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Bayesian feedback versus Markovian feedback in a two-level atom
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We compare two different approaches to the control of the dynamics of a continuously monitored open
quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn
@Phys. Rev. Lett.70, 548~1993!#. The second is feedback based on an estimate of the system state, developed
recently by Doherty and Jacobs@Phys. Rev. A60, 2700~1999!#. Here we choose to call it, for brevity,Bayesian
feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give
markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so
we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic
fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize
the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of
inefficient detection and other forms of decoherence. Our results~obtained without recourse to stochastic
simulations! prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback.
However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when
obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in
the face of inevitable experimental imperfections.

DOI: 10.1103/PhysRevA.66.013807 PACS number~s!: 42.50.Lc, 42.50.Ct, 03.65.Ta
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I. INTRODUCTION

Quantum feedback arises when the environment of
open quantum system is deliberately engineered so tha
formation lost from the system into that environment com
back to affect the system again. Typically, the environmen
large and would be regarded at least in part as a clas
system. In the case where the system dynamics are Mar
ian in the absence of feedback, the information lost to
environment can be treated as classical information: the m
surement result. The feedback loop thus consists of a q
tum system, a classical detector~which turns quantum infor-
mation into classical information!, and a classical actuato
~which uses the classical information to affect the quant
system!.

In general, quantum feedback is difficult to treat beca
any time delay or filtering in the feedback loop makes
system dynamics non-Markovian. A great simplificati
arises for Markovian feedback, where the measuremen
sults are used immediately to alter the system state, and
then be forgotten. In this case the dynamics including fe
back may be described by a master equation in the Lindb
form. This was shown by Wiseman and Milburn@1,2# for
homodyne detection and Wiseman@3# in general. This de-
scription of feedback has been applied to a wide variety
systems and for a wide variety of purposes~see, for example
Refs.@4–10#!.

In a previous work@11#, two of us applied the Wiseman
Milburn feedback theory to show that almost@12# all pure
states of a fluorescent two-level atom can be stabilized
Markovian feedback based on homodyne detection of
fluorescence. That is, by adding an amplitude modulation
the laser driving the atom proportional to the just-measu
homodyne photocurrent, the atom would obey a master e
1050-2947/2002/66~1!/013807~9!/$20.00 66 0138
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tion having any given pure state on the Bloch sphere as
stationary state. Without feedback, the only pure station
state is the ground state, in the absence of driving. That w
generalized the earlier results by Hofmann, Mahler, and H
@13,14# on the same problem in a number of ways. One g
eralization was to study the effect of a nonunit efficiency
the homodyne detection. This was shown to be deleteriou
the maximum purity of the stationary states, especially th
in the upper half of the Bloch sphere.

For non-Markovian feedback, the master equation
proach of Wiseman and Milburn cannot be used. Howev
the formalism first used to derive the Wiseman-Milburn ma
ter equation, quantum trajectories,can be used. Quantum
trajectories@15# describe the stochastic evolution of the sta
of an open quantum system conditioned upon the result
measurements performed upon its environment. They w
first derived from abstract quantum-measurement the
@16–19# but were independently invented in quantum opt
for practical purposes@20,21,15#. In the special case wher
the system has linear dynamics, the measurement is li
~e.g., homodyne detection!, and the feedback dynamics
linear, the quantum trajectories including feedback can
solved analytically. In this case older techniques, based
quantum Langevin equations@22–24,3# can also be used
However, for nonlinear systems, a numerical solution of
non-Markovian quantum trajectories is the only recourse

The simplest system with nonlinear dynamics is the tw
level atom. Non-Markovian feedback for controlling th
system was considered earlier by two of us@25#. We consid-
ered the simplest form of non-Markovicity, a time delayt in
the feedback loop@26# which was otherwise kept exactly a
for the Markovian feedback in Ref.@11#. We showed numeri-
cally that the time delay had an effect qualitatively similar
that of inefficient detection. For the special case where
©2002 The American Physical Society07-1
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WISEMAN, MANCINI, AND WANG PHYSICAL REVIEW A 66, 013807 ~2002!
Markovian feedback would stabilize the atom in the exci
state, we obtained an approximate analytical expression
the purity~as measured byp52 Tr@r2#21) in the presence
of a time delay. The result for short delays, which was fou
numerically to be valid for quite large delays, was

p5124gt. ~1.1!

Hereg is the decay rate for the atom. That is, the attaina
purity decreases linearly with the time delay. This appear
be true in general for this system.

It should not be concluded from this result that no
Markovian feedback is necessarily worse than Markov
feedback. A different paradigm for quantum feedback h
recently been developed by Dohertyet al. @27,28#. It is based
on an analogy with classical feedback according to the
called ‘‘modern control theory’’@29#. Conceptually, the
change is from basing the feedback directly on the meas
ment results, to basing the feedback on an estimate of
system state. That state estimate is of course based o
measurement results, but the extra step usually makes
feedback non-Markovian from the point of view of the sy
tem. That is because the best state estimate will use all
vious measurement results, not just the latest ones.

Determining the conditioned state of the quantum sys
from classical measurement results is a quantum versio
Bayesian reasoning. Classical Bayesian reasoning updat
observer’s knowledge of a system~as described by a prob
ability distribution over its variables! based on new data
@29#. For this reason, we call feedback based on a state
mateBayesian feedback. In classical control theory it is com
mon to replace Bayesian feedback with a simpler appro
mation to it. For example, a linearization approximati
leads to the Kalman filter, which makes the feedback alinear
functional of the observed current@29#. The quantum version
of this was explored in Refs.@27,28#, and had previously
been treated in Ref.@30#.

In this paper, we investigate what improvement is offer
by Bayesian feedback over Markovian feedback for
simple problem discussed above, stabilizing an arbitr
state of the two-level atom. We begin in Sec. II by discuss
the different sorts of feedback in a general context. Then
present the specific system of interest, the two-level atom
Sec. III. This is more general than that considered previou
@11,13,14,25# in that we include a term in the master equ
tion corresponding to dephasing, as caused for instanc
elastic collisions with other~background! atoms. In Sec. IV
we present and discuss the performance of Markovian fe
back in this system. In Sec. V we do likewise for Bayes
feedback. In Sec. VI we consider the prospects for appr
mating this Bayesian feedback so that the feedback is a li
functional of the current. We conclude with a discussion
Sec. VII.

II. QUANTUM FEEDBACK

A. Quantum trajectories

Quantum trajectories are the stochastic paths followed
the state of an open quantum system conditioned on
01380
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monitoring of its environment. In this context, the state
the system means the state of knowledge of the system
an ideal observer~unlimited by computational power! would
have, given the results of the monitoring. As we cannot
sume that this monitoring will give complete knowledge
the system, the quantum trajectory will not be a path in H
bert space. Rather, it will in general be a path in the spac
state matricesr. This path is generated by stochastic a
nonlinear equation for the conditioned state matrix, wh
we call a stochastic master equation~SME!. Its classical ana-
log is the Kushner-Stratonovich equation for a probabil
distribution @28#.

The system may be coupled to many independent ba
but let us assume for simplicity that only one bath is mo
tored. Then we write the~deterministic! master equation as

ṙ5Lr5L0r1D@c#r, ~2.1!

where the last term, described by the Lindblad@31# superop-
erator D@c#r5crc†2$c†c,r%/2, is that which is ‘‘unrav-
eled’’ @15# by monitoring the relevant bath. This monitorin
yields a currentI (t), and we denote the state conditioned
this recordI [0,t)5$I (s): 0<s,t% up to timet by r I(t). The
SME for this conditioned system stater I can then be written
@32#

dr I5Lr Idt1Ur Idt, ~2.2!

where

Ur[~ I 2 Ī !dt~M2M̄!r. ~2.3!

Here I represents the measurement result in the infinitesi
interval @ t,t1dt), which has the expected valueE@ I #5 Ī .
The notationM̄, on the other hand, represents Tr@Mr#,
whereM is a superoperator. The form of Eq.~2.3! guaran-
tees two necessary conditions: Tr@Ur#50, andE@Ur#50.
These imply that the SME preserves trace and, on aver
reproduces the master equation. In addition,U must satisfy

$p,~D@c#1U!p%1dt@Up#@Up#5~D@c#1U!p ~2.4!

for an arbitrary rank-one projectorp. This implies that, if
D@c# were the only irreversible term, the monitoring wou
maintain the purity of the state.

For the case of homodyne detection we have@15,33#

Mr5cr1rc†. ~2.5!

The homodyne currentI is a real-valued stochastic variab
satisfying

~ Idt !25dt, ~2.6!

and

Ī 5M̄5Tr@r~c1c†!#. ~2.7!

In other words,

Idt5Tr@r I~c1c†!#dt1dW, ~2.8!
7-2
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BAYESIAN FEEDBACK VERSUS MARKOVIAN FEEDBACK . . . PHYSICAL REVIEW A66, 013807 ~2002!
wheredW is an infinitesimal Wiener increment@34#.
So far we have considered efficient detection. If an e

ciency h,1 is included then the conditional evolution wi
no longer preserve purity. However, Eq.~2.2! still applies.
The only difference is that in the equations forM and I , c
is replaced byAhc. In particular,I (t) becomes

Idt5Ah Tr@r I~c1c†!#dt1dW. ~2.9!

This is simple to understand, as the LindbladianD@c# can be
split into hD@c#1(12h)D@c#, with only the former being
unraveled.

B. Markovian feedback

Consider Markovian@35# feedback of the homodyne pho
tocurrent. Since this current is singular and of indefinite si
the only possible form of Markovian feedback is via
Hamiltonian

H fb~ t !5F~ t !I ~ t !, ~2.10!

with F an Hermitian operator.
Although H fb at time t contains the currentI at the same

time, it must act after the measurement. Taking this, and
singularity ofI (t) into account, yields the following stochas
tic equation for the conditioned system state with feedb
@1#

dr I5dt$L0r I1D@c#r I1D@F#r I2 i @F,Mr#%

1~ I 2 Ī !dt~M82M̄8!r I . ~2.11!

Here

M8r[Mr2 i @F,r#. ~2.12!

As noted in the Introduction, the great theoretical con
nience offered by Markovian feedback is that it is a sim
matter to remove the nonlinearity and stochasticity in t
equation by taking an ensemble average. This replacesI (t)
by Ī , yielding the Wiseman-Milburn feedback master equ
tion

ṙ5L0r1D@c#r2 iAh@F,cr1rc†#1D@F#r.
~2.13!

C. Bayesian feedback

Following the lines sketched by Dohertyet al. @27#, we
now consider controlling the system dynamics using
Hamiltonian that depends not directly on the current,
rather on the observer’s state of knowledge of the systemr I .
By definition there is nothing better with which to control th
system. We thus have in general

H fb5F~ t,r I !. ~2.14!

It is an odd fact about Bayesian feedback that, althou
strictly it is non-Markovian, if the experimenter controllin
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the system has perfect knowledge of the system dynam
then the system state actually does obey a Markovian e
tion, namely,

dr I5dt@L1U#r I2 i @F~ t,r I !,r I#. ~2.15!

However, it is not possible to average over the stochasti
to obtain a master equation. This reveals the underlying n
Markovicity.

The presence of a nonlinear stochastic Markovian eq
tion for the conditioned system state is an artifact of t
assumption of perfect knowledge of the system dynamics
reality, the system dynamics would not be known perfec
and the experimenter’s estimateř I of the system stater I
would be governed by an equation different from Eq.~2.2!,
namely,

dř I5L̃řř Idt1Ũřř Idt, ~2.16!

where

Ũřř[~ I 2 Ī ř !dt~M2M̄ř !ř. ~2.17!

Here L̃ř is an approximation toL. The approximation may
be necessary due to lack of information, or it may be con
nient to allow a simpler treatment of the system. This a
proximation may depend on the estimated system stateř I .
The stochastic unraveling superoperatorŨ may also be ap-
proximated for reasons such as these, withM replaced by
M̃. However, in Eq.~2.17! we have shown it as approximat
for a necessary reason, namely that in general it depe
upon an estimate ofr, ř, in order to evaluateĪ andM̄.

Linearization of dynamics is a good example of a conv
nient approximation. It is typically applied to systems wi
infinite-dimensional Hilbert spaces, corresponding to a cl
sical phase space. Under linear dynamics of such a sys
the conditioned state of the system will tend towards
Gaussian state. For a system withN coordinates (2N phase-
space variable!, the stateř I is describable by 2N213N vari-
ables, recording the covariance matrix and the means.
compares withO(D2N) real numbers required to recordr I ,
whereD is an approximation to infinity. Moreover, the equ
tion for the covariance matrix is deterministic, and that f
the means is linear. This is what leads to the Kalman fil
where the feedback is alinear functional of the observed
current@29#.

If the experimenter’s best estimate of the system isř I
then, with the feedback included, this estimate would s
obey a Markovian equation, namely,

dř I5dt@L̃ř1Ũř# ř I2 i @F~ t,ř I !,ř I#. ~2.18!

However, a second, more diligent, observer would use
full knowledge of the system dynamics to obtain the syst
stater I . This would obey the stochastic master equation

dr I5dt@L1U#r I2 i @F~ t,ř I !,r I#. ~2.19!
7-3
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WISEMAN, MANCINI, AND WANG PHYSICAL REVIEW A 66, 013807 ~2002!
Note that this is not a Markovian equation forr I , because
the feedback depends on the estimateř I . The two equations
together are Markovian, and in control theory language
would be considered an example of Markovian contr
However, from the usual perspective of quantum mechan
where the ‘‘system’’ is the quantum system, not the quant
system plus control loop, this is an example of no
Markovian feedback control.

III. THE SYSTEM

The simplest nonlinear system to consider is an ato
with two relevant levels$ug&,ue&% and lowering operators
5ug&^eu. Let the decay rate be unity, and let it be driven
a resonant classical driving field with Rabi frequency 2a.
Furthermore, let us add dephasing of the atomic dipole
rateG.

A. The master equation

The evolution of this system is described by the mas
equation

ṙ5D@s#r2 ia@sy ,r#1GD@sz#[Lr. ~3.1!

In this master equation we have chosen to define thesx
5s1s† andsy5 is2 is† quadratures of the atomic dipol
relative to the driving field. The effect of driving is to rota
the atom in Bloch space around they axis. The state of the
atom in Bloch space is described by the three vector (x,y,z).
It is related to the state matrixr by

r5
1

2
~ I 1xsx1ysy1zsz!. ~3.2!

It is easy to show that the stationary solution of the mas
equation~3.1! is

xss5
24a

~112G!18a2
, ~3.3!

yss50, ~3.4!

zss5
2~112G!

~112G!18a2
. ~3.5!

For G fixed, this is a family of solutions parametrized by th
driving strengthaP(2`,`). All members of the family are
in the x-z plane on the Bloch sphere. Thus for this purpo
we can reparametrize the relevant states usingr andu by

x5r sinu, ~3.6!

z5r cosu, ~3.7!

whereuP@2p,p#. Since,

p52 Tr@r2#215x21y21z2, ~3.8!
01380
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is a measure of the purity of the Bloch sphere,r 5Ax21z2,
the distance from the center of the sphere is also a mea
of purity. Pure states correspond tor 51 and maximally
mixed states tor 50. The stationary states we can reach
driving the atom are limited, and generally far from pu
@11#. In particular, they are confined to the lower half of th
Bloch sphere, as shown in Figs. 1 and 2.

B. Homodyne measurement

Now consider subjecting the atom to homodyne detecti
We assume that all of the fluorescence of the atom is

FIG. 1. Locus of the ensemble average solutions to the Bl
equations with detector efficiencyh50.8 and dephasing rateG
50 under various conditions:~a! no feedback~driving only!, ~b!
Markovian feedback, and~c! Bayesian feedback. The dashed line
the surface of the Bloch sphere which is stabilizable forh51 by
Bayesian feedback and~except for the equatorial points! by Mar-
kovian feedback.

FIG. 2. Locus of the ensemble average solutions to the Bl
equations with detector efficiencyh51 and dephasing rateG
51/20 under various conditions:~a! no feedback~driving only!, ~b!
Markovian feedback, and~c! Bayesian feedback. The dashed line
the surface of the Bloch sphere which is stabilizable forG50 by
Bayesian feedback and~except for the equatorial points! by Mar-
kovian feedback.
7-4
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BAYESIAN FEEDBACK VERSUS MARKOVIAN FEEDBACK . . . PHYSICAL REVIEW A66, 013807 ~2002!
lected and turned into a beam. This could be achieved
principle, by placing the atom at the focus of a parabo
mirror, but in practice it is more likely to be achievable in
cavity QED setting@36#, with the atom strongly coupled~g!
to a single cavity mode, which is strongly damped (k). Then
the combined system acts like an effective two-level ato
and the output beam of the cavity is effectively the spon
neous emission of the atom, with the rate~which we have
defined as unity! beingO(g2/k). Under homodyne measure
ment of thex quadrature of the output field, the conditione
state will continue to be confined to thex-z plane. In this
case the homodyne photocurrent is given by

I ~ t !dt5Ah Tr@r Isx#dt1dW~ t !, ~3.9!

and the measurement superoperator by

Mr5Ah~sr1rs†!. ~3.10!

The conditioning SME is thus

dr I5Lr Idt1~ I 2 Ī !dt~M2M̄!r I . ~3.11!

IV. MARKOVIAN FEEDBACK

Markovian feedback in this system has been conside
before@11#, except for the effect of dephasingG. This can be
treated by the same techniques, so our presentation here
be brief. The aim of this feedback scheme, and indeed
feedback schemes considered in this paper, is to make
stationary state of the atom as close as possible to a
stateuu0&, defined by

uu0&5cos
u0

2
ue&1sin

u0

2
ug&. ~4.1!

Here,u0 is a given parameter in@2p,p). The stateuu0& is a
state withr and u, as defined above, given byr 51 andu
5u0.

Since the desired state is in they50 plane, control of the
atomic state can be effected by a feedback Hamiltonian
portional tosy . For Markovian feedback we have

H fb5I ~ t !lsy /Ah, ~4.2!

wherel is the feedback parameter. Since the driving Ham
tonian isasy , this feedback is physically realized simply b
modulation of the driving.

The deterministic master equation including feedback
in the Lindblad form,

ṙ52 i @asy ,r#1D@s2 ilsy#r1
l2

h
D@sy#r1GD@sz#.

~4.3!

We do not knowa priori what values ofl anda to choose
to give the best results. Hence, we simply solve for the
tionary matrix in terms ofa andl. Using the Bloch repre-
sentation we find

xss524a~112l!/D, ~4.4!
01380
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yss50, ~4.5!

zss52~112l!~114l12G14l2/h!/D, ~4.6!

where

D58a21~114l12G14l2/h!~112l12l2/h!.
~4.7!

The ‘‘best results’’ for the feedback system are achiev
by maximizing the radiusr in Eqs. 3.6 and 3.7 for eachu0.
From these two equations we have

tanu5xss/zss. ~4.8!

From Eqs.~4.4! and ~4.6! we can immediately find the de
sired driving in terms ofl andu0 as

a5~1/41l1G/21l2/h!tanu0 . ~4.9!

The aim is then, for eachu0, to find the feedbackl that
maximizes

r ss5Axss
2 1zss

2 ~4.10!

5
~112l!cosu0

112l12l2/h1~G21/2!sin2 u0

. ~4.11!

We find that

maxr ss5r 0 , ~4.12!

wherer 0 is the solution of

05r 0
2@~12h1cos2 u0!/21G sin2 u0#

1r 0~12h!cosu02h~cos2 u0!/2. ~4.13!

This maximum is achieved for

l52
h

2
~11r 0

21cosu0!. ~4.14!

Note that forhÞ1, this optimall, and the resultantr 0, were
only found numerically in previous work@11#. The analytical
results here, which also includeGÞ0, were not obtained
there.

The curve resulting from Eq.~4.13! is shown in Fig. 1 and
Fig. 2 for different parameters. For perfect conditionsh
51 andG50) it is possible to stabilize any stateuu0& except
those on the equator~see, Sec. IV A below!. Under imperfect
conditions, the maximum purityr ss decreases, with a ga
opening up at the equator. For inefficient detection, the pu
of the optimal states in the upper half of the Bloch sphere
affected much more than those in the lower half, whereas
two halves remain symmetrical for nonzero phase diffusi
This is explicable as follows. In the limith→0 ~no detec-
tion! the feedback cannot be effective, so the locus of sta
must reduce smoothly ash→0 to the no feedback result als
shown in Fig. 1. By contrast, asG increases there is no
necessity that the no-feedback result should be recove
and moreover the phase diffusion termGD@sz# is unchanged
7-5
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WISEMAN, MANCINI, AND WANG PHYSICAL REVIEW A 66, 013807 ~2002!
by reflection about the equator (sz→2sz). A number of
cases of interest now need consideration.

A. Perfect conditions

In the caseh51, G50 the above parameters simplif
greatly. We find, in agreement with Ref.@11#,

a5~cosu0 sinu0!/4, ~4.15!

l52~11cosu0!/2. ~4.16!

With these parameters anyuu0& can be stabilized, excep
uu0u5p/2 ~that is, on the equator of the Bloch sphere!. This
is clear from the parameters, since the values ofa andl are
the same foru05p/2 andu052p/2. For a two-level system
the same master equation cannot have two different st
stationary states. Thus the equatorial states cannot be s
lized by Markovian feedback even under perfect conditio
of efficient detection and no dephasing.

B. Stabilizing the excited state

Another case where the parameters~and the purity! have
simple expressions is foru050; that is, trying to stabilize
near the excited state. For this we desirexss50 soa50. We
find from Eq.~4.13! that

zss5E@r #5
h

22h
, ~4.17!

for l521. Another simple case is stabilizing the grou
state. This is of course always possible to do perfec
simple by turning the feedback and driving off.

C. Stabilizing an equatorial state

A final case where the purity can be found analytically
for u056p/2. That is, trying to stabilize an equatorial sta
Markovian feedback cannot achieve this at all. From E
~4.4! and Eq.~4.6!, if zss50 then necessarilyxss50 also.
The stochastic conditioned dynamics that underly this w
explored in Ref.@11#.

V. BAYESIAN FEEDBACK

Because Bayesian feedback is based on knowledge o
conditioned stater I , we need to examine its evolution in E
~2.2! in more detail. As noted above, the state is confined
they50 plane, so it is very convenient to write the evolutio
in terms ofr andu as defined in Eqs.~3.6! and~3.7!. Using
the Itô stochastic calculus@34#, the result is

dr I5H 2r I~11cos2 u I !/22Gr I sin2 u I2cosu I

1
h

2 Fcos2 u I

r I
12 cosu I1r IG

1Ah@sinu I~12r I
2!#@ I ~ t !2Ahr I sinu I#J dt,

~5.1!
01380
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du I5H S 1

2
2G D sinu I cosu I12a1

sinu I

r I

1hF sinu I~r I1cosu I !S 12
1

r I
2D G

1AhF11
cosu I

r I
G@ I ~ t !2Ahr I sinu I#J dt. ~5.2!

For perfect state estimation, the experimenter knows th
values ofr I andu I from the measurement recordI [0,t) . Now
we wish to add feedback, the aim of which is to stabilize t
state of the system to be as close as possible to a given
stateuu0&. We again consider feedback by modulation of t
driving Hamiltonian, where the modulation can depend in
arbitrary way uponr I ~that is,r I andu I). This can changeu I
but not r I . To maximize the closeness to the stateuu0& we
wish to forceu I to equalu0. This is achieved by the feedbac
Hamiltonian

H fb5F~r I !5 lim
b→`

2bsy~u I2u0!. ~5.3!

This adds the term

lim
b→`

22b~u I2u0!dt ~5.4!

to du I in Eq. ~5.2!.
Clearly, with the limit b→` this term will suppress all

fluctuations inu I and force it to take the valueu0. The SME
for the system then reduces to a single equation forr I , found
by substitutingu I5u0 in Eq. ~5.1!,

dr I5A~r I !dt1AB~r I !dW~ t !, ~5.5!

where

A~r !52r ~11cos2 u0!/22Gr sin2 u02cosu0

1
h

2 Fcos2 u0

r
12 cosu01r G , ~5.6!

B~r !5h sin2 u0~12r 2!2. ~5.7!

Here we are usingdW for I 2Ahr I sinuI .
This stochastic differential equation is equivalent to t

following Fokker-Planck equation for the probabilityP(r )
5Prob@r I5r #

Ṗ~r !5F2
]

]r
A~r !1

1

2

]2

~]r !2
B~r !GP~r !. ~5.8!

It is then easy to show@34# that the stationary mean ofr I is

r ss5

E
0

1

rdrC~r !expF2E
0

r

dr8A~r 8!C~r 8!G
E

0

1

drC~r !expF2E
0

r

dr8A~r 8!C~r 8!G , ~5.9!
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whereC(r )51/B(r ). This will clearly depend uponu0.
These integrals can be easily solved numerically, and

results are shown in Fig. 1 and Fig. 2. Under perfect con
tions, any stateuu0& can be stabilized perfectly, as discuss
below. Forh,1 or G.0 the purity decreases, in a qualit
tively similar way to Markovian feedback. However, the p
rity for Bayesian feedback is better than for Markovian fee
back for almost allu0, and is never worse.

A. Near-perfect conditions

It is interesting to consider the case of near-perfect c
ditions, wherer ss.1. This requiresh.1 andG!1. In this
case,r I cannot typically wander far fromr ss, since it is
bounded above by unity. This suggests that it may be p
sible to linearize Eq.~5.5!, because the fluctuations are sma
AssumingG!1 and settingh512e with e!1, we get

A~r !.2~cos2u0!~r 2r 0!. ~5.10!

Here r 0 is the solution of Eq.~4.13! for G,e!1, namely,

r 0.12e~111/cosu0!2G tan2 u0 . ~5.11!

Clearly, this argument only works foru0Þ6p/2.
Now it turns out that it is not valid to approximateB(r )

by a constantB(r 0) because it varies rapidly whenr is close
to one. However, this is actually irrelevant, because as l
asA(r ) can be approximated by a linear function ofr plus a
constant, the equation for the expectation value ofr I is

d

dt
E@r I#5A~E@r I# !. ~5.12!

In this case, it is clear thatr ss5r 0. That is, Bayesian feed
back can offer no improvement over Markovian feedback
the case of near-perfect conditions. This is evident in Fig

B. Stabilizing the excited state

It can be noted from Figs. 1 and 2 that Bayesian feedb
is also no more effective at stabilizing a state near the exc
stateu0& than Markovian feedback. This can be proven a
lytically. With u050 we have from Eq.~5.5!,

FIG. 3. Purity r ss achievable for Markovian~solid line! and
Bayesian~dashed line! feedback as a function ofh for u05p/4 and
G50. Note that they perform identically forh.1.
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52r 211

h

2 S 1

r
121r D , ~5.13!

which is independent ofI (t) ~and ofG) and has the station
ary solution~4.17!. That is, here is another case where Bay
sian feedback offers no improvements over Markovian fe
back.

C. Stabilizing an equatorial state

One case where Bayesian feedback clearly has an ad
tage over Markovian feedback is for stabilizing an equato
state. At first sight this seems in contradiction with Eq.~5.5!,
which for u05p/2 becomes

dr I52@G1~12h!/2#r Idt1Ah~12r I
2!dW. ~5.14!

This has an expectation value that decays to zero, the s
as in the Markovian case. However, this equation also allo
r I to become negative, which invalidates the basis for
equation, namely, thatu I is fixed atu0 so thatr I is positive
and represents the purity. Ifr I becomes negative then th
indicates thatu I has switched fromp/2 to 2p/2 say. Baye-
sian feedback could then correct this. This can be trea
with the above equation~5.14! if we assume that wheneverr I
becomes negative it is made positive~with its magnitude
unaltered!. This sort of assumption has already been used
Eq. ~5.9! in setting the lower limits of the integrals to zero. I
the limit of large G or small h, where r I will tend to be
small, we can approximate the coefficient of the noise te
in Eq. ~5.14! by Ah. Then Eq.~5.9! can be solved analyti-
cally to yield

r ss.A h

@G1~12h!/2#p
. ~5.15!

VI. LINEARIZED BAYESIAN FEEDBACK?

The Bayesian feedback of the preceding section was
realistically perfect in two aspects. First, we allowed for i
finitely strong feedback. However, this is only fair for com
parison with Markovian feedback since it also allows f
infinitely strong feedback, since the currentI (t) in the Mar-
kovian feedback Hamiltonian is a singular function of tim
Second, we assumed that the state estimation was pe
That is, we assumed that the experimenter could solve
nonlinear stochastic Bloch equations in real time to obtainr I
and henceu I . This is a much more demanding task than f
Markovian feedback, where the current is fed back witho
any processing. It would thus be of interest to see how w
Bayesian feedback performs if the processing is reduced
level more comparable with that required in Markovian fee
back. Specifically, feeding back a linear functional of t
current would seem well comparable.

What we desire is a systematic way of deriving an app
priate linearized Bayesian feedback of this sort. An obvio
approach is to linearize the stochastic equations of mo
for the state vector parametersr I andu I . Assuming that this
feedback does approximate the full Bayesian feedback,
7-7
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linearization foru I should be done aboutu0. It then follows
that the linearization forr I should be done about the dete
ministic fixed point of Eq.~5.5!. That is, the pointr 0 satis-
fying A(r 0)50. But thisr 0 turns out to be exactly the sam
as ther 0 defined by Eq.~4.13!. That is, it seems that we
should linearize about the point that is the stationary solu
of the Markovian feedback master equation.

If the linearization of the dynamics were valid, then t
variablesř I ,ǔ I with linear dynamics would be good approx
mations to the exact variablesr I . Let us consider the bes
case scenario where the feedback would be a good en
approximation to the full Bayesian feedback for fluctuatio
in u I to be completely suppressed. Thenř I would obey a
linearized version of Eq.~5.5!, and the stationary mean so
lution would giver ss. But, as already noted in Sec. V A,
the drift termA( ř I) consists of a constant and a linear ter
then the stationary mean solution is the fixed pointr 0. In
other words,E@ ř #ss5r 0.

This fact bodes ill for linearized Bayesian feedback. If t
linearization were valid thenr I. ř I and sor ss.r 0. That is,
the linearized Bayesian feedback would do no better t
Markovian feedback. If the linearization were not valid, th
there would be no reason to expect the linearized algori
to work at all. It is quite possible that by fluke there is som
linear functional of the currentI (t) that would give a better
result than Markovian feedback. However, that is of no gr
conceptual significance, if the linear functional is not deriv
from an approximation to the Bayesian theory.

The linearized Bayesian feedback described above is
based on a Kalman filter, because the variablesr andu have
no correspondence with classical phase-space variable
particular,r is itself a measure of purity, and here obeys
~linearized! stochastic equation. In the Kalman filter, the p
rity is determined by the covariance matrix, which obeys
deterministic equation. It might therefore be thought tha
better approach to linearizing the Bayesian feedback wo
be to approximate the surface of the Bloch sphere by a pl
thereby creating an analog to the classical phase plane. S
the Bloch sphere dynamics are confined to the transv
plane y50, the tangential plane reduces to a line, para
etrized byu in the neighborhood ofu0.

In this alternative approach, the linearization would th
be based upon describing the state of the atom by a Gau
distributionP(u) of statesuu&, localized aboutu0. Averaging
over this distribution would give a purity

r 5E†exp@ i ~u2u0!#‡.12E@~u2u0!2#/2. ~6.1!

It is possible to obtain an equation forP(u) by considering
fictitious noises ~corresponding to hypothetical measur
ments of the undetected fluorescence and of the bath cau
the dephasing!, and then averaging over them. However,
obtain a linear feedback algorithm, the resulting equat
must be linearized, thus yielding a Gaussian solution
P̃(u) with constant variance. This would be possible only
the variance is much less than unity. That is, this appro
could only work if r were close to one. However, we hav
already seen in Sec. V A that in this regime, the full Bayes
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feedback is no better than Markovian feedback, so the
earized Bayesian feedback cannot do better either. In fac
this limit, it can be shown that direct linearization of th
Bayesian feedback reproduces the Markovian feedback.

VII. CONCLUSIONS

In this paper we have contrasted two different approac
to quantum control, Markovian feedback~where the current
is fed back with no filtering! and Bayesian feedback~where
the feedback is based upon an estimate of the state!. We have
applied them to the problem of stabilizing the quantum st
of the simplest nonlinear system, a two-level atom, to
near an arbitrarily chosen pure stateuu0&. Due to the simplic-
ity of our system, we are able to obtain all of our resu
without numerical stochastic simulations, as required in p
vious work on Bayesian feedback in nonlinear systems@28#.

Unsurprisingly, Bayesian feedback never performs wo
than Markovian feedback. For close to ideal conditio
~small atomic dephasing, and detection efficiency close
one!, Bayesian feedback performs identically to Markovi
feedback, except foruu0u.p/2. In less ideal situations, i
performs better for almost all values ofu0. However, Baye-
sian feedback is far more demanding experimentally th
Markovian feedback. That is because it relies upon the r
time solution of nonlinear stochastic differential equation
namely, those that determine the state estimate.

For Markovian feedback, the effect of imperfections~such
as a time delay in the feedback loop! have been studied@25#
and they are not disastrous if they are small. In the pres
study we have not considered the effect of imperfections
Bayesian feedback, and it is not clear how disastrous s
inevitable imperfections would be. As a partial attempt
this question, we have considered replacing the full Bayes
feedback with a linearized version. This would yield a fee
back signal that is a linear functional of the feedback curre
and so would also be experimentally more reasonable
comparable to Markovian feedback. Unfortunately, we fi
that any systematic approach to such a linearization resul
a feedback algorithm that would be expected to perfo
worsethan Markovian feedback in general.

Two approaches to linearization for the two-level ato
were considered. The first is based on treating the parame
(r ,u) of the state matrixr as the objects to be controlled
The second describesr as a narrow Gaussian mixture o
state vectors$uu&%u aboutu0. In effect, it seeks to control the
hypothetical ‘‘true state’’uu&. Both of these approaches t
quantum control were considered by Dohertyet al. @28#, but
not as paths to a linear feedback algorithm. Indeed, the
approach~which they actually discuss last! is described by
them as ‘‘necessarily nonlinear,’’ although it can of course
linear in some cases. The second approach they note is
tentially ill defined and in any case ‘‘suboptimal.’’

For the purposes of developing a linearized quantum fe
back algorithm, Dohertyet al.consider only one approach t
quantum control. This is the one~the first they discuss! based
on describing the quantum system by a quasiprobability
tribution on classical phase space. This description for qu
tum systems is naturally linearized to yield the Kalman filt
7-8
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as discussed in Sec. II C. The negative results obtained
for non-Kalman linearized feedback suggests that perh
good linearized quantum feedback control algorithms e
only for quantum systems whose state can be well descr
by a classical phase-space distribution. This of course r
out the two-level atom and other ‘‘deep quantum’’ system

To conclude, if there were no restrictions placed upon
experimenter’s processing ability or knowledge of relev
parameters then Bayesian feedback would be optimal
definition. Moreover, we have shown that in most parame
regimes, it does strictly better than Markovian feedback
stabilizing the state of a two-level atom. However, for no
linear systems~such as the atom!, Bayesian feedback would
be far more difficult to implement that Markovian feedbac
Systematic linear approximations to Bayesian feedback
p

ar

es
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even to match Markovian feedback for the two-level ato
so it is possible that inevitable experimental imperfectio
would unmake the general superiority of Bayesian feedb
in this system. This is related to issues of robustness in c
sical control theory@37#, which has only begun to be ex
plored in quantum systems@28,38#. Quite probably Markov-
ian, Bayesian, and perhaps other forms of feedback will
have roles to play in the control of nonlinear quantum s
tems.
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