical point of view is the number of variables that o
works with. For class-A lasers two variables suffice and th
full bifurcation set can be described. For class-B lasers, a
three-dimensional system, a more complex variety of p
nomena can appear and the system can also show ch
behavior. Although part of the bifurcation structure of clas
B lasers is already present in class-A lasers~essentially the
three curves of saddle-node bifurcations of fixed points!, the
overall dynamics of the former becomes extremely com
cated. The presence of the Hopf-saddle-node point has a
cial importance for class-B lasers and different types of flow
~as classified by Ref.@10#! can be obtained. The analysis o
these flows has been the object of a extensive work: type
@32#, type I @18#, and type II@24# of the Hopf–saddle-node
singularity occur for different parameter regions. Note
contrast that the intersection of Hopf and saddle-node bi
cations of fixed points in classA cannot be of Hopf–saddle
node type but are Takens-Bogdanov singularities inste
Such singularities are, however, also present~in a different
form! in class B, not only involving bifurcation of fixed
8-7



o-
er

ns

o-

if
of

but

u-
ar-
ter-
the
ts,
ex-
ics

t

the
ics
ed.
of

n-
-
.

f

MAYOL, TORAL, MIRASSO, AND NATIELLO PHYSICAL REVIEW A 66, 013808 ~2002!
points but also bifurcations of periodic orbits. Andronov gl
bal bifurcations have also been found in both types of las
In the bifurcation set for a class-A laser in the casea52
several changes~codimension-3 bifurcations! would need to
take place to get it from thea50 situation ~Fig. 2!, this
situation is again reminiscent of the class-B laser case@33#.

IV. LYAPUNOV POTENTIAL

We now look for a description of the dynamical equatio
in terms of a Lyapunov potential@10#. Equations~6!,~7! can
be written as

ẋi52(
j 51

2

Di j

]V

]xj
1v i1(

j 51

2

gi j j j , i 51,2, ~24!

where the functionV is @34#

V~x1 ,x2!5
1

2
@x1

21x2
22a ln~b1x1

21x2
2!#

2
r

~11a2!
~x12ax2!, ~25!

or, written in terms of intensity and phase,

V~ I ,f!5
1

2
@ I 2a ln~b1I !#2

rAI

A11a2
cos~f1arctana!.

~26!

The matricesD andg, and the vectorv are

D5S1A5S 1 0

0 1D 1S 0 2a

a 0 D , g5S 1 0

0 1D ,

v5S 2vx2

vx1
D . ~27!

A. Deterministic dynamics

In the deterministic dynamics (e50), Eqs.~24! show that
V(x1 ,x2) is a Lyapunov potential, i.e., a function that mon

FIG. 6. Phase portrait at region 11 of the bifurcation set.~a!
(r,v)5(0.34,20.9713); triangle, stable fixed point; square, u
stable fixed point; cross, saddle point.~b! Sketch of the phase por
trait: arrows indicate the sense of the flow. Dimensionless units
01380
s.

tonically decreases along trajectories,V̇<0, provided that
the residual terms(v1 ,v2) satisfy theorthogonality condi-
tion @35#

v1

]V

]x1
1v2

]V

]x2
50. ~28!

It turns out that this orthogonality condition is satisfied
vr50. This means that a Lyapunov function description
the dynamics using Eq.~25! is valid along the coordinate
axisv50 andr50. Notice that the caser50, v5” 0 cor-
responds to a situation in which there is no applied field
the reference system rotates at an arbitrary frequencyv.

The use of a Lyapunov function potential permits to vis
alize the dynamics as the relaxation of a fictitious test p
ticle in the potential landscape. The fixed points of the de
ministic dynamics can be regarded as the extrema of
potentialV, where minima correspond to stable fixed poin
maxima correspond to unstable fixed points, and saddle
trema correspond to saddle points. In the transient dynam
towards the stationary states, the symmetric matrixS is re-
sponsible for driving the system towards the minimum ofV
following the lines of maximum slope ofV. The antisymmet-
ric part A ~which is proportional toa) induces a movemen
orthogonal to the direction of maximum variation ofV. The
combined effects ofS andA produce in general a spiral-like
trajectory in the (x1 ,x2) plane. The angular velocity of this
movement is proportional toa. Finally, the residual term
(v1 ,v2) induces a movement that does not decrease
value of the potential and it is responsible for any dynam
after the line of minima of the potential has been reach
We now analyze the different possibilities for the extrema
V.

FIG. 7. Potential for a class-A laser with an injected signal with
the same frequency of the unperturbed laser, Eq.~25!, with the
parametersa52, b51, anda52. Dimensionless units.~a! r50,
~b! r50.8. In ~a! we also indicate the projection of the line o
minima of V and the corresponding line is plotted in~b!.
8-8
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In the caser50, the potential does not depend on t
phasef of the electric field and it can adopt two qualit
tively different shapes.

~i! For a,b the potential has a single minimum atx1

5x250 and no maxima. Therefore, the only fixed point
the off stateI 50, which is stable.

~ii ! For a.b, the potential has the shape of a sombre
see Fig. 7~a!. There is a single maximum at (x1 ,x2)50 ~cor-
responding to the unstable situation with the laser in theoff
state! and a circumference of degenerate minima atx1

21x2
2

5a2b. The asymptotically stable situation, then, is that t
laser switches to theon state with intensityI st5(x1

21x2
2)st

5a2b and arbitrary phase. The residual dynamicsẋi5v i

gives a periodic harmonic movement in the minima of t
potential with frequencyv. This corresponds to the period
orbits shown in Fig. 1.

In the case of zero-detuning injected signal,r.0, v
50, the potential, which depends now explicitly on t
phasef, is tilted in a preferred direction. In the casea,b
the location of the only minimum changes and t
asymptotic state has a nonzero light intensity, proportiona
r. In the casea.b, the sombrero is tilted as well in a pre
ferred direction. For smallr the inclination is small and the
effect is that the maximum still remains a maximum,
though its location varies accordingly. The tilt breaks t
symmetry amongst the line of degenerate minima and
absolute minimum is selected. At the same time, one of
previous minima becomes a maximum in the direction
thogonal to the tilt and a saddle point is born. Increasingr,
the maximum of the sombrero and the saddle point disap
~corresponding to the saddle-node curve of Fig. 1! and the
potential has only one minimum at a preferred phase di
tion, see Fig. 7~b!. Therefore, the asymptotically stable sit
ation, in this case ofr.0, v50 anda.b is that the laser
switches to anon state with a well defined intensity an
phase, in agreement with the results shown in Fig. 1.

The validity of a Lyapunov potential description in th
general case,rv5” 0 is an open question. Since the orthog
nality condition implies that the time derivative of th
Lyapunov functional~25! has a negative contribution plus a
extra term proportional tovr ~with no definite sign!, it is
reasonable to speculate that forvr small enough, the latte
term can be compensated by a change of the same ord
the potential. However, we have not been able to find
analytical expression for the potentialV in this general case
This speculation is supported by the fact that thequalitative
dynamical features do not change near the coordinate
v50, r50. Furthermore, assuming the validity of th
Lyapunov potential description we can understand the tr
sition from locking to nonlocking states.

Let us consider a given value ofr.0 and increase the
detuning frequency starting fromv50. For v50, the po-
tential is tilted and there are no residual terms@see Fig. 7~b!#.
As v increases, the shape of the potential deforms, the m
mum of the potential and the saddle point approach thro
the deterministic noninjection circumference of minima~re-
gion 5 of Fig. 1!. Moreover, the residual terms, proportion
to v increase, but still they are not strong enough to ov
01380
,

e
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-

n
e
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come the tilt of the potential and to induce a rotation mov
ment. For a value ofv ~corresponding to the saddle-nod
bifurcation! these two points~minimum and saddle! collapse
and a periodic motion appears, induced by the residual te
~corresponding to region 9 of Fig. 1!.

Similarly, starting at a pointv.0 and increasing the in
tensity of the applied fields,r, a similar scenario appears
For r50, the potential has a line of degenerate minimaI
5a2b, and trajectories are circumferences in the (x1 ,x2)
plane induced by the residual terms. Increasingr, the line of
minima deviate from the circumference due to the change
shape of the potential and it becomes an ellipse, the peri
orbit solution is also induced by the residual terms of t
dynamics, which are proportional tov. In fact, it can be
shown that the solution in the steady state for very sm
values ofr has the form

I ~ t !5
a2b

12e cos@f~ t !1d#
, ~29!

which represents an ellipse with a time dependent ti
phase. The explicit values ofe and d can be obtained in
terms of the laser parameters from Eqs.~8! and ~9! and for
small values ofr. Increasingr even further, the potentia
deforms continuously until arriving to the saddle–node bif
cation.

B. Stochastic effects

In the presence of moderate levels of noise,e.0, the
qualitative features of the transient dynamics remain
same as in the deterministic case. The most important dif
ences appear near the stationary situation and show u
fluctuations of the intensity and phase of the electric fie
While the intensity simply oscillates around its mean valu
one can observe in some cases an additional phase drift
shows up as a variation in the frequency of the emitted lig
The potential picture developed in the preceding sect
helps us to understand the origin of this noise-induced
quency shift, as well as to compute its magnitude.

Let us look at the potentials depicted in Fig. 7. First co
sider the caser50. The deterministic movement is such th
the line of minima@shown as a projection in the (x1 ,x2)
plane# is run at a constant frequencyv. On top of that move-
ment there are fluctuations that allow frequent excursi
beyond the minima of the potentialV. When away from the
minima, the antisymmetric part of the dynamics@governed
by the matrixA in Eq. ~27! and proportional toa# gives a
nonzero contribution of the rotation terms producing t
phase drift observed. Forv50, r5” 0, when there exists
just one minimum of the potential, the fluctuations allow t
system to explore regions outside this minimum and then
rotation terms act again. Depending on the value ofr ande
the rotation term can be strong enough to produce the ph
flow or not.

After these qualitative arguments, we now turn to a mo
quantitative calculation. In those cases that there exis
Lyapunov potentialV(x1 ,x2) and that the matricesS andg
8-9
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of Eq. ~24! satisfy the fluctuation-dissipation relationS
5ggÁ, Graham@36# has shown that the stationary probab
ity distribution is given by

Pst~x1 ,x2!5Z21 expS 2
V~x1 ,x2!

e D , ~30!

whereZ is a normalization constant. This relation is exac
the residual termsv satisfy the orthogonality condition~28!
and if they are divergence free:]x1

v11]x2
v250 ~as they are

in our case!. In other cases, it has to be understood as
approximation valid in the limit of small noisee→0.

FIG. 8. Mean value of the intensity in the steady state in a cla
A laser with zero-detuning injected signal fora52, b51, anda
52. Dimensionless units. The solid line corresponds tor50 and
has been computed using the analytical result Eq.~33!, the dotted
line (r50.6) and the dashed line (r50.8) have been compute
numerically using Eq.~32!.

FIG. 9. Time evolution of the mean value of the phasef in a
class-A laser without injected signalr50 ~line A) and zero-
detuning injected signalr50.6 ~line B), in the casea52 there is a
linear variation of the mean value of the phase at late times.
a50 ~line C) there is only phase diffusion and the average valu
0 for all times. The solid lines have the slope given by the theo
ical prediction Eq. ~35!. Line D, time evolution of ^f&st

22pt/T, T being the period of the periodic orbit in the dete
ministic case, forr50.5, v51. In all the curves:a52, b51,
ande50.1. Dimensionless units.
01380
f

n

By changing variables to intensity and phase, we find t
the probability density function is

Pst~ I ,f!5Z21e2I /2e ~b1I !a/2e

3expS rAI

eA11a2
cos~f1arctan~a!!D ,

~31!

and the marginal probability density function forI is

Pst~ I !5Z21e2I /2e~b1I !a/2eI 0S rAI

eA11a2D , ~32!

whereI k is the Bessel function of the first kind and orderk.
The steady-state average value for the intensity^I &st
5*dIIPst(I ) can be analytically computed in the caser
50 with the result

^I &st5a2b12eF 11

e2b/2eS b

2e D 11a/2e

GS 11
a

2e
,

b

2e D G . ~33!

In the most general case, forr5” 0, the mean value can b
computed numerically by using Eq.~32!. In Fig. 8, this mean
value is represented, for fixed value ofr, versuse. The mean
value is always larger than the deterministic (e50) case.

As mentioned before, in the steady state of the stocha
dynamics, the phasef of the electric field fluctuates aroun
a mean value that changes linearly with time. This is clea
seen in the numerical simulations, see Fig. 9, and physic
corresponds to a changeDv in the emission frequency of th
laser. This frequency shift can be computed as the ave
value of the phase derivative^ḟ&. In the case that the stead

s-

or
s
t-

FIG. 10. Stochastic frequency shiftDv[^ḟ& in a class-A laser
for a52, b51, anda52. Forr50 ~solid line! the explicit result
Eq. ~35! is used, whereas forr50.6 ~dotted line! and r50.8
~dashed line! Eq. ~34! has been evaluated numerically. Dimensio
less units.
8-10
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state is a periodic orbit of periodT, one needs to subtrac
from this value the intrinsic frequency 2p/T. By taking the
average value of Eq.~9! and using the rules of the stochas
calculus, one arrives to

Dv5Z21aE
0

`

e2I /2e~b1I !a/2eF ~a2b2I !

b1I
I oS rAI

eA11a2D
1AII 1S rAI

eA11a2D GdI. ~34!

Notice that this stochastic frequency shift is zero in t
casea50 or for the deterministic dynamics (e50). In the
caser50 this expression can be analytically computed@9#

Dv52a

e2b/2eS b

2e D a/2e

GS 11
a

2e
,

b

2e D . ~35!

For r5” 0, one needs to compute the expression~34! numeri-
cally. In any case, the results are in excellent agreement
numerical simulations of the rate equations in the presenc
noise. In Fig. 10, we plot the stochastic frequency shift a
function of the noise intensity for several values ofr. For a
fixed value ofr, uDvu increases ase increases, since a large
value of e can induce larger fluctuations and larger exc
sions in phase space (x1 ,x2) away from the minima of the
potential. For fixede, uDvu decreases asr increases. This
is because whenr is increased, the inclination of the pote
tial increases, so the trajectory becomes more confi
around a fixed value.

In the caser5” 0 andv5” 0, the stochastic frequency shi
is also present, see Fig. 9~line D), although it is not possible
to compute its magnitude because we do not have an exp
expression for the Lyapunov potential.
oc
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V. CONCLUSIONS

In this work we have studied a class-A laser with an in-
jected electrical field. By using analytical and numeric
tools we have been able to describe the whole bifurcation
of this system and to determine thelocking range, i.e., the set
of amplitudes and~detuning! frequencies (r,v) for which
the laser responds adjusting its frequency to that of the
ternal field. This result is summarized in Fig. 1~c! in which
we can identify nonlocking regions~labeledNL in that fig-
ure!. Within the locking range one finds a region with
single stable laser response (L), regions~C! of coexistence
of a locking solution with a nonlocking solution, as well as
region ~B! of coexistence of two locking solutions of differ
ent light intensity.

We have described qualitatively the observed features
the deterministic dynamics in terms of a Lyapunov poten
landscape. We have identified the relaxational, conserva
and residual terms in the dynamical equations of moti
Although this description is strictly valid only in the case
a zero-detuning injected signal, the qualitative features
main unchanged when the productrv is small.

In the stochastic dynamics~when the additive noise com
ing from the spontaneous emission is explicitly considered
the equations!, we have used the Lyapunov potential ima
to explain the presence of astochastic frequency shiftof the
laser light. The same potential allows a quantitative calcu
tion of this effect. The results are in good agreement w
numerical simulations of the model equations and we h
that they can be a guide for future experiments in observ
this effect in real laser systems.
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