PHYSICAL REVIEW A 66, 013618 (2002

Random-phase approximation study of collective excitations in the Bose-Fermi mixed condensate
of alkali-metal gases
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We perform a random-phase approximation study of collective excitations in a Bose-Fermi mixed degener-
ate gas of alkali-metal atoms &t=0. The calculation is done by diagonalization in a model space composed
of particle-hole type excitations from the ground state, the latter being obtained from the coupled Gross-
Pitaevskii and Thomas-Fermi equations. We investigate strength distributions for different combinations of
Bose and Fermi multipol€l) operators with.=0,1,2,3. Transition densities and dynamical structure factors
are calculated for collective excitations. A comparison with the sum rule prediction for the collective frequency
is given. The time dependent behavior of the system after an external impulse is studied.
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I. INTRODUCTION In the present paper we extend the previous sfd@y of

collective excitations in the Bose-Fermi mixed system. We

Collective excitation is one of the most prominent phe-calculate full particle-hole type excitations by diagonaliza-
nomena in quantum many-body systems such as liquid hdion of a random-phase approximation type matrix. The mo-

lium, electron gases, nuclei, etc. In the recently developeéive of this calculation is threefold. First of all, the calcula-
Bose-Einstein condensates of trapped atomic gased, tion allows us to study the excitation spectrum and the
collective oscillations were the first of the dynamical phe-Stréngth distribution, in contrast to the sum rule method,
nomena discovereiB]. Collective oscillations are character- Which focuses on the strength-weighted average of the pre-
ized by various quantum numbers related to, e.g., the Shaps,gnbed multipole operators. We study, for instance, the de-

of oscillation or internal degrees of freedom of the constitu-gtree ct);; C?':ﬁcug'ty of fthe_ exqtf\tlon?_ deperédlngt. ont trlﬁ
ents such as spin, isospin, etc. The oscillation frequency, th rength of the boson-fermion interaction, and estimate the

: . : C . damping of the collective excitation albeit within the space
damping width, etc., depend on the interparticle mteractlonof particle-hole excitations. Information on the wave func-

of the _const|tuents_, and thus provide a clue to unravel th%on allows us to calculate observables such as the dynamical
dynamical correlation of the_ many-body system. structure factor. The latter for Bose-condensed systems is
The study of the properties of trapped neutral atoms hag,; hecoming available experimentally by two-photon spec-
been.extended to Fermi systefdsg where the occurrence of troscopy[22] and is being studied theoreticalf23]. Sec-
Fermi degeneracy was observed, and also to a mixture Qfqly, we compare the results with those obtained from the
Bose and Fermi particles. The latter system with condenseg,m rule approach. This provides a check on the approxima-
bosons and degenerate fermions was recently realized e¥pn adopted in the calculation such as the model space trun-
perimentally[5,6]. This system is one typical example in cation. The comparison also allows one to examine the struc-
which particles obeying different statistics are intermingled.ture of the low- and high-lying collective modes which was
Theoretical studies of the Bose-Fermi mixed system of coldpeculated irf18] through the mixing angl& of multipole
atomic gases have been done for static propeified?|, for  operators. Third, we can predict the time-dependent behavior
the phase diagram and phase separdti@+-13, for the sta-  of the system for a given external perturbation. This process
bility of the system[16,17], and for collective excitations is actually the one that was employed in the previous experi-
[18-20Q. mental study of collective excitations in a Bose-Einstein con-
In Ref. [18] the sum rule approach was applied for col- densatg BEC). A RPA study of the Bose-Fermi mixed sys-
lective excitations in the Bose-Fermi mixed system. Averageem was recently done if20], where the response for an
excitation energies for states with multipoles-0,1,2 were external multipole field is formulated in the form of an inte-
calculated for both in-phase and out-of-phase modes of thgral equation. In the present calculation we approach the
Bose and Fermi particles, and the dependence on the Bosproblem by diagonalizing the RPA matrix, by incorporating
Fermi interaction strength was studied. The sum rule apthe discrete nature of the excitation in an isolated trapped
proach is a powerful technique for collective states in quansystem, and investigate, in particular, the properties of the
tum many-body systems, and has been successfully appliesirength distribution for a combination of Bose and Fermi
to the excitation of Bose condensed systef@se Refs. operators and for various values of the Bose-Fermi interac-
[2,21]). It does not, however, give direct information on the tion strengths.
eigenstates of the system, but rather an average behavior of The content of the paper is as follows. In the next section
the strength distribution for the adopted multipole excitationwe derive the RPA equation for the Bose-Fermi mixed sys-
operator. For a more detailed investigation of the dynamicatem using the equation of motion for particle-hole type exci-
properties of the system, one would need a study of inditation operators. The single-particleole) states are obtained
vidual eigenstates. in the mean-field calculation, i.e., by solving the coupled
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Gross-Pitaevskii and Thomas-Fermi equations. In Sec. lll wapproximation. The mean field obtained provides us with
first briefly describe the parameters and the numerical procesingle-particle energies and wave functions. Let us expand
dure employed in the present calculation. We then turn tdhe field operators in terms of a complete set of single-
detailed studies of the results obtained, including groungarticle wave functions as

state density, single-particle states, and strength distribution

for each multipole. Comparison with the sum rule calculation A - A -

is given. Transition densities and dynamical structure factors ¢(r)—2k éK(1)bi, ‘/’(”—2 Ya(Maa, )

for some of the collective excitations are presented. We fi-

nally consider the time development of the system after agvhere b, and a, are boson and the fermion annihilation
external multipole impulse on the system. The last section igperators in the single-particle states specified by the wave

devoted to summary and conclusions. functions¢y and,, . They satisfy the standard commutation
or anticommutation relations. The single-particle states with
Il. FORMULATION guantum numberk or « are determined by minimizing the

energy expectation value. The trial wave function of the sys-

We consider a dilute spin-polarized Bose-Fermi mixediey, s given by the product dfl, bosons in a single state
system trapped in a spherically symmetric harmonic oscilla- - . . .
tor potential aff =0. The system is described by the Hamil- $r=o(r) and the Slater determinant i different fermionic

tonian statesys,(r). From the stationary condition of energy for the
variation of these wave functions with a given number of
A=Fo+Vy+Vys, (1)  bosonsNy and fermionsN;, we obtain the set of coupled
equations, i.e., the Gross-Pitaevskii equation for the boson
with wave function,

~ h? o, L 5, > 12 > >
(r) _ﬁv +§mw0r +gNp| o(r)|“+hp(r) [do(r)

. g | AP 1
Hozf d3ryt(r) —ﬁVZJr Ema)or2
2

e = e .. 1
+J d3r¢T(r)[—%V2+ zmw%rz

= papbo(r), 4

and the mean-field equation for the occupied fermion states

o(r),

.1 ae e e Ao
V,=— d3rd3r’ T Trys®r—r' ’ ’ %2 1 R .

b ngf rd>r’¢'(r)d'(r')s=(r—r")e(r") p(r) [__V2+_mw§r2+hNb|¢o(r)|2 Pa(T)

2m 2
be=hJJd3rd3r’&WF)QNF’)&“’(F—F’){k(?')gb(;), =€l (1), (5
2 where

wheref;b andfp are the boson and fermion field operators. We occupied
take, for simplicity, the masm and the trapping frequency pf(F): 2 |¢a(F)|2 (6)

wq to be the same for the boson and the fermion. The boson-
boson and boson-fermion interaction strengths for the ) ) )
pseudopotentialg andh, are related to thewave scattering 1S the ground state d<fan5|ty of fermiong,, is the boson
lengths a,, and a,; through g=4m#%a,,/m, h chemlcal_ potential, and,, are th.e single-particle energies for
=4mh2a,;/m, while the fermion-fermion interaction is the ferm!on. The set of e_q'uatloms) and (5) together with
omitted as we consider a polarized dilute system at low temthe fermion number condition
perature.

According to the Landau picture of a quantum liquid, J' d3r py(F)=N; @
low-lying excited states of the system may be described by
quasiparticle excitations which have the structure of particle- _ ) ) )
hole (p-h) type excitations from the ground state. The smallconstitute a closed set of equations. The single-particle wave
amplitude collective oscillations of the system, correspondfunctions are normalized to unity. In E() we approximate
ing to zero sound, are given by the coherent superposition dhe factorN,—1 by N,,. Once the single-particle wave func-
thesep-h excitations and are well described by the RPA fortions for the occupied states are obtained from Edpsand
many fermion systems. The corresponding excitations in thé>). the wave functions of the unoccupied states are calcu-
Bose condensed system have been formulated in &ted from a similar set of equations, i.e.,
Bogoliubov—de Gennes type equation. The latter is essen-

2
tially the same as the one obtained in RPA, and we consider h V2 1 55 >\ 12 > >
o » — =—=V+ —mowgr<+gN r)|“+hp¢(r r
the two types of excitation on the same footing below. 2m oMo bl o(1)| pi(D]AKlr)
In order to formulate the RPA for the Bose-Fermi mixed b -
system, we first determine the ground state in the mean-field =€ i(r) 8
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for bosons withk+ 0, and the same E@5) for fermions but [vLM)=Q! ,|0) with Q, u|0)=0 (14)
for unoccupied states. Orthogonality of these wave functions
to the occupied ones is automatically satisfiad]. is then an approximate eigenstate of the Hamiltonian to-

For a large number of particles with a smooth mean-fieldgether with the correlated ground state given |By. The
potential, the Thomas-Fermi calculation provides a good apamplitudes satisfy the orthonormality condition
proximation. Assuming this to be the case, we determine the

fermionicground state density; by usin v ’ ! ” !
g s by g % (XphXphL— Yph ;hL)+k§0 (Ut Ui = Vit Vi)
2

h - 1 -
Sm[672pr(N)]1%3+ S mugr?+ Ny do(r)? =€ (9) =5,,. (15)

together with Eq(4) instead of fully solving the coupled set _ Substituting Eq/(10) into Eq. (13) we obtain the eigen-
of equationsg4) and (5). The Fermi energy; is determined Value equation in matrix form:

by integrating the densitpf(F) so as to give the fermion Axx Axy

. . h . BXY BXV X
number. The numerical consistency of this procedure will be
shown in the next section. Wity and ¢ so determined, the Aux Auy Buv Buv || U
wave functionsey (k#0) and, are obtained as described —Byxy —Byxy —Axx —Ax Y
u
above.
o . B B A A Y,
We assume below that the mean field is spherically sym- uyY uv ux vy
metric, and the single-particle quantum numbersand k X
involve standard radial and angular momentum quantum U
numbers §,€,m). (Note that the spin quantum number is =4Q, , (16)
frozen) We consider the case in which the fermionic ground Y
state(Slater determinantis m-closed and thus is consistent Vi
with the spherically symmetric mean field. We denotepby
(h) the fermion single-particle states unoccupiedcupied  where the submatrices andB are given by
in the Slater determinant, i.e., those abdbelow) the Fermi ; .
energyer . For the bosons & =0 the occupied state is the (Axx)ph,prnr = L€pi, = €ni, 18p,0r Shnr 811061,
lowest single-particle state=0.
We now define the creation and annihilation multipole h\/N_prTh |
operators of the excited stateLM) with angular momen- (Axu)phk=—7— T(—l) "(1,0140|LO)
tum quantum numbeis,M and an additional quantum num-
ber v, f 2pf pf pb pb
X | drr“Ry; Ry Re Roos
Qlm=Flim+Blim, (10 Pl
o (Aux)k,ph= (Axu) phik»
Fom= [Xpni(lpmplh—mp|LM)
PR Mgy © (Auw)kkr =L €RL— 1] S
X(=1)'n"Mal, o ap m —Ypni(lMalp—mMp|LM) N
Pty TP P + a_ﬂ_b d”zRELRE'LRgoRgoa
X(—l)lp—mpaﬁlhmhampmp], (11
. (Bxy)ph,prh' =0, (17
BTLM: T Z [UELbILMbO 1
’ N, K70 h VN Tl
Ny (Bxv)phk=—7— pT(_l)lp<|p0|h0|LO>
= Vi (=1 "Mbgby ], (12
whereX,Y,U,V are the amplitudes to be determined in the Xf drrzR;|pRL|hRELRBO,
RPA, and(l,m,l,—my|LM) is the Clebsch-Gordan coeffi-

cient.
In the RPA the operato® is determined so as to satisfy
the equation of motion

(Buv)k,ph=(Bxv)phk-
gNp

- ; (BUV)k,k’:E(_l)LJ d”ZRELRE'LRgoRgm

[H.Quml=7Q,Qum, (13

where the terms on the left hand sitleHS) which involve ~ With T=y2I+1. In Eq.(17) RY\(r) andRy(r) are the radial
different combinations of operatoes’,a,b™,b from that in ~ parts of the single-particle wave functiogsand ¢, which
Q' are neglected by the assumption of the RPA. The stateare defined by ¢n|m(r)=Rﬁ,(r)Y|m(0,¢) and ¥, m(r)
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=R (")Yim(6,¢) WhereY,,(6,¢) are the spherical harmon- They measure the collectivity of the excited states with re-

ics. We omittedO(Ngl) terms in this calculation. Actually Spect to the multipole operator which characterizes the shape

we obtain the same set of equations if we replageb, in  (or volume forL=0) oscillation of the system.

Eq. (120 with N,, which is equivalent to the _ More detailed information on the structure of the collec-

Bogoliubov—de Gennes equation for the bosonic system. tive excitation may well be represented by the transition den-
The response of the system to an external field is repres't'es[25]

sented by the transition matrix elements of the relevant op- e .

erators which connect the ground state and an excited state. (0lp™(N|vLM)=8p} (N Y m(8,¢) (7=fb), (25

The external probe for a collective oscillation is assumed to

be long ranged and is given by the standard multipole opera- f _ 1 ﬁ
tors, i.e., 6PVL(r)_% _\/E 5 (1,01,0/LO)
1 2 (L=0) X[(_l)lhx;hL+(_1)le hL]RhIthI '
rtY, o(8) (L#0).
LO \/N—

by b
As the system is composed of two kinds of particle, we de- 5va(r)_2k \/4— pht (=1 Vhn IR REy, (27)
fine operators

S where pf(r) and p(r) are the fermion and boson density
Fb=f A3 (NFL(r)é(r), operators,

' (N=¢"P(r), pP(N=¢'(Ne(r). (29

Recent development of two-photon Bragg spectros¢@gy
allows us to obtain dynamical structure factqresponse
function) for the excitations in trapped atomic gases. They
are related to the transition densities as

Ff=f d3r gt (NFLD (), (19)
and their combination
Fi=Fl=FP, (20)

whereF[ with 7=f,b,+,— are respectively called “fermi- 7 (g,Q) 2 |FT(Q)]?8(Q—-Q,), (29
onic,” “bosonic,” “in- phase and “out-of-phase” type op-
erators. The transition amplitudes for these operators are cal-

culated in the RPA as Frla)= J drr2j (qr/h) spj(r), (30

O|F [»LOY=(O|[F{ ,Qf 1|0

(OIFL1#L0)=(0IFL . Quoll0) where q denotes momentum transferred to the system and
=(0|[F{ ,FT ,1]0y=(0|[F,BT ,]/0), jL(qr/h) are spherical Bessel functions of orderThe long

wavelength limit of the dynamical structure factor is propor-

(1) tional to the strength distribution for the multipole operators
<0|[Ff = 110 defined above.
1 pl0
-y 1 1,0, (101 OILOYT(~ 1) Ill. CALCULATION
ph 4 I: " =D phL A. Numerical procedure

We consider a boson-fermion mixture of potassium iso-
+(—1)'ey} hL]f drr?Ry, r Rp, : (22)  topes, i.e.,*’K (boson and *K (fermior). We take the same
value m=0.649x 10" ?° kg for the boson and the fermion
masses. The boson-boson interaction streiggih obtained
from the scattering length,,=15.13 nm for*K-41K [26],
b while the boson-fermion interaction strendths varied.(A
=> ——[Upnt(— LV”hL]f drr?RE r'R,, negative value for the scattering lengty for “°K-4! K was
< Va suggested if26], although it is not well established ygt.
(23 Both particles are assumed to be trapped in the spherical
oscillator potential with the same trap frequeney,
whereA=2 for L=0 and\ =L for L#0. The strength dis- =100 Hz. The oscillator lengt= \A/mwg is 4.03 um
tribution for the multipole operatdf| is then given by for the adopted value ab,,.
The number of bosons is fixed Bt,= 1000, while that of
_ T 2 _ _ fermions is calculated in the Thomas-Fermi approximation
EV: HO=Q)KOIFPLOFE  (r=1.b,+, 7). (24 for a fixed Fermi energyr=(6X 1140)"% w,. The latter is

(O|[F,B]01/0)
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determined so that the last oscillator shell with a number of ~
guantaN=2n+¢ is given by Nge,m=17 ath/g=0. This
gives the number of fermiondl;=1140 ath/g=0. N; is
dependent on the boson-fermion interaction strength, and i€ =
is assumed that all the subshells given by the quantum numg
bers (,f) are mclosed, which gives, for instance\;
=1050 ath/g=8 andN;=1227 ath/g=—6 for the given
value of eg.

The single-particle wave functions were obtained from
the coupled Gross-Pitaevskii and Thomas-Fermi equationg

\\‘

g e ¢

\‘

s of fio,

.
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o
)

-10-
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by expanding the wave functions in the harmonic oscillatorg' h/ig=5 h/g=1 h/ig=-3
basis for the given oscillator constahtWe included associ- &

i a H 25 T T T T 1 25 T T T T 1 25 T T T T 1
ated Laguerre functionls, up to n=30 for fermions anc o & 10 15 20 % = 10 15 20 % 5 10 15 20

=15 for bosons. Orbital Angular Momentum Quantum Number
The excitation energies and the wave functions for each

multipole L are obtained by diagonalization of the RPA ma-
trix. To construct the particle-hole basis we included single
particle states for bosons up te=7 for €=0 andn==6 for
¢=1,2,3, so that sevep-h configurations are included for
eachL=0,1,2,3. For fermions, foufparticle states above _ _ o
the Fermi levele: and up to fourhole) states belover have mean_-ﬂeld pot_ent|al. The validity of the present Th_omas-
been included for each. The number of Fermp-h configu- ~ Fermi calculation may also be checked by comparing the
rations is 240 for monopoles, 464 for dipoles, 672 for quafermion density distributiop;(r) obtained from Eq(9) with
drupoles, and 1124 for octupoles. The dimension of the RPAN® one calculated from the single-particle wave functions
matrix is twice the sum of Bose and Fermi configurations foraccording to Eq(5). The comparison of the two distribution
each multipole. The number of bose configurations is thd" the rangeh/g=—6 to 8 shows that they agree within the

. . . 2 T H :
same for the four multipoles considered in the present calcuerder of 10 over the entire radial range, suggesting the
lation. consistency of the present calculation.

In Fig. 1 we show the fermion single-particle energies
measured from the Fermi energy,— ez, against orbital
angular momentund for three values of the interaction pa-

In the ground state the fermion density distribution isrameterh/g=5.0,1.0,—3.0. The Fermi energy; is denoted
much broader than that for the boson due to Fermi pressuligy the horizontal line at zero energy. Note tlkatare given
[9,17], although at large negative values lofg the Bose-  py those of the harmonic oscillator Btg=0,¢, ;= (2n+¢
F.ermi attract!on tends to prqduce a larger overlap of the WOy 3/2)%w,, as we have no direct interaction'among fermi-
kinds of particle as shown in Reff17]. As the Bose-Fermi ons. One should note also that the yrast state, i.e., the lowest
interaction becomes repulsive the fermions are squeezed Odate for each angular momentum, has no radial node, and
from the central part. This in turn causes a smaller overlap ofpe yrare one, the second lowest state, has one radial node,
bosons and fermions, and thus a relatively small net effect oftc. The nodal structure of the particle and hole states around
the interaction on the binding energy. For the present choicthe Fermi surface is responsible for the multipole strength
of parameters the fermions are distributed outside the bosofistribution of low-energy particle-hole excitations. The fig-
“core” around h/g=7, forming a “shell” like structure re shows that the states with low orbital angular momentum
[7,8,13,17. Note that this behavior would be changed if one zre much influenced by the Bose-Fermi interaction, while
adopted different values faN;/N, and g, which may be  those with high angular momentum are almost insensitive to
represented by a single parametemtroduced in Ref[9].  the values ofh/g. This is because the additional fermion

The condition for the validity of the Thomas-Fermi ap- potential due to the Bose-Fermi interaction vanishes outside
proximation used to obtain the above fermion density distrithe hoson density distribution. For instance, since the yrast
bution may be expressed in terms of the local de Brogligingle-particle wave functions with angular momentérare
wave length\(r)=#A/p(r), where p(r)=v2m(er—Ver)  peaked around \€¢, those fermion states with¢
with fermion mean-field potential Ves(r)=3meir® > (Ry/£)2Rs being a typical edge radius of the boson dis-

FIG. 1. Fermion single-particle energies fotg=5.0,1.0,-3.0
against orbital angular momentum quantum number. Energies are
measured from the Fermi energy. Eigenstates that are degenerate at
h/g=0 are connected by solid lines.

B. Static properties

+hpy(r). With this quantity, the condition becomgz7] tribution, will not be much influenced by the Bose-Fermi
dn(r) interaction.(In the present caseg=3¢, and the above rela-
f(r):d_ <1. (31) tion gives€>9.))
r

C. Energy-weighted moments and comparison with the sum

At h/g=8 where the fermionic potential may have a most )
rule calculation

pronounced structure, the value bfr) is ~10"2 except
around turning points. At the turning points, however, the An RPA calculation provides approximate eigenvalues
fermion density produces only a negligible influence on theand wave functions for all the individual eigenstates and is
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useful to study details of the dynamics of the system. If one 220, L=0 .«
is interested in the gross behavior of the strength distribution : \,\ ‘,‘r“'
or an approximate frequency of the oscillation, one may 2107~ o

rather consider the th energy-weighted moments of the z,oo-/';"‘""""_—

strength distribution,

my(L, 1) =2 (AQ,)POIF{| )P, (32 _
v 1.6 L=1
| \\
where# ), is the excitation energy of the state). These g 14 AN e
moments can be expressed as ground state expectation val- 1S 424 \,\ ‘,,r"”‘
ues of multiple commutators df; with the Hamiltonian 1.0 , \,\mﬂ I.,.»-I"’ -
[29,30. It is known that this relation, the sum rule, is con- 6 -4 2 0 2 4 6 8
served in the RPA for some of the moments, i.e., the sum in
the RHS of Eq.(32) obtained from RPA eigenstates coin- 220, L2
cides with the expectation value of the commutator in the -
Hartree-Fock ground staf@8,29. Thus a comparison of the NG
two would provide a criterion on the consistency of the RPA
calculation. In particular, the first momegenergy-weighted
sum, EWS m, is calculated from the double commutator of 6 4 2 0 2 4 6 8
F[ and the Hamiltonian as hig
my(L,7)= 3 {[F],[H,F{1])o, (33 FIG. 2. Average frequencies of the collective excitations in the

sum rule formalism. Average frequeney, Eq. (34), in units of wg

where( ), denotes a ground state expectation V4R#. We s plotted against interaction strength rakitg with fixed g. Solid
have checked that the sum rule is satisfied within 1% for albnd dotted lines, respectively, show the in- and out-of-phase oscil-
the multipole modes. lations. For a comparison, average frequencies calculated from the

One can estimate the average frequency of the collectivground state expectation values of double commutaises Ref.
oscillation based on sum rules. There are several ways {d8]), are plotted by dashe(in-phas¢ and dot-dashedout-of-
define the average frequency depending on which part of thghasg lines.
strength distribution is emphasized. In REglf8] the ratio of

the third and the first moments state due to the Bose-Fermi attraction may be cld<€s,
which suggests that a larger configuration space may be re-
— /Mg quired to satisfy the sum rule. In fact, by increasing the num-
w= m_1 (34 ber of particle-hole states, we obtained a better agreement.
was studied based on sum rules. This definition is advanta- D. Distribution of multipole strengths

geous as it can be used to test the validity of the RPA calcu- o .
lation as mentioned earlier. In later discussions we consider, NOW We show the distributions of the multipole strengths.
also the average frequency calculated by Figures 3, 7, 10, and 11, respectively, show the strength dis-

tributions for L=0,1,2, and 3, for either the fermionic/
m; bosonic or the in-phase/out-of-phase operators.
wavza (35)
o 1. Monopole
which has more weight in the low-frequency strength com- In Fig. 3 we show the monopole strength distribution

pared withw. The two frequencies should coincide when al(0|Fg|»)[* againstQ,, for r=f,b and for three values of
single collective state exhausts the strength. We discuss latbfg. Here one expects a volume oscillation of boson and/or

also the width of the strength distribution defined by fermion densities. Foh=0 and for a large number of par-
ticles, the bosonic monopole oscillation will be located
Mz My 2112 around 5w, as given by the collisionless hydrodynamics
T lme (Mg (36) [2,21], while the fermionic one is concentrated abR The

latter property is due to the almost degenerate values of the
In Fig. 2 we show the average frequency E84) for L relevant particle-hole energies contributing to the monopole
=0,1,2 andr= +,— given by the sum rul€¢33) and the one oscillation. The present calculation shows that this situation
directly calculated in the RPA. We find a good agreement opersists even for large values bfg, although the bosonic
the two calculations in a wide range of the Bose-Fermi in-frequency is slightly shifted. The fermionic strength is dis-
teraction parametdr for a fixedg. There is a discrepancy at tributed over a few states aroundg, showing that the in-
very large values ofh|, especially in the strongly attractive duced Fermi-Fermi interaction via bosons is not strong
case. In the latter case, an induced instability of the grouné&nough to make a coherent superposition of the fermion
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FIG. 3. Monopole strength distribution for fermionic and 0.2
bosonic operatorsF{ and F3, at h/g=5.0,1.0, and—3.0. [PRER
Strengths in units of* are plotted against excitation energy. 0.0 -"l"‘ - | | |
0 1 2 3 4 5 6
particle-hole states. The total monopole strength for fermions q&/‘ﬁ

is larger by an order of magnitude than that for bosons, even
though the number of fermions involved in the excitation is  FiG. 4. Dynamical structure factors for the states in which in-
smaller because of the Pauli principle, e.gm; phase monopole strengths are the largest. These states correspond to
= 25901 wy&* for fermions andn; = 41% wo&* for bosons at  the ones af)/w,=2.03 forh/g=5.0, at 2.01 fon/g=1.0, and at
h/g=1. This is because of the broader density distribution1.98 for h/g=—23.0. Dotted and dashed lines correspond to the
for fermions. fermion and boson transition densitiég’, while solid lines are

The strength distribution may suggest that the fermiongor the in-phase onedp,o=p’o+ 6p° . The abscissa ig¢/f,
and bosons are moving independently even for rather larg@hereq denotes the momentum transferred to the system by exter-
values ofh/g. This is not necessarily the case, however, agal probes.
one may see in Fig. 4, where we plot the dynamical structure
factor for the three cases, i.e., the state§lav,=2.03 for  =1.92w,, appreciably lower than the value2w, for h/g
h/g=5.0, at 2.01, foh/g=1.0 and at 1.98 foh/g=—3.0, =-5 to 5. At more negative values bfg we could not find
which carry the largest strengths for the in-phase monopolg stable ground state.
operator. Although the fermionic strength is far larger than |et us study the character of the low-lying excited states
the bosonic one for this state, the mixture of the bosonitky considering the response to the probe
component is not small and is peaked at larger values of the
momentum transfeq as shown by the dashed lines. The 400-
latter shows that the bosons oscillate in the inner region al-
though this is not quite recognizable as long as one studies
only the F distribution.

In Refs.[16,18 we suggested that an instablity toward
collapse may occur at large negative valuesff and may
be signaled by the lowering a@é. In the present calculation
with a smaller number of particles this is not apparent in Fig.
2. In Fig. 5 we show the strength distribution htg= 0 , . ,
—6.65. This value is close to the critical value of instability 0 1 2 3
around—6.7 estimated from Mmer’s condition[7,16] and Qo
around— 6.8 from the condition of Roth and Feldme[&r7]. 0
We find a lowering of a single state which carries 13.9% of £ 5. strength distribution for the in-phase monopole operator
the EWS. The average frequency for this caseais F{ ath/g=—6.65 plotted agains)/w,.

300
200+

100

|<OIF,'v> /et
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FIG. 7. Dipole strength distribution for in- and out-of-phase
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FIG. 6. Strength distribution for thé-dependent monopole op-
eratorFy( ) ath/g=>5.0. Top figure shows the strength distribution
for the operatoiF(6,,,=—0.127) which was determined so as to
minimize the average frequencgy Middle figure is the one for the
operatorF, =F(6=0.387) which is perpendicular to the above
operator. Bottom figure is the strength distribution for the operator
F(6max=0.27) which was determined to maximize the average Dipole strength distributions for the in-phase and out-of-
energy. phase operators are shown in Fig. 7. The strong peak in the

in-phase strength distribution corresponds to the center-of-
F(0)=F *cosf+F sing (37) mass oscillation of the whole system. For many-particle sys-
tems confined in a common oscillator potential the center-of-
parametrized by. In Ref.[18] the angled was determined mass motion is decoupled from oth@ntrinsic) degrees of
by minimizing the average frequenay for F(6) so as to freedom of the system, resulting in an oscillation with the
find the character of the probe which favors the low-lyingsame frequency,. This relation can be represented by the
states. Once the value of the parametgy,,, is determined commutation relation of the dipole operator and the Hamil-
for a givenh/g, one may consider an operator “perpendicu-tonian, and should hold also within the RF28]. In the
lar” to F(6n), i.e., F, =F*sing,,—F cosé,, which  present numerical calculation, however, the stat€ atw,
may favor the high-lying state. Alternatively, one may maxi- does not exhaust the whole strength for the in-phase oscilla-
mize the EWS within the model space to determine the valuéion; the largest deviation occurslatg= — 1 having 80% of
0max Of the operator to characterize the high-lying statesthe EWS. This is because the single-particle model space in
Figure 6 shows the strength distribution for these three typesur numerical calculation is not sufficient to completely de-
of operator ath/g=5.0. The valued,;;=—0.127 suggests couple the center-of-mass motion, especially in strong cou-
that, in this highly repulsive value of the interaction, apling cases where the deviation of the single-particle poten-
slightly in-phase type oscillation is favored in order to avoidtial from the oscillator becomes large. Thg sum rule is,
an overlap of bosons and fermio(see the density distribu- nevertheless, almost satisfied as mentioned earlier, and is de-
tion in Refs.[7,8,13,17). We note that the distribution for termined by the total number of Bose and Fermi particles,
the “perpendicular” operatoF | is concentrated and is simi- where the latter number is dependent on the value/gf A
lar to the one foiF (6,50 The latter, however, is an almost smaller value of the sum rule percentagehdg=—1 is
bosonic type operator and suggests that the strength distribmainly due to the appearance of the almost degenerate state
tion alone is not sufficient to characterize the structure ofAw/w,=10"°) at this energy.
high-lying states. A similar study has been made for a very All other dipole oscillations should be orthogonal to the
attractive casén/g= —6.65. In this case we obtaifi,= center-of-mass motion and thus are out-of-phase type in
—0.01m, i.e., almost in phase, and the strength distribution ischaracter. One may note that at repulsive valuesh ofie

similar to Fig. 5. Thus the in-phase character of the low-lying
mode that favors the overlap of the two kinds of particles is
clearly seen in the determination B{ 6,;;,).

2. Dipole
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FIG. 8. Transition densities for the dipole oscillations with larg-
est strengths of the out-of-phase type. Excitation energies of these 5 9. pynamical structure factors for the same states as given
states ard}/wo=0.700 forh/g=5.0, 0.956 foh/g=1.0, and 1.14 i, rijg 8. Dotted and dashed lines are those for the fermionic and

for h/g=-3.0. Solid and dotted lines, respectively, show the fer-posonic transition densities while solid lines are those for the out-
mionic and bosonic transition densitiég,; in units of £&°. of-phase onegp,,= 5p§,1— 5951-

dominant part of the out-of-phase strength is located below
wg, although the strength carried by each individual state igation of the two kinds of particles. The out-of-phase dipole
not very large. As discussed in REL8], this may reflect the strength distribution in Fig. 7 indeed show a softening of the
ground state density distribution which favors the out-of-strength distribution at large values lofg. We cannot con-
phase oscillation by making the overlap of boson and ferclude from the present calculation, however, whether this
mion distributions smaller. Figure 8 shows transition densitendency is related to the mentioned instability.
ties for the out-of-phase type oscillations latg=5.0,1.0,
—3.0 which carry the largest strengthQ:/wy=0.700 for
h/g=5.0,0.956 forh/g=1.0, and 1.14 forh/g=-3.0.
Bosons and fermions move in the opposite directions so as to One finds from the quadrupole strength distribution in
make the overlap smaller around the surface of the bosohig. 10 that the fermionic strength is split into low- and
distribution. One can observe that the bosonic transition derigh-energy parts, while the bosonic strength is concentrated.
sity is large and robust, while the fermionic one is feeble andrhe higher strengths for the fermions are due to theg
is spread over the whole system. This situation may beXxcitation of the particle from the occupied single-particle
analogous to the soft dipole mode speculated to exist istates and are similar in character to the bosonic excitation.
neutron-rich nuclei wherein the protons oscillate almostin contrast, the lower fermion strengths come from the ma-
freely in the sea of neutrorf81]. Dynamical structure fac- trix elements of the quadrupole operafés which reorient
tors corresponding to these states are shown in Fig. 9. Heie single-particle states within the same oscillator shell of
the bosonic and fermionic responses are shown together witN=2n+¢ around the Fermi surface. This transition nor-
the one for a hypothetical out-of-phase type probe. Bymally involves a change of nodes by(dee Fig. ], and the
changing the momentum transfer one would find a structur€orresponding strengths are smaller than the higher ones.
corresponding to the oscillation of the two kinds of particle. One may note that the quadrupole bosonic strength is located
It was suggested ifi7,19] that for a very strong repulsion slightly higher thany2w, as expected for the collective os-
between bosons and fermions with sufficient numbers of paeillation in the largeN limit [2], which may be due to the
ticles the system may become unstable toward a phase segather small number of particles in the present calculation.

3. Quadrupole
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FIG. 10. Quadrupole strength distributions for fermionic and

g / 5 FIG. 11. Octupole strength distributions for fermionic and
bosonic operatorg, andF; ath/g=5.0, 1.0, and-3.0.

bosonic operators, andF5 ath/g=5.0, 1.0, and-3.0.

We note that the strength distribution tends to be fragaroundw, different combinations of orbits are involved, and

mented at largerepulsive values of the interaction param- the strengths are broadened by the deviation from the oscil-
eter h/g as seen in Fig. 10. This is because the averaggstor potential.

potential deviates appreciably from the harmonic oscillator
potential, giving rise to a dispersion in the fermion particle-
hole energiegsee Fig. 1 The strong fermion-boson interac-
tion would then be responsible for scattering the bosonic To study the collective oscillation of cold atomic gases,
strengths, too. the current experiments on BEC exert a time-dependent field
on the system and then observe the time development of the
shape and the size of the condensfdig This procedure
1 generally excites a number of normal modes, and one may in
X N . - "principle be able to resolve each mode by performing a Fou-
Hefe again the fermionic strength is Sp“.t infter, and 3 wo ﬁer trgnsform as long as the time duration ig long enough. To
regions due to the character of the multipole operBipiwe . simulate the situation we consider a time evolution of the

note also that the frequency of 'Fhe bosonic oscillation 'Ssystem after one applies an external weak pulse of the step-
much larger than the hydrodynamic valy8w, [21]. function type, i.e. AVexF[ for —At<t=<0. The calculation

We find a striking change in the fermionic strength distri- . L s .
butions depending on the sign of the Bose-Fermi interaction'.s performed within the lowest-order perturbation theonyt (

—10"2,,-1
While for a strongly repulsive caseéhfg=5.0) the region s chosen adt=10"%w, ")
between the low- and high-lying states is almost filled up by
small strengths, the one for a strongly attractive cdveg (
= —3.0) shows a large gap in the strength distribution. This First we consider a perturbation of monopole type,
may be traced back to the structure of the single-particle
states in Fig. 1. The large strengths arouney3&re due to
high orbital angular momentum states £,,=3 which
stay robust against/g as discussed earlier. Smaller strengthswith A w<wg, which is applied to the ground state of the
due to low¢, and{,, states are, on the other hand, sensitivesystem for a short periodt. The effective frequency of the
to the interaction, and the corresponding particle-hole enerexternal oscillator potential for fermions and/or bosons is
gies are below(for h/g>0) or above(for h/g<<0) the un- then changed intaw,*Aw depending on the choice af.
perturbed value 3,. This may be understood by noting that The time dependence of the rms radius of bosons and fermi-
the particles passing through the ceramall ¢ orbit) expe- ons is plotted in Fig. 12 &i/g= — 3 for the fermionic exter-
rience shallow(for h/g>0) or deep(for h/g<0) potentials nal field 7=f. The frequency of the short period oscillation
and are thus easier or harder to excite. For the strengths related to the average frequency of the strength distribu-

E. Time evolution

4. Octupole
The octupole strength distribution is shown in Fig. 1

1. Monopole

AV=mwoAw47F] (39
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FIG. 12. Time-dependent oscillation of the Bose-Fermi system FIG. 13. Time dependence of the oscillations of fermions and

at h/g=—3.0 after an external impulse of fermionic monopole
type, Eq.(38). Time dependences of the root-mean-square fadii
units of ¢) of fermions(upper figure and of bosongmiddle figure
are shown. Parameters of the impulse A/ wy=0.01 andwyAt
=0.01. The differential equation in time is solved with the time
mesh of 0.05)51 up tot.=100/wy. The lowest figure shows the
Fourier transform(in arbitrary unit$ of the fermionic rms radius
deviation from the ground staté;?)(t) — (r?),, which corresponds
to the fermionic strength distribution given in Fig. 3 htg=
-3.0.

tion, e.g.,w,4,=1.9%w,. That of the long period one, on the
other hand, reflects the width of the distribution. For in-
stance, the slow decrease of the envelope.far?) would
imply a very narrow width of the strength distribution. The
bottom of Fig. 12 shows the Fourier transform @) (t)
—(r#), which recovers the sharp peak structure of th

(S

bosons ath/g=5.0 for an out-of-phase type external dipole im-
pulse, Eq(39). Top and middle figures show the fermion and boson
centers of mass in units @f against elapsed time in units ato_l.
Parameters are given hyz/£=0.01 andwyAt=0.01. Calculation

is performed with time mesh of 0.015l and up tot,,,=100/wg.
The lowest figure shows the Fourier transfaiimarbitrary unit$ of

the relative distance of fermions and bosdNg,z;) — Ny(z,), with

an energy resolution of~102. The figure corresponds to the
strength distribution of the out-of-phase type in Fig. h&g=5.0.

where Az(<¢) measures the shift of the centers of the os-
cillator potentials experienced by fermions and/or bosons. In
Fig. 13 we show the time dependence of the centers-of mass
of bosons and fermions for the out-of-phase external dipole
impulser=— ath/g=5. The frequency of the oscillation is
consistent with the average frequency @gGor the dipole
strength distribution. The amplitude of the oscillation shows
an irregular behavior, suggesting that the strength distribu-

strength distribution in Fig. 3. The time evolution of the oy goes not have a simple structure. The lowest part of the

bosonic radius shows a rather regular modulation, and
beat frequency is estimated at about 0&g5which is con-
sistent with the half-widthr/2=0.127w.

2. Dipole
For the dipole case we take the perturbing potential

4
AV=—mo3Az\/ <L

(39

itﬁgure shows the Fourier transform of the relative distance of

the fermion and boson center-of-mass positiohg{z;)
—Ng(zp), which is sufficient to recover the behavior of the
original strength distribution given in Fig. 7.

IV. SUMMARY AND CONCLUSION

In the present paper we performed a RPA calculation of a
polarized Bose-Fermi mixed system of alkali-metal gases at
zero temperature. We solved the coupled Gross-Pitaevskii-
Thomas-Fermi equations to obtain the ground state for sev-
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eral values of the boson-fermion interaction strength with aout not to be the case if we study the dynamical structure
fixed value of the boson-boson interaction. Single-particlefactors. We find, in fact, that the long wavelength oscillation
states of Bose and Fermi particles are calculated based on tbé fermions in the surface is coupled to the internal short
mean field produced by the obtained ground state densitwavelength oscillation of bosons. For a strong attractive
The density distribution constructed from the occupiedboson-fermion interaction, the calculation suggests a soften-
single-particle orbits agrees well with the original one, sug-ing of in-phase monopole oscillations. We studied also the
gesting the self-consistency of the calculation. We calculatedtructure of the low-lying out-of-phase type dipole modes.
and diagonalized the RPA matrix to obtain excitation enerliowering of the energy is related to the ground state density
gies and wave functions for multipolés=0,1,2,3. We then distribution of bosons and fermions, which favors the out-of-
calculated strength distributions for bosonic/fermionic andphase oscillation. Transition densities for these modes sug-
in-phase/out-of-phase multipole operators, and also transgest that the bosons oscillate on their way through the cloud
tion densities and dynamical structure factors for some of thef fermions, which is analogous to the soft dipole mode dis-
collective states. cussed in neutron-rich nuclei. We also calculated the strength

We first calculated energy-weighted moments of thedistributions for quadrupole and octupole modes, and stud-
strengths to study the average behavior of the strength dised, in particular, the origin of the fragmentation of fermionic
tribution. Comparison of the first moments with the sum rulestrengths. Finally, we considered the time-dependent behav-
predictions forL=0,1,2 shows that the RPA configuration ior of the trapped Bose-Fermi system after an impulse of a
space is sufficient to within 1%. A glance at the monopolemultipole external field. By Fourier transforming the time-
distribution suggests that fermions and bosons are movindependent oscillating behavior of the system, we could re-
rather independently for the adopted parameters, which turnsover the gross structure of the strength distribution.
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