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Bayesian feedback versus Markovian feedback in a two-level atom
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We compare two different approaches to the control of the dynamics of a continuously monitored open
guantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn
[Phys. Rev. Lett70, 548(1993]. The second is feedback based on an estimate of the system state, developed
recently by Doherty and JacofBhys. Rev. 260, 2700(1999]. Here we choose to call it, for brevitayesian
feedback For systems with nonlinear dynamics, we expect these two methods of feedback control to give
markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so
we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic
fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize
the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of
inefficient detection and other forms of decoherence. Our resoligined without recourse to stochastic
simulation$ prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback.
However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when
obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in
the face of inevitable experimental imperfections.

DOI: 10.1103/PhysRevA.66.013807 PACS nuntber42.50.Lc, 42.50.Ct, 03.65.Ta

[. INTRODUCTION tion having any given pure state on the Bloch sphere as its
stationary state. Without feedback, the only pure stationary
Quantum feedback arises when the environment of astate is the ground state, in the absence of driving. That work
open quantum system is deliberately engineered so that igeneralized the earlier results by Hofmann, Mahler, and Hess
formation lost from the system into that environment comeg13,14] on the same problem in a number of ways. One gen-
back to affect the system again. Typically, the environment igralization was to study the effect of a nonunit efficiency of
large and would be regarded at least in part as a classicitte homodyne detection. This was shown to be deleterious to
system. In the case where the system dynamics are Markothe maximum purity of the stationary states, especially those
ian in the absence of feedback, the information lost to thén the upper half of the Bloch sphere.
environment can be treated as classical information: the mea- For non-Markovian feedback, the master equation ap-
surement result. The feedback loop thus consists of a quaproach of Wiseman and Milburn cannot be used. However,
tum system, a classical detectavhich turns quantum infor- the formalism first used to derive the Wiseman-Milburn mas-
mation into classical informationand a classical actuator ter equation, quantum trajectoriesan be used. Quantum
(which uses the classical information to affect the quantunirajectoried 15] describe the stochastic evolution of the state
systen). of an open quantum system conditioned upon the results of
In general, quantum feedback is difficult to treat becauseneasurements performed upon its environment. They were
any time delay or filtering in the feedback loop makes thefirst derived from abstract quantum-measurement theory
system dynamics non-Markovian. A great simplification[16—19 but were independently invented in quantum optics
arises for Markovian feedback, where the measurement rdor practical purposef20,21,15. In the special case where
sults are used immediately to alter the system state, and mdlge system has linear dynamics, the measurement is linear
then be forgotten. In this case the dynamics including feedte.g., homodyne detectipnand the feedback dynamics is
back may be described by a master equation in the Lindblatinear, the quantum trajectories including feedback can be
form. This was shown by Wiseman and Milbufh,2] for ~ solved analytically. In this case older techniques, based on
homodyne detection and Wisem@8] in general. This de- quantum Langevin equatiorf®22-24,3 can also be used.
scription of feedback has been applied to a wide variety oHowever, for nonlinear systems, a numerical solution of the
systems and for a wide variety of purpogsse, for example, non-Markovian quantum trajectories is the only recourse.
Refs.[4-10). The simplest system with nonlinear dynamics is the two-
In a previous worK11], two of us applied the Wiseman- level atom. Non-Markovian feedback for controlling this
Milburn feedback theory to show that aimddt?] all pure  system was considered earlier by two of[@5]. We consid-
states of a fluorescent two-level atom can be stabilized bgred the simplest form of non-Markovicity, a time detajn
Markovian feedback based on homodyne detection of théhe feedback loop26] which was otherwise kept exactly as
fluorescence. That is, by adding an amplitude modulation tdéor the Markovian feedback in Ref11]. We showed numeri-
the laser driving the atom proportional to the just-measuredally that the time delay had an effect qualitatively similar to
homodyne photocurrent, the atom would obey a master equdhat of inefficient detection. For the special case where the
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Markovian feedback would stabilize the atom in the excitedmonitoring of its environment. In this context, the state of
state, we obtained an approximate analytical expression fdhe system means the state of knowledge of the system that
the purity (as measured by=2 T p?]—1) in the presence an ideal observegunlimited by computational powgwould

of a time delay. The result for short delays, which was foundhave, given the results of the monitoring. As we cannot as-

numerically to be valid for quite large delays, was sume that this monitoring will give complete knowledge of
the system, the quantum trajectory will not be a path in Hil-
p=1—4yr. (1.7 bert space. Rather, it will in general be a path in the space of

state matricep. This path is generated by stochastic and
Here vy is the decay rate for the atom. That is, the attainablenonlinear equation for the conditioned state matrix, which
purity decreases linearly with the time delay. This appears tove call a stochastic master equati@ME). Its classical ana-
be true in general for this system. log is the Kushner-Stratonovich equation for a probability

It should not be concluded from this result that non-distribution[28].
Markovian feedback is necessarily worse than Markovian The system may be coupled to many independent baths,
feedback. A different paradigm for quantum feedback hadut let us assume for simplicity that only one bath is moni-
recently been developed by Dohedtyal.[27,28. It is based tored. Then we write thédeterministi¢ master equation as
on an analogy with classical feedback according to the so- )
called “modern control theory”[29]. Conceptually, the p=Lp=Lop+D[C]p, (2.1
change is from basing the feedback directly on the measure- . i
ment results, to basing the feedback on an estimate of thwhere the last term, described by the Lindb{ad] superop-
system state. That state estimate is of course based on tREator Dlclp=cpc’—{c'c,p}/2, is that which is “unrav-
measurement results, but the extra step usually makes tifed” [15] by monitoring the relevant bath. This monitoring
feedback non-Markovian from the point of view of the sys-Yields a current(t), and we denote the state conditioned on
tem. That is because the best state estimate will use all prédis recordi oy ={I(s): 0=<s<t} up to timet by p|(t). The
vious measurement results, not just the latest ones. SME for this conditioned system state can then be written
Determining the conditioned state of the quantum systen532]

from classical measurement results is a quantum version of
Bayesian reasoning. Classical Bayesian reasoning updates an
observer’s knowledge of a systefas described by a prob-
ability distribution over its variablgsbased on new data
[29]. For this reason, we call feedback based on a state esti- —1 - Y
mateBayesian feedbackn classical control theory it is com- Up=(I= 1) M= M)p- 23
mOlt’} to trep'ltaclg Bayesianl feedblack V}/itflt_a simpler fapptf.OXiHerel represents the measurement result in the infinitesimal
mation to it. For example, a linearization approximation . T
leads to the Kalman filter, which makes the feedbatikear interval [t'_t+d—t)’ which has the expected valdg1]=1.

The notation M, on the other hand, representy Mp],

functional of the observed curref9]. The quantum version )
where M is a superoperator. The form of E@®.3) guaran-

of this was explored in Refd27,28, and had previously -
been treated in Ref30]. tees two necessary conditions{%p]=0, andE[Up]=0.

In this paper, we investigate what improvement is offered! €€ imply that the SME preserves trace and, on average,
by Bayesian feedback over Markovian feedback for thd®€Produces the master equation. In additldmust satisfy
simple problem discussed above, stabilizing an arbitrary _
state of the two-level atom. We begin in Sec. Il by discussing {m (Dlel+thmi+diiun]Un]=(Dlc]+ihm (24
the different sorts of feedback in a general context. Then Weyr an arbitrary rank-one projectar. This implies that, if

present the specific system of interest, the two-level atom, igy ] were the only irreversible term, the monitoring would
Sec. Ill. This is more general than that considered previouslynsintain the purity of the state.

[_11,13,14,2$in t_hat we includv_a a term in the mas_ter equa-  Eor the case of homodyne detection we hfi&,33

tion corresponding to dephasing, as caused for instance by

elastic collisions with othetbackground atoms. In Sec. IV Mp=cp+pc. (2.5
we present and discuss the performance of Markovian feed-

back in this system. In Sec. V we do likewise for BayesianThe homodyne curreritis a real-valued stochastic variable
feedback. In Sec. VI we consider the prospects for approxisatisfying

mating this Bayesian feedback so that the feedback is a linear )

functional of the current. We conclude with a discussion in (Idt)*=dt, (2.6
Sec. VII.

where

and

Il. QUANTUM FEEDBACK = M=Trp(c+ch]. 2.7

A. Quantum trajectories
Q J In other words,

Quantum trajectories are the stochastic paths followed by
the state of an open quantum system conditioned on the ldt=Tr[p,(c+cT)]dt+dW, (2.8
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wheredW is an infinitesimal Wiener incremep34]. the system has perfect knowledge of the system dynamics,
So far we have considered efficient detection. If an effi-then the system state actually does obey a Markovian equa-

ciency <1 is included then the conditional evolution will tion, namely,

no longer preserve purity. However, E@.2) still applies.

The only difference is that in the equations fotf andl, ¢ dp=dt{ L+U]p,—i[F(t,p)),p] (2.15

is replaced by/zc. In particular,| (t) becomes . _ o
However, it is not possible to average over the stochasticity

ldt= \/;Tr[p|(c+ chH]dt+dw. (2.9  toobtain a master equation. This reveals the underlying non-
Markovicity.
This is simple to understand, as the Lindbladiic] canbe ~ The presence of a nonlinear stochastic Markovian equa-
split into »D[c]+ (1— 5)D[c], with only the former being tion for the conditioned system state is an artifact of the
unraveled. assumption of perfect knowledge of the system dynamics. In
reality, the system dynamics would not be known perfectly,
B. Markovian feedback and the experimenter’s estimagg of the system state,

, ) would be governed by an equation different from E2}2),
Consider Markoviaii35] feedback of the homodyne pho- pamely,

tocurrent. Since this current is singular and of indefinite sign,
the onl ossible form of Markovian feedback is via a v = o~
Hamilto)rllie?n dpy=Lypidttpdt, (216
He(D)=F (D)1 (), (210  Where

with F an Hermitian operator. Upp=(1=1,)dt(M—=M;)p. (2.17
Although Hy, at timet contains the currentat the same

time, it must act after the measurement. Taking this, and thelere Z;, is an approximation taC. The approximation may

singularity ofl(t) into account, yields the following stochas- be necessary due to lack of information, or it may be conve-

tic equation for the conditioned system state with feedbackient to allow a simpler treatment of the system. This ap-

[1] proximation may depend on the estimated system gtate

_ . The stochastic unraveling superoperaibmay also be ap-
dpi=dt{Lop+ Dclpy+ DIF]pi—ilF. Mp]} proximated for reasons such as these, withreplaced by

+(1 —I_)dt(/\/l’ _/\_A/)pl . (2.1 M. However, in Eq(2.17 we have shown it as approximate
for a necessary reason, namely that in general it depends
Here upon an estimate of, p, in order to evaluaté and M.
Linearization of dynamics is a good example of a conve-
M'p=Mp—i[F,p]. (2.12  nient approximation. It is typically applied to systems with

infinite-dimensional Hilbert spaces, corresponding to a clas-
As noted in the Introduction, the great theoretical convesical phase space. Under linear dynamics of such a system,
nience offered by Markovian feedback is that it is a simplethe conditioned state of the system will tend towards a
matter to remove the nonlinearity and stochasticity in thisGaussian state. For a system wiitoordinates (Bl phase-
equation by taking an ensemble average. This replb¢s  gpace variable the statep, is describable by B2+ 3N vari-
by I, yielding the Wiseman-Milburn feedback master equa-ables, recording the covariance matrix and the means. This
tion compares withO(D2V) real numbers required to recoyx,
whereD is an approximation to infinity. Moreover, the equa-
p=_Lop+D[clp—iVy[F,cp+pc+D[Flp. tion for the covariance matrix is deterministic, and that for
(2.13  the means is linear. This is what leads to the Kalman filter,
where the feedback is Bnear functional of the observed
current[29].
If the experimenter’s best estimate of the systemvnis

nOVI\:/OI::%insnigetrheccl)i;]terzllfrl::tiﬂgd st;/);tgr?wh%r%aa:ﬁi[c:zsﬂ’u\giig a‘éhen, with the feedback included, this estimate would still
L : bey a Markovian equation, namely,
Hamiltonian that depends not directly on the current, but y q y

rather on the observer’s state of knowledge of the sygtem
By definition there is nothing better with which to control the
system. We thus have in general

C. Bayesian feedback

dpr=dt(Z,+U;1p—i[F(t.p).p]. (218

However, a second, more diligent, observer would use the
Hp=F(t,p)). (2.14 full knowledge of the system dynamics_ to obtain the system
statep, . This would obey the stochastic master equation

It is an odd fact about Bayesian feedback that, although .
strictly it is non-Markovian, if the experimenter controlling dp,=dt{L+U]p,—i[F(t,p)).p(]. (2.19
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Note that this is not a Markovian equation foy, because 1

the feedback depends on the estimgte The two equations

together are Markovian, and in control theory language this

would be considered an example of Markovian control. 0.5
However, from the usual perspective of quantum mechanics,

where the “system” is the quantum system, not the quantum

system plus control loop, this is an example of non- Z 0
Markovian feedback control.

lll. THE SYSTEM -0.5

The simplest nonlinear system to consider is an atom,
with two relevant levelq|g),|e)} and lowering operatoe
=|g)(e|. Let the decay rate be unity, and let it be driven by B =
a resonant classical driving field with Rabi frequency. 2
Furthermore, let us add dephasing of the atomic dipole at
ratel".

FIG. 1. Locus of the ensemble average solutions to the Bloch
) equations with detector efficiency=0.8 and dephasing ratE
A. The master equation =0 under various conditionga) no feedback(driving only), (b)
The evolution of this system is described by the masteMarkovian feedback, ang) Bayesian feedback. The dashed line is
equation the surface of the Bloch sphere which is stabilizable §er1 by
Bayesian feedback an@xcept for the equatorial pointdy Mar-

,'):D[U]p_ia[ay,p]+FD[az]E/;p_ (3.1 kovian feedback.

. . . is a measure of the purity of the Bloch sphare; \x?+ 2,
In this master equation we have chosen to definedhe ne gistance from the center of the sphere is also a measure

_ t it - , _
=o+o’ andoy=io—io" quadratures of the atomic dipole ot ity Pure states correspond te=1 and maximally
relative to the driving field. The effect of driving is to rotate ,ivaq states ta =0. The stationary states we can reach by

the at_om in Bloch space aro_und theaxis. The state of the driving the atom are limited, and generally far from pure
atom in Bloch space is described by the three veoty,€). 11, n particular, they are confined to the lower half of the

It is related to the state matrix by Bloch sphere, as shown in Figs. 1 and 2.

1
p= E(| +Xoy Yoyt 20,). (3.2 B. Homodyne measurement
Now consider subjecting the atom to homodyne detection.

It is easy to show that the stationary solution of the masteyve assume that all of the fluorescence of the atom is col-

equation(3.1) is

o e 3.3

(14 20) 87 89

Yss=0, (3.9
—(1+2r

( ) 35

Iee————————.
* (1+2I')+8a?

ForT fixed, this is a family of solutions parametrized by the
driving strengtha e (—,%). All members of the family are

in the x-z plane on the Bloch sphere. Thus for this purpose
we can reparametrize the relevant states usiagd 6 by

X
x=rsing, (3.6 FIG. 2. Locus of the ensemble average solutions to the Bloch
equations with detector efficiencyy=1 and dephasing raté'
Z=r C0s0, (3.7 =1/20 under various conditionéa) no feedbacKdriving only), (b)
Markovian feedback, ang) Bayesian feedback. The dashed line is
wheref e[ — m,7]. Since, the surface of the Bloch sphere which is stabilizablefer0 by
Bayesian feedback an@xcept for the equatorial pointdy Mar-
p=2 T p?]— 1=x2+y?+ 7%, (3.9  kovian feedback.
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lected and turned into a beam. This could be achieved, in Yss= 0, (4.5
principle, by placing the atom at the focus of a parabolic
mirror, but in practice it is more likely to be achievable in a Ze= — (1+2\)(1+4N+ 2T +4\%/ 5)/D, (4.9

cavity QED settind 36], with the atom strongly couple@)

to a single cavity mode, which is strongly damped (Then ~ Where

the combined system acts like an effective two-level atom, o 2 2 2

and the output beam of the cavity is effectively the sponta- D=8 T(1+4A+21+4) I7)(1+2N+2) /’7)'(4 7
neous emission of the atom, with the rathich we have :
defined as unitybeingO(g®/ ). Under homodyne measure-  The “best results” for the feedback system are achieved

ment of thex quadrature of the output field, the conditioned py maximizing the radius in Egs. 3.6 and 3.7 for each,.
state will continue to be confined to thez plane. In this  From these two equations we have

case the homodyne photocurrent is given by

tan 0= X4/ Zgs. (4.9
L(t)dt= 7 Tr[p,oJdt-+dW(t), (3.9
From Eqgs.(4.4) and (4.6) we can immediately find the de-
and the measurement superoperator by sired driving in terms of and 6, as
Mp=\n(ap+pah). (3.10 a=(14+\+T 12+ \? p)tanb,. (4.9
The conditioning SME is thus The aim is then, for eacld,, to find the feedback that
g g T _ 3.19 maximizes
le= \/XSZS-I- zszS (4.10
IV. MARKOVIAN FEEDBACK
(1+2\)cosé,
Markovian feedback in this system has been considered = 5 : . (4.11)
before[11], except for the effect of dephasiiig This can be 142N +20% -+ (T = 1/2)sir G
treated by the same techniques, so our presentation here will We find that
be brief. The aim of this feedback scheme, and indeed all
feedback schemes considered in this paper, is to make the maxrs="rg, (4.12
stationary state of the atom as close as possible to a pure
state| 6,), defined by wherer, is the solution of

0 0 0=r3[(1— n+cog 6y)/2+T sir? 6
|00):cos?0|e)+sin50|g>. (4.2 ol(1=m o o]
+1o(1— 7)cosy— 7(cos 6)/2. (4.13
Here, 6, is a given parameter in— 1, 7). The statd 6,) is a
state withr and 6, as defined above, given bhy=1 and @
= 00.

This maximum is achieved for

7 _
Since the desired state is in tiie=0 plane, control of the A=—5(1+r0 *cosb). (4.149
atomic state can be effected by a feedback Hamiltonian pro-
portional too, . For Markovian feedback we have Note that fory# 1, this optimal\, and the resultant,, were
only found numerically in previous woik 1]. The analytical
Hszl(t))‘(’y/\/—' (42 results here, which also includé+0, were not obtained
there.

whereN is the feedback parameter. Since the driving Hamil-
tonian isao, this feedback is physically realized simply by Ei
modulation of the driving.

The deterministic master equation including feedback is
in the Lindblad form,

The curve resulting from Eq4.13) is shown in Fig. 1 and
g. 2 for different parameters. For perfect conditions (
=1 andI’=0) it is possible to stabilize any stqt@,) except
those on the equatdsee, Sec. IV A beloyv Under imperfect
conditions, the maximum puritys decreases, with a gap
) 2 opening up at the equator. For inefficient detection, the purity
p=—ilaoy,pl+Dlo—ikaylp+—Dloylp+ D] o,]. of the optimal states in the upper half of the Bloch sphere is
K 43 affected much more than those in the lower half, whereas the
' two halves remain symmetrical for nonzero phase diffusion.

We do not knowa priori what values of\ and« to choose ~ This is explicable as follows. In the limig—0 (no detec-
to give the best results. Hence, we S|mp|y solve for the Stanon) the feedback cannot be eﬁ:eC“Ve, so the locus of states

tionary matrix in terms ofx and\. Using the Bloch repre- Mmust reduce smoothly ag— 0 to the no feedback result also
sentation we find shown in Fig. 1. By contrast, ab increases there is no
necessity that the no-feedback result should be recovered,
Xs= —4a(1+2)N)/D, (4.4  and moreover the phase diffusion tefi®[ o,] is unchanged
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1
>-T

cases of interest now need consideration. 5

sing, cosé, +2a+ e
|

=)

1+ %Se'}[ut)— Jr, sin m] dt. (5.2
|

by reflection about the equatowr{— —o,). A number of ‘ sing,
d0|: ( )

A. Perfect conditions

In the casen=1, I'=0 the above parameters simplify + 7| sinf,(r,+cosé,)

greatly. We find, in agreement with RéfL.1],

a=(cosbgsindy)/4, (4.19 +7
N=—(1+cos6b,)/2. (4.16

For perfect state estimation, the experimenter knows these
values ofr, and ¢, from the measurement recorg, . Now
is clear from the parameters, since the values ahd\ are we wish to add feedback, the aim of WhICh'IS to stabl'llze the
_ _ state of the system to be as close as possible to a given pure
the same foWy= /2 andfy,= — 7/2. For a two-level system : . .
: . Ftate| 6y). We again consider feedback by modulation of the
the same master equation cannot have two different stab § . e . .
. . riving Hamiltonian, where the modulation can depend in an
stationary states. Thus the equatorial states cannot be stabi- . ; .
arbitrary way uporp, (that is,r, and 6,). This can changé,
ut notr,. To maximize the closeness to the sthg) we

wish to forced, to equald,. This is achieved by the feedback

With these parameters ary),) can be stabilized, except
| 69| = /2 (that is, on the equator of the Bloch sphefEhis

lized by Markovian feedback even under perfect condition
of efficient detection and no dephasing.

B. Stabilizing the excited state Hamiltonian
Another case where the parameténsd the purity have Hiw=F(p))=lim —Bo,(6,— 6y). (5.3
simple expressions is fof,=0; that is, trying to stabilize B

near the excited state. For this we desigg=0 soa=0. We

find from Eq.(4.13 that This adds the term

. lim —28(6,— 6y)dt (5.4
z=E[r]= E, (4.17 B
_ _ o todé, in Eq. (5.2.
for A= —1. Another simple case is stabilizing the ground  Clearly, with the limit 3— this term will suppress all
state. This is of course always possible to do perfectlyfluctuations ind, and force it to take the valug,. The SME
simple by turning the feedback and driving off. for the system then reduces to a single equatiom fofound
by substitutingd, = 6, in Eq. (5.1),
C. Stabilizing an equatorial state

A final case where the purity can be found analytically is dri=A(r)dt+ VB(r)dW(), (5.9
for 6,= = 7/2. That is, trying to stabilize an equatorial state. , here
Markovian feedback cannot achieve this at all. From Eg.

(4.4 and Eq.(4.6), if z;c=0 then necessarilx,=0 also. A(r)=—r(1+cog 6,)/2—Tr sir? ,— cosb,
The stochastic conditioned dynamics that underly this were 2
i cos 6,
explored in Ref[11]. +g 0., Cosf1 |, (5.6

V. BAYESIAN FEEDBACK
_ , B(r)=gsirf 6y(1—r?)2. (5.7
Because Bayesian feedback is based on knowledge of the

conditioned state, , we need to examine its evolution in Eq. Here we are usingW for | — \/;rl sing, .
(2.2) in more detail. As noted above, the state is confined to This stochastic differential equation is equivalent to the

they=0 plane, so it is very convenient to write the evolution following Fokker-Planck equation for the probabilig(r)
in terms ofr and ¢ as defined in Eq93.6) and(3.7). Using  =Proljr,=r]

the 1to stochastic calculug34], the result is
(92

. J 1
P(r)= —a—rA(r)+§ B(r) |[P(r). (5.8

(ar)?

dr|=[ —r(1+cog 6,)/2—T'r, sir? §,— cosb,

n[cog 6, It is then easy to show34] that the stationary mean of is

2

+2cosh,+r,

r

jlrdrC(r)ex;{Zerr’A(r’)C(r’)}
0 0

r.SS: 1 r !
fdrC(r)ex;{Zf dr’A(r’)C(F')}
0 0

+J77[sine.<1—r.2)][l<t>—ﬁr.sine.]]dt, (5.9
(5.1
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1

dr 71l
—r—1+— F+2+r , (5.13

dt 2

0.8

0.6
r

ss
0.4

which is independent df(t) (and ofI') and has the station-
ary solution(4.17). That is, here is another case where Baye-
sian feedback offers no improvements over Markovian feed-

0.2 back.

0

C. Stabilizing an equatorial state

One case where Bayesian feedback clearly has an advan-
tage over Markovian feedback is for stabilizing an equatorial
state. At first sight this seems in contradiction with Eg}5),
which for 6,= /2 becomes

FIG. 3. Purity rg achievable for Markoviar(solid line) and
Bayesian(dashed lingfeedback as a function of for 8,= 7/4 and
I'=0. Note that they perform identically faj=1.

_ 2
whereC(r)=1/B(r). This will clearly depend upom. dri=—[T+(1— 5)/2]r,dt+Vp(1-r2)dW. (5.14

These integrals can be easily solved numerically, and thehijs has an expectation value that decays to zero, the same
results are shown in Fig. 1 and Fig. 2. Under perfect condizs in the Markovian case. However, this equation also allows
tions, any stat¢f,) can be stabilized perfectly, as discussedy to become negative, which invalidates the basis for the
below. Forn<1 orI'>0 the purity decreases, in a qualita- equation, namely, thag, is fixed at6, so thatr, is positive
tively similar way to Markovian feedback. However, the pu- ang represents the purity. tf becomes negative then this
rity for Bayesian feedback is better than for Markovian feed-jgicates tha®, has switched fromr/2 to — /2 say. Baye-

back for almost allfy, and is never worse. sian feedback could then correct this. This can be treated
with the above equatiofb.14) if we assume that whenever
A. Near-perfect conditions becomes negative it is made positig@ith its magnitude

unalteredl This sort of assumption has already been used in
Eqg. (5.9 in setting the lower limits of the integrals to zero. In

case,r, cannot typically wander far fronng, since it is the limit of large I or small 7, whergn will tend tq be
bounded above by unity. This suggests that it may be pOSs_mall, we can approximate the coefficient of the noise t_erm
sible to linearize Eq(5.5), because the fluctuations are small. " IIIEq. (5'_1% by /7. Then Eq.(5.9 can be solved analyti-
Assumingl’<1 and settingp=1— € with e<1, we get cally to yie

A(r)=—(coS o) (r—ry). (5.10 _ Ui
S <N+ a-pis (519

Herer is the solution of Eq(4.13 for I',e<1, namely,

It is interesting to consider the case of near-perfect con
ditions, wherer . ~1. This requiresp=1 andI'<1. In this

s
Fo=1—e(1+1/cosf) — T tar? 6. (5.11) VI. LINEARIZED BAYESIAN FEEDBACK?

The Bayesian feedback of the preceding section was un-
Clearly, this argument only works faty# = /2. realistically perfect in two aspects. First, we allowed for in-
Now it turns out that it is not valid to approximaByr) finitely strong feedback. However, this is only fair for com-
by a constanB(r) because it varies rapidly whers close  parison with Markovian feedback since it also allows for
to one. However, this is actually irrelevant, because as longnfinitely strong feedback, since the curré(t) in the Mar-
asA(r) can be approximated by a linear functionrgilus a  kovian feedback Hamiltonian is a singular function of time.
constant, the equation for the expectation value,a$ Second, we assumed that the state estimation was perfect.
That is, we assumed that the experimenter could solve the
nonlinear stochastic Bloch equations in real time to obpgin
aE[n]zA(E[r,]). (5.12 and henceg, . This is a much more demanding task than for
Markovian feedback, where the current is fed back without
In this case, it is clear that=r,. That is, Bayesian feed- any prpcessing. It would thus_ be of interes_t to see how well
back can offer no improvement over Markovian feedback forBayesian feedback performs if the processing is reduced to a
the case of near-perfect conditions. This is evident in Fig. 3l€vel more comparable with that required in Markovian feed-
back. Specifically, feeding back a linear functional of the
current would seem well comparable.
What we desire is a systematic way of deriving an appro-
It can be noted from Figs. 1 and 2 that Bayesian feedbackriate linearized Bayesian feedback of this sort. An obvious
is also no more effective at stabilizing a state near the excitedpproach is to linearize the stochastic equations of motion
state|0) than Markovian feedback. This can be proven anafor the state vector parametarsand 6, . Assuming that this
lytically. With 6,=0 we have from Eq(5.5), feedback does approximate the full Bayesian feedback, the

B. Stabilizing the excited state
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linearization forg, should be done abou,. It then follows  feedback is no better than Markovian feedback, so the lin-
that the linearization for, should be done about the deter- earized Bayesian feedback cannot do better either. In fact, in
ministic fixed point of Eq.(5.5). That is, the point satis-  this limit, it can be shown that direct linearization of the
fying A(ro)=0. But thisr, turns out to be exactly the same Bayesian feedback reproduces the Markovian feedback.
as thery defined by Eq.(4.13. That is, it seems that we
should linearize about the point that is the stationary solution
of the Markovian feedback master equation.

If the linearization of the dynamics were valid, then the In this paper we have contrasted two different approaches

variablesr, , 8, with linear dynamics would be good approxi- to quantum control, Markovian feedbactkhere the current
mations to the exact variables. Let us consider the best is fed back with no filteringand Bayesian feedbackhere
case scenario where the feedback would be a good enoud€ feedback is based upon an estimate of the)staehave
approximation to the full Bayesian feedback for fluctuationsaPplied them to the problem of stabilizing the quantum state
in 6, to be completely suppressed. Thenwould obey a of the S|mplest_ nonlinear system, a two-level atqm, _to be
linearized version of Eq(5.5), and the stationary mean so- near an arbitrarily chosen pure stafg). Dpe to the simplic-
lution would giverg. But, as already noted in Sec. V A, if |ty of our systgm, we are 'ablle to qbtam all of our rgsults

: - . . without numerical stochastic simulations, as required in pre-
the drift termA(r,) consists of a constant and a linear term

h h . lution i the fixed bai 'vious work on Bayesian feedback in nonlinear syst¢aes.
then the stationary mean solution is the fixed paigt In Unsurprisingly, Bayesian feedback never performs worse

other wordsE[r Js<=ro. than Markovian feedback. For close to ideal conditions

This fact bodes ill for linearized Bayesian feedback. If the(small atomic dephasing, and detection efficiency close to
linearization were valid then,=r, and sor.~r,. Thatis, ~one, Bayesian feedback performs identically to Markovian
the linearized Bayesian feedback would do no better thafeedback, except foffy|=/2. In less ideal situations, it
Markovian feedback. If the linearization were not valid, thenperforms better for almost all values 6§. However, Baye-
there would be no reason to expect the linearized algorithnsian feedback is far more demanding experimentally than
to work at all. It is quite possible that by fluke there is someMarkovian feedback. That is because it relies upon the real-
linear functional of the current(t) that would give a better time solution of nonlinear stochastic differential equations,
result than Markovian feedback. However, that is of no greahamely, those that determine the state estimate.
conceptual significance, if the linear functional is not derived For Markovian feedback, the effect of imperfectigeach
from an approximation to the Bayesian theory. as a time delay in the feedback lgdmave been studiel®5]

The linearized Bayesian feedback described above is n@nd they are not disastrous if they are small. In the present
based on a Kalman filter, because the variablasd ¢ have  study we have not considered the effect of imperfections in
no correspondence with classical phase-space variables. Bayesian feedback, and it is not clear how disastrous such
particular,r is itself a measure of purity, and here obeys ainevitable imperfections would be. As a partial attempt to
(linearized stochastic equation. In the Kalman filter, the pu- this question, we have considered replacing the full Bayesian
rity is determined by the covariance matrix, which obeys afeedback with a linearized version. This would yield a feed-
deterministic equation. It might therefore be thought that aack signal that is a linear functional of the feedback current,
better approach to linearizing the Bayesian feedback would@nd so would also be experimentally more reasonable and
be to approximate the surface of the Bloch sphere by a planepmparable to Markovian feedback. Unfortunately, we find
thereby creating an analog to the classical phase plane. Sintgat any systematic approach to such a linearization results in
the Bloch sphere dynamics are confined to the transverse feedback algorithm that would be expected to perform
planey=0, the tangential plane reduces to a line, paramworsethan Markovian feedback in general.
etrized by#é in the neighborhood o#),. Two approaches to linearization for the two-level atom

In this alternative approach, the linearization would thenwere considered. The first is based on treating the parameters
be based upon describing the state of the atom by a Gaussién ¢) of the state matriyp as the objects to be controlled.
distributionP( #) of stated #), localized about,. Averaging  The second describgs as a narrow Gaussian mixture of
over this distribution would give a purity state vectors| 6)}, abouté,. In effect, it seeks to control the

hypothetical “true state”#). Both of these approaches to

r=E[exdi(6—60)]1=1—E[(6—60)°]/2.  (6.))  quantum control were considered by Doheztyal. [28], but

not as paths to a linear feedback algorithm. Indeed, the first
It is possible to obtain an equation f&(6) by considering  approach(which they actually discuss lasis described by
fictitious noises (corresponding to hypothetical measure-them as “necessarily nonlinear,” although it can of course be
ments of the undetected fluorescence and of the bath CaUSilﬂgear in some cases. The second approach they note is po-
the dephasing and then averaging over them. However, totentially ill defined and in any case “suboptimal.”
obtain a linear feedback algorithm, the resulting equation For the purposes of developing a linearized quantum feed-
must be linearized, thus yielding a Gaussian solution folhack algorithm, Dohertgt al. consider only one approach to
P(6) with constant variance. This would be possible only if quantum control. This is the orfthe first they discusased
the variance is much less than unity. That is, this approacbn describing the quantum system by a quasiprobability dis-
could only work ifr were close to one. However, we have tribution on classical phase space. This description for quan-
already seen in Sec. V Athat in this regime, the full Bayesiartum systems is naturally linearized to yield the Kalman filter,

VII. CONCLUSIONS
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as discussed in Sec. Il C. The negative results obtained heeven to match Markovian feedback for the two-level atom,
for non-Kalman linearized feedback suggests that perhapso it is possible that inevitable experimental imperfections
good linearized quantum feedback control algorithms existvould unmake the general superiority of Bayesian feedback
only for quantum systems whose state can be well described this system. This is related to issues of robustness in clas-

by a classical phase-space distribution. This of course rulesical control theony{37], which has only begun to be ex-

out the two-level atom and other “deep quantum” systems.

plored in quantum systenj28,38. Quite probably Markov-

To conclude, if there were no restrictions placed upon anan, Bayesian, and perhaps other forms of feedback will all
experimenter’s processing ability or knowledge of relevanthave roles to play in the control of nonlinear quantum sys-
parameters then Bayesian feedback would be optimal btems.
definition. Moreover, we have shown that in most parameter

regimes, it does strictly better than Markovian feedback in

stabilizing the state of a two-level atom. However, for non-
linear systemgsuch as the atomBayesian feedback would
be far more difficult to implement that Markovian feedback.
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