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ClassA lasers with injected signal: Bifurcation set and Lyapunowpotential function
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We describe the bifurcation set for a clasdaser with an external injected signal in terms of the amplitude
and the frequency of the applied field. We explain the dynamical behavior of this kind of lasers in terms of a
Lyapunov potential in the case where such a description is possible. In particular, a full description for the
deterministic and nondeterministic dynamics can be given by using the Lyapunov potential for some of the
external parameters. Depending also on the value of these parameters, the phase of the electric field drifts with
time in the stochastic case.
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[. INTRODUCTION It is the aim of this paper to study clagstasers with an

injected field in order to determine the bifurcation set and to

To control a laser using an injected signal is an active aredescribe the deterministic dynamics, whenever possible, in
of research with a great variety of applications. Experimentéerms of a Lyapunov potential. In the stochastic case, the

show that a very rich behavidtocking, pulses, multistabil- same Lyapunov potential will allow us to calculate mean

ity, etc) can appear depending on the range of parameterglues in the steady-state limit. We will consider both the
considered1—4]. This paper studies the dynamics of a class-cases where the detuning frequency between the injected sig-
A lasers in the presence of an external electric field. By’@l and the unperturbed laser is equal to zero and different

means of analytical and numerical studies, we obtain théromhzero. _ ed as fol
complete deterministic bifurcation set for this system. As a The é)alper |st(_)rganf|ze alsagzjrows' Ir.nthS(.ac_. ”t’ v&/e .preslent
main result, we determine the locking range, i.e., the range otpe model equations or a ¢ aser with injected signha

parameters for which the frequency of the emitted Iightu_sed m_the remaining sections. In_Sec. [ll, we determine the
L . . ifurcation set in terms of the amplitude and frequency of the
equals that of the injected signal, as well as the dlfferenp

. . . . injected signal. In Sec. IV, we describe the laser dynamics in
regions of multistability. In the case that the stochastic term§ ers of :potential function. valid for the case gf a zero-

corresponding to the spontaneous emission are considere tuning injected signal, and discuss its relevance both in the

we predict the existence of a noise-induced shift of the lasefjaterministic and stochastic dynamics. Finally, we summa-
frequency. ' '

Our starting point will be a simple description of laser
dynamics in terms of rate equations for the temporal evolu-
tion of the different system variables. It is usual to classify
lasers according to the decay rate of photons, carriers, and We consider a clasé-laser[5] whose dynamics can be
material polarizatiori1,5,6]. In the so-called clasa-lasers described in terms of the slowly varying complex amplitude
the material variables decay to the steady state much fastérof the electric field. The physical electric field is given by
than the electric field, and can therefore be adiabatically¥(t)= e'Q?tE(t)_+ c.c. To this system we inject a monochro-
eliminated. The resulting equation for the electric field suf-matic optical fieldSé®* of amplitudeS and frequency().
fices to describe the dynamical evolution of the laser. Thisl N resulting evolution equation j43,14
equation contains a white-noise term accounting for the sto-
chasti_c nature of the spontaneous emission. Som_e properti_es E(t)=(1+ia)( I K |EtoSed0ty (1),
of typical classA lasers, such as a dye laser, are discussed in 1+ BIE|?

Refs.[7,8]. )

In a previous papd9] we have analyzed the dynamics of
classA lasers, in the absence of an external forcing, by usingvhere AQ =Q,—() is the detuning between the external
a Lyapunov-potential functiof10]. The deterministic dy- field and the unperturbed laser operating frequefigy «,
namics(neglecting the spontaneous emission noiees been I', B, «, ando are(rea) intrinsic laser parameters: is the
completely understood as a movement of a fictitious test palcavity decay rate]' the gain parametey3 the saturation-
ticle on the surface of the Lyapunov potential. In the pres-ntensity parameter the atomic detuningparameter, and-
ence of spontaneous emission noise, the probability densitjne amplitude feed-in rate, proportional to the inverse of the
function obtained from the potential makes possible the calround—trip time 7;, [15]. Another widely used model ex-
culation of stationary averages of intergkt, 12, such as the pands the nonlinear gain term, proportional@pto give a
above-mentioned noise-induced frequency shift of the emiteubic dependence on the fielghird-order Lamb theory
ted light. [16]). £(t) is a complex Langevin source term accounting for

rize the main results in Sec. V.

II. EQUATIONS
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the stochastic nature of spontaneous emission. It is taken asahere ¢,(t) and &,(t) are white-noise processes of mean

Gaussian white noise of zero mean and correlations zero and correlation&5). The multiplicative terms of these
equations have to be understood in the Stratonovich sense
(L (t'))y=4Ds(t—t"), (2)  [17]. We remind the reader that, in this interpretation, an

integral of the form, e.g./!""F(I(s))&(s)ds has to be un-
derstood, in the limit of h—0, as 3[F((t))+F((t
+h) 11 "¢ (s)ds, for any arbitrary functiorF(1).

In the next sections, the system of equati@fs(7) is
studied. For convenience, we will switch between the de-
scriptions(6),(7) and (8),(9) whenever it simplifies the dis-
cussion.

whereD measures the strength of the noise.

In the nonforcing situationS=0, the deterministic ver-
sion,D=0, of Eq. (1) has two fixed points. The fixed point
E=0, the off solution, corresponds to a situation in which
the laser is not emitting light. This solution is unstable for
I'> « when the laser switches to tto solution (or lasing
modeof operation with a nonzero light intensity given by
|E[?= (T = )/ (k). _

By writing E=(x;+ix,)e "A? e, (x;,X,) are the real [ll. BIFURCATION SET
and imaginary parts of the electric fiel in the reference
system that rotates with frequeneyA(), and introducing a
new dimensionless time such that «t, the evolution equa-
tions become

We consider throughout this section the deterministic ver-
sion of Egs.(6),(7) or (8),(9) obtained by neglecting all the
stochastic terms or, equivalently, by settierg 0. It is easy to
observe that any trajectory remains bounded in theX,)

a plane. This comes from the asymptotic form of E8).in the
X, = — 1) (X1 — aXy) + p— wXy+ &1(1) cos(wt) limit 1—o0, namely,| = — 21, which shows that trajectories
b+xi+x3 with a large intensity are restored towards the origin. Con-
_ : sequently, the only asymptotic behavior of E(),(7) can
&b sin(wt), @ be a fixed point or a periodic orbit. Remember that Egs.
(6),(7) are written in the reference frame that rotates with
Xo= a — 1] (axg+ Xp)+ oxq + £4(1) sin(wt) frequency— w. Therefore, a fixed point solution represents a
b+xi+x§ situation in which the frequency of the laser electric figld

equals that of the injected electric field. We are interested in
+&(t) cos(wt), (4 finding thelocking range i.e., the set of parameterp, )
for the injected field, such that there exstablefixed point

wherea=T/(«p), b=1/B, p=0S/x, ©=A0/k, and{(t)  golutions, also calletbcking solutions.

=£&1(t) +i&,(1) introduces real white-noise processes with

zero mean and correlations, _ _ _
A. The fixed point solutions

(&i(D¢(t))=2e8;6(t—t"), ©) The intensityl ; and phaseb, of the fixed points are found

by settingl = ¢=0 in Egs.(8) and(9). The resulting equa-

with e=D/«k. The statistical properties that follow from the :
tions can be rewritten as

set of equation$3)—(4) are contained in the Fokker-Planck
equation for the time evolution of the probability density a 2 a
function[17]. A simpler, yet equivalent set of equations, in  p2=1, ——1} (1+a®)+2awld ——
the sense that they give rise to the same Fokker-Planck equa- b+1s b+1s
tion, is[8]: (10)

—1|+1w?,

= —2 %s 1+ a2 sin[ b+ arctara) . (11)

1| axg) Hp—Xpt (D), (6) 0=
b+x{+x5

We consider henceforth the cage b (corresponding to the
bt 3212 1) (axg X)) Foxi+&(D. (1) |asing mode of operatiofi > «). For given ,®), the third
1o degree-polynomial equatidii0) can have either one or three
These equations can be written in terms of the interisityd ~ '€@l (@lways non-negativesolutions for the intensity; . For
phases, by making the change of variables=\1 cos () any of those solutions it is straightforward to show that the

5(2:

andx,= 1 sin (4), condition
. a
|=2| =5~ 1/1+2p\1 cos(¢)+2\T& (1), (8 lo]< =1t a2 (12)
Vi
. a p . 1 . - . .
—a|l——1|—-—=sin(¢)+w+—=£&,1), (9 Isalways satisfied, hence ensuring that there will be the cor-
¢ b+l } VI () \/I—fd’( responding solution for obtained from Eq(11).
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FIG. 1. Bifurcation set for a clas&-laser with an injected signal
for a=2, b=1, anda=2. In (a) and (b) the solid line is the
saddle-node curve separating regions 1, 6, 7, 9 with one fixed point
solution from regions 2, 3, 4, 5, 8, 10 with three fixed point solu-
tions; the short-dashed lines separating the pairs of regions 8-10;
2-3; 7-9; and 1-6, are Hopf bifurcations, as given by E20),
where a periodic orbit is created; the dotted lines are homoclinic
bifurcations where the periodic orbits of regions 4 and 10 disappear
when going to region 5, and one periodic orbit in region 3 disap-
pears when going to region 4; the coincidence of the curve of
homoclinic orbits with the saddle-node curve mark the existence of
Andronov-Leontovich bifurcations where the periodic orbit of re-
gions 9 and 1 disappears when crossing to 5; the dashed line is a
saddle node of periodic orbits and going from region 7 to 6 two
periodic orbits of different stability are created; the two big solid
dots are Takens-Bogdanov points. There exist also homoclinic
’ saddle-node codimension-2 points, in the intersection between the
0.20 025 030 035 040 045 saddle-node curves and the homoclinic orligsuares and tri-
P angle. In (c) we indicate the different regions of stability: in one
) fixed point is the stable solution; iINL, one periodic orbit is the
stable solution; irC there is coexistence of a stable fixed point and
= a periodic orbit; finally, inB there are two stable fixed points. The
3 dotted line is the approximate locking range given by Eif).
E Dimensionless units.

0.0 0.5 1.0 1.5 2.0

The lines separating the one fixed point solution region B. The periodic orbit solutions

from the three fixed point solutions region can be found by At the saddle-node curve, a saddle point and another fixed
using standard methods of algebra. These lines form the sq- . : ' i :

. oint merge and disappear. In some cases this gives rise to a
called saddle-nodecurve. It turns out that the three fixed % g PP g

points region is a connected set enclosing regions labeled eriodic orbit through an Andronov-Leontovich bifurcation.
3, 4, 5, 8, 10 shown in Fig. (4 for a typical casea=2 ear the bifurcation, it is possible to obtain approximately
b:1 a'ndz’1=2. In regions 1,.6, 7.9 only one fixed poin,t is the evolution equation for the angle varialghét) by assum-

present. For moderate values of the intengitythere is a ing that the intensity of the periodic orbit is constant. This
range of values for the frequenaye (w,,w,) for which

approximation, which can be obtained via perturbation
three fixed points exist, whereas for very large intensity, onlyth€0ry on the laser equations to lowest orfli8], is derived
one fixed point is present for all values of A similar sce- here he_zurlstlcally by neglecting fluctuations in the intensity,
nario occurs forr=0, see Fig. 2 where the three fixed points settingl =0 in Eq. (8), but allowing for a time-dependent
region is labeled as 5, and only one fixed point appears iphase in Eq(9) for ¢. Settingl =1, constant in Eq(8) and
regions 1, 7, 9. replacing in Eq(9) we obtain

013808-3



MAYOL, TORAL, MIRASSO, AND NATIELLO PHYSICAL REVIEW A 66, 013808 (2002

0.6

0.4

0.2

3 00
-0.2
-0.4
-0.6

00 01 02 03 04 05

FIG. 2. Bifurcation set for a clasa-laser with an injected signal
fora=2, b=1, anda=0. The solid line is the saddle-node curve
separating regions 1, 7, 9 with one fixed point solution from region
5 with three fixed point solutions. The dotted lines separating the
pairs of regions 7-9 and 7-1 are Hopf bifurcations, as given by Eq. FIG. 3. Sketch of the partial bifurcation set for a cldssaser
(20), where a periodic orbit is created. The locking range is formedwith injected signabh=2, b=1, anda=2. Different regions and
by regions 5, 7 where a single fixed point is the only stable solutionintersection points detailed in Fig. 1 and Table I. SH stands for
In regions 1 and 9 the stable solution is a periodic orbit. Dimen-homoclinic saddle-node codimension-2 points. F stands for inter-

sionless units. section of the saddle-node bifurcation of periodic orbits, the ho-
moclinic orbit, and the continuation of the Hopf bifurcatitdotted
line, which is not a bifurcation Dimensionless units.
. pVl+a® '
¢=w——\/l_sm[¢+arctama)]. (13
0

Therefore, within this approximation, the line separating a

The next approximation is to consider thgtis the intensity xed point from a periodic orbit solution is given Hy|

of the field at the nearest poinp{w) in the saddle-node = ®L- Notice that our derlvatlon of _thls felatlon is d|fferent
curve with the same value of the external field amplitpde from the usual one n Wh'Ch one derives it by demandmg that
Hence,l, is computed as the double root of Ha0) taking ~ E9- (12) can be satisfied. We have shown that EXp) is
=0, Of ©=w,. indeed satisfied for all values @f and p and that the con-

Equation(13) is known as Adler's equatiofl9] and it dition |w|= w, to determine the locking range is an approxi-

can be easily analyzed by writing it as mate one. By using Eq10) this condition can be rewritten
as
__ @ 14
=|w - .
P 1+ a’—aw 1+a?

using the potential function

U(¢)=~w cog ¢tarctaiia)] - w¢, (19 The range of validity of this approximation has to be

where we have introduced checked numerically. In Fig.(&) we compare the exact re-
sult with the approximate one in the typical case 2, b
pV1+ a? =1, anda=2. It can be seen that the approximation is quite
wL:—\/l_' (16) good for small values g but it worsens as the intensipyis
0 increased.

The dynamics ofs can then be explained in terms of relax- _ hen crossing the saddle-node curve, for example, cross-
ation in the potentiall. For |w|<w, the potential has local N9 from region 9 or 1 to region 5 in Fig.(d), the periodic
minima and the phase eventually stops in one of them. Thig'Pit disappears. As a precursor of this disappearance, the
is a fixed point solution that has been discussed in the pra2eriod of the periodic orbiff, grows in regions 1, 9 until it
ceding subsection. A periodic orbit solution is obtained onlyfinally diverges at the saddle-node curve. The divergence can

. . _ _ N-12
in the caséw|= w_ where the phase varies monotonically be f'tte_d' for a fixed value ob to the I"?‘WT _(pf p)
with time. The explicit solution is [20], with p, the value ofp where the bifurcation occurs.

Wef Wef L ; ;
P(t)=2 arcta{ujtar(Tt) + i arctarf«) — wt, C. The bifurcation set
(17) In the following we will perform the stability analysis of
the different fixed point and periodic orbit solutions. The
wherewq =/ w’— sz. fixed points forl are given by Eq(10) and this equation can
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have either one or three real roots dependingpcand w. a a 2 p?
The stability of these fixed points defines the different re- w?+ Zaw( \/%—1 + \[5—1 (1+a?)=——.
gions of interest. Stability properties can be established in _b+\/%0)

terms of the eigenvalues of the linearization matdaco-
bian) of Egs.(6),(7) at the fixed points. A fixed point is stable The resulting Hopf bifurcation is also shown in Figga)l

if both eigenvalues hf’ive a negative real part. We vyi_ll call ayq 1b) (short-dashed line From regions 8 to 10 and from
fixed po_lnt unstable _|f both .elge.nvalues have .posmve reah to 3 a periodic orbit is born and a fixed point changes its
part, while a saddle fixed point will be characterized by hav-gaijity The disappearance of those periodic orbits will be
ing one eigenvalue with posm_ve rea_l part and the other Wlﬂbxplained in the following subsections.
negative real part. The local bifurcation takes place when the
real part of some eigenvalue crosses zero. 3. Takens-Bogdanov singularities

The results of the stability analysis depend on the value of ]
the parameter. For «=0, the only possibility is to have At the points pys,wys) where the Hopf and the saddle-
regions in which either a stable fixed point or a stable peri/’0de bifurcation curves intersect, the eigenvalues of the
odic orbit exist, see Fig. 2. However, far>0 a much richer choblan matrix are strictly equal to zero. This condition
behavior appears. We summarize the results for one interes¥!Ves
ing typical case, namelg=2, b=1, anda=2, shown in a
Fig. 1. In regions 5, 7 there exists only one lockifsiable Wys= t( \[6—1 V1+a?, (21
fixed poiny solution. In region 8 there exist two locking
solutions with different intensity. In regions 1, 2, 9 there a 3
exists one stable periodic orbit solution. Finally, in regions 3, Prs= \/Zb( \/:_ 1) JI+ 21+ a?+a). (22
4, 6, 10, and 1Xappearing in Fig. Bone locking solution b
coexists with a stable periodic orbit solution. While some of ) o
the lines of this bifurcation set shown in Fig. 1 can be evalu- FOr the parameters considered in Fig.a=2, b=1, and
ated analytically, others have to be obtained numerically. W&=2), 1t iS (pus, @1s) =(0.274;-0.926) and pys,wps)
now give details of the calculations of those lines. The readef™ (1:160,0.926). At these intersection points, the Jacobian
not interested in the technical details can skip directly to Secnatrix is different from zero, and its normal form is

i Cé. 0 1
00

. (23

1. Saddle-node bifurcation

A saddle-node bifurcation occurs when two fixed pointSthege points correspond to Takens-Bogdanov singularities
are created/annihilated. The saddle-node curve separates,ih) at these codimension-3 points, indicated in the figure, a
this case, a region with one fixed point from another with,omaciinic orbit is also born. These orbits have been com-

three fixed points. On the saddle-node curve, two fixed, e numerically and they are discussed in the following
points coincide(or equivalently, one of the eigenvalues of g,psection.

the Jacobian is zeyoFrom another point of view, the saddle-
node bifurcation curve can be obtained as the lines in the 4. Homoclinic orbits
(p,w) plane in which the third degree equati¢t0) has a )
double root. The saddle—node bifurcation curve is indicated YWhen(some branch ofthe stable and unstable manifolds
by a solid line in Figs. @), 1(b), and 2. of a ;qddle pomt coqug we are in the presence of a ho-
moclinic orbit. Homoclinic orbits have been obtained nu-
merically using the programauTo97 [22] as the “infinite-
2. Hopf bifurcation
In a Hopf bifurcation of a two-dimensional system such  TABLE I. Different regions in the bifurcation set for a class-
as ours, a fixed point changes its stabilifyom stable to aser with injected signal. fp stands for fixed point, po stands for
unstable, or vice versaand a periodic orbit with opposite periodic orbit, St. stands for stable, and Unst. stands for unstable.
stability to the coexistent fixed point is born/disappears. At
the bifurcation point, the eigenvalues of the Jacobian matrix — 11p Unst, 1 po St.
J associated with the deterministic systéf) and (7) [or, 2 2 fp Unst,, 1 fp Saddle, 1 po St.
equivalently and somewhat easié8) and (9)] are complex 3~ 1fp Unst, 1 fp Saddle, 1 fp St,, 1 po St., 1 po Unst.
conjugated and pure imaginary. This condition can be writterf— 1fp Unst, 1 fp Saddle, 1 fp St., 1 po St.
as Tr(J) =0, Det(J)>0 Hence, 5— 1 fp Unst., 1 fp Saddle, 1 fp St.
6— 1fp St, 1 po St., 1 po Unst.
7— 1 fp St.
(b+1)(a—b—1)—al=0. (19 8- 2 fp St., 1 fp Saddle
9— 1 fp Unst., 1 po St.
10— 1 fp Unst., 1 fp Saddle, 1 fp St., 1 po St.
This equation combined with the one for the fixed pointsi1, 1 fp Unst., 1 fp Saddle, 1 fp St., 1 po St., 1 po Unst.
(10) leads to the Hopf bifurcation curve,
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period limit” of periodic orbits. The resulting curves of orbits. This is indicated by the the long-dashed curve in Figs.
homoclinic orbits are displayed as dotted lines in Figs) 1 1(a) and Xb), which has been obtained also numerically.
and Xb). Their location in parameter space coincides par\wWhen crossing this curve, the two periodic orbits of region 6
tially with the saddle-node curve. disappear. The point were the saddle-node of periodic orbits,
The intersections of the saddle-node curve and a hothe homoclinic and the neutral saddle curve intersect is a
moclinic bifurcation occur at codimension-2 points. Therecgdimension-2 point, labeled & [21], in Fig. 3. This point
exist intersection homoclinic saddle-node codimension-Zs not found exactly at Fig.(b) due to numerical evaluation.
points (SH) at each of the saddle-node branches, see Figs. fhe presence of this point gives rise to a small region, la-
and 3. The bifurcation structure near to these points Wageled as 11, where two periodic orbits, and three fixed points
described in Ref[23]. Note that the location of these egxist, see Figs. 3 and 6. Far~ —5 [not shown in the scale
codimension-2 points cannot be completely exact due to thgf Fig. 1(a)] the Hopf bifurcation and the saddle-node of
fact that the homoclinic orbits are obtained numerically. Theperiodic orbits collide and regions 1 and 7 are directly sepa-

bifurcation branch emerging from these points with coinci-rated by the Hopf bifurcation, this kind of bifurcation ap-
dence of the curve of homoclinic orbits with the saddle-nodeyears in other systems, as in REZ5).
curve is called the Andronov-Leontovich bifurcatif@¥], or
more generally calledsaddle-node bifurcation on a limit
cycleor saddle-node infinite period bifurcatidr20]. 6. Summary

We summarize in Table | the results of the previous sub-
sections concerning the different regions separated by the
Besides the bifurcation curves described so far, there exbifurcation lines. In Fig. 4, the phase portrait of different

ists yet another curve of saddle-node bifurcations of periodicegions is shown, namely, regions 3, 4, 5, 6. In the first line,

5. Saddle-node of periodic orbits

a) b) ‘c)
10F 3 10f 3 10F 3
05F 05F 05F
+o
§ ook 00F § ook A
-0t -0 05k g
AN
-10f -10F -10F "
L T T TR V| )
415 -10 -05 00 05 10 15 -15 410 -05 00 05 10 15 415 10 05 00 05 10 15 FIG. 4. Phase portrait(,x,)

5 L x in different regions. Dimension-
less units. Triangle, stable fixed
point; square, unstable fixed point;

18 4) 18 o) 18 1) cross, saddle point. Solid line,
1.0F ] 10F ] 1.0 ] stable orbit; dashed line, unstable
orbit; points, trajectories(a) Re-
oat o3 oat gion 4, (p,0)=(0.33-1); (b)
o o near homoclinic 4, 5, d,w)
00F 00f 00F .
) ) =(0.33-0.95); (c) region 5,
-05F 05 -0F (p,@)=(0.33-0.9); (d) close to
homoclinic 3, 4, p,0)=(0.33,
-10r -10F -10r —1.03);(e) close to Andronov bi-
R BT R furcation 4, 6, p,w)=(0.34-1);
-5 <10 <05 00 05 10 15 -15 -10 <05 00 05 10 15 -15 10 <05 00 05 10 15 (f) close to the saddle node of pe-

5 5 5 riodic orbits 6, 7, p,w)=(0.352,
—1); (g) region 3, p,w)=(0.32,

. ‘ . . ‘ —1.07); (h) close to the saddle

15 2 18 h) 15 i node 3, 6, p, )= (0.33— 1.065,);
10F 3 1of 3 10F 3 (i) region 6, p,w)=(0.345-1).
05F 05F 05f

$ 0ok 00f # ook
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FIG. 5. Phase portraitx(,X,)
in different regions of the bifurca-
tion set. Dimensionless units. Tri-
- angle, stable fixed point; square,
unstable fixed point; cross, saddle
point. (a) region 1, p,w)=(0.25,
—-1.1); (b) region 2, (,w)
=(0.3-1.1); (c) region 3,
(p,w)=(0.315;-1.08);(d) region
4, (p,w)=(0.3,—0.95);(e) region
5, (p,w)=(0.3,-0.6); (f) region
6, (p,w)=(0.4,-1.2); (g) region
d) e) f) 7, (p,®)=(1,0); (h) region 8,
(p,w)=(1.8,1.8); (i) region 10,
(p,w)=(1.5,1.6).

a) b) ©)

9) h) i)

from left to right the transition from region 4 to 5 is shown. parameter choice in experiments. Cl@sdasers with in-
In the first column, one can observe the transition form rejected signal are the simplest example one can consider. A
gion 4 to 3 through an homoclinic orbit. The transition from more complex situation arises when considering cBiss-
region 3 to 6, as a saddle-node bifurcation, appears in thgs 27—-31 lasers with injected signadescribed with equa-
last line. In the diagondlFigs. 4a), 4(e) and 4i)] one can tions for the electric field and carriers numpeFhe main
Observe the tl‘ansition through an AndronOV bifurcation. Tthifference between C|a$_and C|as£ |asers from the dy_
saddle-node of periodic orbits is reflected in FigH)4In  pamical point of view is the number of variables that one
Figs. 5 and 6, there appear the phase portraits of the differefforks with. For class lasers two variables suffice and the
regions obtained,.region 11 has also been sketched to make@ pifurcation set can be described. For cladasers, a
more representative plot. o three-dimensional system, a more complex variety of phe-

Many_of the blfurcatlon features_ fou_nd in t_hls system arenomena can appear and the system can also show chaotic
present in other studies, we mention in particular the papegehavior. Although part of the bifurcation structure of class-
by Khibnik et al.[25,26 and more importantly the book by g |asers is already present in clasdasers(essentially the
Kuznetsov[21] where a bifurcation diagram topologically {hree curves of saddle-node bifurcations of fixed pojrtte
equivalent to ours is displayed in Fig. 8.10, p. 285 in con-gyerall dynamics of the former becomes extremely compli-
nection with the analysis of a predator-prey model bycated. The presence of the Hopf-saddle-node point has a cru-
Bazykin. o - _ . cial importance for clasg-lasers and different types of flows

_ These results allow us to identify the stability regions in- 55 classified by Ref10]) can be obtained. The analysis of

dicated in Fig. L0): in L, one fixed point is the only stable hese flows has been the object of a extensive work: type I1|
§o|ut|0n; m[\lL, one periodic orbit is the.only stgble solution; [32], type 1[18], and type 11[24] of the Hopf—saddle-node
in C there is coexistence of a stable fixed point and a perigingylarity occur for different parameter regions. Note as
odic orbit; finally, inB there are two stable fixed points.  ¢ontrast that the intersection of Hopf and saddle-node bifur-
cations of fixed points in clasd cannot be of Hopf—saddle-
node type but are Takens-Bogdanov singularities instead.

The bifurcation set obtained in the previous analysis reSuch singularities are, however, also pred@mta different
veals the complexity of the system and the importance of théorm) in class B, not only involving bifurcation of fixed

7. Comparison with the bifurcation set for class-B lasers
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FIG. 6. Phase portrait at region 11 of the bifurcation $ek.
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trait: arrows indicate the sense of the flow. Dimensionless units.
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points but also bifurcations of periodic orbits. Andronov glo-
bal bifurcations have also been found in both types of lasers.

In the bifurcation set for a class-laser in the casex=2
several change&odimension-3 bifurcationsvould need to
take place to get it from thee=0 situation (Fig. 2), this
situation is again reminiscent of the cld8daser cas¢33].

IV. LYAPUNOV POTENTIAL

We now look for a description of the dynamical equations

in terms of a Lyapunov potenti@l0]. Equations(6),(7) can
be written as

2 v :
Xi=—2, DijT+Ui+E 9§, 1=1.2, (24
]:1 XJ ]:1

where the functiorV is [34]

1
V(Xq,Xp) = E[xi+ x5—aln(b+x5+x3)]

p
——— (X1 — aXy), (25
(1+a2)( 17 axp)
or, written in terms of intensity and phase,
Vit =201 ainor 112V cos(+ arctane
,d)==[l—aln - cos! arctana).
2 Vi+a?
(26)
The matricedD andg, and the vector are
1 0 0 —«a (1 0
D=S+A={g 1/*la o) %lo 1)
(_LL)XZ
V= oxy |’ (27

A. Deterministic dynamics

In the deterministic dynamicsE0), Egs.(24) show that

FIG. 7. Potential for a clas&-laser with an injected signal with

the same frequency of the unperturbed laser, @§), with the

parametera=2, b=1, anda=2. Dimensionless unitda) p=0,
(b) p=0.8. In (@) we also indicate the projection of the line of
minima of V and the corresponding line is plotted (im.

tonically decreases along trajectorids<0, provided that
the residual terms(v4,v,) satisfy theorthogonality condi-
tion [35]

AR 28
Vg trag =0 (28)

It turns out that this orthogonality condition is satisfied if
wp=0. This means that a Lyapunov function description of
the dynamics using Eq25) is valid along the coordinate
axisw=0 andp=0. Notice that the case=0, w+0 cor-
responds to a situation in which there is no applied field but
the reference system rotates at an arbitrary frequancy

The use of a Lyapunov function potential permits to visu-
alize the dynamics as the relaxation of a fictitious test par-
ticle in the potential landscape. The fixed points of the deter-
ministic dynamics can be regarded as the extrema of the
potentialVV, where minima correspond to stable fixed points,
maxima correspond to unstable fixed points, and saddle ex-
trema correspond to saddle points. In the transient dynamics
towards the stationary states, the symmetric madris re-
sponsible for driving the system towards the minimunmvof
following the lines of maximum slope &f. The antisymmet-
ric part A (which is proportional tax) induces a movement
orthogonal to the direction of maximum variation \éf The
combined effects o6 andA produce in general a spiral-like
trajectory in the X4,x,) plane. The angular velocity of this
movement is proportional ter. Finally, the residual term
(vq,v2) induces a movement that does not decrease the
value of the potential and it is responsible for any dynamics
after the line of minima of the potential has been reached.
We now analyze the different possibilities for the extrema of

V(X4,X5) is a Lyapunov potential, i.e., a function that mono- V.
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In the casep=0, the potential does not depend on thecome the tilt of the potential and to induce a rotation move-
phaseg¢ of the electric field and it can adopt two qualita- ment. For a value ofv (corresponding to the saddle-node
tively different shapes. bifurcation these two pointgminimum and sadd)ecollapse

(i) For a<b the potential has a single minimum = and a periodic motion appears, induced by the residual terms
=x,=0 and no maxima. Therefore, the only fixed point is (corresponding to region 9 of Fig).1
the off statel =0, which is stable. Similarly, starting at a pointbv>0 and increasing the in-

(i) For a>b, the potential has the shape of a sombrero€nsity of the applied fieldsp, a similar scenario appears.
see Fig. Ta). There is a single maximum ax{,x,) =0 (cor- For p=0, the potential has a line of degenerate minitna,
responding to the unstable situation with the laser inafie — & P, and trajectories are circumferences in the, ko)

stat§ and a circumference of degenerate minimacat x5 P"f”?e mduc_ed by the resml_ual terms. Increaginghe line of
. L . minima deviate from the circumference due to the change of
=a—Db. The asymptotically stable situation, then, is that the

. o } 5 o shape of the potential and it becomes an ellipse, the periodic
laser switches to then state with intensityl;=(X1+X2)st ot solution is also induced by the residual terms of the
=a—b and arbitrary phase. The residual dynanics v; dynamics, which are proportional t@. In fact, it can be
gives a periodic harmonic movement in the minima of theshown that the solution in the steady state for very small
potential with frequency. This corresponds to the periodic values ofp has the form
orbits shown in Fig. 1.

In the case of zero-detuning injected signat>0, o a—b
=0, the potential, which depends now explicitly on the [(t)=
phased, is tilted in a preferred direction. In the caaeb
the location of the only minimum changes and the
asymptotic state has a nonzero light intensity, proportional tavhich represents an ellipse with a time dependent time
p. In the casea>b, the sombrero is tilted as well in a pre- phase. The explicit values a&f and § can be obtained in
ferred direction. For smajp the inclination is small and the terms of the laser parameters from E(®. and (9) and for
effect is that the maximum still remains a maximum, al-small values ofp. Increasingp even further, the potential
though its location varies accordingly. The tilt breaks thedeforms continuously until arriving to the saddle—node bifur-
symmetry amongst the line of degenerate minima and agation.
absolute minimum is selected. At the same time, one of the
previous minima becomes a maximum in the direction or-
thogonal to the tilt and a saddle point is born. Increaging
the maximum of the sombrero and the saddle point disappear In the presence of moderate levels of noigg;0, the
(corresponding to the saddle-node curve of Figafd the qualitative features of the transient dynamics remain the
potential has only one minimum at a preferred phase direcsame as in the deterministic case. The most important differ-
tion, see Fig. ). Therefore, the asymptotically stable situ- ences appear near the stationary situation and show up as
ation, in this case 0p>0, w=0 anda>b is that the laser fluctuations of the intensity and phase of the electric field.
switches to anon state with a well defined intensity and While the intensity simply oscillates around its mean value,
phase, in agreement with the results shown in Fig. 1. one can observe in some cases an additional phase drift that

The validity of a Lyapunov potential description in the shows up as a variation in the frequency of the emitted light.
general casgpw# 0 is an open question. Since the orthogo-The potential picture developed in the preceding section
nality condition implies that the time derivative of the helps us to understand the origin of this noise-induced fre-
Lyapunov functional25) has a negative contribution plus an quency shift, as well as to compute its magnitude.
extra term proportional tawp (with no definite sigh it is Let us look at the potentials depicted in Fig. 7. First con-
reasonable to speculate that fop small enough, the latter sider the casp=0. The deterministic movement is such that
term can be compensated by a change of the same order tine line of minima[shown as a projection in thex{,x,)
the potential. However, we have not been able to find amlang is run at a constant frequenay. On top of that move-
analytical expression for the potentMlin this general case. ment there are fluctuations that allow frequent excursions
This speculation is supported by the fact that ¢ualitative  beyond the minima of the potentigl When away from the
dynamical features do not change near the coordinate axiginima, the antisymmetric part of the dynamigpverned
=0, p=0. Furthermore, assuming the validity of this by the matrixA in Eq. (27) and proportional tax] gives a
Lyapunov potential description we can understand the tranronzero contribution of the rotation terms producing the
sition from locking to nonlocking states. phase drift observed. Fab=0, p+#0, when there exists

Let us consider a given value @f>0 and increase the just one minimum of the potential, the fluctuations allow the
detuning frequency starting from=0. For ®=0, the po- system to explore regions outside this minimum and then the
tential is tilted and there are no residual tefmse Fig. )]. rotation terms act again. Depending on the value aind e
As w increases, the shape of the potential deforms, the minithe rotation term can be strong enough to produce the phase
mum of the potential and the saddle point approach througfow or not.
the deterministic noninjection circumference of miniine- After these qualitative arguments, we now turn to a more
gion 5 of Fig. 2. Moreover, the residual terms, proportional quantitative calculation. In those cases that there exists a
to w increase, but still they are not strong enough to overiyapunov potentiaV(x;,X,) and that the matriceS andg

1-ecog§ ¢(t)+ 5]’ (29)

B. Stochastic effects
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FIG. 10. Stochastic frequency shiftw=(¢) in a classA laser
FIG. 8. Mean value of the intensity in the steady state in a classfor a=2, b=1, anda=2. Forp=0 (solid line) the explicit result
A laser with zero-detuning injected signal far=2, b=1, and« Eq. (35 is used, whereas fop=0.6 (dotted ling and p=0.8
=2. Dimensionless units. The solid line correspondg o0 and (dashed lingEq. (34) has been evaluated numerically. Dimension-
has been computed using the analytical result(88), the dotted  less units.
line (p=0.6) and the dashed linep€&0.8) have been computed
numerically using Eq(32). By changing variables to intensity and phase, we find that
the probability density function is
of Eq. (24) satisfy the fluctuation-dissipation relatio8
=gg', Graham[36] has shown that the stationary probabil-

ity distribution is given by Po(l, ) =2 te V2 (h41)a/2e
V(Xq,X5) ><exp(i cos(¢+arctanja)))
PSt(XllXZ):Z_l eXp( - %) ) (30) Em ’
(31)
whereZ is a normalization constant. This relation is exact if
the residual terms satisfy the orthogonality conditio(28) and the marginal probability density function fois
and if they are divergence fre@lv 171 dx,02=0 (as they are
in our casé In other cases, it has to be understood as an p\/l—
approximation valid in the limit of small noise— 0. P.()=Zte "2¢p+ )22 | —|, 32
st(l) (b+1) o\ AT (32

] wherel, is the Bessel function of the first kind and order
The steady-state average value for the intengity,

. 0 i °° =[dlIPg(l) can be analytically computed in the cage
A E 2 =0 with the result
*\S; I
o %o . 1+al2e
-2 %ﬁ%""% ] o bl2e 3) :
4l ‘w»“%,% ] <|>st:a_b+26 1+ N a b (33
1 1 1 1 '000 2_6,2_
0 20 40 60 80 100
t In the most general case, fpr# 0, the mean value can be

computed numerically by using E(B2). In Fig. 8, this mean
value is represented, for fixed valuemfversuse. The mean
value is always larger than the deterministec<0) case.

FIG. 9. Time evolution of the mean value of the phasén a
classA laser without injected signap=0 (line A) and zero-

detuning injected signal=0.6 (line B), in the casex=2 there is a As mentioned before, in the steady state of the stochastic
linear variation of the mean value of the phase at late times. For . ' L

R . e —dynamics, the phasé of the electric field fluctuates around
a=0 (line C) there is only phase diffusion and the average value is

0 for all times. The solid lines have the slope given by the theoret® Mean value that changes linearly with time. This is clearly

ical prediction Eq.(35. Line D, time evolution of (¢)s,  SCEN in the numerical simulations, see Fig. 9, and physically
—2mt/T, T being the period of the periodic orbit in the deter- COrreésponds to a changaw in the emission frequency of the
ministic case, fopp=0.5, w=1. In all the curvesa=2, b=1, laser. This frequency shift can be computed as the average

and e=0.1. Dimensionless units. value of the phase derivath(ab}. In the case that the steady
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state is a periodic orbit of period, one needs to subtract V. CONCLUSIONS
from this value the intrinsic frequencyz2T. By taking the
average value of Ed9) and using the rules of the stochastic
calculus, one arrives to

In this work we have studied a clagstaser with an in-
jected electrical field. By using analytical and numerical
tools we have been able to describe the whole bifurcation set
of this system and to determine tloeking rangei.e., the set

B 2 i 1o (@—D—1) p/l of amplitudes anddetuning frequencies £, ) for which
Aw=Z laJ e /%(b+1)% b1 o\ o1t a? the laser responds adjusting its frequency to that of the ex-
0 evlta ternal field. This result is summarized in FigclLin which
p\/l_ we can identify nonlocking regiondabeledNL in that fig-
+\/|—|l(— dl. (34 ure). Within the locking range one finds a region with a
eVl+a® single stable laser responsk)( regions(C) of coexistence

of a locking solution with a nonlocking solution, as well as a
Notice that this stochastic frequency shift is zero in theregion(B) of coexistence of two locking solutions of differ-
casea=0 or for the deterministic dynamics€0). In the  ent light intensity.
casep=0 this expression can be analytically compuf@tl We have described qualitatively the observed features of
the deterministic dynamics in terms of a Lyapunov potential

b | a2 landscape. We have identified the relaxational, conservative,
eb’ZE(Z— and residual terms in the dynamical equations of motion.
Aw= a—e' (35)  Although this description is strictly valid only in the case of
F(1+ a B) a zero-detuning injected signal, the qualitative features re-
2¢’ 2¢ main unchanged when the prodyab is small.

In the stochastic dynamidsvhen the additive noise com-

For p#0, one needs to compute the expressi# numeri- ing from tr_le spontaneous emission is explicitly con;idgred in
cally. In any case, the results are in excellent agreement witi1e equations we have used the Lyapunov potential image
numerical simulations of the rate equations in the presence ¢f €xplain the presence ofstochastic frequency shidf the
noise. In Fig. 10, we plot the stochastic frequency shift as @ser |Ight_. The same potential aIIovys a quantitative calcu_la-
function of the noise intensity for several valuespofFor a  tion of this effect. The results are in good agreement with
fixed value ofp, | Aw| increases as increases, since a larger NUmerical simulations of the model equations and we hope
value of e can induce larger fluctuations and larger excur-that they can be a guide for future experiments in observing
sions in phase spacey(,x,) away from the minima of the this effect in real laser systems.
potential. For fixede, |Aw| decreases gsincreases. This
is because whep is increased, the inclination of the poten-
tial increases, so the trajectory becomes more confined Fruitful discussions with Mam Zimmermann, Herma
around a fixed value. Solari, and Magnus Fontes are gratefully acknowledged. We
In the casep#0 andw # 0, the stochastic frequency shift wish to thank Bernd Krauskopf for a careful reading of this
is also present, see Fig(fne D), although it is not possible manuscript and useful comments. We acknowledge financial
to compute its magnitude because we do not have an explicgupport from MCyT (Spain projects BFM2001-0341-
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