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Random-phase approximation study of collective excitations in the Bose-Fermi mixed condensa
of alkali-metal gases
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We perform a random-phase approximation study of collective excitations in a Bose-Fermi mixed degener-
ate gas of alkali-metal atoms atT50. The calculation is done by diagonalization in a model space composed
of particle-hole type excitations from the ground state, the latter being obtained from the coupled Gross-
Pitaevskii and Thomas-Fermi equations. We investigate strength distributions for different combinations of
Bose and Fermi multipole~L! operators withL50,1,2,3. Transition densities and dynamical structure factors
are calculated for collective excitations. A comparison with the sum rule prediction for the collective frequency
is given. The time dependent behavior of the system after an external impulse is studied.
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I. INTRODUCTION

Collective excitation is one of the most prominent ph
nomena in quantum many-body systems such as liquid
lium, electron gases, nuclei, etc. In the recently develo
Bose-Einstein condensates of trapped atomic gases@1,2#,
collective oscillations were the first of the dynamical ph
nomena discovered@3#. Collective oscillations are characte
ized by various quantum numbers related to, e.g., the sh
of oscillation or internal degrees of freedom of the consti
ents such as spin, isospin, etc. The oscillation frequency,
damping width, etc., depend on the interparticle interact
of the constituents, and thus provide a clue to unravel
dynamical correlation of the many-body system.

The study of the properties of trapped neutral atoms
been extended to Fermi systems@4# where the occurrence o
Fermi degeneracy was observed, and also to a mixtur
Bose and Fermi particles. The latter system with conden
bosons and degenerate fermions was recently realized
perimentally @5,6#. This system is one typical example
which particles obeying different statistics are intermingle
Theoretical studies of the Bose-Fermi mixed system of c
atomic gases have been done for static properties@7–12#, for
the phase diagram and phase separation@13–15#, for the sta-
bility of the system@16,17#, and for collective excitations
@18–20#.

In Ref. @18# the sum rule approach was applied for co
lective excitations in the Bose-Fermi mixed system. Avera
excitation energies for states with multipolesL50,1,2 were
calculated for both in-phase and out-of-phase modes of
Bose and Fermi particles, and the dependence on the B
Fermi interaction strength was studied. The sum rule
proach is a powerful technique for collective states in qu
tum many-body systems, and has been successfully ap
to the excitation of Bose condensed systems~see Refs.
@2,21#!. It does not, however, give direct information on th
eigenstates of the system, but rather an average behavi
the strength distribution for the adopted multipole excitat
operator. For a more detailed investigation of the dynam
properties of the system, one would need a study of in
vidual eigenstates.
1050-2947/2002/66~1!/013618~12!/$20.00 66 0136
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In the present paper we extend the previous study@18# of
collective excitations in the Bose-Fermi mixed system. W
calculate full particle-hole type excitations by diagonaliz
tion of a random-phase approximation type matrix. The m
tive of this calculation is threefold. First of all, the calcul
tion allows us to study the excitation spectrum and
strength distribution, in contrast to the sum rule meth
which focuses on the strength-weighted average of the
scribed multipole operators. We study, for instance, the
gree of collectivity of the excitations depending on t
strength of the boson-fermion interaction, and estimate
damping of the collective excitation albeit within the spa
of particle-hole excitations. Information on the wave fun
tion allows us to calculate observables such as the dynam
structure factor. The latter for Bose-condensed system
now becoming available experimentally by two-photon sp
troscopy @22# and is being studied theoretically@23#. Sec-
ondly, we compare the results with those obtained from
sum rule approach. This provides a check on the approxi
tion adopted in the calculation such as the model space t
cation. The comparison also allows one to examine the st
ture of the low- and high-lying collective modes which w
speculated in@18# through the mixing angleu of multipole
operators. Third, we can predict the time-dependent beha
of the system for a given external perturbation. This proc
is actually the one that was employed in the previous exp
mental study of collective excitations in a Bose-Einstein co
densate~BEC!. A RPA study of the Bose-Fermi mixed sys
tem was recently done in@20#, where the response for a
external multipole field is formulated in the form of an int
gral equation. In the present calculation we approach
problem by diagonalizing the RPA matrix, by incorporatin
the discrete nature of the excitation in an isolated trap
system, and investigate, in particular, the properties of
strength distribution for a combination of Bose and Fer
operators and for various values of the Bose-Fermi inter
tion strengths.

The content of the paper is as follows. In the next sect
we derive the RPA equation for the Bose-Fermi mixed s
tem using the equation of motion for particle-hole type ex
tation operators. The single-particle~hole! states are obtained
in the mean-field calculation, i.e., by solving the coupl
©2002 The American Physical Society18-1
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Gross-Pitaevskii and Thomas-Fermi equations. In Sec. III
first briefly describe the parameters and the numerical pro
dure employed in the present calculation. We then turn
detailed studies of the results obtained, including grou
state density, single-particle states, and strength distribu
for each multipole. Comparison with the sum rule calculat
is given. Transition densities and dynamical structure fac
for some of the collective excitations are presented. We
nally consider the time development of the system after
external multipole impulse on the system. The last sectio
devoted to summary and conclusions.

II. FORMULATION

We consider a dilute spin-polarized Bose-Fermi mix
system trapped in a spherically symmetric harmonic osc
tor potential atT50. The system is described by the Ham
tonian

Ĥ5Ĥ01V̂b1V̂b f , ~1!

with

Ĥ05E d3r ĉ†~rW !F2
\2

2m
¹W 21

1

2
mv0

2r 2G ĉ~rW !

1E d3r f̂†~rW !F2
\2

2m
¹W 21

1

2
mv0

2r 2G f̂~rW !,

V̂b5
1

2
gE E d3rd3r 8f̂†~rW !f̂†~rW8!d (3)~rW2rW8!f̂~rW8!f̂~rW !,

V̂b f5hE E d3rd3r 8f̂†~rW !ĉ†~rW8!d (3)~rW2rW8!ĉ~rW8!f̂~rW !,

~2!

wheref̂ andĉ are the boson and fermion field operators. W
take, for simplicity, the massm and the trapping frequenc
v0 to be the same for the boson and the fermion. The bos
boson and boson-fermion interaction strengths for
pseudopotentials,g andh, are related to thes-wave scattering
lengths abb and ab f through g54p\2abb /m, h
54p\2ab f /m, while the fermion-fermion interaction is
omitted as we consider a polarized dilute system at low te
perature.

According to the Landau picture of a quantum liqui
low-lying excited states of the system may be described
quasiparticle excitations which have the structure of partic
hole (p-h) type excitations from the ground state. The sm
amplitude collective oscillations of the system, correspo
ing to zero sound, are given by the coherent superpositio
thesep-h excitations and are well described by the RPA
many fermion systems. The corresponding excitations in
Bose condensed system have been formulated in
Bogoliubov–de Gennes type equation. The latter is ess
tially the same as the one obtained in RPA, and we cons
the two types of excitation on the same footing below.

In order to formulate the RPA for the Bose-Fermi mix
system, we first determine the ground state in the mean-
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approximation. The mean field obtained provides us w
single-particle energies and wave functions. Let us exp
the field operators in terms of a complete set of sing
particle wave functions as

f̂~rW !5(
k

fk~rW !bk , ĉ~rW !5(
a

ca~rW !aa , ~3!

where bk and aa are boson and the fermion annihilatio
operators in the single-particle states specified by the w
functionsfk andca . They satisfy the standard commutatio
or anticommutation relations. The single-particle states w
quantum numbersk or a are determined by minimizing the
energy expectation value. The trial wave function of the s
tem is given by the product ofNb bosons in a single stat
fk50(rW) and the Slater determinant ofNf different fermionic
statesca(rW). From the stationary condition of energy for th
variation of these wave functions with a given number
bosonsNb and fermionsNf , we obtain the set of coupled
equations, i.e., the Gross-Pitaevskii equation for the bo
wave function,

F2
\2

2m
¹21

1

2
mv0

2r 21gNbuf0~rW !u21hr f~rW !Gf0~rW !

5mbf0~rW !, ~4!

and the mean-field equation for the occupied fermion sta

F2
\2

2m
¹21

1

2
mv0

2r 21hNbuf0~rW !u2Gca~rW !

5ea
f ca~rW !, ~5!

where

r f~rW !5 (
a

occupied

uca~rW !u2 ~6!

is the ground state density of fermions,mb is the boson
chemical potential, andea

f are the single-particle energies fo
the fermion. The set of equations~4! and ~5! together with
the fermion number condition

E d3rr f~rW !5Nf ~7!

constitute a closed set of equations. The single-particle w
functions are normalized to unity. In Eq.~4! we approximate
the factorNb21 by Nb . Once the single-particle wave func
tions for the occupied states are obtained from Eqs.~4! and
~5!, the wave functions of the unoccupied states are ca
lated from a similar set of equations, i.e.,

F2
\2

2m
¹21

1

2
mv0

2r 21gNbuf0~rW !u21hr f~rW !Gfk~rW !

5ek
bfk~rW ! ~8!
8-2
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for bosons withkÞ0, and the same Eq.~5! for fermions but
for unoccupied states. Orthogonality of these wave functi
to the occupied ones is automatically satisfied@24#.

For a large number of particles with a smooth mean-fi
potential, the Thomas-Fermi calculation provides a good
proximation. Assuming this to be the case, we determine
fermionicground state densityr f by using

\2

2m
@6p2r f~rW !#2/31

1

2
mv0

2r 21hNbuf0~rW !u25eF ~9!

together with Eq.~4! instead of fully solving the coupled se
of equations~4! and~5!. The Fermi energyeF is determined
by integrating the densityr f(rW) so as to give the fermion
number. The numerical consistency of this procedure will
shown in the next section. Withr f andf0 so determined, the
wave functionsfk (kÞ0) andca are obtained as describe
above.

We assume below that the mean field is spherically sy
metric, and the single-particle quantum numbersa and k
involve standard radial and angular momentum quan
numbers (n,,,m). ~Note that the spin quantum number
frozen.! We consider the case in which the fermionic grou
state~Slater determinant! is m-closed and thus is consiste
with the spherically symmetric mean field. We denote byp
~h! the fermion single-particle states unoccupied~occupied!
in the Slater determinant, i.e., those above~below! the Fermi
energyeF . For the bosons atT50 the occupied state is th
lowest single-particle statek50.

We now define the creation and annihilation multipo
operators of the excited stateunLM & with angular momen-
tum quantum numbersL,M and an additional quantum num
ber n,

QnLM
† 5FnLM

† 1BnLM
† , ~10!

FnLM
† 5(

ph
(

mpmh

@XphL
n ^ l pmpl h2mhuLM &

3~21! l h2mhaplpmp

† ahlhmh
2YphL

n ^ l hmhl p2mpuLM &

3~21! l p2mpahlhmh

† aplpmp
#, ~11!

BnLM
† 5

1

ANb
(
kÞ0

@UkL
n bkLM

† b0

2VkL
n ~21!L1Mb0

†bkL2M#, ~12!

whereX,Y,U,V are the amplitudes to be determined in t
RPA, and^ l pmpl h2mhuLM & is the Clebsch-Gordan coeffi
cient.

In the RPA the operatorQ is determined so as to satisf
the equation of motion

@Ĥ,QnLM
† #.\VnQnLM

† , ~13!

where the terms on the left hand side~LHS! which involve
different combinations of operatorsa†,a,b†,b from that in
Q† are neglected by the assumption of the RPA. The sta
01361
s

d
p-
e

e

-

m

unLM &5QnLM
† u0& with QnLMu0&50 ~14!

is then an approximate eigenstate of the Hamiltonian
gether with the correlated ground state given byu0&. The
amplitudes satisfy the orthonormality condition

(
ph

~XphL
n* XphL

n8 2YphL
n* YphL

n8 !1 (
kÞ0

~UkL
n* UkL

n82VkL
n* VkL

n8 !

5dnn8 . ~15!

Substituting Eq.~10! into Eq. ~13! we obtain the eigen-
value equation in matrix form:

S AXX AXU BXY BXV

AUX AUU BUY BUV

2BXY 2BXV 2AXX 2AXU

2BUY 2BUV 2AUX 2AUU

D S X

U

Y

V

D
5\VnS X

U

Y

V

D , ~16!

where the submatricesA andB are given by

~AXX!ph,p8h85@eplp
f 2ehlh

f #dp,p8dh,h8d l p ,l
p8
d l h ,l

h8
,

~AXU!ph,k5
hANb

4p

l̂ pl̂ h

L̂
~21! l h^ l p0l h0uL0&

3E drr 2Rplp
f Rhlh

f RkL
b R00

b ,

~AUX!k,ph5~AXU!ph,k ,

~AUU!k,k85@ekL
b 2mb#dkk8

1
gNb

4p E drr 2RkL
b Rk8L

b R00
b R00

b ,

~BXY!ph,p8h850, ~17!

~BXV!ph,k5
hANb

4p

l̂ pl̂ h

L̂
~21! l p^ l p0l h0uL0&

3E drr 2Rplp
f Rhlh

f RkL
b R00

b ,

~BUY!k,ph5~BXV!ph,k ,

~BUV!k,k85
gNb

4p
~21!LE drr 2RkL

b Rk8L
b R00

b R00
b ,

with l̂ 5A2l 11. In Eq.~17! Rnl
b (r ) andRnl

f (r ) are the radial
parts of the single-particle wave functionsf and c, which
are defined by fnlm(rW)5Rnl

b (r )Ylm(u,w) and cnlm(rW)
8-3
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5Rnl
f (r)Ylm(u,w) whereYlm(u,w) are the spherical harmon

ics. We omittedO(Nb
21) terms in this calculation. Actually

we obtain the same set of equations if we replaceb0
† ,b0 in

Eq. ~12! with ANb, which is equivalent to the
Bogoliubov–de Gennes equation for the bosonic system

The response of the system to an external field is re
sented by the transition matrix elements of the relevant
erators which connect the ground state and an excited s
The external probe for a collective oscillation is assumed
be long ranged and is given by the standard multipole op
tors, i.e.,

FL~rW !5H 1

A4p
r 2 ~L50!,

r LYL0~u! ~LÞ0!.

~18!

As the system is composed of two kinds of particle, we
fine operators

FL
b5E d3r f̂†~rW !FL~rW !f̂~rW !,

FL
f 5E d3r ĉ†~rW !FL~rW !ĉ~rW !, ~19!

and their combination

FL
65FL

f 6FL
b , ~20!

whereFL
t with t5 f ,b,1,2 are respectively called ‘‘fermi-

onic,’’ ‘‘bosonic,’’ ‘‘in-phase,’’ and ‘‘out-of-phase’’ type op-
erators. The transition amplitudes for these operators are
culated in the RPA as

^0uFL
6unL0&5^0u@FL

6 ,QnL0
† #u0&

5^0u@FL
f ,FnL0

† #u0&6^0u@FL
b ,BnL0

† #u0&,

~21!

^0u@FL
f ,FnL0

† #u0&

5(
ph

1

A4p

l̂ pl̂ h

L̂
^ l p0l h0uL0&@~21! l hXphL

n

1~21! l pYphL
n #E drr 2Rhlh

f r lRplp
f , ~22!

^0u@FL
b ,BnL0

† #u0&

5(
k

ANb

A4p
@UphL

n 1~21!LVphL
n #E drr 2RkL

b r lR00
b ,

~23!

wherel52 for L50 andl5L for LÞ0. The strength dis-
tribution for the multipole operatorFL

t is then given by

(
n

d~V2Vn!z^0uFL
t unL0& z2 ~t5 f ,b,1,2 !. ~24!
01361
e-
-
te.
o
a-

-

al-

They measure the collectivity of the excited states with
spect to the multipole operator which characterizes the sh
~or volume forL50) oscillation of the system.

More detailed information on the structure of the colle
tive excitation may well be represented by the transition d
sities @25#

^0ur̂t~rW !unLM &5drnL
t ~r !YLM~u,w! ~t5 f ,b!, ~25!

drnL
f ~r !5(

ph

1

A4p

l̂ pl̂ h

L̂
^ l p0l h0uL0&

3@~21! l hXphL
n 1~21! l pYphL

n #Rhlh
f Rplp

f ,

~26!

drnL
b ~r !5(

k

ANb

A4p
@UphL

n 1~21!LVphL
n #RkL

b R00
b , ~27!

where r̂ f(rW) and r̂b(rW) are the fermion and boson densi
operators,

r̂ f~rW !5ĉ†~rW !ĉ~rW !, r̂b~rW !5f̂†~rW !f̂~rW !. ~28!

Recent development of two-photon Bragg spectroscopy@22#
allows us to obtain dynamical structure factors~response
function! for the excitations in trapped atomic gases. Th
are related to the transition densities as

SL
t ~q,V!5(

n
uF nL

t ~q!u2d~V2Vn!, ~29!

F nL
t ~q!5E drr 2 j L~qr/\!drnL

t ~r !, ~30!

where q denotes momentum transferred to the system
j L(qr/\) are spherical Bessel functions of orderL. The long
wavelength limit of the dynamical structure factor is propo
tional to the strength distribution for the multipole operato
defined above.

III. CALCULATION

A. Numerical procedure

We consider a boson-fermion mixture of potassium is
topes, i.e.,41K ~boson! and 40K ~fermion!. We take the same
value m50.649310225 kg for the boson and the fermio
masses. The boson-boson interaction strengthg is obtained
from the scattering lengthabb515.13 nm for41K-41K @26#,
while the boson-fermion interaction strengthh is varied.~A
negative value for the scattering lengthab f for 40K-41 K was
suggested in@26#, although it is not well established yet!
Both particles are assumed to be trapped in the sphe
oscillator potential with the same trap frequencyv0

5100 Hz. The oscillator lengthj5A\/mv0 is 4.03 mm
for the adopted value ofv0.

The number of bosons is fixed atNb51000, while that of
fermions is calculated in the Thomas-Fermi approximat
for a fixed Fermi energyeF5(631140)1/3\v0. The latter is
8-4
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RANDOM-PHASE APPROXIMATION STUDY OF . . . PHYSICAL REVIEW A 66, 013618 ~2002!
determined so that the last oscillator shell with a numbe
quantaN52n1, is given by NFermi517 at h/g50. This
gives the number of fermionsNf51140 ath/g50. Nf is
dependent on the boson-fermion interaction strength, an
is assumed that all the subshells given by the quantum n
bers (n,,) are m-closed, which gives, for instance,Nf
51050 ath/g58 andNf51227 ath/g526 for the given
value ofeF .

The single-particle wave functions were obtained fro
the coupled Gross-Pitaevskii and Thomas-Fermi equat
by expanding the wave functions in the harmonic oscilla
basis for the given oscillator constantj. We included associ-
ated Laguerre functionsLn

a up to n530 for fermions andn
515 for bosons.

The excitation energies and the wave functions for e
multipole L are obtained by diagonalization of the RPA m
trix. To construct the particle-hole basis we included sing
particle states for bosons up ton57 for ,50 andn56 for
,51,2,3, so that sevenp-h configurations are included fo
eachL50,1,2,3. For fermions, four~particle! states above
the Fermi leveleF and up to four~hole! states beloweF have
been included for each,. The number of Fermip-h configu-
rations is 240 for monopoles, 464 for dipoles, 672 for qu
drupoles, and 1124 for octupoles. The dimension of the R
matrix is twice the sum of Bose and Fermi configurations
each multipole. The number of bose configurations is
same for the four multipoles considered in the present ca
lation.

B. Static properties

In the ground state the fermion density distribution
much broader than that for the boson due to Fermi pres
@9,17#, although at large negative values ofh/g the Bose-
Fermi attraction tends to produce a larger overlap of the
kinds of particle as shown in Ref.@17#. As the Bose-Fermi
interaction becomes repulsive the fermions are squeezed
from the central part. This in turn causes a smaller overla
bosons and fermions, and thus a relatively small net effec
the interaction on the binding energy. For the present cho
of parameters the fermions are distributed outside the bo
‘‘core’’ around h/g.7, forming a ‘‘shell’’ like structure
@7,8,13,17#. Note that this behavior would be changed if o
adopted different values forNf /Nb and g, which may be
represented by a single parametera introduced in Ref.@9#.

The condition for the validity of the Thomas-Fermi a
proximation used to obtain the above fermion density dis
bution may be expressed in terms of the local de Brog
wave length l(r )5\/p(r ), where p(r )5A2m(eF2Veff)
with fermion mean-field potential Veff(r )5 1

2 mv0
2r 2

1hrb(r ). With this quantity, the condition becomes@27#

f ~r !5Udl~r !

dr U!1. ~31!

At h/g58 where the fermionic potential may have a mo
pronounced structure, the value off (r ) is ;1022 except
around turning points. At the turning points, however, t
fermion density produces only a negligible influence on
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mean-field potential. The validity of the present Thoma
Fermi calculation may also be checked by comparing
fermion density distributionr f(r ) obtained from Eq.~9! with
the one calculated from the single-particle wave functio
according to Eq.~5!. The comparison of the two distributio
in the rangeh/g526 to 8 shows that they agree within th
order of 1022 over the entire radial range, suggesting t
consistency of the present calculation.

In Fig. 1 we show the fermion single-particle energi
measured from the Fermi energy,ea2eF , against orbital
angular momentum, for three values of the interaction pa
rameterh/g55.0,1.0,23.0. The Fermi energyeF is denoted
by the horizontal line at zero energy. Note thatea are given
by those of the harmonic oscillator ath/g50,en,,5(2n1,
13/2)\v0, as we have no direct interaction among ferm
ons. One should note also that the yrast state, i.e., the lo
state for each angular momentum, has no radial node,
the yrare one, the second lowest state, has one radial n
etc. The nodal structure of the particle and hole states aro
the Fermi surface is responsible for the multipole stren
distribution of low-energy particle-hole excitations. The fi
ure shows that the states with low orbital angular moment
are much influenced by the Bose-Fermi interaction, wh
those with high angular momentum are almost insensitive
the values ofh/g. This is because the additional fermio
potential due to the Bose-Fermi interaction vanishes outs
the boson density distribution. For instance, since the y
single-particle wave functions with angular momentum, are
peaked around A,j, those fermion states with,
.(RB /j)2,RB being a typical edge radius of the boson d
tribution, will not be much influenced by the Bose-Ferm
interaction.~In the present caseRB.3j, and the above rela
tion gives,.9.!

C. Energy-weighted moments and comparison with the sum
rule calculation

An RPA calculation provides approximate eigenvalu
and wave functions for all the individual eigenstates and

FIG. 1. Fermion single-particle energies forh/g55.0,1.0,23.0
against orbital angular momentum quantum number. Energies
measured from the Fermi energy. Eigenstates that are degener
h/g50 are connected by solid lines.
8-5
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useful to study details of the dynamics of the system. If o
is interested in the gross behavior of the strength distribu
or an approximate frequency of the oscillation, one m
rather consider thep th energy-weighted moments of th
strength distribution,

mp~L,t!5(
n

~\Vn!pz^0uFL
t un& z2, ~32!

where\Vn is the excitation energy of the stateun&. These
moments can be expressed as ground state expectation
ues of multiple commutators ofFL

t with the Hamiltonian
@29,30#. It is known that this relation, the sum rule, is co
served in the RPA for some of the moments, i.e., the sum
the RHS of Eq.~32! obtained from RPA eigenstates coi
cides with the expectation value of the commutator in
Hartree-Fock ground state@28,29#. Thus a comparison of the
two would provide a criterion on the consistency of the R
calculation. In particular, the first moment~energy-weighted
sum, EWS! m1 is calculated from the double commutator
FL

t and the Hamiltonian as

m1~L,t!5 1
2 ^†FL

t ,@Ĥ,FL
t #‡&0 , ~33!

where^ &0 denotes a ground state expectation value@29#. We
have checked that the sum rule is satisfied within 1% for
the multipole modes.

One can estimate the average frequency of the collec
oscillation based on sum rules. There are several way
define the average frequency depending on which part of
strength distribution is emphasized. In Ref.@18# the ratio of
the third and the first moments

v̄5Am3

m1
~34!

was studied based on sum rules. This definition is adva
geous as it can be used to test the validity of the RPA ca
lation as mentioned earlier. In later discussions we cons
also the average frequency calculated by

vav5
m1

m0
~35!

which has more weight in the low-frequency strength co
pared withv̄. The two frequencies should coincide when
single collective state exhausts the strength. We discuss
also the width of the strength distribution defined by

s5Fm2

m0
2S m1

m0
D 2G1/2

. ~36!

In Fig. 2 we show the average frequency Eq.~34! for L
50,1,2 andt51,2 given by the sum rule~33! and the one
directly calculated in the RPA. We find a good agreemen
the two calculations in a wide range of the Bose-Fermi
teraction parameterh for a fixedg. There is a discrepancy a
very large values ofuhu, especially in the strongly attractiv
case. In the latter case, an induced instability of the gro
01361
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state due to the Bose-Fermi attraction may be close@16#,
which suggests that a larger configuration space may be
quired to satisfy the sum rule. In fact, by increasing the nu
ber of particle-hole states, we obtained a better agreeme

D. Distribution of multipole strengths

Now we show the distributions of the multipole strength
Figures 3, 7, 10, and 11, respectively, show the strength
tributions for L50,1,2, and 3, for either the fermionic
bosonic or the in-phase/out-of-phase operators.

1. Monopole

In Fig. 3 we show the monopole strength distributio
z^0uF0

t un& z2 againstVn , for t5 f ,b and for three values o
h/g. Here one expects a volume oscillation of boson and
fermion densities. Forh50 and for a large number of par
ticles, the bosonic monopole oscillation will be locate
aroundA5v0 as given by the collisionless hydrodynami
@2,21#, while the fermionic one is concentrated at 2v0. The
latter property is due to the almost degenerate values of
relevant particle-hole energies contributing to the monop
oscillation. The present calculation shows that this situat
persists even for large values ofh/g, although the bosonic
frequency is slightly shifted. The fermionic strength is d
tributed over a few states around 2v0, showing that the in-
duced Fermi-Fermi interaction via bosons is not stro
enough to make a coherent superposition of the ferm

FIG. 2. Average frequencies of the collective excitations in

sum rule formalism. Average frequencyv̄, Eq. ~34!, in units ofv0

is plotted against interaction strength ratioh/g with fixed g. Solid
and dotted lines, respectively, show the in- and out-of-phase o
lations. For a comparison, average frequencies calculated from
ground state expectation values of double commutators~see Ref.
@18#!, are plotted by dashed~in-phase! and dot-dashed~out-of-
phase! lines.
8-6
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RANDOM-PHASE APPROXIMATION STUDY OF . . . PHYSICAL REVIEW A 66, 013618 ~2002!
particle-hole states. The total monopole strength for fermi
is larger by an order of magnitude than that for bosons, e
though the number of fermions involved in the excitation
smaller because of the Pauli principle, e.g.,m1
52590\v0j4 for fermions andm15419\v0j4 for bosons at
h/g51. This is because of the broader density distribut
for fermions.

The strength distribution may suggest that the fermio
and bosons are moving independently even for rather la
values ofh/g. This is not necessarily the case, however,
one may see in Fig. 4, where we plot the dynamical struc
factor for the three cases, i.e., the states atV/v052.03 for
h/g55.0, at 2.01, forh/g51.0 and at 1.98 forh/g523.0,
which carry the largest strengths for the in-phase monop
operator. Although the fermionic strength is far larger th
the bosonic one for this state, the mixture of the boso
component is not small and is peaked at larger values of
momentum transferq as shown by the dashed lines. Th
latter shows that the bosons oscillate in the inner region
though this is not quite recognizable as long as one stu
only theF0 distribution.

In Refs. @16,18# we suggested that an instablity towa
collapse may occur at large negative values ofh/g and may
be signaled by the lowering ofv̄. In the present calculation
with a smaller number of particles this is not apparent in F
2. In Fig. 5 we show the strength distribution ath/g5
26.65. This value is close to the critical value of instabil
around26.7 estimated from Mo” lmer’s condition@7,16# and
around26.8 from the condition of Roth and Feldmeier@17#.
We find a lowering of a single state which carries 13.9%
the EWS. The average frequency for this case isv̄

FIG. 3. Monopole strength distribution for fermionic an
bosonic operators,F0

f and F0
b , at h/g55.0, 1.0, and 23.0.

Strengths in units ofj4 are plotted against excitation energy.
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51.92v0, appreciably lower than the value;2v0 for h/g
525 to 5. At more negative values ofh/g we could not find
a stable ground state.

Let us study the character of the low-lying excited sta
by considering the response to the probe

FIG. 4. Dynamical structure factors for the states in which
phase monopole strengths are the largest. These states corresp
the ones atV/v052.03 for h/g55.0, at 2.01 forh/g51.0, and at
1.98 for h/g523.0. Dotted and dashed lines correspond to
fermion and boson transition densitiesdrn0

f ,b , while solid lines are
for the in-phase one,drn0

1 5drn0
f 1drn0

b . The abscissa isqj/\,
whereq denotes the momentum transferred to the system by ex
nal probes.

FIG. 5. Strength distribution for the in-phase monopole opera
F0

1 at h/g526.65 plotted againstV/v0.
8-7
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SOGOet al. PHYSICAL REVIEW A 66, 013618 ~2002!
F~u!5F1cosu1F2sinu ~37!

parametrized byu. In Ref. @18# the angleu was determined
by minimizing the average frequencyv̄ for F(u) so as to
find the character of the probe which favors the low-lyi
states. Once the value of the parameter,umin , is determined
for a givenh/g, one may consider an operator ‘‘perpendic
lar’’ to F(umin), i.e., F'5F1sinumin2F2cosumin , which
may favor the high-lying state. Alternatively, one may ma
mize the EWS within the model space to determine the va
umax of the operator to characterize the high-lying stat
Figure 6 shows the strength distribution for these three ty
of operator ath/g55.0. The valueumin520.12p suggests
that, in this highly repulsive value of the interaction,
slightly in-phase type oscillation is favored in order to avo
an overlap of bosons and fermions~see the density distribu
tion in Refs. @7,8,13,17#!. We note that the distribution fo
the ‘‘perpendicular’’ operatorF' is concentrated and is sim
lar to the one forF(umax). The latter, however, is an almos
bosonic type operator and suggests that the strength dist
tion alone is not sufficient to characterize the structure
high-lying states. A similar study has been made for a v
attractive caseh/g526.65. In this case we obtainumin5
20.01p, i.e., almost in phase, and the strength distribution

FIG. 6. Strength distribution for theu-dependent monopole op
eratorF0(u) at h/g55.0. Top figure shows the strength distributio
for the operatorF(umin520.12p) which was determined so as t

minimize the average frequenceyv̄. Middle figure is the one for the
operatorF'5F(u50.38p) which is perpendicular to the abov
operator. Bottom figure is the strength distribution for the opera
F(umax50.27p) which was determined to maximize the avera
energy.
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similar to Fig. 5. Thus the in-phase character of the low-lyi
mode that favors the overlap of the two kinds of particles
clearly seen in the determination ofF(umin).

2. Dipole

Dipole strength distributions for the in-phase and out-
phase operators are shown in Fig. 7. The strong peak in
in-phase strength distribution corresponds to the center
mass oscillation of the whole system. For many-particle s
tems confined in a common oscillator potential the center
mass motion is decoupled from other~intrinsic! degrees of
freedom of the system, resulting in an oscillation with t
same frequencyv0. This relation can be represented by t
commutation relation of the dipole operator and the Ham
tonian, and should hold also within the RPA@28#. In the
present numerical calculation, however, the state atV5v0
does not exhaust the whole strength for the in-phase osc
tion; the largest deviation occurs ath/g521 having 80% of
the EWS. This is because the single-particle model spac
our numerical calculation is not sufficient to completely d
couple the center-of-mass motion, especially in strong c
pling cases where the deviation of the single-particle pot
tial from the oscillator becomes large. Them1 sum rule is,
nevertheless, almost satisfied as mentioned earlier, and i
termined by the total number of Bose and Fermi particl
where the latter number is dependent on the value ofh/g. A
smaller value of the sum rule percentage ath/g521 is
mainly due to the appearance of the almost degenerate
(Dv/v0.1025) at this energy.

All other dipole oscillations should be orthogonal to th
center-of-mass motion and thus are out-of-phase type
character. One may note that at repulsive values ofh the

r

FIG. 7. Dipole strength distribution for in- and out-of-pha
operatorsF1

1 andF1
2 . Strengths are measured in units ofj2.
8-8
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RANDOM-PHASE APPROXIMATION STUDY OF . . . PHYSICAL REVIEW A 66, 013618 ~2002!
dominant part of the out-of-phase strength is located be
v0, although the strength carried by each individual state
not very large. As discussed in Ref.@18#, this may reflect the
ground state density distribution which favors the out-
phase oscillation by making the overlap of boson and
mion distributions smaller. Figure 8 shows transition den
ties for the out-of-phase type oscillations ath/g55.0,1.0,
23.0 which carry the largest strengths:V/v050.700 for
h/g55.0,0.956 for h/g51.0, and 1.14 forh/g523.0.
Bosons and fermions move in the opposite directions so a
make the overlap smaller around the surface of the bo
distribution. One can observe that the bosonic transition d
sity is large and robust, while the fermionic one is feeble a
is spread over the whole system. This situation may
analogous to the soft dipole mode speculated to exis
neutron-rich nuclei wherein the protons oscillate alm
freely in the sea of neutrons@31#. Dynamical structure fac-
tors corresponding to these states are shown in Fig. 9. H
the bosonic and fermionic responses are shown together
the one for a hypothetical out-of-phase type probe.
changing the momentum transfer one would find a struc
corresponding to the oscillation of the two kinds of partic

It was suggested in@7,19# that for a very strong repulsion
between bosons and fermions with sufficient numbers of p
ticles the system may become unstable toward a phase s

FIG. 8. Transition densities for the dipole oscillations with lar
est strengths of the out-of-phase type. Excitation energies of t
states areV/v050.700 forh/g55.0, 0.956 forh/g51.0, and 1.14
for h/g523.0. Solid and dotted lines, respectively, show the f
mionic and bosonic transition densitiesdrn1

f ,b in units of j3.
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ration of the two kinds of particles. The out-of-phase dipo
strength distribution in Fig. 7 indeed show a softening of t
strength distribution at large values ofh/g. We cannot con-
clude from the present calculation, however, whether t
tendency is related to the mentioned instability.

3. Quadrupole

One finds from the quadrupole strength distribution
Fig. 10 that the fermionic strength is split into low- an
high-energy parts, while the bosonic strength is concentra
The higher strengths for the fermions are due to the 2\v0
excitation of the particle from the occupied single-partic
states and are similar in character to the bosonic excitat
In contrast, the lower fermion strengths come from the m
trix elements of the quadrupole operatorF2 which reorient
the single-particle states within the same oscillator shel
N52n1, around the Fermi surface. This transition no
mally involves a change of nodes by 1~see Fig. 1!, and the
corresponding strengths are smaller than the higher o
One may note that the quadrupole bosonic strength is loc
slightly higher thanA2v0 as expected for the collective os
cillation in the largeN limit @2#, which may be due to the
rather small number of particles in the present calculatio

se

-

FIG. 9. Dynamical structure factors for the same states as g
in Fig. 8. Dotted and dashed lines are those for the fermionic
bosonic transition densities while solid lines are those for the o
of-phase one,drn1

2 5drn1
f 2drn1

b .
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SOGOet al. PHYSICAL REVIEW A 66, 013618 ~2002!
We note that the strength distribution tends to be fr
mented at large~repulsive! values of the interaction param
eter h/g as seen in Fig. 10. This is because the aver
potential deviates appreciably from the harmonic oscilla
potential, giving rise to a dispersion in the fermion partic
hole energies~see Fig. 1!. The strong fermion-boson interac
tion would then be responsible for scattering the boso
strengths, too.

4. Octupole

The octupole strength distribution is shown in Fig. 1
Here again the fermionic strength is split into\v0 and 3\v0
regions due to the character of the multipole operatorF3. We
note also that the frequency of the bosonic oscillation
much larger than the hydrodynamic valueA3v0 @21#.

We find a striking change in the fermionic strength dist
butions depending on the sign of the Bose-Fermi interact
While for a strongly repulsive case (h/g55.0) the region
between the low- and high-lying states is almost filled up
small strengths, the one for a strongly attractive case (h/g
523.0) shows a large gap in the strength distribution. T
may be traced back to the structure of the single-part
states in Fig. 1. The large strengths around 3v0 are due to
high orbital angular momentum states with,p2,h53 which
stay robust againsth/g as discussed earlier. Smaller streng
due to low,p and,h states are, on the other hand, sensit
to the interaction, and the corresponding particle-hole e
gies are below~for h/g.0) or above~for h/g,0) the un-
perturbed value 3v0. This may be understood by noting th
the particles passing through the center~small , orbit! expe-
rience shallow~for h/g.0) or deep~for h/g,0) potentials
and are thus easier or harder to excite. For the stren

FIG. 10. Quadrupole strength distributions for fermionic a
bosonic operatorsF2

f andF2
b at h/g55.0, 1.0, and23.0.
01361
-

e
r
-

ic

.

s

n.

y

s
le

s
e
r-

hs

aroundv0 different combinations of orbits are involved, an
the strengths are broadened by the deviation from the o
lator potential.

E. Time evolution

To study the collective oscillation of cold atomic gase
the current experiments on BEC exert a time-dependent fi
on the system and then observe the time development o
shape and the size of the condensate@1#. This procedure
generally excites a number of normal modes, and one ma
principle be able to resolve each mode by performing a F
rier transform as long as the time duration is long enough.
simulate the situation we consider a time evolution of t
system after one applies an external weak pulse of the s
function type, i.e.,DV}FL

t for 2Dt<t<0. The calculation
is performed within the lowest-order perturbation theory. (Dt
is chosen asDt51022v0

21.!

1. Monopole

First we consider a perturbation of monopole type,

DV5mv0DvA4pF0
t ~38!

with Dv!v0, which is applied to the ground state of th
system for a short periodDt. The effective frequency of the
external oscillator potential for fermions and/or bosons
then changed intov06Dv depending on the choice oft.
The time dependence of the rms radius of bosons and fe
ons is plotted in Fig. 12 ath/g523 for the fermionic exter-
nal field t5 f . The frequency of the short period oscillatio
is related to the average frequency of the strength distr

FIG. 11. Octupole strength distributions for fermionic an
bosonic operatorsF3

f andF3
b at h/g55.0, 1.0, and23.0.
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RANDOM-PHASE APPROXIMATION STUDY OF . . . PHYSICAL REVIEW A 66, 013618 ~2002!
tion, e.g.,vav51.99v0. That of the long period one, on th
other hand, reflects the width of the distribution. For
stance, the slow decrease of the envelope forA^r f

2& would
imply a very narrow width of the strength distribution. Th
bottom of Fig. 12 shows the Fourier transform of^r f

2&(t)
2^r f

2&0 which recovers the sharp peak structure of
strength distribution in Fig. 3. The time evolution of th
bosonic radius shows a rather regular modulation, and
beat frequency is estimated at about 0.125v0, which is con-
sistent with the half-widths/250.127v0.

2. Dipole

For the dipole case we take the perturbing potential

DV52mv0
2DzA4p

3
F1

t , ~39!

FIG. 12. Time-dependent oscillation of the Bose-Fermi syst
at h/g523.0 after an external impulse of fermionic monopo
type, Eq.~38!. Time dependences of the root-mean-square radii~in
units ofj) of fermions~upper figure! and of bosons~middle figure!
are shown. Parameters of the impulse areDv/v050.01 andv0Dt
50.01. The differential equation in time is solved with the tim
mesh of 0.05v0

21 up to tmax5100/v0. The lowest figure shows the
Fourier transform~in arbitrary units! of the fermionic rms radius
deviation from the ground state,^r f

2&(t)2^r f
2&0, which corresponds

to the fermionic strength distribution given in Fig. 3 ath/g5
23.0.
01361
e
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whereDz(!j) measures the shift of the centers of the o
cillator potentials experienced by fermions and/or bosons
Fig. 13 we show the time dependence of the centers-of m
of bosons and fermions for the out-of-phase external dip
impulset52 at h/g55. The frequency of the oscillation i
consistent with the average frequency 0.90v0 for the dipole
strength distribution. The amplitude of the oscillation sho
an irregular behavior, suggesting that the strength distri
tion does not have a simple structure. The lowest part of
figure shows the Fourier transform of the relative distance
the fermion and boson center-of-mass positions,Nf^zf&
2Nb^zb&, which is sufficient to recover the behavior of th
original strength distribution given in Fig. 7.

IV. SUMMARY AND CONCLUSION

In the present paper we performed a RPA calculation o
polarized Bose-Fermi mixed system of alkali-metal gase
zero temperature. We solved the coupled Gross-Pitaev
Thomas-Fermi equations to obtain the ground state for s

FIG. 13. Time dependence of the oscillations of fermions a
bosons ath/g55.0 for an out-of-phase type external dipole im
pulse, Eq.~39!. Top and middle figures show the fermion and bos
centers of mass in units ofj against elapsed time in units ofv0

21.
Parameters are given byDz/j50.01 andv0Dt50.01. Calculation
is performed with time mesh of 0.05v0

21 and up totmax5100/v0.
The lowest figure shows the Fourier transform~in arbitrary units! of
the relative distance of fermions and bosons,Nf^zf&2Nb^zb&, with
an energy resolution of;1022. The figure corresponds to th
strength distribution of the out-of-phase type in Fig. 7 ath/g55.0.
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eral values of the boson-fermion interaction strength wit
fixed value of the boson-boson interaction. Single-parti
states of Bose and Fermi particles are calculated based o
mean field produced by the obtained ground state den
The density distribution constructed from the occup
single-particle orbits agrees well with the original one, su
gesting the self-consistency of the calculation. We calcula
and diagonalized the RPA matrix to obtain excitation en
gies and wave functions for multipolesL50,1,2,3. We then
calculated strength distributions for bosonic/fermionic a
in-phase/out-of-phase multipole operators, and also tra
tion densities and dynamical structure factors for some of
collective states.

We first calculated energy-weighted moments of
strengths to study the average behavior of the strength
tribution. Comparison of the first moments with the sum ru
predictions forL50,1,2 shows that the RPA configuratio
space is sufficient to within 1%. A glance at the monop
distribution suggests that fermions and bosons are mo
rather independently for the adopted parameters, which t
an
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out not to be the case if we study the dynamical struct
factors. We find, in fact, that the long wavelength oscillati
of fermions in the surface is coupled to the internal sh
wavelength oscillation of bosons. For a strong attract
boson-fermion interaction, the calculation suggests a sof
ing of in-phase monopole oscillations. We studied also
structure of the low-lying out-of-phase type dipole mode
Lowering of the energy is related to the ground state den
distribution of bosons and fermions, which favors the out-
phase oscillation. Transition densities for these modes s
gest that the bosons oscillate on their way through the cl
of fermions, which is analogous to the soft dipole mode d
cussed in neutron-rich nuclei. We also calculated the stren
distributions for quadrupole and octupole modes, and st
ied, in particular, the origin of the fragmentation of fermion
strengths. Finally, we considered the time-dependent be
ior of the trapped Bose-Fermi system after an impulse o
multipole external field. By Fourier transforming the tim
dependent oscillating behavior of the system, we could
cover the gross structure of the strength distribution.
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