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We develop and experimentally verify a theory of type Il spontaneous parametric down-conv&RDO

in media with inhomogeneous distributions of second-order nonlinearity. As a special case, we explore inter-
ference effects from SPDC generated in a cascade of two bulk crystals separated by an air gap. The polariza-
tion quantum-interference pattern is found to vary strongly with the spacing between the two crystals. This is
found to be a cooperative effect due to two mechanisms: the chromatic dispersion of the medium separating the
crystals and spatiotemporal effects that arise from the inclusion of transverse wave vectors. These effects
provide two concomitant avenues for controlling the quantum state generated in SPDC. We expect these results
to be of interest for the development of quantum technologies and the generation of SPDC in periodically
varying nonlinear materials.
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I. INTRODUCTION mentary case of an inhomogeneous medium, two bulk crys-
tals separated by a linear medium such as an air gap. In this
Spontaneous parametric down-converi8RDQ [1] has  configuration, a host of interesting effects emerge, such as

now come into widespread use as a simple and robust souré@e modulation of interference visibility with crystal separa-

of entangled photon pairs. Uses for these pairs range froffion. This effect and others are theoretically predicted and

the examination of quantum-mechanical foundatifds4], ~ €XPerimentally verified in this paper. .
. . . The promise of a source whose degree of entanglement is
to applications in optical measuremenits], spectroscopy o

! . ) , ntrollable in frequencies and wave vectors by turning a
[6], imaging[7], and quantum informatiofi8,9]. As such, gingle knob is clearly alluring for purposes of quantum-

there has been considerable interest in greater optimizatiqRformation processing. The results reported in this paper are
and control of the exotic two-photon states available froma|so likely to be of use in guiding future developments in
SPDC, particularly when pumped by ultrafast pul$#8—  quantum-state synthesis involving multicrystal configura-
12]. Additionally, much work has recently been focused ontions [13-19, in ultrafast-pumped parametric down-
the use of cascaded nonlinear crysfal3—1§ to manipulate  conversior[10,11], and periodically poled materiaj20,21].

and improve the generation of the two-photon state.

The photon pairs from type Il SPDC are generated in a
quantum state that can be entangled in frequency, wave vec- Our theory considers a quantum state that can be concur-
tor, and polarization. In recent work&2], we have demon- rently entangled in polarization, frequency, and transverse
strated the utility of a model that considers entanglement invave vector, so as to be valid for an arbitrary optical system.
these parameters concurrently. It was shown that quantunfs we shall see, the longitudinal distribution of nonlinearity
interference patterns were altered predictably by controllingorovides a powerful means for controlling the structure of
the range of transverse wave vectors selected by the optic#ie two-photon quantum state generated in SPDC. As an im-
system. In this paper, we extend this formalism and investiPortant special case, we consider the simple example of
gate interference from SPDC generated in media with inhoSPDC generation in a cascade of two bulk crystals separated
mogeneous longitudinal distributions of nonlinearity. Theby @ linear medium. We then describe the quantum interfer-
state function of the photon pair generated in SPDC is comence between the two photons of the SPDC pair as they
pletely characterized by three functions: the spectral profil®Propagate through an arbitrary linear optical system. This
of the pump, the longitudinal distribution of nonlinear sus-formalism allows the quantum interference to be analyzed in
ceptibility, and the dispersion in the generation medium. Inthe absence of spectral filters and reduces to the convention-
principle, one could arbitrarily weight the spatiotemporalally established single-mode theory in the small-aperture
distribution of signal and idler modes by a judicious choicelimit, unless very thick crystals are used.
of these three functions. This, in return, introduces new av-
enues of control. To demonstrate this, we consider a rudi-

Il. THEORY

A. State generation in inhomogeneous media

For the sake of simplicity, we consider media where ef-

fects from third- and higher-order susceptibilities are weak

*Also at Istituto Elettrotecnico Nazionale G. Ferraris, Strada delleand can be neglected. By virtue of the relatively weak inter-
Cacce 91, 1-10153 Torino, Italy. action in the nonlinear crystal, we consider the two-photon
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state generated within the confines of first-order time-<for a uniformly dispersive medium. For example, a single
dependent perturbation theory. The two-photon state at thieulk crystal of thicknes& and constant nonlinearity, has a
output of the nonlinear medium is found in the interactionnonlinear susceptibility profile X(Z)(z):)(orecg_,_'()](z)

picture to be[12] where regt_| g(z)=1 if —L=<z=<0 and zero otherwise. In
this case, the inverse Fourier transform of the nonlinearity
|\P(2)>OCJ' dgodgedw,dw P (g, e 0g, ) profile becomes
~ o [LAY
SEUCRPREUERIIS & V)= ok sind 5 e 192 @

where the state function where sinck)=sin()/x. For a monochromatic plane wave

pump with a central frequenwg, Ep(qp;wp) in Eq. (6) is

proportional tos(gy+ ge) S(we+ we— wg) and the state func-

Xf A2y ?)(2) €2 G0 Geiv0 007 (2) tion & for SPDC reduces tg?[A(q, —q; 0, 0p— w)]. Fig-
ure 1(a) shows the absolute square of the state function in

2)/n o _ _ Eq.(7), the familiar siné(LA/2) distribution of SPDC from
HereX( )(z) is the distribution of second-order nonlinearity 5 single bulk crystal.

along the longitudinal axisEp(qp;wp) is the complex-
amplitude profile of the pump field); (j =p,0,e) is the trans- 1. Periodic nonlinearity
verse component of the wave veckgrin the medium, and
is the wave vector mismatch function,

(0o, Ge; W, We) = Ep(Uot Ue; 0o+ we)

We now consider a medium of thickndssvith a periodic
distribution of nonlinear susceptibility(?(z) = x®(z+ A)
. _ within the medium. Such materials are widely used in clas-
= + +
A(Go.Gei 0o, o) = K ot we,GoT Ge) sical nonlinear optic§20] and have recently been employed
— ko @o,00) — Ke(e,Ge),  (3)  for generation of SPDC21]. We may write

which depends on the dispersiveness of the medium. In this X'2(2)=x09(2) rect_ o(2), (8)

equation, the longitudinal projectio j=p,0,e) are re- ) ) )

Ia?ed to the indicegso(j ;) \E)iaj ng (J=p.0.e) whereg(z) can be expressed in the Fourier series
|

o)

Kj(wj1qj):\/kj(wj=qj)_|qj|27 (4) 9(z)= Z G, e'Km? )

wherew,= w,+ we andg,=q,+de. Here the wave number
kjE|kj|:n[wj ,0(d;) Jwj /c, wherec is the speed of light in W_ith Kn=2m7m/A. The Fourier Transform of Ed8) is then
vacuum,¢ is the angle betweeky, and the optical axis of the given by
nonlinear crystal, anth(w; ,6) is the index of refraction in

the nonlinear medium. Note that the symingkw, 6) repre-
sents the extraordinary refractive index w, #) when calcu- @ o
lating « for extraordinary waves, and the ordinary refractive (a) X g
index ny(w) for ordinary waves. =]
Note from Eq.(2) that the state function is completely L
characterized by the spectral profile of the pump, the longi-
tudinal distribution of nonlinear susceptibility, and the dis- WAVE VECTOR MISMATCH A
persion in the generation medium. All three of these param- A
eters may be controlled experimentally, and all three present e €%
avenues for controlling the structure of the two-photon quan- (b) X(z (2) o ~A1
tum state. g
For a medium with an inhomogeneous distribution of ‘ . -
nonlinear susceptibility along the longitudinal axis, it is con- L
venient to define
WAVE VECTOR MISMATCH A
X(z)(z):f dg“)‘((z)(g)efigz, (5) F!G. 1. Control over the nonlinearity profile of the generation
medium allows control over the SPDC state functib(A). In the
~ case of a monochromatic plane wave purdi{A) is simply the
where x(2)(¢) is the inverse Fourier transform of?X(z).  inverse Fourier transform of the nonlinearity profié?(z). The
Substitution into Eq(2) then gives upper figure shows a sketch b(A)|? for type Il SPDC from a
single bulk crystal of thicknedls. The lower figure shows a sketch
D(do,0e; o, we) of |®(A)|? for SPDC from a crystal with sinusoidally varying non-
- ~ linearity. In principle, any weighting profile of the signal and idler
=Ep(dotde wot 0e) X[ A (o, le; w0, )] (6) photons can be obtained by a judicious choice of crystal structure.
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We now consider the particular case of a cascade of two
e [(L2(ATKy) bulk crystals of the same materidee Fig. 2a)] separated
by a linear but dispersive medium. The explicit form of the
(10 nonlinearity is given by

- - (L
XPB)=xok 2 Gmsmc{E(AJr Km)

For example, let us consider the case of a sinusoidal distri-

@) (z)=
bution of nonlinear susceptibility with periodl, for which X (2)=Xo reCE*L1~°l(Z+d+ La)+exo reCE*szol(z)’

(15
2
xX?(2)=xo CO{TZ) rect_. g(2), (1)  wheree=+1 if the optical axes of the two crystals are par-
allel ande= —1 if the optical axes are antiparallel. For such
which yields a configuration
~ LA . ,
}(2)(A)=X0L{sin{% A+ ZA_T’ e i(LI2)(A+2m/A) X(Z)(A)=X0[ Llsinc(%) e i(L1A2)gi(LpA+dA")
L,A .
+sinc{%( A— ZA—W> e-i<L/2><A-2ﬂ’A>]. (12) + eLzsinc{% e'(LZA’Z)]. (16)

In this case, we obtain phase-matching conditions similar ta’he absolute square of the state function of SPDC in this
the first-order quasi-phase matchi@PM) observed in pe- configuration is given in Fig. @), where the envelope is
riodically poled nonlinear crystals. The extra componentgoverned solely by the dispersion in the nonlinear crystals.
+2m/A above is analogous to the grating vector in first-The period of the modulation inside this envelope is deter-
order QPM. Figure () shows the absolute square of the mined primarily by the dispersion in the linear medium be-
state function of the down-converted light obtained from atween the crystals, while the amplitude of this modulation is
single crystal with the nonlinearity profile given in Ed.J1). determined by the ratio of the crystal thicknesses. Figure
2(b) shows the absolute square of the state function in the
2. Cascaded bulk crystals separated by linear media special case of two bulk crystals of the same material with
A simple example of a medium with an inhomogeneousthe same thickness. In this condition _th_e amplitude of the
distribution of nonlinearity is a cascade of multiple bulk Modulation inside the envelope is maximized.
crystals separated by linear dielectrics. Consider, for ex-
ample, a cascade df bulk crystals separated by—1 linear B. Two-photon amplitude and fourth-order correlation

media. Let each nonlinear crysfahave thickness;, con- We now consider the propagation of the down-converted
stant nonlinearityxo,, and separation distanag from the  |ignt through an arbitrary linear optical system to a pair of
previous crystal. The overall nonlinear susceptibility of thisdetectors, as illustrated in Fig. 3. The joint probability am-

system is then given by plitude of detecting the photon pair at the space-time coordi-
N N nates K, ,ta) and (g,tg) is given by
X(z)(z):jgl GjXOJ- reCE,Lj‘O] Z+k;'_1 (dk+ Lk) , d
(13) >
. L . 2 S
where the terms of the summation inside the rect function are (@) X X <
taken to be zero ik>N. Heree= *=1 represents the sign of 2
the quadratic susceptibility, which depends on the orientation 'L1 ’ ‘[:
of the optical axis of thgth crystal. Note that in this equa-
tion, thez=0 point is placed at the output plane of the last WAVE VECTOR MISMATCH A
crystal. In such a configuration, the functigt?’(A) in Eq. <ﬂ,
(6) becomes
@ @ o
N (b) X7 |X 3
YA(A)=Y €xo Lisin LJ_AJ -1
X = iXo; b 2 T T
N
e (LA ayd —i LeActdiAD) |, WAVE VECTOR MISMATCH A
k:]ZH (LAt deAy)

FIG. 2. Impact of generation-medium symmetry on the weight-
(14 ing profile of SPDC pumped by a monochromatic plane wave. The
upper figure show$d(A)|? for SPDC from two bulk crystals of
where the wave vector mismatch functidn is independent  unequal thickness separated by dispersive linear medium. The lower
of zandA’. As seen from Eq(3), A" depends on the dis- figure showgd(A)|? for SPDC generated by a cascade of two bulk
persiveness of the linear mediJv]. crystals of equal thickness.
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With current technology, quantum interferometry is per-
formed using slow detectors that cannot resolve signals on
the characteristic time scale of down-conversithe inverse
X2 f., of down-conversion bandwidthwhich is typically less than
2 ; oo 6 X 1 ps. In addition, the detectors used in our experiments have
U Iy (X, Qi ) |59 B a large active area compared to the width of the SPDC beams
at the detection planes. Under these conditions, the coinci-
dence count rat® is readily expressed in terms of the two-
FIG. 3. Propagation of the signal and idler photons throughphoton detection probability amplitud® by integrating the
arbitrary linear optical systemi,; and Hg;. fourth-order correlation functio®®)(x, ,ts ;Xg,tg) over all
space and time,

oy O 0

A(Xa taiXs te) =(0|ES" (Xa ta) EG(xg ,te) [ W 2),
(17) R= f thdthXAdXB|A(XA,tA;XB,tB)|2. (22)
whereE{"”) andE(" are the positive-frequency components
of the electric fields at points A and B. The explicit forms of  This expression for the count rate can be separated into
the quantum fields present at the detection locations ar®vo terms as

iven b
’ / R=Ro+ Rint, (23

E(A+)(XAvtA):j=2eo f dgdwe "' Hy (Xa .0 0)a;(0, ), where the baseline term is

2 i ~ Ro= | dw'dw dqudgedq,dge®(0y,ge;w, @’
E§3+)(XB!tB):, fdqdwe_""tBHBj(XB,q;w)aj(q,w), 0 f o 0w 0(gy0dgeaq,dge (qo O 0, @ )
j=e,0
(18) X®*(0g,Ge; @,@")[Spp(do:dero +Ge ; @, ")
where the transfer functioft;; (i=A,B and j=e,0) de- +Spa(0o.0edp e ; @, @) ] (24)

scribes the propagation of a modg ) through the optical ) )
system from the output plane of the nonlinear medium to thénd the interference term is
detection plane. Substitution of Egdl) and (18) into Eq.

(17) yields a general form for the two-photon detection prob- R — zRef do’dw dg,dg.dg,dgeP(qo,0e; 0", @)
ability amplitude,

A(Xa 1A Xg ,tg) =Ano ge( Xt XB , tB) X ®*(Go,Ge; @, @")Sag(Ge,dor o de s @, ").

2
+ Ago ad Xa »ta 1 Xg,1B), (19 (25)

o . . . In Egs.(24) and(25) the state functiomb weights the signal
where the probability amplitudé,o g for finding the signal and idler modes in the process of generation, while the func-

photon in arm A and the idler photon in arm B is defined Sion Sas Weights these modes in the process of propagation

through the optical system. Explicitly,
AAo,Be(XA A X atB):j dg,dgedodwe . ,
SAB(qovqevqoaqe;wyw )

:<HX0(XA vq(,) @) Hao(Xa 1 0o; w)>xA

X<H§e(XBvqé;w,)HBe(XBvqe;w’»va (26)

x q)(qo vqe; (1)0 ywe)eii(wotAeretB)

X Hao(Xa 0o @o) Hae(Xa 106 @e)

(20)
and Ag, adXa,ta:Xs,tg) is obtained by exchanging the in- where<.>xi indicates integration over the total detector area.
dices A—B. Note from Eqs.(19) and (20) that the two-photon detec-
The joint probability density for detection of the signal tion probability amplitude is completely specified Bi; (i
and idler photons at space-time points (t,) and (xg,tg) is =A.B andj=0,e),(q,,0e; o, we), and the physical loca-
given by the fourth-order correlation function, given by thetion of detectors A and B. As we have seen in &), we
absolute square of E419), may control the structure of the state functidnby a judi-
cious choice of the pump spectral profile, the longitudinal
G (Xp ,ta:Xp,tp) distribution of nonlinearity, and the dispersion in the crystal.

—IA _ 24 1A _ ,  We may further control the two-photon detection amplitude,
=|Ano e Xa s ta ;X te)|*+ | Ago ad Xa s ta X o) | and hence the quantum-interference pattern, through the

+2 REA% gl Xa ta X tp) choice of the optical system. Note that states WI'Fh different
state functions can lead to the same quantum-interference
X Ago ad(Xa »ta 1 Xg,te)]. (22 pattern through an appropriate design of the optical system.
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In the experimentally relevant case of a monochromatidor r=(1,2) is the probability amplitude of finding the

plane wave pump field, Eq$24) and(25) become
Ro=f dwfdqdq’}(z’*[A(q’,—q’;w,wS—w)]

XXP[A(G,— g 0,05- ) [Srs(4,0"; 0)

+85a(9,9";0)] (27)
and
Rin=2Re| dqdq'x*[A(q',~q';0p— 0,0)]
XXP[A(, 00,0~ ©)1Sas(0, — 0’5 ),
(28)
where we use the shorthand
Sap(0,0';0)=Sp5(0,~0,0',— ;0,09 —w).  (29)

o-polarized photon generated in thil crystal in arm A and
the e-polarized photon from theh crystal in arm B. From

AX(%,Be(XA Xgit)= f dvdq e—ivt}EZ)(q' v)

XHpo(Xa:0,v)Hee(Xg; — 0, — v),
(31

where the angular frequency= w—wS/Z is the deviation
from the central frequency;glz, t=t,—tg is the time dif-

ference between detection events, afé(q,v) is the in-
verse Fourier transform of the nonlinearity profile of ttth
crystal. A§) ae is likewise obtained by a suitable exchange of
the indices. Note that we have omitted an overall phase fac-
tor exp[—iwg(tAHB)/Z] that appears outside the integral in
Eqg. (31), since in experimental practice we are interested
only in the absolute squaté(xa ,ta;Xg,tg)|% So this factor

Thus we see that for a monochromatic plane wave pump, thdoes not introduce any relative phase between the terms of
quantum-interference pattern is critically dependent on th&d: (19).

form of Y?(A), which we are free to choose as a design

parametef20]. In principle, the only limitation on the class
of amplitudesA which we are able to prepare with this
method is the restriction that the optical system is linear.

C. Quantum interference with a cascaded pair of bulk crystals

As we are considering bulk crystals, the nonlinearity pro-
file of each crystafl is uniform, and thus

30 =xoQu(a) [ dzrect (21
(32

We now apply the above formalism to the case of twowhere
cascaded bulk crystals separated by a dispersive but linear

dielectric medium such as an air gap. For simplicity, we

Q,(q,v)=e 12" (@ +L285(a 1] (33

again consider the medium to be pumped by a monochro-

matic plane wave. Owing to the structure of the nonlinearity.

for this particular cas¢Eq. (15)], the overall two-photon
detection probability amplitude is the sum of the two ampli-
tudes associated with each single cryfidl,1§. Each of the
amplitudes in Eq(19) can then be written as

Ano,BeXa ta;Xg tp) =A(Alo),Be(XA A Xs,te)
+ €A g Xa ta i Xe te), (30)

wheree=*1 as in Eq.(15), and a similar expression for
Ago e is Obtained by exchanging the indices-A B. AY) g,

is the transfer function for propagation of the sigriat
polarized and idler(e-polarizedl fields generated in the first
crystal through the linear dispersive medium of thicknéss
and thence through the second crystal of thickies®lter-
natively, Q,(q,») may be thought of as the phase accumu-
lated in the shift of the rect function for the first crystal by a
distance—(L,+d). As given in Eq.(3), A, is the wave
vector mismatch function due to dispersion in tile crystal
andA’ is the wave vector mismatch function due to disper-
sion in the linear medium. The symbé} ; represents the
Kronecker delta wheré,; ;=1 andé§,;=0.

RELATIVE  BEAM
LENS DETECTION
L, ) L, oELAYT  spuTTER Pal(X) BLANE
|_: > |e d1—>]}<-d2 f—>i
|_ Hy —d1 : FIG. 4. Schematic representation of a polar-
N POLARIZER ization interferometer for which we compute
Ps(X) APERTURES guantum-interference patterns. In this illustration,
collinear SPDC is generated in two bulk crystals
LENS . : )
of arbitrary thickness separated by an air gap.
POLARIZER

DETECTION PLANE
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1. Coincidence detection gent quartz plate of variable thickness, modeled by the
Taking the absolute square of EGO) gives interference Propagation function expq(q,»)!.], where the longitudinal
between the probability amplitudes of finding a pair gener-Projectionsx; of the signal and idler wave vectors are de-
ated in the first crystal and finding a pair generated in thdined in Ed.(4) andl is the thickness of the birefringent
second crystal. Indeed, substitution of EG®) and(30) into  Plate, which induces a relative optical-path detay This

Eq. (22) gives the coincidence count rate as a sum of thre@ropagation function, while here used to describe the delay
contributions line, is technically a valid transfer function for any nonab-

sorbing dispersive optical element.
R=R®+ R+ R(12), (34) For configurations in which Eq(36) is applicable, with
the help of Eqs(27) and (28) the overall coincidence-count

where the first two terms are the coincidence-count rates fofate R(7) is derived in Appendix A. This rate can be cast in
single-crystal SPDC, and the last term arises as interferengge convenient form

between the two single-crystal amplitudes. Recalling Eq.
(23), each term in Eq(34) can in turn be broken down into R(7)=Rg[1+vpaV(7)]. (37)

baseline and interference terms _ . o
HereR, is the baseline coincidence-count rate and the over-

RM=RM+ RN (350 all projection of both photon polarizations onto the basis of

the polarization analyzers is given by the factor
whereh=1,2,12.

We now use this theory to prediqt ql.Jantum-int'erference Hno,BelBo Ae
patterns in the interferometer shown in Fig. 4. In this system, Upol= Zﬁ
the transfer function;; is separable into diffraction- M po,Be™ HBo,Ae
dependent and diffraction-independent factors as

: (39

wherewi; jm="7;Tim (i,I=A,B andj,m=e,0) is the projec-
Hij (%36, v) =Hi(x;;q,v) T, €@, (36)  tion of the polarization of theth photon onto thgth basis
polarization and the polarization of théh photon onto the
where the polarization-independent components are groupedth basis polarization. Observe that thelependence of the
into H; and the remainder are grouped iﬁ(@ei «(@»l: |n  quantum interference pattern is then contained solely in the
this case,7;=(g-¢g) is the projection of the unit photon visibility function V(7).

polarization vectoe; (j=o0,e) onto the axis of the polariza- In the experiments presented in this paper, the two crys-
tion analyzer in front of detectdr=(A,B), and the exponen- tals are of the same material and have equal thickndsses
tial factor is the transfer function of the delay line. The apertures are symmetric for both transverse directions,

The delay line, which is often treated as a simple phas@nd the analyzers are set 45° from the optical axisy g9
shift, is a dispersive optical element that may alter the spatiar —1. No spectral filters are used. Under these conditions,
and/or the spectral profile of the two-photon probability am-the explicit form of the visibility function in Eq(37) be-
plitude. Experimentally, the delay line consists of a birefrin-comes

V(r)= fdzH m (27 o ) (2. T fdzn m (2 @ 2. 7
(T)_l+p2 LTI D ‘-2 g o)t e LI D Z g )
p 27 z 1 =\
] — (12)| — T idA
+2el+p2f dzHL(z)HL(D L z)R{g SHSiT )e , (39)

whereG (™ is defined in Appendix Bp=(d;+d)/d;, II, (z)  shoulder modulation with-, an important indication of the
is the unit rect function fromO,L ], andD=ug1—u;1 isthe  purity of the polarization Bell state that is formed in post-
dispersion coefficient of the nonlinear medium. It is throughselection. In the case where the two crystals have equal
the G-functions that spatiotemporal effects enter the quantunthickness, the strongest interference occurs at detayD.
interference pattern. Details on the derivation of 89) can  The visibility at this point is given by
be found in Appendix B.

The collective interference term in E9) shows inter-
esting behavior in certain limits of crystal separation. If the _ p (! 12)/ 5.
optical axes of the two crystals are parallel, the coincidence- V(LD)_261+p2JO dfREGEHED],
count rate reduces to that from a single crystal of thickness
2L asd—0. Further, it reduces to that from a single crystal
of thicknessL as d—«. We also note the absence of any where{=2z/L is a convenient dimensionless variable.

(40)
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2. Small-aperture approximation the distanced between crystals is changed, the visibility in

In the limit of very small apertures, no transverse wavetiS région modulates sinusoidally betweer . As the delay

vectors are allowed to propagate through the interferometefS increased still further into the regionL®/2<7<2LD,

and in the case of sufficiently thin bulk crystals and smallthe white boxes overlagshown as light graybut the gray

separation distances, the quantum interference is effectiveQN€S do not, and we again return to the regime of single-

described by the conventionally used single-mode theory'yStal interference. In this way we can trace out the inter-

[18,22. ference dip predlcte_d by Ecﬁ_39). This is |IIu_strated in the
Figure 5 is a sketch illustrating how quantum interferencdS€t at the lower right while representative experimental

arises in the interferometer of Fig. 4 assuming two identicaf@t@ are shown in the upper left inset. Figure 6 is similar to
crystals of thicknesd ;=L,=L, dispersion coefficienDd, F19- 5, but for the case of unequal crystal thicknesses

parallel optical axes, and both polarization analyzers set td Lo ) ) ) ) )
45°. In the limit of sufficiently small apertures, we may ap- N this small-aperture approximation, the dispersion-
ply the conventional single-mode thed®2] and write the relatedg-functlons in I_Eq.(39) for the cases of paralle{b}
third term in Eq.(21) as the product of two probability am- and ant.|parallel(a) optical axes atr/LD=1 are found in
plitudesA(ta—tg) andA* (—t,+tg), which slide back and APpendix B to be
forth across thé, —tg axis as the relative optical-path delay
7 is varied. In the diagonal portion of the illustration, these
amplitudes are depicted by two gray-and-white rectanglesg(lz)( g'l)zexpl’
When the delay is set such that the two rectangles overlap,” ’
interference can be seen.

Within each rectangle, the white box represents the prob-
ability amplitude for detecting a photon pair produced in theand
first crystal, while the gray box represents the detection am-
plitude for a pair produced in the second. As the delay is set
in the region G< 7<LD/2, the gray boxes overlaghown as (12); 5.4\ _
black but the white boxes do not. In this regime, interfer- %a ~(&;1)=€xp —i——¢
ence typical of a single crystal of thicknesk & observed.
As the delay is increased into the regib®/2< r<3LD/2,
the photon pairs produced in the first crystal become indisyhere ko=2m/\, and |M|:(0’)/0’)08)|n[ne(wg/2,0p)] is the
tinguishable from the photon pairs produced in the secondpatial walk-off vectof23).
crystal at the detection planes. As such, the probability am-" \when a plane wave pump is normally incident on thin
plitudes of detecting photon pairs produced in each crystadrystals and the apertures are sufficiently small, the strictly
exhibit collective interference. This is seen pictorially by the cqjjinear signal and idler beams are selected by the optical
overlap of the gray boxes with the white boxes. Note that théystem, and no spatial effects due to transverse wave vectors
two rectangles overlap completely a&=LD, the center of  can be observed. In this limit the dominant contribution to
the region of interference. The interference visibility in this the phase between probability amplitudes arises from disper-
region depends on the phase shift between these two ampljon in the linear medium between the crysfaise Eqs(41)

tudes, which is in turn dependent on spatial effects and thgnd(42)]. For degenerate SPDC this phase term in di2#
dispersion in the linear medium separating the crystals. As

ko MLI2[(¢=1)%  (£+1)?
'8 d,  dy+d

(41)

d,  d,+d

2[(7/— 102 (£—1)2
koML [(5 1) (£-1) @2

i r=o|:-j dgisgd)=dA" =k [n(Ap)—n(2\,)] d~70.058 [mm],
A'Cta+ty) T Aty -ty) (43
IS al =
= 7=0 (W]
T=LD AR x0_
A ( tA+tB) E.] A(tA'tB)
g W]
;) T — T=LD A R
= ' T
A™'B 0 7T— = X
FIG. 5. Sketch illustrating a heuristic approach to calculating T=2LD
quantum interference in the single-mode limit for two bulk crystals ty-ty L /
of the same material and thickness separated by a linear dielectric. 0 7T —

The results are coincidence rates as shown in the bottom right inset.
The coincidence-rate data in the upper left inset are from represen- FIG. 6. A figure analogous to Fig. 5 for the case of two bulk
tative experiments. Details are provided in the text. crystals of unequal thickness.
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where we have taken,=351.1 nm in keeping with our are set so thab ,,=—1 [see Eq.(37)]. In this case, the

experiments. minus sign in Eq(47) arises from a sign difference between
However, when long crystals are used, or the separatiothe quadratic susceptibilities of the two crystals, and hence a

distance between the two crystals becomes large, some spgqn difference between the spatial walkoff vectts and

tial effects due to transverse wave vectors become obserys. |n effect, the spatial walkoff in one crystal compensates

able. The visibility at the center of the region of mterferen.cefOr the spatial walkoff in the other, and the spatial effects due

7=LD [Eq. (40] for the case of parallel optical axes is to transverse wave vectors are cancelled out. Exploitation of

given by this effect is common in the design of optical parametric
illators.
dy(d;+d) (1 S{ Ko/ ML|2 oscl
V(LD)=2——""— 1+ )—
P 2 2 2(d;+d 4d
di+(dy+d)=Jo (dy+d) ! 3. Multiparameter formalism: Spatial effects
—¢ 1+ i + by p(d)] (44) The quantum state generated from SPDC, which is con-
2d, dis ’ currently entangled in frequency and transverse wave vector,

. . ) . leads to transverse spatial effects that can be observed in
while for the case of antiparallel optical axes, it is given byquantum interference. As the aperture diameters are in-

creased or the apertures are brought closer to the output

2
V4 LD)=— _du(dytd) (2 S{M i( —1)2 plane of the nonlinear medium, a greater range of wave vec-
d?+(d,+d)?Jo 2(d;+d) dy tors is allowed to propagate through to the detectors. These
transverse wave vectors introduce distinguishability between
+ i p(d)} (45) the signal and idler photons, thus reducing the visibility of
'S ' the observed quantum interference. This is analogous to the

) temporal distinguishability introduced by the use of a
Furthermore, for small separatiod<-0) between the femtosecond-pulsed pump.

two crystals with parallel optical axes, E@0) becomes Equation(39) is valid for any linear optical system. How-
K ever, to enable swift evaluation of the integrals in this equa-
V,(LD)= sinc(—p|M L|2) (46)  tion we approximate the circular apertures used in the experi-
2d; ments by “soft” Gaussian apertures of €)/widthsr, and

rg. A sharp circular aperture, of the type used in experi-
ﬁwents, has a diffraction pattern described by a first-order
Bessel function, whereas a Gaussian aperture, of the type
used in the numerical simulations, has a Gaussian diffraction
pattern. Despite this fundamental difference, it is a fair ap-
proximation if the widthr of the Gaussian is selected to
roughly fit the widthb of the Bessel function. In our calcu-
lations, this is done by choosing=b/24/2. This approxima-
tion offers an indispensable advantage, as it allows us to
evaluate thgj functions analytically(see Appendix Cand
thereby reduce the demand for numerical integration in mak-
V4 LD)=—1, (47  ing theoretical predictions. Under this approximation, an ex-
pression for the visibility function at7{=LD) for parallel
which means that the coincidence-count rate is twice as highrientations of the optical axes is given [see Appendix C
at the center as it is on the shoulders, assuming the analyzeasd Eq.(26)]

theory. Note that this visibility is identical to that of a single
crystal of thickness R as was shown in previous works2].
Applying parameter values typical of our experiments, we
find that ifd;=1 m, A\,=351.1 nm, andM|=0.07, then
V,p~sinc(0.044 mn?). For these conditions, therefore, an
observable deviation d¥, from unity can be realized only
for sufficiently large crystal thicknesses.

In the case of antiparallel optical axes, the visibility at the
center of the region of interference is

dy(d;+d) 1
d2+(dy+d)? V1+92

Vy(LD)=2 f dge B9 20011 cog Cr2+ DY+ E- ,(d) + e )], (48)
0

where _ {kp|M|Lr "1 (1+ d )2 (50)
kor? d LA+ d)] 1442 2d, )
y=—-"t—— ¢ (d)=—arctariy), (49
4d, dy+d’ © kMLI* d 1

= - : (51
n 2
andr?=(r2+r3)/2. Here 8(dy+d) dy 1+
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kel ML|? d d koMLt
p 1 p
=1+ —|—, 52 V(LD)=—2 erf . 56
20,70 | 120,/ 17 2 2 D= e e, |0 ©°
2
_ kp|M L| 1_472d1+d 1 (53) Note that these visibilities depend on the aperture diameter,
8(d;+d)\d; d 1+ 72' as well as the crystal thicknegas was seen in the preceding

section), and are once more markedly different frowh

Figure 7 presents a plot of the modulus\gf(LD) given in =V,=1 as predicted by the single-mode theory. Equations
Eq. (48) as a function of the crystal separatidfior aperture (55 and(56) are plotted in Fig. 8 as a function of Gaussian
diameterdb=2.5 mm, 4.0 mm, and 5.0 mm. Solid, shaded,aperture widthr for three different crystal thicknessds
and open circles denote the maxima of visibility and corre-=0.5 mm, 1.5 mm, and 5.0 mm. As predicted, the plot of
spond to 2.5 mm, 4.0 mm, and 5.0 mm aperture diameterghe visibility obtained with a parallel orientation of the crys-
respectively. For this plot, L=0.5 mm, \,=2w/k, tal axes(solid) reduces faster than the visibility for an anti-
=351.1 nm, andM|=0.07 in keeping with our experi- parallel orientationdashegl
ments.

For antiparallel axes, the visibility function at=LD is

Ill. EXPERIMENT
V(LD)=—2 dy(d;+d) 1 A. Experimental arrangement
? d2+(dy+d)? V1492 The experimental arrangement is illustrated in Fig. 9. A
) 200 mW cw Ar"-ion laser operated at 351.1 nm served as
Xf dge*B(l’g)ZCos{E(l—g)z—¢y(d) the pump. This highly monochromatic laser beam was
0 passed sequentially through a cascaded pair of

B-barium-boratdBBO) crystals each with thickness 0.5 mm.
+ baisgd) ] (54 The thickness of the air gap between the crystals was varied
) from d=2 mm to 100 mm. The crystals were aligned to
For the case of tzwo crystals in contaa:g%O) we haveB  roquce pairs of orthogonally polarized photons in degener-
=2(kyM|Lr/4d,)*, C=0, D=—Kk|ML[%/2d;, and £=0. gz coliinear type Il spontaneous parametric down-
From Eqg. (48), we now observe that the visibility at .5 version (0= o? 3/2, wherew?, °, and w? repre-

0_ »
— H H I
=LD for parallel optical axes is sent the central frequencies of the signal, idler, and pump
K IMILF2 K fields, respectively The laser power was sufficiently low to
Vp(LD)=exp{—2 p| | r) }sin({—p ML 2), ensure, with high probabilit_y, that at most one .photon .pair
4d, 2d; was generated at a given time. The high visibility obtained
(55  from separate single-crystal quantum-interference experi-
. ) ments confirmed the validity of this assumption. A dichroic
while for antiparallel axes mirror, which transmits the 702-nm signal and idler beams
2.
APERTURE | g o 8 w0 PARALLEL
1.0 DIAMETER ;¢ 0 & : -~ ---- ANTIPARALLEL
RN N L=0.5mm
& O_B_C\ S o 1.5 mm
- — 5.0 mm
: N ;
E 0.6 - X
= -
2 041 2
= [11]
> 4]
0.2 1 >
0.0L : . : : , i
0 2 4 6 8 10 25
DISTANCE BETWEEN CRYSTALS d (cm) GAUSSIAN APERTURE WIDTH r (mm)
FIG. 7. Visibility |V(LD)| as a function of crystal separatiah FIG. 8. Visibility at 7=_LD for two identical crystals in contact

for the case of parallel optical axes. The curves are plots of48y. (d=0) as a function of the (&) width r of identical Gaussian
for aperture diameterb=2.5 mm, 4.0 mm, and 5.0 mm. Solid, apertures in each arm of the interferometer shown in Fig. 4. Solid
shaded, and open circles denote the maxima of visibility. The dis¢dotted curves correspond to parall¢antiparalle] optical axes.
tanced, (see Fig. 4is 750 mm. Note that the period of visibility Results for different crystal thicknessesare shown concurrently.
modulation as a function of crystal separatidreontracts for in-  The curves were generated with the parametys1l m, A,
creasing aperture diameter. =2m/k,=351.1 nm, andM|=0.07.
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A—{ cw LASER (351.1 nm) |

COINCIDENCE

BBO CIRCUIT

A Dg

d
L 2
BBO C——/1 é
POLARIZATION
ANALYZERS

7\\13 ﬂ/ 4

DICHROIC RELATIVE APERTURE BEAM
MIRROR DELAY 7 SPLITTER

FIG. 9. Experimental apparatus used to study
polarization interference in collinear SPDC from
two cascaded crystals separated by an air gap of
thicknessd. Details are found in the text.

while reflecting the 351-nm pump, was placed after the two In the lower portion of Fig. 10, we plot the visibility func-
crystals to remove residual pump laser beam. tion at the center of the interference regiM(LD) as de-
The relative optical-path delay was introduced using a fined in Eq.(40), as a function of the separati@ahbetween
z-cut birefringent crystalline-quartz plate of variable thick- the two 0.5-mm-thick BBO crystals. Each data point on the
ness. The range of transverse wave vectors for the dowrgraph was obtained by calculating the rati®y& Rin)/Rg
converted light was selected by circular apertures of diamwhere R, and R;,; are the coincidence-count rates on the
eters 2.5 mm to 5.0 mm. These apertures were positioned ahoulders {<0 and7>2LD) and at the center of the region
750 mm from the output plane of the second crystal. Theof interference ¢=LD), respectively. The shaded circles
single aperture used in the experimental setup is formallylot the visibility at 7=LD as a function of crystal separa-
equivalent to the use of two apertures of identical diametersion d when the optical axes of the two crystals are parallel.
in the interferometer of Fig. 4, as used for the theoreticalThe open circles correspond to the case of antiparallel optical
discussions of previous sections. The beams of downaxes. As anticipated by Eqet8) and(54), the modulation in
converted light were then directed to a nonpolarizing beanvisibility with crystal separation is sinusoidal. The-phase
splitter, and thence to the two arms of a polarization intensityshift between these two cases arises from the change in sign
interferometer. Each arm of the interferometer comprised af y(?) as the relative orientation of the optical axes is in-
Glan-Thompson polarization analyzer set at 45° with respecterted. The theoretical curveésolid) are plots of Eqs(48)
to the horizontal axis in the laboratory frame, establishing
the basis for the polarization measurements. This basis was © PARALLEL o ANTIPARALLEL
selected so as to permit observation of the quantum-
interference pattern as a function of the optical-path delay
Finally, a convex lengnot shown in Fig. ® was used to
reduce the beam size to be less than the area of the detector,
an actively quenched Peltier-cooled photon-counting ava-
lanche photodiode. No spectral filters were used in any of the
experiments. Coincidence detection was performed using a 3
nsec integration window and corrections for accidental coin-
cidences were not necessary.

»

i

o

1o
o

o
>

NORMALIZED COINCIDENCE RATE
NORMALIZED COINCIDENCE RATE

0 100 200 300 o 100 200 300
RELATIVE OPTICAL-PATH DELAY (fsec) RELATIVE OPTICAL-PATH DELAY (fsec)

B. Experimental results

First, we report quantum interference from crystals ori-
ented with parallel and antiparallel optical axes in the small-
aperture approximation. We demonstrate that the visibility at
7=LD varies sinusoidally with crystal separatidnSecond, . . . . ’
we investigate spatial effects on the visibilityat LD aris- 0 2 4 6 8 10 12
ing from the acceptance of a broader range of transverse DISTANCE BETWEEN CRYSTALS d (cm)
wave vectors as the aperture is opened.

FIG. 10. Visibility function at the center of the interference re-
1. Parallel and antiparallel optical axes gion, V(LD), as a function of crystal separatioln Symbols repre-
) ) ) ] ) sent data from paralle(shaded circles and antiparallel(open
In this section we investigate the quantum interferencircleg optical axes. Note that in our experimeMéLD)=1 cor-
pat'[erns from SPDC in two identical CryS'[a|S with para”el responds to an interference d|p' Wh\yéLD): -1 Corresponds to
and antiparallel optical axes. The details of the experimentadn interference peak. Insets at top are representative interference
setup can be found in the preceding section. The signal aqﬁbtterns at extremes ()Y(LD), taken withd=17.5 mm andd
idler fields were selected by a 2.5-mm circular aperture po=32.5 mm. Solid curves are plots of E¢48) and(54) for parallel
sitioned 750 mm after the second crystal. and antiparallel orientations, respectively.
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replaced with 4.0 mm and 5.0 mm circular apertures. The
apertures remained positioned 750 mm from the output plane
of the second crystal.

As with the single-crystal experiments, we found that in-
creasing the diameter of the aperture lowers the visibility of
the quantum interference patterns. This effect can be ex-
plained by considering the two independent mechanisms that
introduce phases between the two-photon probability ampli-
tudes for each crystall) dispersion in the air separating the
two crystals, which results in the phagg;s, [Eq. (43)], and
____________________ (2) the angular spread of down-converted light, which results
in the phasep,, [Eq. (49)]. Whereasp;s, is dependent on the

-1+ ’ ’ . y —0=5.0mm crystal separatiom, but independent of andd;, ¢, de-
0 2 4 6 8 10 12 14 pends on all three parameters. However, whkd,;>1,
DISTANCE BETWEEN CRYSTALS d (cm) ¢~ —arctank,r?/4d;). In this limit, ¢., is dependent om

andd,, but independent of the crystal separattb\s such,

rationd for three different aperture diameters in the case of parallefﬁy domln.ates Whﬁn thﬁ aperture IS SUﬁfl;?'?ml)l/ Iarge,"Whlle
optical axes. Solid curves are plots of E48). Solid, shaded, and d’disp dominates when the aperture is sufficiently small.

open circles are experimental data for aperture diameters ~ Figure 11 displays plots of the visibility function at

=2.5 mm, 4.0 mm, and 5.0 mm, respectively. The distahcesee —LD as a function of the crystal separatidnfor 2.5 mm
Fig. 4) is 750 mm. (top), 4.0 mm(middle), and 5.0 mm(bottom) aperture diam-

eters. The two crystals are oriented with parallel axes. Note
that for a fixed value ofl, there is a reduction of visibility for

the diameteb of the circular apertures divided by2, the increased aperture diameter. A reduction of visibility also
’ occurs as the distance between the crystals is increased.

width at 18), set to satisty g/ir:2.5 mm. The agreement Moreover, the period of oscillation contracts slightly as the
of the theoretical curves with the experimental data demon: : P
- : .~~~ aperture diameter is increased.
strates the validity of the Gaussian-aperture approximation.
The remaining experimental parameters for this plotdre
=750 mm,\,=27/k,=351.1 nm, andM|=0.07. IV. CONCLUSION
In the top left inset of Fig. 10, we show a representative

example of quantum-interference patterns in which the vis- .\r/lv,e r?ave developedq a'éhe'ory Off typer I SPD%:” énedla
ibility function V,(LD) for crystals with parallel optical axes with inhomogeneous distributions of nonlinearity. The down-
is either minimum or maximum. In the pattern exhibiting aconverted light can be_concurrently entangled in frequency,
peak(minimum), the crystals were 17.5 mm apart, while in wave vector, and polarization. We have shown that the state

the pattern exhibiting a digmaximum the crystals were function of the down-converted light can be controlled by

37.5 mm apart. Each data point presented on the visibilit)fies'gr; of tc?e nonlmleant)f/_lproffnehm the cry:t?(lj, a: well as tg.e
graph(lower inse} is extracted from such interference pat- spatial and spectral profile of the pump field. As one rudi-

terns. In the figure at the top right, where the two crystals ar&'€ntary design, we have considered the case of two nonlin-

oriented with antiparallel optical axes, the opposite is true€2! Crystals separated by a linear dispersive medium. We

the pattern exhibiting a digmaximun) corresponds to a anticipate that even greater control can be identified and ex-

17.5-mm crystal separation, while the pattern exhibiting loited when other distributions of nonlinearity are em-
peak(minimum) corresponds to a 37.5-mm separation. NotePloyed. . . . .

from Eq.(38) that when both polarization analyzers are setto,_ | € Multiparameter formalism of SPDC in quantum inter-
45°, the polarization projection factopy=— 1. Thus, from ferometry[12] has been extended to incorporate the longitu-

Eq. (37), positive values o¥/(LD) correspond to a quantum Q|tnalf nonhneargy profile %f thetmed_![gml.l Tc:‘e qu;ntur?r-]
interference dip while negative values correspond to a quar"eerence patérn was shown to critically depend on the

tum interference peak. Orienting the crystals with antiparal—Speclflc design of the nonlinearity profile. We studied the
lel optical axes produces a sign difference between th&2S€ of a cascaded pair of bulk crystals and experimentally
second-order nonlinearities of the two crystals, so this converified the theoretical predictions. We have demonstrated

dition is again reversed. that the quantum interference is sensjtive to the rr_ledium be-
tween the crystals, as well as the design of the optical system

for the down-converted light. In particular, collective inter-
ference effects were seen between the two probability ampli-
In previous work with single-crystal SPDCL12], we tudes corresponding to detection of a photon pair generated

found that the acceptance of transverse wave vectors had either crystal. The visibility of this collective interference
substantial effects on quantum-interference patterns. To irbetween the two amplitudes depends on a relative phase,

vestigate spatiotemporal effects in dual-crystal SPDC, wevhich is a function of the dispersion in the linear medium
carried out identical experiments to those detailed in the preand the acceptance angle of the optical system. In the small-
ceding section, except that the 2.5 mm circular aperture wagperture approximation, we can continuously sweep the

FIG. 11. Visibility functionV(LD) as a function of crystal sepa-

and(54) assuming a Gaussian aperture of widildefined as

2. Spatiotemporal effects
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quantum-interference pattern from a high-visibility triangular 7,;(q, +q’,v)= (HX (X, =q"; v)HA(Xa 05 ) )y
dip to a high-visibility peak, simply by changing the distance A

between the two crystals. In principle, the same effect can X(Hg(Xg,+q";—¥»)Ha(Xg, =0, — ¥))x,
also be observed when the dispersion properties of the linear
medium are changed for a fixed distance between the crys- (A4)

tals. Furthermore, as we increased the aperture diameter, and

thus admitted a greater range of transverse wave vectors into

the optical system, we observed a contraction in the oscillais an analog of the functlonSAB [Eq. (29)] for the
tion period of the visibility. polarization-independent elements of the system only.

Our findings are expected to be of interest to the develop- Meanwhile, the coincidence-count rates that arise collec-
ment of SPDC sources using multiple-crystal configurationgively between the contributions from the two crystals are
and/or periodically poled materials, and to the advancemergiven by
of quantum technologies through quantum-state engineering.
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V)X(Z) (a, v)+ Méo,Ae

XX* (=g, = )X (—q,—v)] (A5)
APPENDIX A: THE COINCIDENCE-COUNT RATE R(7)

The purpose of this appendix is to derive the coincidenceand
count rateR(7) defined in Eq.(37) for the case of two cas-
caded bulk crystals as a source of type Il SPDC. Inserting
into Egs.(27) and(28) the particular condition on the optical RUD_ EJ dvdqdq’ Fag(q,— ', v)e— 17461 =74’ =]

system defined in Eq36), we proceed to derive the explicit int
form of each term in Eq(35).
The single-crystal coincidence-count rates are given by X tpo Be #Bo,Ae_E [XEZ)*(Q',— V)Xézjr(q,V)
RB'):f dvdqdq’ Fag(q,q’,v)e~ [74an -~ 7(a’ ] X (=" )X (g~ v)]. (A6)
~(2)%

;N (2) 2
X ; v)+ - . o
[0 pe” " (0 P)X (01 F B s Defining the baseline coincidence-count rateRgs: R
XY 2* (—q',— 1) xD(—q,— )] (A1) +_R§,2)7L R(}? | the interferencei contzributiolr;s can be orga-
nized in the formv ,,V(7) =[RIM+R@+RE/R, as they
appear in Eq(37).

and
Rl(r:t):f dvdadq’ Fag(q,—q',v)e"! il7-(a.v)=7.q",—»)] APPENDIX B: THE VISIBILITY FUNCTION  V(7)
The purpose of this appendix is to derive the visibility
X tnoge Meoad X (A", —v)xP(q,v) function V(7) defined in Eq.(39). We consider the special
( 2 @) case of degenerate collinear type Il SPDC from two cascaded
(—q" . )xP(—a,—v)], (A2)  crystals of identical materials but different thicknesses. This
source of SPDC is used in the interferometer shown in Fig. 4
wherer=1,2 is the crystal indexgij jm="T; Zim (i,1= with symmetric apertures, no spectral filters, and the transfer

andJ m=e, O) is the projec“on of the p0|ar|zat|0n of t“ﬂ function of the System follows the condition given in Eq

photon onto thgth basis polarization and the polarization of (36).

the |th photon onto thenth basis polarization, and the phase  Given this explicit configuration, we evaluate Egal),
function (A2), (A5), and(A6) and rearrange the results to obtain Eq.

(39).
To calculateFpg in Eq. (A4), we need to consider the
7:(0,v) = ~[xo(r,Q) + kel = v, ~ ]I (A3) explicit form of the transfer functiom for a given optical
system. In the Fresnel approximatiomhich is well satisfied
depends on the dispersion introduced by the delay line. Thender the conditions of our experimentbe transfer func-
integral over the detection planes tionsH; (i=A,B) in Eq. (A4) are given by{12]
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Hi(Xi ,q;w)oc'f(w)ei(w/c)(dl+d2+f)e—i(w/2cf)|xi|2(d2/f—l)e—i(cd1/2w)\q\2J dypi(y)e—i[(w/cf)xi—q]~y, (Bl)

whereT(w) is a (typically Gaussianspectral filter profile, for r=(1,2) wherex{?(q,») andx$(q,v) are the nonlin-
w=wg/2+ v is the frequency of the degenerate SPCjs  earity profiles of the first and second crystals, respectively.
the distance from the output plane of the second crystal tdVe have here introduced the quantities

the apertured, is the distance between the aperture and each , ‘ )

detectorf is the focal length of both lenses, apdy) is the M, (q;2) =Mz~ £0)-ag2l(z= Bkl lal”, (B6)
pupil function for aperturé= (A,B). In the absence of inter-
ference filterd f(w)=1], the quasimonochromatic field ap-
proximation (p<< wg) allows the Fpg functions in Eq.(A4)
to become frequency independent, as shown in &f.and

Qr(v;z):efiV(DZJrTr), (B?)

where the parameters

(C4). _ o r=7—L,Dé,,, (B8)
The wave vector mismatch functions in E¢32) and(33) '
are given under these approximations by B,=| +L,5 1, (B9)
2|q|? _
A(Qw)=— D+ qul Mg 82 L,=M 1 +M,L,5 (B10)

P
for r=(1,2) and wherer=—1_D .. Under these conditions

whereA is the wave vector mismatch function due to disper-the single crystal components of the coincidence-count rate

sion in the crystals, anB andM are material properties of are then given by

the crystals[22,23. Here D=u,'—u_! is the disper- 2 oo

sion coefficient, whereu, . are the group velocities for (r)_ MAo.Be™ MBo,Ae 2 _

ordinary and extraordinz;r; waves atgthepcentral frequency © D deHLr(Z)I( (Mz+L,),0.5;.5,)

wp/2 and gq=0 (i.e. 6.=6). In Eq. (B2, M (B11)

=(a/aae)|n[ne(wg/2,0p)]eoa is the spatial walk-off vector,

where e, is a unit vector pointing in the direction of the and

optical axis. or
Meanwhile, the dominant contribution to the dispersion Ri(r:t)zgmf dz1, (2)11, (_r_z)

function for the linear medium in Eq33) is D ' D

A=kl —K;—K{, (B3) XI(=(Mz+ L)), 2,5 ,81), (812

where for brevity we introducéEILr(z)Erecgo,Lr](z). Here

where k'=n4 0% w’c, K.=n /c, and K. _
p=Nelwp) e=Nd(wdwe °  the distances,=d;—z+ 3, ,

=ny4(wo) w,/c are the first-order expansions kf andk/,
and ng(w) is the index of refraction in the linear medium.
Evidently the dispersion in the linear medium between the Z.= —2( M
two crystals simply contributes a difference in optical path
length to the overall dispersion function.

For a delay line of thickness., the phase functions
7.(d,v) in Eq. (A3) are given under the Fresnel and quasi- T(2o(2),2(2,2" ) S¢S
monochromatic field approximations by

2 2
777(an): - VDT+%

Ty

o HE

) (B13)

and

=f dadg’ My(q;2) M7 (q';2") Fag(a, 9", v).
M. g=Ko—Ke|l -, (B4)
P (B14)

whereD . andM ; are the dispersion coefficient and the spa-
tial walk-off vector for the birefringent material of the delay
line, respectively. If we consider the contribution
exd —i»n,(q,v)] for the delay line along with Eq(32), we

We have assumed, in keeping with our experiments, ap-
ertures that are symmetric such thak s(Y)|=|pas(—Y)|-
Further details ofFag(g,*=q’,») can be found in Appendix
C. In experimental practice, the distarttebetween the out-

obtain put plane of the second crystal and the aperture is much
0 longer than the crystal thicknessdesandL, and the optical
;(52)((1, v)e 1) = efidA’ﬁr,lf dzQ,(v;2) M,(q;2) path length . of the delay line. As such, we may assume that
7Lr

(B5) s=d;—z+B,~d;+(2-r)d. (B15

013801-13



GIOVANNI DI GIUSEPPEket al.

Also note that there are no approximations constraining the

value ofd.

The baseline coincidence-count rate from collective inter-

PHYSICAL REVIEW A 66, 013801 (2002

3

Ly

o= (B22)

2 |~ ~
—2 | BA0)Pg(0),
DS% Dsg A() B()

ference between the amplitudes from the two crystals is

given by

2 + 2
Mao,Be™ MBo,Ae
e D%2¢ TEOAC
D

RO =

U dzHLl(z)HLz(z— 71572)

XI(—(Mqz+ L1), 23,(2),5;,5p)e 194’

To— Tq1
D

+f dzHLz(z)HLl<z—

XI(=(Maz+ L,), 29,(2).5;,51)e' ™ ] (B16)
where
T1— T2
Z02)=—|2(M;=My) +M, +L—L,| (B17)
and the remaining parameters are given by
T1=7 L2D, Sl:dl+d, £l M I +M2L2, (818)
Tr)=T, Szzdl, £2:MTIT. (Blg)

It is important to note thaR§®=0 for all values ofr, since
in this caser;—7,=—LD, and the two rectangular func-
tions I, (z) in Eqg. (B16) never actually overlap. Thus the

coincidence-count rates are strictly constant outside the r
gion of interference. This lack of shoulder modulation is an

important indicator of the purity of the observed

polarization-entangled two-photon state. The collective interg 12)

ference term itself is given by

+
RID=2¢ MAoBeMBerideHL (21, T Tz_z)
XI(— (Mz+ L), ZM%(2),5,,5,)e 194
To+ T
+f dZHLz(Z)HLl D —2Z
XI(—(Moz+ L), Z(2),5,, sl)e'dA'], (B20)
with
T+ T
ZM(2)=—| 2(M;— M) +M,— 2+£1+£2},
(B21)
where zgli“‘ can be found by interchanging all indices
(1-2) in 2%,

With sufﬂment algebra, it is possible to arrange all of the

contributions to the coincidence rate in E¢B11), (B12),
(B16), and (B20) to obtain the structure of Eq37), where
the baseline coincidence-count rate is given by

whereP;(q) is given by Eq.(C4), and the polarization ana-
lyzer projection factor is

M Ao0,BeBo, Ae

2

> (B23)
Mo, BeT MBo,Ae

Upol=2

This, in turn, leads to Eq39), the desired visibility function
in the special case whetg=L,=L,

27 O =
V(T)— LI | = —2L z|G L D
fdzH I 27 @) z 7
+1+p2 LW 5 -2/9%
+2e—" fdzH()H(ZT L )
z ——L-z
€1+p2 L LD
xRe|g02| 21 L, T |g-in'a (B24)
L 2'LD '
Here the functiongj,_, , are given by
M= _—
g (L D =M-(M,z+ L)), 2, ,s,s,) (B25

for the single-crystal contributions, while the component due

%o collective interference is given by

z 1
2’

) M= (Myz+ L), 2052),51,5,).

L 2'LD (B26)

The functionV is defined in Appendix C by EqC9), while
the normalization factor is given by=(d,;+d)/d;.

For a delay line comprised of a thircut birefringent
element such as quart .=0 and

El:Msz, £2:O (827)

Under this assumption there are two important limits: large
separation between the crystatk¢ ) and contact between
the crystals ¢—0). When the two crystals are moved very
far apart, we expect interference from SPDC to be governed
only by the second crystal, and the quantum-interference pat-
tern to be identical to that of SPDC from a single crystal of
thicknesd.,. This can be seen from E(B24) by noting that
in this case the normalization factpr—~ and only the last
of the three integrals in EqB24) survives. In this limit

Vi ol(m) =+ fdzHL(z)HL(——Z)g(Z)(L LD)
(B28)

and the shoulder normalization fact@®?22) is identical to
that of a single crystal of thickneds When two crystals of

013801-14
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the same material with parallel optical axes are in contact,
the quantum interference pattern is identical to that obtained
from a single crystal of thicknesd.2 However, note that this

PHYSICAL REVIEW A 66, 013801 (2002

Fas(d,=0",v)=Pa(q¥q")Ps(—q=q’)

does not hold for antiparallel orientations of the optical axes

of the two crystals.

1. Parallel optical axes

If the crystals are oriented such that their optical axes are

parallel, M;=M,=M and theg functions in Eq.(39) are
specified by

(%) =M=ML({+X),—2MLx,d; +d,d; +d),
(B29)

gélz)(g;x):_/\/'(_ ML({+x),—2MLx,d;+d,d;),
(B30)

GA(Lx)=M=ML({+x),—2MLx,d; ,d;), (B3D)
where{=7z/L, x=17/LD, and\ is defined in Eq(C9).

2. Antiparallel optical axes

The antiparallel orientation of the optical axes of the two

crystals givesM ;= —M,=M and thegG functions are speci-
fied by

GO(&x)=M—=ML({+x-2),—2ML(x—1),

dy+d.dy+d), (B32)
G2 LX) =M—ML(L+x—2),—2ML({-1),
d,+d,dy), (B33)
G x)=MML({+x),2MLx,dy,d;).
(B34)

APPENDIX C: THE FUNCTION N

In this appendix, we derive an explicit form of the func-

tion AV, which appears in EqB25). We define

SkSnh I(ZO IZ!Sk !Sn)

Mzy,2Z,5¢,Sn) = = = ,
(202830 = B p(0)Pe(0)

(CD

where P;(q), k,n=(1,2), s, and s, are defined in Egs.
(B18), and

I(ZO(Z)vZ(ZvZ,)!Sk !Sn)

=f dqdq’ My(9;2) M} (q';2') Fag(a, =", v),

x e~ idMG(a?-1a"?) - (c3)
Here
F’i(q)=f dypi(y)pf (y)e Ve, (C4
2y 21-1
dy(v)=d; 1—(—0> , (CH
@p

for i =(A,B). Given these explicit forms, EC2) becomes
k,/2)? k
L

8s,

SkSn
X f dgPA(—q)Ps(q)

1Uz2y,Z,5¢,Sp) =

K _
P 5| a-iaz
qu+4sn2>e 0, (Co)
where
2id{kn 2idkn
W(q)=— exp[ Iqlz}, (C7)
'n'kp kp
with
1 1 1
- = (CY

a s, s

Finally, using Eq.(C6) we obtain
ke s 7
Mzy,2,8¢,8,) =€x _|8_|Z| quPA(_Q)
Sn

X Pa(q)W

kp —ig-z
q+ 4o Z|e 9%, (C9)
n

with P;(q)=P;(q)/P;(0) for i=A,B. In the limit s,—s,,
Eqg. (C9) becomes

Kk
M2o,Z,5,,5n)=exp —i—|Z|?

8s,

.
PA4_Sn

X Pg (C10

_ K z) el (kA2 29,
4s,

1. Small-aperture approximation

Suppose that the apertures are so small that the pupil

functionsp, g(y) may be treated a8 functions aty=0. In
this casePA(q) is a constant and E4C9) becomes

where M, is defined in Eq(B6). The functionF,g , defined Nan(Z0.Z.5.5.) = € —iﬁ’ 1Z—2|? - |zo|?
by Eq. (A4), under the Fresnel approximation and in the SMLE0» %k =n 8 Sh S ||’
absence of interference filters takes the form (C1y

(C2
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In the limit s,—s,, we then have so that we may write the phase
Nam(20.Z,5n .S )=exp[—iﬁ(|z—z 12—z |2)} k, ra+r3 did
SMLE0Emn = 8sy ° 0 é :—arctarﬁ—p—A e (C16)
(C12 7 4d, 2 1+d/d,
2. Gaussian-aperture approximation In summary, the\ function in the Gaussian-aperture ap-

To simplify the analysis, we consider the case ofProximation is given by
Gaussian apertures with;(y)=exp(—|y|%2r?) and P,(q)

=exp(~|q|?ri/4), so that Ne(20,Z,5¢,Sn)
Na(20,Z,5¢,Sn) 1 o Kp y Sk . 2
1-i Ny X 8dKM 1+ 42 % Sk~ Sn
_ 'y ;{ kp | |2} '
1+ 42 8(Sk—sn)  ky 1 se |2
X ex _|8d(k”) 172 Z rp—- A
kp 1—i Y Sk 2 r Y k n
xR 8dkM 14 42| 7° Sk_snz ’ .k .
Xexr{lm|2|2+l¢y}. (C1?
(C13 k= =n
where In the limit s;—s,, we have
ko Tatrg
Y=k T 5 (C14 k,Z|2r2+r2
4dim 2 J\/G(ZO,Z,sn,sn)zexp{ - 4psn A4 5
It is useful to write the complex constant K
- 0p 2 2
A <o i g (72—l
— e! arctany (C15)
1+9% J1+9? (C18
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