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We present an improved many-bodiymatrix theory for partially Bose-Einstein condensed atomic gases by
treating the phase fluctuations exactly. The resulting mean-field theory is valid in arbitrary dimensions and able
to describe the low-temperature crossover between three-, two-, and one-dimensional Bose gases. When ap-
plied to a degenerate two-dimensional atomic hydrogen gas, we obtain a reduction of the three-body recom-
bination rate, which compares favorably with experiment. Supplementing the mean-field theory with a
renormalization-group approach to treat the critical fluctuations, we also incorporate into the theory the
Kosterlitz-Thouless transition that occurs in a homogeneous Bose gas in two dimensions. In particular, we
calculate the critical conditions for the Kosterlitz-Thouless phase transition as a function of the microscopic
parameters of the theory. The proposed theory is further applied to a trapped one-dimensional Bose gas, where
we find good agreement with exact numerical results obtained by solving a nonlinear Langevin field equation.
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[. INTRODUCTION are taken into account up to the second order around the
mean field. In view of the above-mentioned importance of
Low-dimensional Bose gases have recently attracted aphase fluctuations in lower dimensions, this is insufficient, in
tention both experimentally and theoretically. The interest ingeneral, and leads to infrared divergences. In previous work
these systems stems from the fact that the physics of lowby three of us, the phase fluctuations were taken into account
dimensional systems is fundamentally different from theexactly[14]. The result is a mean-field theory which is free
physics of systems in three dimensions. One- and twoef the infrared divergences in all dimensions. In the present
dimensional Bose-Einstein condensates have recently begaper, we first review this modified Popov theory and then
created in the experiment of ‘@itz et al. [1]. This was extend it to the many-body-matrix theory, by including the
achieved by lowering the mean-field interaction energy in &ffect of the medium on the scattering properties of the at-
three-dimensional condensate below the energy splitting adms in the gas. The present approach improves on previous
either one or two of the directions of the harmonic trap, toattempts by Petroet al. [7,8] to describe low-dimensional
obtain a two-dimensional or one-dimensional condensate, r&Bose gases by explicitly incorporating also the effect of den-
spectively. In a number of other experiments, one-sity fluctuations into the theory. As a result both quantum and
dimensional Bose-Einstein condensates were also created finermal depletion of théquasjcondensate can now be ac-
a SLi-"Li mixture [2] and on a microchif3,4]. counted for and the theory is no longer only valid at very low
Theoretically, low-dimensional Bose gases are particutemperatures where the depletion, and therefore the thermal
larly interesting due to the enhanced importance of phaseomponent in the gas, is negligible. Most importantly, we
fluctuations[5—8]. Due to these fluctuations, Bose-Einstein present an equation of state for the low-dimensional Bose
condensation cannot take place in a homogeneous ongas that is free of infrared divergences and thus valid in any
dimensional Bose gas at all temperatures and in a homogelimension. For a trapped Bose gas this implies that we can
neous two-dimensional Bose gas at any nonzero temperaturgetermine, for a given number of atoms, the density profile
This is formalized in the Mermin-Wagner-Hohenberg theo-of both the(quasjcondensate and the thermal cloud in the
rem[9,10]. Since this theorem is valid only in the thermo- gas for any aspect ratio of the trap. The interesting crossover
dynamic limit, it does not apply to trapped Bose gasesproblem from a three-dimensional Bose gas to a one- or two-
Therefore, the question arises whether under certain cond@dimensional one, which is presently being explored experi-
tions we are dealing with a true condensate, where the phaseentally[1], can be addressed as well.
is coherent over a distance of the order of the size of the In the present paper we first use the modified many-body
system, or only with a so-called “quasicondensafd?],  T-matrix theory to calculate the one-particle density matrix
where the phase is coherent over a distance less than the sied determine its off-diagonal long-range order. We also cal-
of the systen{5-8]. This is one of the main questions that culate the fractional depletion of th@uasjcondensate at
we address quantitatively in this paper. Although the mairzero temperature in one, two, and three dimensions. Next, we
focus of the paper is on low-dimensional Bose gases, thetudy the two-dimensional homogeneous Bose gas in consid-
theory presented here is also valid for three-dimensional sysrable detail. After having included the phase fluctuations
tems, and can be used to study, for instance, the role of phaskie to vortex pairs by a renormalization-group approach, we
fluctuations in strongly elongated condensdtss13. apply the modified many-bodimatrix theory to perform an
In the successful Popov theory for three-dimensional parab initio study of the Kosterlitz-Thouless phase transition
tially Bose-Einstein condensed gases, the phase fluctuatiof$5] from the superfluid to the normal state. Since this is a
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topological phase transition, it cannot be described withinvhere w1 is the chemical potential, and(x) is the atomic
mean-field theory. Therefore, we proceed as follows. We firstwo-body interaction potential. The mass of the atoms is de-
use the modified many-bodlymatrix theory to calculate the noted bym, and ¢'(x) and #(x) are the usual creation and
quasicondensate density and the fugacity of vortices. Thesgnnihilation field operators, respectively.

results are then used as initial conditions for a Kosterlitz In the Bose Systems considered here and those realized in
renormalization-group calculation. In this manner, we are inexperiment, the temperatures are so low that mayave
Corporating critical fluctuations and are able to calculate nonscattering iS important_ Consequenﬂy, |t iS Convenient to ne-
UniVersal quantities SUCh as the Critical temperature for thg|ect the momentum dependence Of the interatomic interac-
Kosterlitz-Thouless phase transition as a function of the denton and usev(x—x’)=Vy8(x—x'). In principle this leads

sity and the microscopic parameters of the theory. to ultraviolet divergences, but these can easily be dealt with,

Finally, we apply the theory to a trapped one-dimensionahs we show later on. The Hamiltonian then reduces to
Bose gas, where we calculate the density profile at different

temperatures. From this we extract the crossover temperature -

for the appearance of(guasjcondensate as a function of the H= f dx’(x)

interaction strength. We also calculate the behavior of the

phase correlation function that determines whether there ex- 1 P T P

ists a true condensate or only a quasicondensate. These pre- + Ej dXVoi' (X) ' (X) P(X) h(X). )

dictions are compared to exact results based on a stochastic

nonlinear field equation for the Bose gd®]. In the presence of a Bose-Einstein condensate the annihi-
The paper is organized as follows. In Sec. Il, we presentation operator is parametrized as

and discuss the Popov theory and its infrared problems. We R R

also present our modified mean-field theory in the homoge- P(X)= \/n—0+ ' (X), 3)

neous limit. In Sec. lll, we compare the latter with exact A

results in one dimension, and with results obtained in thevheren, is the condensate density agd(x) describes the

Popov approximation in two and three dimensions. We alsdluctuations. The standard one-loop expressions for the den-

calculate the reduction of the three-body recombination ratsity n and the chemical potential are obtained after a qua-

for a two-dimensional hydrogen gas and compare it with thedratic approximation to the Hamiltonian in E(), i.e., by

experiment of Safonoet al. [17]. In Sec. IV, we study the neglecting terms that are of third and fourth order in the

Kosterlitz-Thouless phase transition and in Sec. V, we genfluctuations. This yield$11,18]

eralize the many-bodyl-matrix theory to inhomogeneous

situations. In particular, we consider then a one-dimensional 1 D €t NoVo—hwy,  €+NgVo

trapped Bose gas, for which we compare our predictions to n=no+ V < 2h wy hwy N(# o)

numerically exact results. Finally, we conclude and summa- (4)

rize in Sec. VI.

h? -
= o V2 |0

y I 12 26k+n0V0_2ﬁwk
II. MODIFIED POPOV THEORY V_o_ No V2 = 2hwy
In this section, we derive the modified Popov theory by e NV
treating the phase fluctuations exactly. We also discuss how + 2 O ON(Bw |, (5)
to incorporate many-body effects into the theory. Finally, we hwy

give additional arguments for the correctness of our approach 2 12 _ . .
by using an effective action for the density and phase dynamherefox= (e + Zggvoék)_ is the Bogoliubov dispersion
ics in a superfluid system that is known to give exact result£€lation,N(x) =1/(e”"—1) is the Bose-Einstein distribution

in the long-wavelength limit. function, andB=1/kgT is the inverse thermal energy.
In agreement with the Mermin-Wagner-Hohenberg theo-
A. Phase fluctuations rem, the momentum sums in Edd) and(5) contain terms

. ) ) _that are infrared divergent at all temperatures in one dimen-
In order to explain the infrared problems associated withsjon and at any nonzero temperature in two dimensions. The
the phase fluctuations of the condensate most clearly, we f'r?}hysical reason for these “dangerous’ terms is that the

treat a homogeneous Bose gas in a box of volimeater  5hqye expressions have been derived by taking into account
we generalize to the inhomogeneous case. The starting poighy quadratic fluctuations around the classical resyli.e.,

gurgeegrand-canomcal Hamiltonian in second-quantized IanE)y writing the annihilation operator for the atoms @)

=no+#'(x) and neglecting in the Hamiltonian terms of

() third and fourth order irfp’(x). As a result the phase fluc-
W tuations of the condensate give the quadratic contribution

no( x(X) x(x)) to the right-hand side of the above equations,

+ EJ de dx’ () PTXIVX=X) (X" ) (), whereas an exact approach that sums up all the higher-order
2 terms in the expansion would clearly give no contribution at

(1)  all to these local quantities becausge™ X0l X)) =n(1

ﬁZ
_ __y2_
2mV K

H= f dxT(x)
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+{x(X)x(x))+ - --)=1. To correct for this we thus need to body T matrix. The two-bodyT matrix takes into account
subtract the quadratic contribution of the phase fluctuationsSuccessive two-body scattering processes in vacuum. How-
which from Egs.(4) and (5) is seen to be given by ever, it neglects the many-body effects of the surrounding
gas. In order to take this into account as well, we must use
~ 1 NgVo the many-bodyl matrix instead of the two-body matrix in
No(X(¥) x(X)) =y, ; Zhwk[lJFZN(ﬁwk)]- ®  Egs. (8)~(10). Many-body effects have been shown to be
appreciable in three dimensions only very close to the tran-
As expected, the infrared divergences that occur in the onesition temperaturg21], but turn out to be more important in
and two-dimensional cases are removed by performing thi@ne and two dimensiorid8]. Since the effect of the medium
subtraction. on the scattering properties of the atoms is only important at
After having removed the spurious contributions from therelatively high temperatures, we can apply a Hartree-Fock
phase fluctuations of the condensate, the resulting expredPproximation to obtain for the many-bodymatrix
sions turn out to be ultraviolet divergent. These divergences
are removed by the standard renormalization of the bare cou- ~ TM8(_p,,)—T28(—2,,)
pling constantV,. Apart from a subtraction, this essentially
amounts to replacing everywhere the bare two-body potential 1 N[ et ngTVB(—2,1)]
Vq by the two-bodyT matrix evaluated at zero initial and X — E € Mo K
final relative momenta and at the eneren2u, which we VX €t u
denote from now on bf?8(—2u). It is formally defined by

1+T%8(—-2pu)

-1
. (1

The situation is in fact slightly more complicated because
1 11 1 we actually have two coupling constants in the equation for
T28(—2p) - v_0 + V £ 2e+2u° (7 the chemical potential, which is the homogeneous version of
the Gross-Pitaevskii equation. When two atoms in the con-
Note that the energy argument of tfiematrix is —2u, be- ~ densate collide at zero momentum, they both require an en-
cause this is precisely the energy it costs to excite two atom@rdy u to be excited from the condensate, and thus the cou-
from the condensatel9,20. After renormalization, the den- Pling is evaluated at—2u. This is the coupling that

sity and chemical potential are multiplies ng in the Gross-Pitaevskii equation. On the other
hand, the coupling that multiplies’ in the Gross-Pitaevskii
1 e—hwg NeT?B(—2u) €y equation involves one condensate atom and one atom in the
nN=noty, ; i et 2n g N@W)|s thermal cloud, so that this coupling should now be evaluated

at — u. The equation for the chemical potential thus becomes

(®)
p=(2n-ng) T8(~2u)= (20" +ng) T~ 2p),  (9) =20 TV8(— 1) + g TVE(~ 2p0). (12

wheren’ =n—n, represents the depl_etlon of the condepsatq\lote that the existence of two different many-body coupling
due to quantum and thermal fluctuations and the POgOl'Ubo\éonstants for the interatomic interactions has previously been
quazsépamcle (ljllzspersmn now equaldio=[€+2No  giscussed by Proukakit al.[22]. (See, however, also Ref.
XT(—2u) €™ The most important feature of Eq)  [23]) This lead these authors to the so-calléd theory,

and(9) is that they contain no infrared and ultraviolet diver- \ynich is qualitatively somewhat similar to E¢L2) but dif-
gences and therefore can be applied in any dimension and gl;s in detail.

all temperatures, even if no condensate exists.
Note that Eq.(6) is also ultraviolet divergent. The ultra-

violet divergences are removed by the same renormalization C. Long-wavelength physics
of the bare interactioW, and the final result is We have given physical arguments for how to identify and
o8 subtrac_t the contribution to Eq#&d) a_nd(5) from the pha_se
(0X())= T (=2u) D 1 [1+2N(hw)] fluctuations of the condensate. At this point, we would like to
\% X | 2hwy K give a somewhat more rigorous field-theoretical argument.
The Euclidean action that corresponds to the Hamiltonian in
1 10 Ea-@is
2¢,+2u|

. hZVZ
ar 2m’ MY

hp
* — *
We will return to the physics of this important expression in S yl= fo de dxys
Sec. Il C below.

1 (w8
+=| dr| dxV|¢lt 13
B. Many-body T matrix Zfo Tj XVol ¢ (13

In the preceding section, we presented the modified ‘
Popov theory that takes the phase fluctuations into account we substitutey(x, 7)= \/n+ én(x, 7)e'X*? into Eq. (13),
exactly. The final results in Eq$8)—(10) involve the two-  we obtain the action
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P —fﬁﬁde L 0o ihn+ om X
S on,x]= , 47 x5 +ih(n n)-~

2

+h \Y 2+15 —ﬁz V24V, 6
am "V g on| Vot Vo on ).

(14

Here,n is the average total density of the gas ahx,7)
represents the fluctuations. At zero temperature, this action
exact in the Iong wavelength limit, ifACk?/4mn+V,) is
replaced ann (k), wherey,n(Kk) is the exact static density-
density correlation function.

By using the classical equation of motion to eliminate the

phasex(x,7), we obtain the following action for the density
fluctuationsén(x, 7):

S[én]—f de dx

1 P
§5ann(—|V)5n-

m aﬁn

aﬁn
aT

+ (15

The density fluctuations are, therefore, determined by

1
(hwn)?+ (hwy)?

nék

1 2 ik-(x—x")
‘”n k B '

(dn(x)on(x'))=

(16)

wherew,=27n/# B are the even Matsubara frequencies and

hw=+Nne ! xon(K). Summing over these Matsubara fre-
guencies, we obtain

(an(x)on(x’))= % ; 2—:}1[1+2N(ﬁwk)]eik-<xfx’>,

17

Similarly, by using the classical equation of motion for
én(x,7), we obtain from Eq(14) the following action for
the phase fluctuations:

S[X]:foﬁﬁdrj dx ;

_ax hn )
V)7 2m (V0
(19)

From this action, it is straightforward to calculate the propa-.
gator for the fieldy(x,7) and thereby the correlation func-

tion (x(x) x(x')). The result is
1
2

Xeik-(x—x’)

Ix
_hZEXnn( -

1
Xnn(K) 2w

(XOOX(x)) =y ey [LH2N(Rw]

(19

Settingx’ =X, we recover Eq(10) in the long-wavelength
limit, if we use ynn(k)=1/TMB(—2.) for the static density-
density correlation function in that limit. It is important to
mention that Eq(19) is often used for the short-wavelength
part of the phase fluctuations as wdH+8]. This is, however,

PHYSICAL REVIEW A66, 013615 (2002

incorrect because it contains ultraviolet divergences due to
the fact that the above procedure neglects interaction terms
between density and phase fluctuations that are only irrel-
evant at large wavelengths. The correct short-wavelength be-
havior is given in Eq(10).

IIl. COMPARISON WITH POPOV THEORY

We proceed to compare predictions based on E8js:

10) with exact results in one dimension and results based on
e Popov theory in two and three dimensions. We consider
only the homogeneous case here and discuss the inhomoge-

neous Bose gas in Sec. V

A. One dimension

To understand the physical meaning of the quantjyn
Egs.(8) and(9), i.e., whether it is the quasicondensate den-
sity or the true condensate density, we must determine the
off-diagonal long-range behavior of the one-particle density
matrix. Because this is a nonlocal property of the Bose gas,
the phase fluctuations contribute and we find in the laxge-
limit

(FT () #(0))=ng(e TXR X)) = o= VAXK)~X(O1?),

(20)
Using Eq.(10), we obtain for the exponent in E¢RO)
R R TVB(—2u) 1
(X0~ X)) =~ | 71+ 2N ()]
— P [1—cogk-x)]. (21

Writing the sum over wave vectors as an integral, the
phase fluctuations at zero temperature can be written as

1
UNIEYPNT
(Ix(x)=x(0)]%) 2ot

1 1
X p—
kvk?+1 k2>+3

where £é=#/[4mnyT?8(—2u)]Y? is the correlation length.
Note that we have used thaV®(—2u)=T?B(—2u) at zero
temperature and that the chemical potential, as we show
shortly, is to a good approximation equal ngT?58(—2.u).

The integration can be performed analytically and the result

: (22)

([X(x)=x(0)]%) = 2ok 2§2F1(1/2 1;3/2 x%/4¢£2)
X2

- 2—523F2(1,1,3/2;3/2,2>;2/452) ,
(23

where Fj(aq,ay, ... ,ai;B81,B2, - . . ,Bj;X) are hypergeo-
metric functions. In the limifx|—c, Eq. (23) reduces to

(X~ X(OT7)= 5 I3/ ). (24
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Using Eqg.(24) we find that the one-particle density matrix Therefore we now find in the limitx|—c that

behaves fotx|—« as A A

. (#")9(0))=ng (3D)
0

(X/S) Udmngé '’ (25)

(PT(x) h(0))=

andng is clearly the condensate density of the gas. However,

at nonzero temperatures the correlation function behaves as
A few remarks are in order. First, the asymptotic behavior

of the one-particle density matrix at zero temperature proves ) R

that the gas is not Bose-Einstein condensed and rihat (wT(x) #(0))=

should be identified with the quasicondensate density. Sec-

ond, in the weakly interacting limit#n&>1 the depletion is ) )

small, so that, to first approximation, we can uge=n inthe ~ Where A=y27%/migT is the thermal de Broglie wave-

exponent 7= 1/4mn,é. Indeed, from Eqs(8) and (9) we Igngth andn, corresponds again to_ the quasmgndensate den-

obtain the following expression for the fractional depletionSity: At zero temperature, the fractional depletion of the con-

of the quasicondensate den_sate in the Popqv approximation was first calculated by
Schick[19]. He obtained

(26) n-ng 1
N =ETZB(—2M)7 (33

No

—, 32
(x/§)1/”0A ( )

n—-n, 1
n  4mwné

e, )

T’]T—l

We see that the expansion parameter isTV4 and, there-

fore, the depletion is very small. Keeping this in mind, Ed.where the chemical potential satisfigss nT?%(—2u). The
(25) is in complete agreement with the exact result obtaine&orresponding result based on E¢. and (9) is
by Haldane[24]. Note that our theory cannot describe the

strongly interacting case #né<1, where the one- n-n, 1 8
dimensional Bose gas behaves as a Tonkg 2826]. o =2, (17 IN2)TH(=24), (34)
Finally, our results show that at a nonzero temperature the

phase fluctuations increase@x(x) — x(0)1%)x=|x| for large  wherex now satisfies Eq9). In two dimensions, the deple-
distances, and thus the off-diagonal one-particle density majon predicted by the Popov theory is thus too large by a
trix vanishes exponentially. Hence, at nonzero temperaturefaictor of approximately 3.
not even a quasicondensate exists and we have to use thein a number of applications, we need to calculate many-
equation of state for the normal state to describe the gas, i.esody correlators. For instance, in order to calculate how a
1 quasicondensate modifies the two-body relaxation constants
n=c— > N(e+ha3—pn), (279  of a spin-polarized two-dimensional Bose gas, we need to
V& know K@(T)= (4" (x) " (x) ¢:(x) :(x) )/2n?. This correlator
was considered in Ref27] using the many-body-matrix
theory with an appropriate cutoff to remove the infrared di-
A3 =2nTMB(—#3), (28)  vergences. An exact treatment of the phase fluctuations leads,
however, directly to an infrared finite result as we show now.
Using the parametrization in E¢B) for the annihilation op-
erators, we obtain first of all

where the Hartree-Fock self-energy satisfies

and the many-bod{f matrix obeys

TYB(—A3)=T?%(—13)| 1+ T*(—43)
CACSIACOIVeOTe9)
1 N(Gk"rﬁz_/.L) o 2 " " g0t g0t
Ve ethsiz | (29 =ng+no[ (' ()" (X)) + (" ()" (X))
Note that the last three equations for the description of the A0 (0) ]+ 20T (01 (x)?
number of dmendions, o o Vel oran arbiE OO 00N 0 T0). 39
B. Two dimensions The normal average is given by¢'"(x)¢'(x))=n’
In analogy with Eq(22), we obtain for the phase fluctua- +no(x(x)x(x)) and the anomalous average obeys
tions in two dimensions at zero temperature (W' ()¢’ (¥))=—no(x(\)x(x)), as we have seen. Using
this, EQ.(35) can then be written as
- R 1 (=
<[x(x)—x(0)]2>=WnongO dk[1—Jo(kx)] (TP P(x) (%))
1 k =ng[ 1+ 2(x () x(X)) + 3(x(X) x ()]
X : (30)

VKP+1 k43

+4ng[ 1+ (x(x)x(x))In"+2(n")2. (36)
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Writing the correlator in this form, we explicitly see that the
infrared divergences are due to spurious contributions from
the phase fluctuations. Removing them, we obtain, for the
renormalized correlator,

PHYSICAL REVIEW 466, 013615 (2002

K(z) — i 2 ’ "2

K(T)=5zng+anon’ +2n)%. (37)
We would like to point out that critical fluctuations are not 74

treated within our mean-field theory. This is, of course, es-

sential in the study of the Kosterlitz-Thouless phase transi- 0, 3 5 7

tion and we return to this issue in Sec. IV. However, an n(1013cm‘2)

example of a physical observable where phase fluctuations

are not important, is the three-body recombination rate con- FIG. 1. Reduction of the three-body recombination rate as a

stant. We are at this point, therefore, already in a position tdunction of the density for a temperature 5190 mK and three

determine the reduction of the three-body recombination rat@ifferent values of the scattering length. The dotted line corresponds

constant due to the presence of a quasicondensate. This c&R=2-4%, the long-dashed line ta=1.23,, and the dashed line

be expressed 487 to a=0.6a,, respectively.

LN T28(—2u) 6 5 -1 the adsorbed hydrogen gas were not measured directly, but
TuRIEE KM (38) inferred from the properties of the three-dimensional buffer
TH(—2h%) gas. Because this procedure requires the knowledge of the

whereLN is the recombination rate constant in the normal€duation of state of the iwo-dimensional Bose gas absorbed

phase, which is essentially independent of temperature, and! the superfluid helium _f|Im, the raw exper|meqtal Qata
the self-energy satisfiesS =2nT28(— #3). The renormal- needs to be reanalyzed with the theory presented in this pa-

ized three-body correlator per. We can, however, compare the density at which the re-

combination rate starts to deviate considerably from the re-
sult in the normal state. For the temperature of
=190 mK, where most of the experimental data is taken,
this is at a density of about D0L0** cm 2, which is in

is obtained from the expression for the correlation functionXcellent agreement with experiment. In view of this and the

(IO 00 FH (0 ) #(X) (X)) by removing, as before above mentioned problems we thus conclude that our results

. A . resent a compelling theoretical explanation of the experi-
the spurious contributions from the phase fluctuations. More—p peting P P

: X . : o mental findings.
over, in two dimensions th& matrix depends logarithmically 9
on the chemical potential as

1
KE(T)= galng+9ngn’ +18no(n")?+6(n")°]  (39)

C. Three dimensions
4ah? 1

The Popov theory has been very successful in describing
m In(24% uma’)’

the properties of dilute three-dimensional trapped Bose

] ) ) ) gases. It is therefore important to check that an exact treat-
wherea is the two-dimensionas-wave scattering length. In - ment of the phase fluctuations leads at most to small changes
the case of atomic hydrogen adsorbed on a superfluid helium, e predictions for the three-dimensional case.

film, the scattering length was found to le=2.4a, [28], At zero temperature, the fractional depletion within the

wherea, is the Bohr radius. However, there is some uncer-ponoy theory was first calculated by Lee and Y&8@] and
tainty in this number because the hydrogen wave functioRs given by

perpendicular to the helium surface is not known very accu-

rately. In order to compare with experiment, we may there- n—n, 8 /na’

fore allow a to vary somewhat. =3V =
In Fig. 1, we show the reduction of the three-body recom-

bination rate as a function of the density at a fixed tempera- . .

ture T=190 mK for three different values af. As can be Whereais theswave scattering length and we have used

clearly seen from Fig. 1, the reduction of the three-body

recombination rate is very sensitive to the valu@diVhat is 2B B Amah?

most important at this point is that at high densities our cal- TH(=2p)= m

culation shows that the reduction of the recombination rate is

much larger than the fgctor of 6 prgdicted by Kaggral. The result that follows from Eqg8) and (9) is

[29]. Such large reduction rates are indeed observed experl-

mentally [17]. A direct comparison, however, between the 3

results of our theory and the measurements of Safeta/. N—No _ (3_2_ 242 ) [na-

cannot be made here, since the density and temperature of n 3 m 7T

T?8(—2u)= (40)

(41)

(42)

(43

013615-6



LOW-DIMENSIONAL BOSE GASES PHYSICAL REVIEW A66, 013615 (2002

The fractional depletion is approximately 2/3 of the valuelattice. The partition function can be rewritten in a field-
obtained from the Popov theory. It turns out that this is thetheoretic fashion in terms of the electrostatic poteniéx)
largest change in the condensate depletion, since the effecisid the fugacityy =e ™ #Fc as

of phase fluctuations decrease with increasing temperature.

The critical temperaturd ggc is found by taking the limit 1 , )

no—0 in Egs.(8) and(9). These expressions then reduce to Z:{X_En} D¢ e 2/ XKIVEM]

the same expressions for the density and chemical potential I

as in the Popov theory. This implies that our critical tempera- X ex — IBEJn@(Xj)]yEJ”i, (46)

ture for Bose-Einstein condensation coincides with that ob-

tained in Popov theory, i.e., the ideal gas result whereK' = (27)2m/%2ksThs. In the limit wherey<1, the
2/3 charge density is very low, and thus omly=0,+1 contrib-

2mh[ (44 te to th tition function. Wi th it
BEC= . , ute to the parttion runcton. We can then write
mke | £(3)
71 ’ 2 .
where(2)~2.612. Z= f Dpe 2 | " VO] [1+y expli Bb(x))
]
IV. KOSTERLITZ-THOULESS PHASE TRANSITION +yexp(—iBo(x))+ -]

In the preceding section, we have compared our results
using the modified many-body-matrix theory with estab-
lished results in one, two, and three dimensions in the Popov

approximation. Due to the mean-field nature of the modifiedyhere g=2y/Q. It is convenient to introduce a dimension-
many-bodyT-matrix theory, the Kosterlitz-Thouless transi- |oss dielectric constanK that is related toK’ by K

tion is absent and a nontrivial solution of the equation of_ B24m2K ' =nA2/27, whereA is the thermal wavelength.
state exists even if the superfluid densityobeysnsA®<4. The renormalization-group equations 6y which is thus

In this section, we correct for this by explicitly including the proportional to the superfluid density, and the fugagitan
effects of vortex pairs in the phase fluctuations. The idea is Q4 be obtained by performing the usual momentum-shell

use the modified many-body-matrix theory to determine iniegrations. For the Sine-Gordon model derived in @),
the initial values of the superfluid density and the vortexinis results in

fugacity, and to carry out a renormalization-group calculation
to find the fully renormalized values of these quantities. In dK-1

2f Dpe a7 K (V)>~g cosBe)] (47)

this manner we can, for example, calculate the critical tem- i=4w3y2(l)+0(y3), (48)
peratureT, for the Kosterlitz-Thouless transition given the di
scattering lengtla and densityn.
Let us for completeness first briefly sketch the derivation dy(l) )
of the renormalization-group equations for the superfluid T:[Z_”K(l)]y(lHo(y ) (49)

density and the vortex fugacityd1]. Consider the velocity
field of a vortex where the core is centered at the position
X; , which we, for simplicity, take to lie on a lattice with an
area of the unit cell equal 8. By rotating the velocity field
by 7/2 we can map it onto the electric field of a point charge

She renormalization-group equations to leading order in the
variablesK(l) and y(l) were first obtained by Kosterlitz
[32], while the next-to-leading order terms were derived by
“Amit et al. [33]. The flow equations are not significantly

in two dimensions. Since the total energy in both syStems i3y, e by including the higher-order corrections and we do
proportional to the square of the field integrated over SPacC&,qt include them in the following

there is complete analogy between a system of vortices and a The renormalization-group equatiof#8) and(49) can be

two-dimeqsional Coulomb gas. This analogy'is very usefu'solved analytically by separation of variables and the solu-
and we will take advantage of it in the following. The total tion is

vorticity corresponds to the total charge of the Coulomb gas.
For the analogous two-dimensional neutral Coulomb gas on

; o . . 1] 2
a square lattice, the partition function can be written as y2(1)— 53 m+ . In[K(I)]} =C, (50)
_ — B(Zi 2 V(% —x)nin: —EcSn)
z {,%i} € AT e (49 where the integration consta@tis determined by the initial

conditions. For the critical trajectory it can be calculated by
where V(x;—x;) = —thznsln(|xi—xj|/§)/m is the Cou- evaluating the left-hand side at the fixed point
lomb interaction between two unit point charges in two di-(y(«),K())=(0,2/7). In this manner, we findC
mensionsny is the superfluid density, arlf, is the energy  =[In(#/2)—1]/27w%=—0.0278. In Fig. 2, we show the flow
associated with the spontaneous creation of a charge, i.e.,df the Kosterlitz renormalization-group equations. There is a
is the core energy of the vortices. The summation is over alline of fixed pointsy(«)=0 andK(«)=0. The fixed point
possible configurations of chargeg at positionsx; on the  (y(w),K(%))=(0,2/7) corresponds to the critical condition
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FIG. 4. The critical degeneracy parameme‘tg as a function of
FIG. 2. Renormalization-group flow for the coupling constants the density for spin-polarized atomic hydrogen watk 2.4a,.
andK. These curves are given by B§O) for different values ofC.

for the Kosterlitz-Thouless transition, where the vortices,. Using .the solution 1o the flow equatios0) and the ini-
al conditions, we can calculate the temperature for the

start to unbind and superfluidity disappears. Physically this. . ) : )
b y bp y y i<osterl|tz—ThouIess transition given the scattering length

can be understood from the fact that below the transition th . i .
fugacity renormalizes to zero, which implies that at the larg-2nd the density of the system. In the following, we consider

est length scales single vortices cannot be created by therm@@@in atomic hydrogen. In Fig. 3, we show the critical tem-

fluctuations. They are therefore forced to occur in pairs. ~ Perature as a function of density far=2.4a,. We see that
The initial conditions for the renormalization-group equa- the critical temperature is essentially proportional to the den-

tions are sity of the system. This can be seen in more detail in Fig. 4,

where we plomAZ as a function ofn. It is clear from this

K(0)= fing (51) figure thatnAg indeed changes only slightly over the density
mkgT’ range considered.
iy To understand the physics of the calculation better, we
y(0)=e FF, (52 show in Fig. 5 the quasicondensate fractigyfn following

from the many-bodyT-matrix theory as a function of tem-

wheren, is the quasicondensate densit is the core . .
0 d y dad perature for a total densitp=1.25<10"* cm 2. In addi-

energy of a vortex. Both are obtained from the modified" 4 )
many-body T-matrix theory considered previously. Writing tion, we show the superfluid density as calculated from
the order parameter for a vortex configuration #g(x) the renormalization-group procedure explained previously.

— Jnof(x/&)e'?, whered is the azimuthal angle, the core The Kosterlitz-Thouless transition takes place wingriies

energy of a vortex follows from the Gross-Pitaevskii energyon the line given bynsA?=4. Noticing that the left-hand
functional. It reads side of Eq.(50) is a function ofnyA2 only and solving the

equation with respect tagA? using the value ofC at the
K2 * by [dfV2 transition, we obtain the conditiomyA2=6.65 for the
Ec—ﬁnorrfo X (I=197+2[ G5 ) |- B3 Kosterlitz-Thouless transition. It is therefore also seen in Fig.
5 that the Kosterlitz-Thouless transition takes place when the
The dimensionless integral was evaluated by Minnhagen and
Nyléen, and takes the value 1.584].

05
045 |
=
04 =
035 | =
. 03} &
X o025}
6] //.
= o2¢ . .
0.15 00 0.0052 5 0.01 0.015
oq | n(a,/A)
005 e FIG. 5. Quasicondensate density (solid curve and superfluid
7% s 4 5 6 7 8 5 10 densityng (long-dashed curyeas a function of temperature. Also
n(10"°cm™) plotted are the Kosterlitz-Thouless conditiogh 2= 4 (dotted ling

and the conditionngA?=6.65 (dashed ling The Kosterlitz-
FIG. 3. The critical temperature for the Kosterlitz-Thouless tran-Thouless transition takes place when the dashed line intersects the
sition as a function of the density for spin-polarized atomic hydro-solid curve. At the intersection point the long-dashed curve reaches
gen witha=2.4a,. the dotted line.
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line given bynyA2=6.65 intersects with the curve fa. At Here, ¢; is the large} or high-energy limit ofu; which can
T., the ratio of the quasicondensate density and the supebe obtained by neglecting the interaction terms in &),
fluid density is universal and equals 1.66. This is in goodnamely,

agreement with the result 1.79 obtained by Prokofé¢wal.

using numerical simulations of the classi¢#|* model on a e
lattice [35]. €bi(0)=| — 5= VAV — | ¢i(x). (59
V. TRAPPED BOSE GASES In the large} limit, we also have
In this section, we generalize the theory presented in Secs. TMB(—24(X))No(X)
Il and Il to inhomogeneous Bose gases. We also apply the vi(X)=— e i(X). (60)
i

results to a trapped one-dimensional Bose gas. We start by
generalizing our previous expressions for the total density, . . :
Eq. (8), and the phase fluctuations, Hd0), to the inhomo- It is clear that the expression of E@8) for the total density

geneous case. To do so we first consider the Gross-PitaevsKi uItraonelt finite since the second and third term cancel
equation each other in the larggdimit.

Finally, the phase fluctuations in the trapped case are de-
2 termined by( x(x) x(x')) which is given by

h
— ﬁVZJrVEX‘(X) +TY8(=20())|ho(X)]?

(x(X)x(x"))

+2TVB(= ()N’ (X) | ¢ho(X) = pwiho(X),  (54)

[uj(x’)vj(x)[l-i-ZN(ﬁwj)]

1
; 2\no(X)No(x")

TMB(—2u(x))Ng(X)
2€+2um(X)

+UJ(X)UJ(X,)[1+2N(th)]

which generalizes Ed8) to trapped Bose condensates. Here
the local chemical potential equals(x)=u—V®{(x). The
noncondensed density (x) is to be determined by solving
the Bogoliubov—de Gennes equations

@i(x") $;(x)

ﬁZ
frwuj(x) =] — 5— V2+ V() — 1 [u;(x) TMB(—2(X"))ng(X")
iYi om i , B (X) i (X') | . (61)
MB 2€;+2u(x")
+ T (=21 (X))Ng(X)vj(X), (55
42 In particular, the normalized form of the off-diagonal one-
_ particle density matrix of Eq(20) becomes, for large dis-
~hopi(0)= _ﬁV2+VHF(X)_M vj(%) tances)x—x’| equal to

MB/_ , “ “
FTTE2R0IN0 0, (59 gMxx) =ex— (X0~ X)) (62
where ng(x)=|¢o(x)|?> and the Hartree-Fock potential

VHF(x) is given by A. Density profiles

We are now ready to calculate the total density profile by

HF, —\/€ex MB/__ ’

V) = V) + 2T (= n00)n” (x) solving Eqgs.(54) and(58) self-consistently. In the remainder
+2TMB(—24(X))No(X). (57)  of the paper, we restrict ourselves to one-dimensional har-

monic traps with

The functionsu; andv; are the usual Bogoliubov particle 1

and hole amplitudes, respectlyely, which are chosen to be Vo(2) = = mw?z2. (63)

real here. In some cases, for instance wlgndescribes a 2

vortex, we cannot choose these amplitudes real and our

equations are easily generalized to incorporate that fact. For simplicity we use the local-density approximation, which

In terms of the Bogoliubov amplitudes, the expression forallows us to calculate the densities directly using the many-

the total density in Eq(8) reads body generalization of Eq$8) and (12). In Fig. 6 the total
density profile is shown at four different values of the tem-
perature. For the four different temperatures each of the four

N(X)=no(X)+ 2, | [U;(X)+v;(x)1*N(fw;) curves is composed of two parts. The first part near the cen-
. ter of the trap represents the superfluid part of the gas and
+oi(¥)[v;(X)+u;(x)] contains thegquasjcondensate. The other part consists only

of the noncondensed atoms. The small discontinuity between
(58) the two parts is caused by the use of two different equations
of state for the superfluid and thermal phases of the gas. In

T (= 20(x))ng(x)
2€j + Z,LL(X)

[¢;(x)]?|.
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FIG. 6. Density profile of a trapped one-dimensional Bose gas at Kl,
four different temperatures. The quantitigsand « are defined in
the text. FIG. 7. The crossover temperatufgc is shown with the solid

curve, and the chemical potential at this temperature is shown with
the following, we call the position of the discontinuity the the dashed curve, both as a function of the coupling constant. The
temperature-dependent Thomas-Fermi radius of(tjues)- temperature is scaled fy=7%2%/mkgl2. The inset shows the same
condensate. For distances below the discontinuity we use tH&irves on a double logarithmic scale.
above-mentioned equations, while for distances above the

discontinuity, we simply use curve for the chemical potential becomes almost a straight
line on a double logarithmic scale. A calculation of the slope
» dk of this line shows that the slope starts at a value slightly

n(z)= f S NLect Mw2z%/2+2nTMB(—43.(2))— u]. larger than 2/3 at the lower end of the curve and saturates at

this value near the upper end. The value 2/3 is what we
expect, since in the Thomas-Fermi limit it is easy to show
that u=(37/y2)?3(N«)?*h w,~3.5(Nk)?*iw,. Calculat-

ing similar curves for different values ®f we actually find
numerically thatu=3.2(Nk) ¥ o, .

(64)

For all these curveg.=30hw,. The remaining parameters
used here are those of the experiment ofli@oet al.[1]. In
particular, we have used®Na in the trap withw,=27

x 3.5 rad/sec,|,=Vhi/mw,~1.12<10"°> m. The three- _
dimensionals-wave scattering length i@=2.75 nm, which B. Phase fluctuations

is related to the one-dimensional scattering lengitt de- The aim of this section is to calculate the normalized off-
fined by T?®(—2u) =4m«#?/m. For harmonic confinement, diagonal density matrix given by E¢62). This function ex-

we havex=al2wl?, wherel, is the harmonic oscillator presses the coherence in the system. It is calculated by solv-
length of the axially symmetric trap in the direction perpen-ing the Bogoliubov—de Gennes equations in E&®) and
dicular to thez axis. We have used, =27X 360 rad/sec (56) using the density profile calculated in Sec. V A. Specifi-
andl, = VA/mw, =1.10<10" ¢ m. cally from the(quasjcondensate density profilg,, we de-

As expected, the temperature-dependent Thomas-Ferrtérmine a temperature-dependent Thomas-Fermi radius. This
radius decreases with increasing the temperature. At the temadius is then used to calculate the phase fluctuations at that
perature when this radius vanishes, the one-dimensional syspecified temperature in the following manner.
tem reaches the crossover temperature for the formation of a We start by employing the following scaling: lengths are
(quasjcondensate. We have calculated this crossover tenscaled to the trap length= (4/mw,)*?, frequencies tav,,
perature for different values of the scattering length at a conenergies toh w,, and densities to #/l,. With this scaling,
stant value of the number of atoms, the latter being fixed byhe Bogoliubov—de Gennes equations take the dimensionless
adjusting the chemical potential. In Fig. 7, we show the reform
sult of this calculation, and plot the crossover temperature

2
Toc and the chemical potential against the scattering length. 1d 2

QC € g Y U=|—5-5+52°—u+2kn|U+KkNgv;
The inset in Fig. 7 shows that on a double logarithmic scale @j4j 2dz 2 pt2en Jup+anevy, (65
the temperaturd o¢ is clearly not a straight line indicating
that the relation betweelc and « is not a simple power 1d2 1

law and may contain logarithmic dependence. It is shown in  —wjv;=
Ref. [36] that for a=0, the transition temperaturéqc
should satisfyToc=N#Aw,/KgIN(2N), whereN is the num-
ber of atoms. In the case of Fig. 7 we ha\e= 950, which
leads toT oc=164T, for an ideal gas. Of course, this limit is
not obtained in Fig. 7 because our calculation is based on a )
local-density approximation, which will always break down 1d 1,

- ' —+ =z°— u+k(ng+2n’)
for sufficiently small values ofc. On the other hand, the

vj+Kknou;.  (66)

_EP—F 522_M+2Kn

Using the same scaling, the Gross-Pitaevskii equation takes
the form

Jnp=0.  (67)

S 2dZ 2
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Next we defineF;(z)=u;(2)—v;(2) and G;(2)=u;(2) <ny(2), except at the Thomas-Fermi radius where they be-
+v(2), and derive from Egs(65) and (66) two equations come of the same order. Moreover, the slopen6fz) is

for Fj(z) andGj(2), namely small for distances close to the center. Thus, the last equation
becomes
d' 2(f ik 4Olg aF 40? 2ng 4gf|F=0
a7 29 gz g g | Aeit2gz et PO, 2 d ,
(69) (1-y )d—yzhj(Y)—ZY§hj(Y)+2wj hi(y)=0, (77
d*G d’G df dG d?f :
- R R 240 __ = wherey=2z/R:(T) and Ryg(T)=+2u'(T) is the Thomas-
a7 2(f+g) 12 4dZ P (4w1+2d22 4gf)G 0, Corm radius.TF TF
(69 In the following, we reinstate the units. Interestingly, Eq.
where the function$(z) andg(z) are given by (77) is the Legendre equation with the Legendre polynomials
as solutions:
1
f=522+2kn—,u,+l<no, (70 hi(2)=P;(z/R) =P;(y), (78
1 where the energy eigenvalues are
g=522+2f<n—,u—;<no. (71 _
iG+1) .
) ) ho;= hw,, j=0,12.... (79
For our purposes we can use the Thomas-Fermi approxima- 2

tion that neglects the derivative term in E§7). Hence o - _ .
The normalization condition for the Bogoliubov amplitudes

1
57— n+ (g +2n") | Vng=0. 72 ®
Rre
In this limit, the functionsf(z) andg(z) are given byf(z) J_RTFdZHUJ(Z)F_|Uj(z)|2]:1’ (80)

=2kng(z) andg(z)=0. In the Thomas-Fermi approxima-
tion, we substitute these values fffz) andg(z) into EQs.  \yhich leads to
(68) and (69) and neglect the fourth-order derivative terms.

These equations thus take the form - ;
1 [(j+12u
2 Fi(2)= . V1-y2Pi(y), (82)
I w2F 0 73 VRre @i
Knoﬁerj i=0, (73
1 (j+12hw; Pi(y)
d?(knyG) Gi(2)= 127 (82)
a2 J-i—ouszj=0. (74 J Ree o /1_y2

In Ref.[37], it was shown that/mGj(z) corresponds to These expressions are in agreement with those obtained in
phase fluctuations arfé(z)//xny(z) corresponds to density Ref.[39]. Consequently, we find
fluctuations in the hydrodynamic approai38]. We, there-

fore, define the functiot; 1 B;
i unctiom;(z) uj(z)= 5 A; 1-y?+ \/ﬁ) Pi(y), (83
h; = VknoG; = F; //xno. (75) y
Substituting this back in Eq$73) and (74) both equations 1 5 B;
reduce to a single equation fby(z), namely, vj(2)= ) AjN1-y = Ny Pi(y), (84)
dth dno dhj 2
Kno—z—dz +KE E‘ij hJ-:O. (76) where
This equation can finally be simplified using the Thomas- _ 1 (j+12p’
. ; A= (85)
Fermi expression forkng(z) from Eg. (72), namely, J JRe ho;
kNo(z)=pu'— 2?12 where u' = u—2xn’(0). Note that we
have made the approximation that we takéz) to be equal 1 (i+12ho
to its value at the center, namely,(0). This approximation B = 1/ J wJ_ (86)
is justified in view of the fact that the presence of the con- . VRt un'

densate repels the atoms from the noncondensate atoms from
the center of the trap. This is also supported by a numericalhe expression for the phase fluctuations in Ej) now
solution of Egs.(8) and (12), where we find thain’(z) reads, after neglecting the quantum contribution,
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1 where the external trapping potential in the weakly confined
direction V®*{(z) is again given in Eq(63) and u is the
effective chemical potential of the one-dimensional system.
The one-dimensional coupling constanis related tox by

& g=4mkh?/m. Physically, the functionR(z,t) describes the
% 05 f pumping of the one-dimensional gas from the surrounding
=) reservoir, and#n(z,t) corresponds to the associated noise
ECD with Gaussian correlations. Both these quantities depend on
the one-dimensional Keldysh self-energyX(z), as dis-
] cussed in detail in Ref40]. For our purposes, we only need
0 that
0 0.5 1
Z/RTF R . BﬁEK ( 2v2 +VeXt( )
iR(z,t)=—— z)| — zZ)—
FIG. 8. Normalized first-ordefphase correlation function as a (1) 4 @) 2m H
function of position for different temperatures.
- - +g|P(z,1) 2), (89
(X2~ x(2) 1) ole(z0)
_ 477K|;1 E N(% A2 P P \12 |ﬁ2
R 2 (hwp)) ATLP(y) = Pi(y")] (7" (2)7(2' 1)) =—-3KX(2) 5(z=2) 8(t-1"), (90)
P Py ]?
_R2 i(y) _ iy _ (87) where(- - -) denotes averaging over the realizations of the
1=y 1—y'? noise n(z,t). The numerical techniques employed are dis-

] o ) cussed in Ref[40], where it was also shown that with the
It should be noted that the first term in this sum;0, does |55t two expressions, the trapped gas relaxes to the correct
not diverge as one might think at first instance. It actuallyequilibrium, as ensured by the fluctuation-dissipation theo-
vanishes and the sum can start fropm1. Physically, this is e To simplify the numerics, the noncondensed part in the
a result of the fact that the global phase does not mfluenceimme is here allowed to relax to the “classical” value
the phase fluctuations. o N(e)=[B(e—w)]"%, and the comparison to the previous
_ For the four values of temperature used in Fig. 6, Wemean-field predictions is therefore carried out by making the
insert the corrgspond|n§TF(J) in Eq. (87) to calculate the  game approximation in the calculation of bat(z) and
phase correlation functiog' )(O’Z.)'. In Fig. 8, we plot this 7(7)  The normalized first-order correlation function at
guantity and we see that at sufficiently low temperatures th%qual timeg)(0,7) corresponding to the previously com-

phase correlation function decreases only slightly over the,teq phase correlation function is calculated via numerical
condensate size. This indicates that a true condensate Calltocorrelation measurements. i.e.

exist at sufficiently low temperatures for interacting trapped
one-dimensional Bose gases. 20

C. Comparison with exact results 20 | T=1nK |\ T=10nK
We next compare the above results to predictions based
on a Langevin field equation for the order parameter of a
trapped, one-dimensional condensate in contact with a three- 0
dimensional Bose gas that acts as a “heat bath.” Such a 30
situation can be created experimentally in a magnetically
trapped three-dimensional system, by using a laser beam to o
provide an additional optical potential along two of the di- ™
rections. The laser beam then needs to be focused such that 5
the motion of the system freezes out along these directions. : - .
The gas in the potential “dimple” provided by the laser then 0 10 200 10 20
indeed becomes an effectively one-dimensional gas, in con- z,
tact with the three-dimensional thermal cloud in the mag-

netic trap, which acts as its heat bath. The dynamics of thgursg'tc?'nErggfgliZ%Tuggrzzeof”:ﬁsnigﬁgdeﬁﬁ”:(;tijzstig’r:c:gmi‘;'
rder parameter i verned in thi 4 Eap
order parameter is governed in this case b§,40) (noisy curves All the above curves are calculated using the clas-

T=50 nK

10

aDb(z,t) %2y2 sical approximation of the Bose-Einstein distribution function. For
in = [ — +V&(z2)— u—iR(z1) the T=50 nK case we have also plotted the corresponding density
Jt 2m calculated using the full Bose-Einstein distribution functidashed
curve in order to show the difference between the classical and
+g|®(z,)|?|P(z,t)+ 5(z,t), (88)  quantum mean-field approximations.
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0 05 ! 0 05 1
2R,

FIG. 10. Comparison of the normalized first-ordphase cor-
relation functions calculated using the present mean-field approac
given by the solid curves, and the numerical solution of the nois
Langevin equation in Eq88) shown with the noisy curves.

FIG. 12. Study of the many-body renormalization effects on the
hase correlation function. The exact results are also shown with
the noisy curves.

(D*(00)D(2,1)) sponding phase correlation function as a function of position.
gM0zt)= ' ' , (92) Here we also find very good agreement in the entire tempera-
V(@O [*)(|P(z,t)[%) ture range. Note that the phase correlation functions are es-

, ) ) sentially indistinguishable for both classical and quantum
where the brackets again denote averaging over the differeftasiments of the thermal cloud.

realizations of the noise. Of course, the tinmust be suf- It is interesting to note that the Langevin method yields

ficiently Iar(gl;;a so that the gas has relaxed to thermal equilibgontinyous curves at the expense of computational time, due
rium andg'*’(0,2,1) is independent of time. to the large number of independent runs that are required to
In Figs. 9 and 10, we show the comparison of the many;eqyce the statistical error. However, the Langevin method
body T-matrix theory to the above Langevin calculations, for gnaples also a direct calculation of the time-dependent cor-
the same temperatures used in Figs. 6 and 8. In Fig. 9 Wgjation properties via temporal autocorrelation measure-
compare the Langevin densiti¢sb(z,t)|%) to our classical ments. Results of such studies, which are of interest for the
mean-field densityi(z). This yields excellent agreement at physics of an atom laser, will be presented in a separate
low temperatures, except for a small region around the d'S'uincation[41].
continuity in the mean-field theory, which can be understoo Finally, it is worth mentioning again that in obtaining our

from the fact that the local-density approximation alwaysyna|ytical expressions for the phase fluctuations and the den-
fails in a small region near the edge of the Thomas-Fermjsity in Secs. Il and V, we have used the many-badyatrix
radius. As expected, this region increases with increasing,r the interatomic interactions. As mentioned in Sec. Il B
temperature. Fof =50 nK, Fig. 9 further shows the devia- {he many-body effects are important in one and two dimen-
tion of the “classical” prediction of our mean-field theory gjons. To appreciate this importance, we recalculate the den-
from the “quantum” one calculated previously in Sec. V A ity profiles and phase fluctuations using the two-bddy
and displayed in Fig. 6. Finally, Fig. 10 shows the corre-mayix. Thus, for distances beloRye, the differences are
due to Eq.(11), whereas for distances aboRgg they are a
result of Eq.(29). In Figs. 11 and 12 it is clearly seen that the
T=200 nK — ¥32¥Eﬁ§3y' inplusion of many—body effects has led to a better agreement
with the exact Langevin results. Moreover, the many-body
corrections become more pronounced at higher temperatures.
In Fig. 13, we show how the renormalized interatomic inter-
0 : action strengtitfMB(—2.(z)) depends on the position. We
' notice that the effects of this renormalization become most
el significant near the edge of the condensate and for tempera-
o T=10 nK tures closer to the transition temperature, as expected from
the results of Refd.21,47.
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0 10 20 VI. CONCLUSIONS
z/1
‘ The Popov theory suffers from infrared divergences in the
FIG. 11. Study of the many-body renormalization effects on theequation of state at all temperatures in one dimension and at
density profiles. The exact results are also shown with the nois@ny nonzero temperature in two dimensions. These infrared
curves. divergences can be traced to an inaccurate treatment of the
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105 ; ; ' pairs. We have calculated the critical temperature for a fixed
| value of thes-wave scattering length as a function of density,
_ﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, and it was found thal; increases almost linearly with den-
- ] sity. More precisely we have obtainedh2=7. We believe
that this result gives a lower bound on the critical tempera-
ture, since the Kosterlitz-Thouless renormalization-group
equations do not include quantum effects, which, in prin-
ciple, affect nonuniversal quantities.
The modified many-bodyl-matrix theory was also ap-
, , , plied to calculate density profiles and phase correlation func-
5 Z}i’ 15 20 tions of a one-dimensional trapped Bose gas for a variety of
z temperatures. At very low temperatures, the phase correla-
tion function was found to decrease only very slightly over
sthe size of the system, indicating that the equilibrium state
contains a true condensate. At larger temperatures, it de-
i i creases faster, and the gas now contains only a quasiconden-
phase fluctuations. We have proposed a mean-field theory fQate |n future work, we will look in detail at this and also at
dilute Bose gases, in which the phase fluctuations are treatgfle fyIl crossover problem between one, two, and three di-
exactly. We have also used this to arrive at an improvegnensions. Finally, the densities and phase correlation func-
many-bodyT-matrix theory. The resulting equation of state {jons predicted by our mean-field theory for various tempera-
is free of infrared divergences and the theory can thus bg,res were compared to the corresponding predictions of a
applied in any dimension. Our modified many-bdlynatrix  nonjinear Langevin field equation, which gives numerically

theory is capable of reproducing exact results in one dimenayact results. The agreement was found to be very good for
sion and the results in three dimensions are to a large extef{e entire temperature range studied.

the same as those predicted by Popov theory. We have used

the theory to calcul_ate the re_ducnqn of the recombination ACKNOWLEDGMENTS

rate of a spin-polarized two-dimensional hydrogen system.

Comparing our calculated rate with the observed values we We thank Tom Bergeman, Steve Girvin, and Subir Sach-
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to make a detailed comparison. Simo Jaakkola and Sasha Safanov for providing us with the
We have also applied the theory to the Kosterlitz-data of their experiment and Matthijs Romans for pointing

Thouless phase transition. The modified many-b®agatrix ~ out errors in the first version of this paper. This work was

theory is used to calculate initial conditions for the superfluidsupported by the Stichting voor Fundamenteel Onderzoek

density and the fugacity of the vortices in a renormalization-der Materie(FOM), which is supported by the Nederlandse

group calculation that incorporates the physics of vortexOrganisatie voor Wetenschappelijk Onderz¢iikVO).
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FIG. 13. The many-bodyl-matrix TMB as a function of the
distance from the center of the trap, for four different temperature
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