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Low dimensional Bose gases
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We present an improved many-bodyT-matrix theory for partially Bose-Einstein condensed atomic gases by
treating the phase fluctuations exactly. The resulting mean-field theory is valid in arbitrary dimensions and able
to describe the low-temperature crossover between three-, two-, and one-dimensional Bose gases. When ap-
plied to a degenerate two-dimensional atomic hydrogen gas, we obtain a reduction of the three-body recom-
bination rate, which compares favorably with experiment. Supplementing the mean-field theory with a
renormalization-group approach to treat the critical fluctuations, we also incorporate into the theory the
Kosterlitz-Thouless transition that occurs in a homogeneous Bose gas in two dimensions. In particular, we
calculate the critical conditions for the Kosterlitz-Thouless phase transition as a function of the microscopic
parameters of the theory. The proposed theory is further applied to a trapped one-dimensional Bose gas, where
we find good agreement with exact numerical results obtained by solving a nonlinear Langevin field equation.
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I. INTRODUCTION

Low-dimensional Bose gases have recently attracted
tention both experimentally and theoretically. The interes
these systems stems from the fact that the physics of l
dimensional systems is fundamentally different from t
physics of systems in three dimensions. One- and t
dimensional Bose-Einstein condensates have recently
created in the experiment of Go¨rlitz et al. @1#. This was
achieved by lowering the mean-field interaction energy i
three-dimensional condensate below the energy splitting
either one or two of the directions of the harmonic trap,
obtain a two-dimensional or one-dimensional condensate
spectively. In a number of other experiments, on
dimensional Bose-Einstein condensates were also creat
a 6Li- 7Li mixture @2# and on a microchip@3,4#.

Theoretically, low-dimensional Bose gases are parti
larly interesting due to the enhanced importance of ph
fluctuations@5–8#. Due to these fluctuations, Bose-Einste
condensation cannot take place in a homogeneous
dimensional Bose gas at all temperatures and in a hom
neous two-dimensional Bose gas at any nonzero tempera
This is formalized in the Mermin-Wagner-Hohenberg the
rem @9,10#. Since this theorem is valid only in the therm
dynamic limit, it does not apply to trapped Bose gas
Therefore, the question arises whether under certain co
tions we are dealing with a true condensate, where the p
is coherent over a distance of the order of the size of
system, or only with a so-called ‘‘quasicondensate’’@11#,
where the phase is coherent over a distance less than the
of the system@5–8#. This is one of the main questions th
we address quantitatively in this paper. Although the m
focus of the paper is on low-dimensional Bose gases,
theory presented here is also valid for three-dimensional
tems, and can be used to study, for instance, the role of p
fluctuations in strongly elongated condensates@12,13#.

In the successful Popov theory for three-dimensional p
tially Bose-Einstein condensed gases, the phase fluctua
1050-2947/2002/66~1!/013615~15!/$20.00 66 0136
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are taken into account up to the second order around
mean field. In view of the above-mentioned importance
phase fluctuations in lower dimensions, this is insufficient
general, and leads to infrared divergences. In previous w
by three of us, the phase fluctuations were taken into acco
exactly @14#. The result is a mean-field theory which is fre
of the infrared divergences in all dimensions. In the pres
paper, we first review this modified Popov theory and th
extend it to the many-bodyT-matrix theory, by including the
effect of the medium on the scattering properties of the
oms in the gas. The present approach improves on prev
attempts by Petrovet al. @7,8# to describe low-dimensiona
Bose gases by explicitly incorporating also the effect of d
sity fluctuations into the theory. As a result both quantum a
thermal depletion of the~quasi!condensate can now be a
counted for and the theory is no longer only valid at very lo
temperatures where the depletion, and therefore the the
component in the gas, is negligible. Most importantly, w
present an equation of state for the low-dimensional B
gas that is free of infrared divergences and thus valid in
dimension. For a trapped Bose gas this implies that we
determine, for a given number of atoms, the density pro
of both the~quasi!condensate and the thermal cloud in t
gas for any aspect ratio of the trap. The interesting crosso
problem from a three-dimensional Bose gas to a one- or t
dimensional one, which is presently being explored exp
mentally @1#, can be addressed as well.

In the present paper we first use the modified many-b
T-matrix theory to calculate the one-particle density mat
and determine its off-diagonal long-range order. We also c
culate the fractional depletion of the~quasi!condensate a
zero temperature in one, two, and three dimensions. Next
study the two-dimensional homogeneous Bose gas in con
erable detail. After having included the phase fluctuatio
due to vortex pairs by a renormalization-group approach,
apply the modified many-bodyT-matrix theory to perform an
ab initio study of the Kosterlitz-Thouless phase transiti
@15# from the superfluid to the normal state. Since this is
©2002 The American Physical Society15-1
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topological phase transition, it cannot be described wit
mean-field theory. Therefore, we proceed as follows. We fi
use the modified many-bodyT-matrix theory to calculate the
quasicondensate density and the fugacity of vortices. Th
results are then used as initial conditions for a Koster
renormalization-group calculation. In this manner, we are
corporating critical fluctuations and are able to calculate n
universal quantities such as the critical temperature for
Kosterlitz-Thouless phase transition as a function of the d
sity and the microscopic parameters of the theory.

Finally, we apply the theory to a trapped one-dimensio
Bose gas, where we calculate the density profile at differ
temperatures. From this we extract the crossover tempera
for the appearance of a~quasi!condensate as a function of th
interaction strength. We also calculate the behavior of
phase correlation function that determines whether there
ists a true condensate or only a quasicondensate. These
dictions are compared to exact results based on a stoch
nonlinear field equation for the Bose gas@16#.

The paper is organized as follows. In Sec. II, we pres
and discuss the Popov theory and its infrared problems.
also present our modified mean-field theory in the homo
neous limit. In Sec. III, we compare the latter with exa
results in one dimension, and with results obtained in
Popov approximation in two and three dimensions. We a
calculate the reduction of the three-body recombination
for a two-dimensional hydrogen gas and compare it with
experiment of Safonovet al. @17#. In Sec. IV, we study the
Kosterlitz-Thouless phase transition and in Sec. V, we g
eralize the many-bodyT-matrix theory to inhomogeneou
situations. In particular, we consider then a one-dimensio
trapped Bose gas, for which we compare our prediction
numerically exact results. Finally, we conclude and summ
rize in Sec. VI.

II. MODIFIED POPOV THEORY

In this section, we derive the modified Popov theory
treating the phase fluctuations exactly. We also discuss
to incorporate many-body effects into the theory. Finally,
give additional arguments for the correctness of our appro
by using an effective action for the density and phase dyn
ics in a superfluid system that is known to give exact res
in the long-wavelength limit.

A. Phase fluctuations

In order to explain the infrared problems associated w
the phase fluctuations of the condensate most clearly, we
treat a homogeneous Bose gas in a box of volumeV. Later
we generalize to the inhomogeneous case. The starting p
is the grand-canonical Hamiltonian in second-quantized
guage

H5E dxĉ†~x!F2
\2

2m
¹22mG ĉ~x!

1
1

2E dxE dx8ĉ†~x!ĉ†~x8!V~x2x8!ĉ~x8!ĉ~x!,

~1!
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wherem is the chemical potential, andV(x) is the atomic
two-body interaction potential. The mass of the atoms is
noted bym, and ĉ†(x) and ĉ(x) are the usual creation an
annihilation field operators, respectively.

In the Bose systems considered here and those realize
experiment, the temperatures are so low that onlys-wave
scattering is important. Consequently, it is convenient to
glect the momentum dependence of the interatomic inte
tion and useV(x2x8)5V0d(x2x8). In principle this leads
to ultraviolet divergences, but these can easily be dealt w
as we show later on. The Hamiltonian then reduces to

H5E dxĉ†~x!F2
\2

2m
¹22mG ĉ~x!

1
1

2E dxV0ĉ†~x!ĉ†~x!ĉ~x!ĉ~x!. ~2!

In the presence of a Bose-Einstein condensate the an
lation operator is parametrized as

ĉ~x!5An01ĉ8~x!, ~3!

wheren0 is the condensate density andĉ8(x) describes the
fluctuations. The standard one-loop expressions for the d
sity n and the chemical potentialm are obtained after a qua
dratic approximation to the Hamiltonian in Eq.~2!, i.e., by
neglecting terms that are of third and fourth order in t
fluctuations. This yields@11,18#

n5n01
1

V (
k

Fek1n0V02\vk

2\vk
1

ek1n0V0

\vk
N~\vk!G ,

~4!

m

V0
5n01

1

V(
k

F2ek1n0V022\vk

2\vk

1
2ek1n0V0

\vk
N~\vk!G , ~5!

where\vk5(ek
212n0V0ek)

1/2 is the Bogoliubov dispersion
relation,N(x)51/(ebx21) is the Bose-Einstein distribution
function, andb51/kBT is the inverse thermal energy.

In agreement with the Mermin-Wagner-Hohenberg the
rem, the momentum sums in Eqs.~4! and ~5! contain terms
that are infrared divergent at all temperatures in one dim
sion and at any nonzero temperature in two dimensions.
physical reason for these ‘‘dangerous’’ terms is that
above expressions have been derived by taking into acc
only quadratic fluctuations around the classical resultn0, i.e.,
by writing the annihilation operator for the atoms asĉ(x)
5An01ĉ8(x) and neglecting in the Hamiltonian terms o
third and fourth order inĉ8(x). As a result the phase fluc
tuations of the condensate give the quadratic contribu
n0^x̂(x)x̂(x)& to the right-hand side of the above equation
whereas an exact approach that sums up all the higher-o
terms in the expansion would clearly give no contribution
all to these local quantities becausen0^e

2 i x̂(x)ei x̂(x)&5n0(1
5-2
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LOW-DIMENSIONAL BOSE GASES PHYSICAL REVIEW A66, 013615 ~2002!
1^x̂(x)x̂(x)&1•••)51. To correct for this we thus need t
subtract the quadratic contribution of the phase fluctuatio
which from Eqs.~4! and ~5! is seen to be given by

n0^x̂~x!x̂~x!&5
1

V (
k

n0V0

2\vk
@112N~\vk!#. ~6!

As expected, the infrared divergences that occur in the o
and two-dimensional cases are removed by performing
subtraction.

After having removed the spurious contributions from t
phase fluctuations of the condensate, the resulting exp
sions turn out to be ultraviolet divergent. These divergen
are removed by the standard renormalization of the bare
pling constantV0. Apart from a subtraction, this essential
amounts to replacing everywhere the bare two-body poten
V0 by the two-bodyT matrix evaluated at zero initial an
final relative momenta and at the energy22m, which we
denote from now on byT2B(22m). It is formally defined by

1

T2B~22m!
5

1

V0
1

1

V (
k

1

2ek12m
. ~7!

Note that the energy argument of theT matrix is 22m, be-
cause this is precisely the energy it costs to excite two at
from the condensate@19,20#. After renormalization, the den
sity and chemical potential are

n5n01
1

V (
k

Fek2\vk

2\vk
1

n0T2B~22m!

2ek12m
1

ek

\vk
N~\vk!G ,

~8!

m5~2n2n0!T2B~22m!5~2n81n0!T2B~22m!, ~9!

wheren85n2n0 represents the depletion of the condens
due to quantum and thermal fluctuations and the Bogoliu
quasiparticle dispersion now equals\vk5@ek

212n0

3T2B(22m)ek#1/2. The most important feature of Eqs.~8!
and~9! is that they contain no infrared and ultraviolet dive
gences and therefore can be applied in any dimension an
all temperatures, even if no condensate exists.

Note that Eq.~6! is also ultraviolet divergent. The ultra
violet divergences are removed by the same renormaliza
of the bare interactionV0 and the final result is

^x̂~x!x̂~x!&5
T2B~22m!

V (
k

F 1

2\vk
@112N~\vk!#

2
1

2ek12mG . ~10!

We will return to the physics of this important expression
Sec. II C below.

B. Many-body T matrix

In the preceding section, we presented the modifi
Popov theory that takes the phase fluctuations into acc
exactly. The final results in Eqs.~8!–~10! involve the two-
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body T matrix. The two-bodyT matrix takes into accoun
successive two-body scattering processes in vacuum. H
ever, it neglects the many-body effects of the surround
gas. In order to take this into account as well, we must
the many-bodyT matrix instead of the two-bodyT matrix in
Eqs. ~8!–~10!. Many-body effects have been shown to
appreciable in three dimensions only very close to the tr
sition temperature@21#, but turn out to be more important in
one and two dimensions@18#. Since the effect of the medium
on the scattering properties of the atoms is only importan
relatively high temperatures, we can apply a Hartree-F
approximation to obtain for the many-bodyT matrix

TMB~22m!5T2B~22m!F11T2B~22m!

3
1

V (
k

N@ek1n0TMB~22m!#

ek1m G21

. ~11!

The situation is in fact slightly more complicated becau
we actually have two coupling constants in the equation
the chemical potential, which is the homogeneous version
the Gross-Pitaevskii equation. When two atoms in the c
densate collide at zero momentum, they both require an
ergy m to be excited from the condensate, and thus the c
pling is evaluated at22m. This is the coupling that
multiplies n0 in the Gross-Pitaevskii equation. On the oth
hand, the coupling that multipliesn8 in the Gross-Pitaevski
equation involves one condensate atom and one atom in
thermal cloud, so that this coupling should now be evalua
at 2m. The equation for the chemical potential thus becom

m52n8TMB~2m!1n0TMB~22m!. ~12!

Note that the existence of two different many-body coupli
constants for the interatomic interactions has previously b
discussed by Proukakiset al. @22#. ~See, however, also Ref
@23#.! This lead these authors to the so-calledG1 theory,
which is qualitatively somewhat similar to Eq.~12! but dif-
fers in detail.

C. Long-wavelength physics

We have given physical arguments for how to identify a
subtract the contribution to Eqs.~4! and ~5! from the phase
fluctuations of the condensate. At this point, we would like
give a somewhat more rigorous field-theoretical argume
The Euclidean action that corresponds to the Hamiltonian
Eq. ~2! is

S@c* ,c#5E
0

\b

dtE dxc* F\ ]

]t
2

\2

2m
¹22mGc

1
1

2E0

\b

dtE dxV0ucu4. ~13!

If we substitutec(x,t)5An1dn(x,t)eix(x,t) into Eq. ~13!,
we obtain the action
5-3
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S@dn,x#5E
0

\b

dtE dxF1

2
\

]dn

]t
1 i\~n1dn!

]x

]t

1
\2

2m
n~¹x!21

1

2
dnS \2

4mn
¹21V0D dnG .

~14!

Here,n is the average total density of the gas anddn(x,t)
represents the fluctuations. At zero temperature, this actio
exact in the long-wavelength limit, if (\2k2/4mn1V0) is
replaced byxnn

21(k), wherexnn(k) is the exact static density
density correlation function.

By using the classical equation of motion to eliminate t
phasex(x,t), we obtain the following action for the densit
fluctuationsdn(x,t):

S@dn#5E
0

\b

dtE dxF2
m

n

]dn

]t
¹22

]dn

]t

1
1

2
dnxnn

21~2 i¹!dnG . ~15!

The density fluctuations are, therefore, determined by

^dn̂~x!dn̂~x8!&5
1

V (
vn ,k

nek

b F 1

~\vn!21~\vk!2Geik•(x2x8),

~16!

wherevn52pn/\b are the even Matsubara frequencies a

\vk5Anek /xnn(k). Summing over these Matsubara fr
quencies, we obtain

^dn̂~x!dn̂~x8!&5
1

V (
k

nek

\vk
@112N~\vk!#eik•(x2x8).

~17!

Similarly, by using the classical equation of motion f
dn(x,t), we obtain from Eq.~14! the following action for
the phase fluctuations:

S@x#5E
0

\b

dtE dxF1

2
\2

]x

]t
xnn~2 i“ !

]x

]t
1

\2n

2m
~“x!2G .

~18!

From this action, it is straightforward to calculate the prop
gator for the fieldx(x,t) and thereby the correlation func
tion ^x̂(x)x̂(x8)&. The result is

^x̂~x!x̂~x8!&5
1

V (
k

1

xnn~k!

1

2\vk
@112N~\vk!#

3eik•(x2x8). ~19!

Settingx85x, we recover Eq.~10! in the long-wavelength
limit, if we usexnn(k).1/TMB(22m) for the static density-
density correlation function in that limit. It is important t
mention that Eq.~19! is often used for the short-waveleng
part of the phase fluctuations as well@6–8#. This is, however,
01361
is

d

-

incorrect because it contains ultraviolet divergences due
the fact that the above procedure neglects interaction te
between density and phase fluctuations that are only ir
evant at large wavelengths. The correct short-wavelength
havior is given in Eq.~10!.

III. COMPARISON WITH POPOV THEORY

We proceed to compare predictions based on Eqs.~8!–
~10! with exact results in one dimension and results based
the Popov theory in two and three dimensions. We cons
only the homogeneous case here and discuss the inhom
neous Bose gas in Sec. V

A. One dimension

To understand the physical meaning of the quantityn0 in
Eqs.~8! and ~9!, i.e., whether it is the quasicondensate de
sity or the true condensate density, we must determine
off-diagonal long-range behavior of the one-particle dens
matrix. Because this is a nonlocal property of the Bose g
the phase fluctuations contribute and we find in the largeuxu
limit

^ĉ†~x!ĉ~0!&.n0^e
2 i (x̂(x)2x̂(0))&5n0e21/2̂ [ x̂(x)2x̂(0)] 2&.

~20!

Using Eq.~10!, we obtain for the exponent in Eq.~20!

^@ x̂~x!2x̂~0!#2&5
TMB~22m!

V (
k

F 1

\vk
@112N~\vk!#

2
1

ek1mG@12cos~k•x!#. ~21!

Writing the sum over wave vectorsk as an integral, the
phase fluctuations at zero temperature can be written as

^@ x̂~x!2x̂~0!#2&5
1

2pn0j
E

0

`

dk [12cos~kx!]

3F 1

kAk211
2

1

k21 1
2
G , ~22!

where j5\/@4mn0T2B(22m)#1/2 is the correlation length.
Note that we have used thatTMB(22m)5T2B(22m) at zero
temperature and that the chemical potential, as we sh
shortly, is to a good approximation equal ton0T2B(22m).
The integration can be performed analytically and the re
is

^@ x̂~x!2x̂~0!#2&5
1

2pn0jFpx

2j 2F1~1/2,1;3/2;x2/4j2!

2
x2

2j2 3F2~1,1,3/2;3/2,2;x2/4j2!G ,
~23!

where iF j (a1 ,a2 , . . . ,a i ;b1 ,b2 , . . . ,b j ;x) are hypergeo-
metric functions. In the limituxu→`, Eq. ~23! reduces to

^@ x̂~x!2x̂~0!#2&.
1

2pn0j
ln~x/j!. ~24!
5-4
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Using Eq.~24! we find that the one-particle density matr
behaves foruxu→` as

^ĉ†~x!ĉ~0!&.
n0

~x/j!1/4pn0j
. ~25!

A few remarks are in order. First, the asymptotic behav
of the one-particle density matrix at zero temperature pro
that the gas is not Bose-Einstein condensed and than0
should be identified with the quasicondensate density. S
ond, in the weakly interacting limit 4pnj@1 the depletion is
small, so that, to first approximation, we can usen0.n in the
exponenth51/4pn0j. Indeed, from Eqs.~8! and ~9! we
obtain the following expression for the fractional depleti
of the quasicondensate

n2n0

n
5

1

4pnj SA2

4
p21D . ~26!

We see that the expansion parameter is 1/4pnj and, there-
fore, the depletion is very small. Keeping this in mind, E
~25! is in complete agreement with the exact result obtain
by Haldane@24#. Note that our theory cannot describe t
strongly interacting case 4pnj!1, where the one-
dimensional Bose gas behaves as a Tonks gas@25,26#.

Finally, our results show that at a nonzero temperature
phase fluctuations increase as^@ x̂(x)2x̂(0)#2&}uxu for large
distances, and thus the off-diagonal one-particle density
trix vanishes exponentially. Hence, at nonzero temperat
not even a quasicondensate exists and we have to us
equation of state for the normal state to describe the gas,

n5
1

V (
k

N~ek1\S2m!, ~27!

where the Hartree-Fock self-energy satisfies

\S52nTMB~2\S!, ~28!

and the many-bodyT matrix obeys

TMB~2\S!5T2B~2\S!F11T2B~2\S!

3
1

V (
k

N~ek1\S2m!

ek1\S/2 G21

, ~29!

Note that the last three equations for the description of
normal phase of the Bose gas are again valid for an arbit
number of dimensions.

B. Two dimensions

In analogy with Eq.~22!, we obtain for the phase fluctua
tions in two dimensions at zero temperature

^@ x̂~x!2x̂~0!#2&5
1

pn0j2E
0

`

dk @12J0~kx!#

3F 1

Ak211
2

k

k21 1
2
G , ~30!
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Therefore we now find in the limituxu→` that

^ĉ†~x!ĉ~0!&5n0 ~31!

andn0 is clearly the condensate density of the gas. Howe
at nonzero temperatures the correlation function behave

^ĉ†~x!ĉ~0!&.
n0

~x/j!1/n0L2 , ~32!

where L5A2p\2/mkBT is the thermal de Broglie wave
length andn0 corresponds again to the quasicondensate d
sity. At zero temperature, the fractional depletion of the co
densate in the Popov approximation was first calculated
Schick @19#. He obtained

n2n0

n
5

1

4p
T2B~22m!, ~33!

where the chemical potential satisfiesm5nT2B(22m). The
corresponding result based on Eqs.~8! and ~9! is

n2n0

n
5

1

4p
~12 ln 2!T2B~22m!, ~34!

wherem now satisfies Eq.~9!. In two dimensions, the deple
tion predicted by the Popov theory is thus too large by
factor of approximately 3.

In a number of applications, we need to calculate ma
body correlators. For instance, in order to calculate how
quasicondensate modifies the two-body relaxation const
of a spin-polarized two-dimensional Bose gas, we need
know K (2)(T)[^ĉ†(x)ĉ†(x)ĉ(x)ĉ(x)&/2n2. This correlator
was considered in Ref.@27# using the many-bodyT-matrix
theory with an appropriate cutoff to remove the infrared
vergences. An exact treatment of the phase fluctuations le
however, directly to an infrared finite result as we show no
Using the parametrization in Eq.~3! for the annihilation op-
erators, we obtain first of all

^ĉ†~x!ĉ†~x!ĉ~x!ĉ~x!&

5n0
21n0@^ĉ8~x!ĉ8~x!&1^ĉ8†~x!ĉ8†~x!&

14^ĉ8†~x!ĉ8~x!&#12^ĉ8†~x!ĉ8~x!&2

1^ĉ8~x!ĉ8~x!&^ĉ8†~x!ĉ8†~x!&. ~35!

The normal average is given bŷ ĉ8†(x)ĉ8(x)&5n8

1n0^x̂(x)x̂(x)& and the anomalous average obe

^ĉ8(x)ĉ8(x)&52n0^x̂(x)x̂(x)&, as we have seen. Usin
this, Eq.~35! can then be written as

^ĉ†~x!ĉ†~x!ĉ~x!ĉ~x!&

5n0
2@112^x̂~x!x̂~x!&13^x̂~x!x̂~x!&2#

14n0@11^x̂~x!x̂~x!&#n812~n8!2. ~36!
5-5
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AL KHAWAJA, ANDERSEN, PROUKAKIS, AND STOOF PHYSICAL REVIEW A66, 013615 ~2002!
Writing the correlator in this form, we explicitly see that th
infrared divergences are due to spurious contributions fr
the phase fluctuations. Removing them, we obtain, for
renormalized correlator,

KR
(2)~T!5

1

2n2 @n0
214n0n812~n8!2#. ~37!

We would like to point out that critical fluctuations are n
treated within our mean-field theory. This is, of course,
sential in the study of the Kosterlitz-Thouless phase tra
tion and we return to this issue in Sec. IV. However,
example of a physical observable where phase fluctuat
are not important, is the three-body recombination rate c
stant. We are at this point, therefore, already in a position
determine the reduction of the three-body recombination
constant due to the presence of a quasicondensate. Thi
be expressed as@27#

LN

L~T!
.H F T2B~22m!

T2B~22\S!
G 6

KR
(3)~T!J 21

, ~38!

whereLN is the recombination rate constant in the norm
phase, which is essentially independent of temperature,
the self-energy satisfies\S52nT2B(2\S). The renormal-
ized three-body correlator

KR
(3)~T!5

1

6n3 @n0
319n0

2n8118n0~n8!216~n8!3# ~39!

is obtained from the expression for the correlation funct

^ĉ†(x)ĉ†(x)ĉ†(x)ĉ(x)ĉ(x)ĉ(x)& by removing, as before
the spurious contributions from the phase fluctuations. Mo
over, in two dimensions theT matrix depends logarithmically
on the chemical potential as

T2B~22m!5
4p\2

m

1

ln~2\2/mma2!
, ~40!

wherea is the two-dimensionals-wave scattering length. In
the case of atomic hydrogen adsorbed on a superfluid he
film, the scattering length was found to bea52.4a0 @28#,
wherea0 is the Bohr radius. However, there is some unc
tainty in this number because the hydrogen wave func
perpendicular to the helium surface is not known very ac
rately. In order to compare with experiment, we may the
fore allow a to vary somewhat.

In Fig. 1, we show the reduction of the three-body reco
bination rate as a function of the density at a fixed tempe
ture T5190 mK for three different values ofa. As can be
clearly seen from Fig. 1, the reduction of the three-bo
recombination rate is very sensitive to the value ofa. What is
most important at this point is that at high densities our c
culation shows that the reduction of the recombination rat
much larger than the factor of 6 predicted by Kaganet al.
@29#. Such large reduction rates are indeed observed exp
mentally @17#. A direct comparison, however, between t
results of our theory and the measurements of Safonovet al.
cannot be made here, since the density and temperatu
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the adsorbed hydrogen gas were not measured directly,
inferred from the properties of the three-dimensional buf
gas. Because this procedure requires the knowledge of
equation of state of the two-dimensional Bose gas absor
on the superfluid helium film, the raw experimental da
needs to be reanalyzed with the theory presented in this
per. We can, however, compare the density at which the
combination rate starts to deviate considerably from the
sult in the normal state. For the temperature ofT
5190 mK, where most of the experimental data is tak
this is at a density of about 1.031013 cm22, which is in
excellent agreement with experiment. In view of this and
above mentioned problems we thus conclude that our res
present a compelling theoretical explanation of the exp
mental findings.

C. Three dimensions

The Popov theory has been very successful in describ
the properties of dilute three-dimensional trapped Bo
gases. It is therefore important to check that an exact tr
ment of the phase fluctuations leads at most to small chan
in the predictions for the three-dimensional case.

At zero temperature, the fractional depletion within t
Popov theory was first calculated by Lee and Yang@30# and
is given by

n2n0

n
5

8

3
Ana3

p
, ~41!

wherea is thes-wave scattering length and we have used

T2B~22m!5
4pa\2

m
. ~42!

The result that follows from Eqs.~8! and ~9! is

n2n0

n
5S 32

3
22A2p DAna3

p
. ~43!

FIG. 1. Reduction of the three-body recombination rate a
function of the density for a temperature ofT5190 mK and three
different values of the scattering length. The dotted line correspo
to a52.4a0, the long-dashed line toa51.2a0, and the dashed line
to a50.6a0, respectively.
5-6
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LOW-DIMENSIONAL BOSE GASES PHYSICAL REVIEW A66, 013615 ~2002!
The fractional depletion is approximately 2/3 of the val
obtained from the Popov theory. It turns out that this is
largest change in the condensate depletion, since the ef
of phase fluctuations decrease with increasing tempera
The critical temperatureTBEC is found by taking the limit
n0→0 in Eqs.~8! and~9!. These expressions then reduce
the same expressions for the density and chemical pote
as in the Popov theory. This implies that our critical tempe
ture for Bose-Einstein condensation coincides with that
tained in Popov theory, i.e., the ideal gas result

TBEC5
2p\2

mkB
F n

z~ 3
2 !

G2/3

, ~44!

wherez( 3
2 ).2.612.

IV. KOSTERLITZ-THOULESS PHASE TRANSITION

In the preceding section, we have compared our res
using the modified many-bodyT-matrix theory with estab-
lished results in one, two, and three dimensions in the Po
approximation. Due to the mean-field nature of the modifi
many-bodyT-matrix theory, the Kosterlitz-Thouless trans
tion is absent and a nontrivial solution of the equation
state exists even if the superfluid densityns obeysnsL

2,4.
In this section, we correct for this by explicitly including th
effects of vortex pairs in the phase fluctuations. The idea i
use the modified many-bodyT-matrix theory to determine
the initial values of the superfluid density and the vort
fugacity, and to carry out a renormalization-group calculat
to find the fully renormalized values of these quantities.
this manner we can, for example, calculate the critical te
peratureTc for the Kosterlitz-Thouless transition given th
scattering lengtha and densityn.

Let us for completeness first briefly sketch the derivat
of the renormalization-group equations for the superfl
density and the vortex fugacity@31#. Consider the velocity
field of a vortex where the core is centered at the positi
xi , which we, for simplicity, take to lie on a lattice with a
area of the unit cell equal toV. By rotating the velocity field
by p/2 we can map it onto the electric field of a point char
in two dimensions. Since the total energy in both system
proportional to the square of the field integrated over spa
there is complete analogy between a system of vortices a
two-dimensional Coulomb gas. This analogy is very use
and we will take advantage of it in the following. The tot
vorticity corresponds to the total charge of the Coulomb g
For the analogous two-dimensional neutral Coulomb gas
a square lattice, the partition function can be written as

Z5 (
$xi ,ni %

e2b~( iÞ jV~xi2xj !ninj 2Ec( j nj
2
!, ~45!

where V(xi2xj )522p\2ns ln(uxi2xj u/j)/m is the Cou-
lomb interaction between two unit point charges in two
mensions,ns is the superfluid density, andEc is the energy
associated with the spontaneous creation of a charge, i.
is the core energy of the vortices. The summation is over
possible configurations of chargesni at positionsxi on the
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lattice. The partition function can be rewritten in a fiel
theoretic fashion in terms of the electrostatic potentialf(x)
and the fugacityy5e2bEc as

Z5 (
$xj ,nj %

E Df e2
1
2 E dx K8@¹f~x!#2

3exp@2 ibS jnjf~xj !#y
S j nj

2
, ~46!

whereK85(2p)2m/\2kBTns . In the limit wherey!1, the
charge density is very low, and thus onlynj50,61 contrib-
ute to the partition function. We can then write

Z.E Df e2
1
2 E dx K8~“f!2

)
j

@11y exp„ibf~xj !…

1y exp„2 ibf~xj !…1•••#

.E Df e2 E dx@
1
2 K8~“f!22g cos~bf!#, ~47!

whereg52y/V. It is convenient to introduce a dimension
less dielectric constantK that is related toK8 by K
5b2/4p2K85nsL

2/2p, whereL is the thermal wavelength
The renormalization-group equations forK, which is thus

proportional to the superfluid density, and the fugacityy can
now be obtained by performing the usual momentum-sh
integrations. For the Sine-Gordon model derived in Eq.~47!,
this results in

dK21~ l !

dl
54p3y2~ l !1O~y3!, ~48!

dy~ l !

dl
5@22pK~ l !#y~ l !1O~y2!. ~49!

The renormalization-group equations to leading order in
variablesK( l ) and y( l ) were first obtained by Kosterlitz
@32#, while the next-to-leading order terms were derived
Amit et al. @33#. The flow equations are not significantl
changed by including the higher-order corrections and we
not include them in the following.

The renormalization-group equations~48! and~49! can be
solved analytically by separation of variables and the so
tion is

y2~ l !2
1

2p3 F 2

K~ l !
1p ln@K~ l !#G5C, ~50!

where the integration constantC is determined by the initial
conditions. For the critical trajectory it can be calculated
evaluating the left-hand side at the fixed poi
„y(`),K(`)…5(0,2/p). In this manner, we find C
5@ ln(p/2)21#/2p2.20.0278. In Fig. 2, we show the flow
of the Kosterlitz renormalization-group equations. There i
line of fixed pointsy(`)50 andK(`)>0. The fixed point
„y(`),K(`)…5(0,2/p) corresponds to the critical conditio
5-7
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AL KHAWAJA, ANDERSEN, PROUKAKIS, AND STOOF PHYSICAL REVIEW A66, 013615 ~2002!
for the Kosterlitz-Thouless transition, where the vortic
start to unbind and superfluidity disappears. Physically
can be understood from the fact that below the transition
fugacity renormalizes to zero, which implies that at the la
est length scales single vortices cannot be created by the
fluctuations. They are therefore forced to occur in pairs.

The initial conditions for the renormalization-group equ
tions are

K~0!5
\2n0

mkBT
, ~51!

y~0!5e2bEc, ~52!

wheren0 is the quasicondensate density andEc is the core
energy of a vortex. Both are obtained from the modifi
many-bodyT-matrix theory considered previously. Writin
the order parameter for a vortex configuration asc0(x)
5An0f (x/j)eiq, whereq is the azimuthal angle, the cor
energy of a vortex follows from the Gross-Pitaevskii ener
functional. It reads

Ec5
\2

2m
n0pE

0

`

dxxF ~12 f 2!212S d f

dxD
2G . ~53!

The dimensionless integral was evaluated by Minnhagen
Nylén, and takes the value 1.56@34#.

FIG. 2. Renormalization-group flow for the coupling constanty
andK. These curves are given by Eq.~50! for different values ofC.

FIG. 3. The critical temperature for the Kosterlitz-Thouless tra
sition as a function of the density for spin-polarized atomic hyd
gen witha52.4a0.
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Using the solution to the flow equations~50! and the ini-
tial conditions, we can calculate the temperature for
Kosterlitz-Thouless transition given the scattering lengtha
and the density of the system. In the following, we consid
again atomic hydrogen. In Fig. 3, we show the critical te
perature as a function of density fora52.4a0. We see that
the critical temperature is essentially proportional to the d
sity of the system. This can be seen in more detail in Fig
where we plotnLc

2 as a function ofn. It is clear from this
figure thatnLc

2 indeed changes only slightly over the dens
range considered.

To understand the physics of the calculation better,
show in Fig. 5 the quasicondensate fractionn0 /n following
from the many-bodyT-matrix theory as a function of tem
perature for a total densityn51.2531013 cm22. In addi-
tion, we show the superfluid densityns as calculated from
the renormalization-group procedure explained previou
The Kosterlitz-Thouless transition takes place whenns lies
on the line given bynsL

254. Noticing that the left-hand
side of Eq.~50! is a function ofn0L2 only and solving the
equation with respect ton0L2 using the value ofC at the
transition, we obtain the conditionn0L2.6.65 for the
Kosterlitz-Thouless transition. It is therefore also seen in F
5 that the Kosterlitz-Thouless transition takes place when

-
-

FIG. 4. The critical degeneracy parameternLc
2 as a function of

the density for spin-polarized atomic hydrogen witha52.4a0.

FIG. 5. Quasicondensate densityn0 ~solid curve! and superfluid
densityns ~long-dashed curve! as a function of temperature. Als
plotted are the Kosterlitz-Thouless conditionnsL

254 ~dotted line!
and the conditionn0L256.65 ~dashed line!. The Kosterlitz-
Thouless transition takes place when the dashed line intersect
solid curve. At the intersection point the long-dashed curve reac
the dotted line.
5-8
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LOW-DIMENSIONAL BOSE GASES PHYSICAL REVIEW A66, 013615 ~2002!
line given byn0L2.6.65 intersects with the curve forn0. At
Tc , the ratio of the quasicondensate density and the su
fluid density is universal and equals 1.66. This is in go
agreement with the result 1.79 obtained by Prokof’evet al.
using numerical simulations of the classicalucu4 model on a
lattice @35#.

V. TRAPPED BOSE GASES

In this section, we generalize the theory presented in S
II and III to inhomogeneous Bose gases. We also apply
results to a trapped one-dimensional Bose gas. We star
generalizing our previous expressions for the total dens
Eq. ~8!, and the phase fluctuations, Eq.~10!, to the inhomo-
geneous case. To do so we first consider the Gross-Pitae
equation

F2
\2

2m
¹21Vext~x!1TMB

„22m~x!…uc0~x!u2

12TMB
„2m~x!…n8~x!Gc0~x!5mc0~x!, ~54!

which generalizes Eq.~8! to trapped Bose condensates. He
the local chemical potential equalsm(x)5m2Vext(x). The
noncondensed densityn8(x) is to be determined by solving
the Bogoliubov–de Gennes equations

\v juj~x!5F2
\2

2m
¹21VHF~x!2mGuj~x!

1TMB
„22m~x!…n0~x!v j~x!, ~55!

2\v jv j~x!5F2
\2

2m
¹21VHF~x!2mGv j~x!

1TMB
„22m~x!…n0~x!uj~x!, ~56!

where n0(x)5uc0(x)u2 and the Hartree-Fock potentia
VHF(x) is given by

VHF~x!5Vext~x!12TMB
„2m~x!…n8~x!

12TMB
„22m~x!…n0~x!. ~57!

The functionsuj and v j are the usual Bogoliubov particl
and hole amplitudes, respectively, which are chosen to
real here. In some cases, for instance whenc0 describes a
vortex, we cannot choose these amplitudes real and
equations are easily generalized to incorporate that fact.

In terms of the Bogoliubov amplitudes, the expression
the total density in Eq.~8! reads

n~x!5n0~x!1(
j

F @uj~x!1v j~x!#2N~\v j !

1v j~x!@v j~x!1uj~x!#

1
TMB

„22m~x!…n0~x!

2e j12m~x!
@f j~x!#2G . ~58!
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Here,f j is the large-j or high-energy limit ofuj which can
be obtained by neglecting the interaction terms in Eq.~55!,
namely,

e jf j~x!5S 2
\2

2m
¹21Vext~x!2m Df j~x!. ~59!

In the large-j limit, we also have

v j~x!52
TMB

„22m~x!…n0~x!

2e j
f j~x!. ~60!

It is clear that the expression of Eq.~58! for the total density
is ultraviolet finite since the second and third term can
each other in the large-j limit.

Finally, the phase fluctuations in the trapped case are
termined by^x̂(x)x̂(x8)& which is given by

^x̂~x!x̂~x8!&

52(
j

1

2An0~x!n0~x8!
H uj~x8!v j~x!@112N~\v j !#

1FTMB
„22m~x!…n0~x!

2e j12m~x! Gf j~x8!f j~x!

1uj~x!v j~x8!@112N~\v j !#

1FTMB
„22m~x8!…n0~x8!

2e j12m~x8!
Gf j~x!f j~x8!J . ~61!

In particular, the normalized form of the off-diagonal on
particle density matrix of Eq.~20! becomes, for large dis
tancesux2x8u equal to

g(1)~x,x8!5exp$2^@ x̂~x!2x̂~x8!#2&/2%. ~62!

A. Density profiles

We are now ready to calculate the total density profile
solving Eqs.~54! and~58! self-consistently. In the remainde
of the paper, we restrict ourselves to one-dimensional h
monic traps with

Vext~z!5
1

2
mvz

2z2. ~63!

For simplicity we use the local-density approximation, whi
allows us to calculate the densities directly using the ma
body generalization of Eqs.~8! and ~12!. In Fig. 6 the total
density profile is shown at four different values of the te
perature. For the four different temperatures each of the f
curves is composed of two parts. The first part near the c
ter of the trap represents the superfluid part of the gas
contains the~quasi!condensate. The other part consists on
of the noncondensed atoms. The small discontinuity betw
the two parts is caused by the use of two different equati
of state for the superfluid and thermal phases of the gas
5-9
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AL KHAWAJA, ANDERSEN, PROUKAKIS, AND STOOF PHYSICAL REVIEW A66, 013615 ~2002!
the following, we call the position of the discontinuity th
temperature-dependent Thomas-Fermi radius of the~quasi!-
condensate. For distances below the discontinuity we use
above-mentioned equations, while for distances above
discontinuity, we simply use

n~z!5E
2`

` dk

2p
N@ek1mvz

2z2/212nTMB
„2\S~z!…2m#.

~64!

For all these curvesm530\vz . The remaining parameter
used here are those of the experiment of Go¨rlitz et al. @1#. In
particular, we have used23Na in the trap withvz52p
33.5 rad/sec,l z5A\/mvz.1.1231025 m. The three-
dimensionals-wave scattering length isa.2.75 nm, which
is related to the one-dimensional scattering lengthk21 de-
fined byT2B(22m)54pk\2/m. For harmonic confinement
we havek5a/2p l'

2 , where l' is the harmonic oscillator
length of the axially symmetric trap in the direction perpe
dicular to thez axis. We have usedv'52p3360 rad/sec
and l'5A\/mv'.1.1031026 m.

As expected, the temperature-dependent Thomas-F
radius decreases with increasing the temperature. At the
perature when this radius vanishes, the one-dimensional
tem reaches the crossover temperature for the formation
~quasi!condensate. We have calculated this crossover t
perature for different values of the scattering length at a c
stant value of the number of atoms, the latter being fixed
adjusting the chemical potential. In Fig. 7, we show the
sult of this calculation, and plot the crossover temperat
TQC and the chemical potential against the scattering len
The inset in Fig. 7 shows that on a double logarithmic sc
the temperatureTQC is clearly not a straight line indicating
that the relation betweenTQC and k is not a simple power
law and may contain logarithmic dependence. It is shown
Ref. @36# that for a50, the transition temperatureTQC
should satisfyTQC5N\vz /kB ln(2N), whereN is the num-
ber of atoms. In the case of Fig. 7 we haveN5950, which
leads toTQC.164T0 for an ideal gas. Of course, this limit i
not obtained in Fig. 7 because our calculation is based o
local-density approximation, which will always break dow
for sufficiently small values ofk. On the other hand, the

FIG. 6. Density profile of a trapped one-dimensional Bose ga
four different temperatures. The quantitiesl z and k are defined in
the text.
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curve for the chemical potential becomes almost a stra
line on a double logarithmic scale. A calculation of the slo
of this line shows that the slope starts at a value sligh
larger than 2/3 at the lower end of the curve and saturate
this value near the upper end. The value 2/3 is what
expect, since in the Thomas-Fermi limit it is easy to sh
that m5(3p/A2)2/3(Nk)2/3\vz.3.5(Nk)2/3\vz . Calculat-
ing similar curves for different values ofN we actually find
numerically thatm.3.2(Nk)2/3\vz .

B. Phase fluctuations

The aim of this section is to calculate the normalized o
diagonal density matrix given by Eq.~62!. This function ex-
presses the coherence in the system. It is calculated by s
ing the Bogoliubov–de Gennes equations in Eqs.~55! and
~56! using the density profile calculated in Sec. V A. Spec
cally from the ~quasi!condensate density profilen0, we de-
termine a temperature-dependent Thomas-Fermi radius.
radius is then used to calculate the phase fluctuations at
specified temperature in the following manner.

We start by employing the following scaling: lengths a
scaled to the trap lengthl z5(\/mvz)

1/2, frequencies tovz ,
energies to\vz , and densities to 4p/ l z . With this scaling,
the Bogoliubov–de Gennes equations take the dimension
form

v juj5S 2
1

2

d2

dz2 1
1

2
z22m12knDuj1kn0v j , ~65!

2v jv j5S 2
1

2

d2

dz2 1
1

2
z22m12knD v j1kn0uj . ~66!

Using the same scaling, the Gross-Pitaevskii equation ta
the form

F2
1

2

d2

dz2 1
1

2
z22m1k~n012n8!GAn050. ~67!

at

FIG. 7. The crossover temperatureTQC is shown with the solid
curve, and the chemical potential at this temperature is shown
the dashed curve, both as a function of the coupling constant.
temperature is scaled toT05\2/mkBl z

2 . The inset shows the sam
curves on a double logarithmic scale.
5-10
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LOW-DIMENSIONAL BOSE GASES PHYSICAL REVIEW A66, 013615 ~2002!
Next we defineF j (z)5uj (z)2v j (z) and Gj (z)5uj (z)
1v j (z), and derive from Eqs.~65! and ~66! two equations
for F j (z) andGj (z), namely

d4F

dz4 22~ f 1g!
d2F

dz2 24
dg

dz

dF

dz
2S 4v j

212
d2g

dz2 24g f DF50,

~68!

d4G

dz4 22~ f 1g!
d2G

dz2 24
d f

dz

dG

dz
2S 4v j

212
d2f

dz2 24g f DG50,

~69!

where the functionsf (z) andg(z) are given by

f 5
1

2
z212kn2m1kn0 , ~70!

g5
1

2
z212kn2m2kn0 . ~71!

For our purposes we can use the Thomas-Fermi approx
tion that neglects the derivative term in Eq.~67!. Hence

F1

2
z22m1k~n012n8!GAn050. ~72!

In this limit, the functionsf (z) andg(z) are given byf (z)
52kn0(z) and g(z)50. In the Thomas-Fermi approxima
tion, we substitute these values forf (z) andg(z) into Eqs.
~68! and ~69! and neglect the fourth-order derivative term
These equations thus take the form

kn0

dFj
2

dz2 1v j
2F j50, ~73!

d2~kn0Gj !

dz2 1v j
2Gj50. ~74!

In Ref. @37#, it was shown thatAkn0(z)Gj (z) corresponds to
phase fluctuations andF j (z)/Akn0(z) corresponds to densit
fluctuations in the hydrodynamic approach@38#. We, there-
fore, define the functionhj (z)

hj5Akn0Gj5F j /Akn0. ~75!

Substituting this back in Eqs.~73! and ~74! both equations
reduce to a single equation forhj (z), namely,

kn0

d2hj

dz2 1k
dn0

dz

dhj

dz
1v j

2hj50. ~76!

This equation can finally be simplified using the Thoma
Fermi expression forkn0(z) from Eq. ~72!, namely,
kn0(z).m82z2/2 where m85m22kn8(0). Note that we
have made the approximation that we taken8(z) to be equal
to its value at the center, namely,n8(0). This approximation
is justified in view of the fact that the presence of the co
densate repels the atoms from the noncondensate atoms
the center of the trap. This is also supported by a numer
solution of Eqs.~8! and ~12!, where we find thatn8(z)
01361
a-

.

-

-
om
al

!n0(z), except at the Thomas-Fermi radius where they
come of the same order. Moreover, the slope ofn8(z) is
small for distances close to the center. Thus, the last equa
becomes

~12y2!
d2

dy2 hj~y!22y
d

y
hj~y!12v j

2hj~y!50, ~77!

wherey5z/RTF(T) and RTF(T)5A2m8(T) is the Thomas-
Fermi radius.

In the following, we reinstate the units. Interestingly, E
~77! is the Legendre equation with the Legendre polynomi
as solutions:

hj~z!5Pj~z/RTF!5Pj~y!, ~78!

where the energy eigenvalues are

\v j5Aj ~ j 11!

2
\vz , j 50,1,2, . . . . ~79!

The normalization condition for the Bogoliubov amplitud
is

E
2RTF

RTF
dz@ uuj~z!u22uv j~z!u2#51, ~80!

which leads to

F j~z!5
1

ARTF

A~ j 11/2!m8

\v j
A12y2Pj~y!, ~81!

Gj~z!5
1

ARTF

A~ j 11/2!\v j

m8

Pj~y!

A12y2
. ~82!

These expressions are in agreement with those obtaine
Ref. @39#. Consequently, we find

uj~z!5
1

2S AjA12y21
Bj

A12y2D Pj~y!, ~83!

v j~z!5 2
1

2S AjA12y22
Bj

A12y2D Pj~y!, ~84!

where

Aj5
1

ARTF

A~ j 11/2!m8

\v j
~85!

Bj5
1

ARTF

A~ j 11/2!\v j

m8
. ~86!

The expression for the phase fluctuations in Eq.~61! now
reads, after neglecting the quantum contribution,
5-11
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^@ x̂~z!2x̂~z8!#2&

5
4pk l z

4

RTF
2 (

j 50
N~\v j !H Aj

2@Pj~y!2Pj~y8!#2

2Bj
2F Pj~y!

12y2 2
Pj~y8!

12y82G 2J . ~87!

It should be noted that the first term in this sum,j 50, does
not diverge as one might think at first instance. It actua
vanishes and the sum can start fromj 51. Physically, this is
a result of the fact that the global phase does not influe
the phase fluctuations.

For the four values of temperature used in Fig. 6,
insert the correspondingRTF(T) in Eq. ~87! to calculate the
phase correlation functiong(1)(0,z). In Fig. 8, we plot this
quantity and we see that at sufficiently low temperatures
phase correlation function decreases only slightly over
condensate size. This indicates that a true condensate
exist at sufficiently low temperatures for interacting trapp
one-dimensional Bose gases.

C. Comparison with exact results

We next compare the above results to predictions ba
on a Langevin field equation for the order parameter o
trapped, one-dimensional condensate in contact with a th
dimensional Bose gas that acts as a ‘‘heat bath.’’ Suc
situation can be created experimentally in a magnetic
trapped three-dimensional system, by using a laser bea
provide an additional optical potential along two of the d
rections. The laser beam then needs to be focused such
the motion of the system freezes out along these directi
The gas in the potential ‘‘dimple’’ provided by the laser th
indeed becomes an effectively one-dimensional gas, in c
tact with the three-dimensional thermal cloud in the ma
netic trap, which acts as its heat bath. The dynamics of
order parameter is governed in this case by@16,40#

i\
]F~z,t !

]t
5F2

\2¹2

2m
1Vext~z!2m2 iR~z,t !

1guF~z,t !u2GF~z,t !1h~z,t !, ~88!

FIG. 8. Normalized first-order~phase! correlation function as a
function of position for different temperatures.
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where the external trapping potential in the weakly confin
direction Vext(z) is again given in Eq.~63! and m is the
effective chemical potential of the one-dimensional syste
The one-dimensional coupling constantg is related tok by
g54pk\2/m. Physically, the functioniR(z,t) describes the
pumping of the one-dimensional gas from the surround
reservoir, andh(z,t) corresponds to the associated no
with Gaussian correlations. Both these quantities depend
the one-dimensional Keldysh self-energy\SK(z), as dis-
cussed in detail in Ref.@40#. For our purposes, we only nee
that

iR~z,t !52
b

4
\SK~z!S 2

\2¹2

2m
1Vext~z!2m

1guF~z,t !u2D , ~89!

^h* ~z,t !h~z8,t8!&5
i\2

2
SK~z!d~z2z8!d~ t2t8!, ~90!

where ^•••& denotes averaging over the realizations of t
noise h(z,t). The numerical techniques employed are d
cussed in Ref.@40#, where it was also shown that with th
last two expressions, the trapped gas relaxes to the co
equilibrium, as ensured by the fluctuation-dissipation th
rem. To simplify the numerics, the noncondensed part in
dimple is here allowed to relax to the ‘‘classical’’ valu
N(e)5@b(e2m)#21, and the comparison to the previou
mean-field predictions is therefore carried out by making
same approximation in the calculation of bothn0(z) and
n8(z). The normalized first-order correlation function
equal timeg(1)(0,z) corresponding to the previously com
puted phase correlation function is calculated via numer
autocorrelation measurements, i.e.,

FIG. 9. Comparison of the mean-field densities profiles~solid
curves! to numerical solutions of the Langevin equation in Eq.~88!
~noisy curves!. All the above curves are calculated using the cla
sical approximation of the Bose-Einstein distribution function. F
the T550 nK case we have also plotted the corresponding den
calculated using the full Bose-Einstein distribution function~dashed
curve! in order to show the difference between the classical a
quantum mean-field approximations.
5-12
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g(1)~0,z,t !5
^F* ~0,t !F~z,t !&

A^uF~0,t !u2&^uF~z,t !u2&
, ~91!

where the brackets again denote averaging over the diffe
realizations of the noise. Of course, the timet must be suf-
ficiently large so that the gas has relaxed to thermal equ
rium andg(1)(0,z,t) is independent of time.

In Figs. 9 and 10, we show the comparison of the ma
bodyT-matrix theory to the above Langevin calculations, f
the same temperatures used in Figs. 6 and 8. In Fig. 9
compare the Langevin densities^uF(z,t)u2& to our classical
mean-field densityn(z). This yields excellent agreement
low temperatures, except for a small region around the
continuity in the mean-field theory, which can be understo
from the fact that the local-density approximation alwa
fails in a small region near the edge of the Thomas-Fe
radius. As expected, this region increases with increas
temperature. ForT550 nK, Fig. 9 further shows the devia
tion of the ‘‘classical’’ prediction of our mean-field theor
from the ‘‘quantum’’ one calculated previously in Sec. V
and displayed in Fig. 6. Finally, Fig. 10 shows the cor

FIG. 10. Comparison of the normalized first-order~phase! cor-
relation functions calculated using the present mean-field appro
given by the solid curves, and the numerical solution of the no
Langevin equation in Eq.~88! shown with the noisy curves.

FIG. 11. Study of the many-body renormalization effects on
density profiles. The exact results are also shown with the n
curves.
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sponding phase correlation function as a function of positi
Here we also find very good agreement in the entire temp
ture range. Note that the phase correlation functions are
sentially indistinguishable for both classical and quant
treatments of the thermal cloud.

It is interesting to note that the Langevin method yiel
continuous curves at the expense of computational time,
to the large number of independent runs that are require
reduce the statistical error. However, the Langevin meth
enables also a direct calculation of the time-dependent
relation properties via temporal autocorrelation measu
ments. Results of such studies, which are of interest for
physics of an atom laser, will be presented in a sepa
publication@41#.

Finally, it is worth mentioning again that in obtaining ou
analytical expressions for the phase fluctuations and the
sity in Secs. II and V, we have used the many-bodyT matrix
for the interatomic interactions. As mentioned in Sec. II
the many-body effects are important in one and two dim
sions. To appreciate this importance, we recalculate the d
sity profiles and phase fluctuations using the two-bodyT
matrix. Thus, for distances belowRTF , the differences are
due to Eq.~11!, whereas for distances aboveRTF they are a
result of Eq.~29!. In Figs. 11 and 12 it is clearly seen that th
inclusion of many-body effects has led to a better agreem
with the exact Langevin results. Moreover, the many-bo
corrections become more pronounced at higher temperatu
In Fig. 13, we show how the renormalized interatomic int
action strengthTMB

„22m(z)… depends on the position. W
notice that the effects of this renormalization become m
significant near the edge of the condensate and for temp
tures closer to the transition temperature, as expected f
the results of Refs.@21,42#.

VI. CONCLUSIONS

The Popov theory suffers from infrared divergences in
equation of state at all temperatures in one dimension an
any nonzero temperature in two dimensions. These infra
divergences can be traced to an inaccurate treatment o

h,
y

e
y

FIG. 12. Study of the many-body renormalization effects on
phase correlation function. The exact results are also shown
the noisy curves.
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phase fluctuations. We have proposed a mean-field theor
dilute Bose gases, in which the phase fluctuations are tre
exactly. We have also used this to arrive at an improv
many-bodyT-matrix theory. The resulting equation of sta
is free of infrared divergences and the theory can thus
applied in any dimension. Our modified many-bodyT-matrix
theory is capable of reproducing exact results in one dim
sion and the results in three dimensions are to a large ex
the same as those predicted by Popov theory. We have
the theory to calculate the reduction of the recombinat
rate of a spin-polarized two-dimensional hydrogen syste
Comparing our calculated rate with the observed values
found reasonable agreement, although more work is requ
to make a detailed comparison.

We have also applied the theory to the Kosterli
Thouless phase transition. The modified many-bodyT-matrix
theory is used to calculate initial conditions for the superfl
density and the fugacity of the vortices in a renormalizatio
group calculation that incorporates the physics of vor

FIG. 13. The many-bodyT-matrix TMB as a function of the
distance from the center of the trap, for four different temperatu
.
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pairs. We have calculated the critical temperature for a fix
value of thes-wave scattering length as a function of densi
and it was found thatTc increases almost linearly with den
sity. More precisely we have obtainednLc

2.7. We believe
that this result gives a lower bound on the critical tempe
ture, since the Kosterlitz-Thouless renormalization-gro
equations do not include quantum effects, which, in pr
ciple, affect nonuniversal quantities.

The modified many-bodyT-matrix theory was also ap
plied to calculate density profiles and phase correlation fu
tions of a one-dimensional trapped Bose gas for a variety
temperatures. At very low temperatures, the phase corr
tion function was found to decrease only very slightly ov
the size of the system, indicating that the equilibrium st
contains a true condensate. At larger temperatures, it
creases faster, and the gas now contains only a quasicon
sate. In future work, we will look in detail at this and also
the full crossover problem between one, two, and three
mensions. Finally, the densities and phase correlation fu
tions predicted by our mean-field theory for various tempe
tures were compared to the corresponding predictions o
nonlinear Langevin field equation, which gives numerica
exact results. The agreement was found to be very good
the entire temperature range studied.

ACKNOWLEDGMENTS

We thank Tom Bergeman, Steve Girvin, and Subir Sa
dev for valuable discussions and inspiration. We also th
Simo Jaakkola and Sasha Safanov for providing us with
data of their experiment and Matthijs Romans for pointi
out errors in the first version of this paper. This work w
supported by the Stichting voor Fundamenteel Onderz
der Materie~FOM!, which is supported by the Nederlands
Organisatie voor Wetenschappelijk Onderzoek~NWO!.

s.
cs

.
L.

ys.

ev.

,

@1# A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L
Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta
Inouye, T. P. Rosenband, D. E. Pritchard, and W. Kette
Phys. Rev. Lett.87, 130402~2001!.

@2# F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bou
del, J. Cobizolles, and C. Salomon, Phys. Rev. Lett.87,
080403~2001!.

@3# H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and
Zimmermann, Phys. Rev. Lett.87, 230401~2001!.

@4# W. Hänsel, P. Hommelhoff, T. W. Ha¨nsch, and J. Reichel, Na
ture ~London! 413, 501 ~2001!.

@5# W. J. Mullin, J. Low Temp. Phys.106, 615 ~1997!.
@6# T-L. Ho and M. Ma, J. Low Temp. Phys.115, 61 ~1999!.
@7# D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. R

Lett. 84, 2551~2000!.
@8# D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Ph

Rev. Lett.85, 3745~2000!.
@9# N. D. Mermin and H. Wagner, Phys. Rev. Lett.22, 1133

~1966!.
@10# P. C. Hohenberg, Phys. Rev.158, 383 ~1967!.
.
,

.

.

.

@11# V. N. Popov, Theor. Math. Phys.11, 565 ~1972!; Functional
Integrals in Quantum Field Theory and Statistical Physi
~Reidel, Dordrecht, 1983!, Chap. 6.

@12# S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K
Sengstock, D. S. Petrov, G. V. Shlyapnikov, H. Kreutzmann,
Santos, and M. Lewenstein, Phys. Rev. Lett.87, 160406
~2001!.

@13# D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Ph
Rev. Lett.87, 050404~2001!.

@14# J. O. Andersen, U. Al Khawaja, and H. T. C. Stoof, Phys. R
Lett. 88, 070407~2002!.

@15# J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
@16# H. T. C. Stoof, J. Low Temp. Phys.114, 11 ~1999!.
@17# A. I. Safonov, S. A. Vasilyev, I. S. Yasnikov, I. I. Lukashevich

and S. Jaakkola, Phys. Rev. Lett.81, 4545~1998!.
@18# H. T. C. Stoof and M. Bijlsma, Phys. Rev. E47, 939 ~1993!.
@19# M. Schick, Phys. Rev. A3, 1067~1971!.
@20# D. S. Fisher and P. C. Hohenberg, Phys. Rev. B37, 4936

~1988!.
@21# M. Bijlsma and H. T. C. Stoof, Phys. Rev. A54, 5085~1996!.
5-14



ys

st.

.

ev.

ys.

LOW-DIMENSIONAL BOSE GASES PHYSICAL REVIEW A66, 013615 ~2002!
@22# N. P. Proukakis, S. A. Morgan, S. Choi, and K. Burnett, Ph
Rev. A58, 2435~1998!.

@23# H. T. C. Stoof, M. Bijlsma, and M. Houbiers, J. Res. Natl. In
Stand. Technol.101, 443 ~1996!.

@24# F. D. M. Haldane, Phys. Rev. Lett.47, 1840~1981!.
@25# M. Olshanii, Phys. Rev. Lett.81, 938 ~1998!.
@26# M. D. Girardeau and E. M. Wright, Phys. Rev. Lett.84, 5239

~2000!.
@27# H. T. C. Stoof and M. Bijlsma, Phys. Rev. B49, 422 ~1994!.
@28# H. T. C. Stoof, L. P. H. de Goey, W. M. H. M. Rovers, P. S. M

Kop Jansen, and B. J. Verhaar, Phys. Rev. A38, 1248~1988!.
@29# Yu. Kagan, B. V. Svistunov, G. V. Shlyapnikov, JETP Lett.42,

209 ~1985!.
@30# T. D. Lee and C. N. Yang, Phys. Rev.105, 1119~1957!.
@31# S. M. Girvin ~private communication!.
01361
.@32# J. M. Kosterlitz, J. Phys. C7, 1046~1974!.
@33# D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys. A13,

585 ~1980!.
@34# P. Minnhagen and M. Nyle´n, Phys. Rev. B31, 5768~1985!.
@35# N. Prokof’ev, O. Ruebenacker, and B. V. Svistunov, Phys. R

Lett. 87, 270402~2001!.
@36# W. Ketterle and N. J. van Druten, Phys. Rev. A54, 656~1996!.
@37# A. L. Fetter and D. Rokhsar, Phys. Rev. A57, 1191~1998!.
@38# S. Stringari, Phys. Rev. Lett.77, 2360~1996!.
@39# D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Ph

Rev. Lett.85, 3745~2000!.
@40# H. T. C. Stoof and M. J. Bijlsma, J. Low Temp. Phys.124, 431

~2001!.
@41# N. P. Proukakis and H. T. C Stoof~unpublished!.
@42# M. Bijlsma and H. T. C. Stoof, Phys. Rev. A55, 498 ~1997!.
5-15


