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Boundary of two mixed Bose-Einstein condensates

R. A. Barankov
Department of Physics, The University of Texas at Austin, Austin, Texas 78712

~Received 19 December 2001; published 19 July 2002!

We study the boundary between two interpenetrating Bose-Einstein condensates interacting repulsively in
the case of their spatial separation. We show that the analytical expressions for the distribution of the conden-
sate density can be obtained in the limiting cases corresponding to the weak and strong separations. Using
these expressions, we consider the excitation spectrum of a particle confined in the vicinity of the boundary and
the surface waves at the boundary.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion in trapped dilute gases@1–3# has allowed us to investi
gate a variety of the properties of quantum gases both th
retically and experimentally. In recent years, it has beco
possible to produce and explore mixtures of Bose-Eins
condensates corresponding to the different internal st
@4–8#. The two-component condensates have been ex
sively studied both analytically@9–12# and numerically@13–
15#. The theoretical treatment of the mixtures@10,11# assures
that it is possible to observe the spatial separation depen
on the relative strength of the interactions inside each c
densate and between them. A general discussion of all
sible classes of the solutions for the two-component Bo
Einstein condensates has been presented in Ref.@16#. The
experimental realization of such systems@4–8# has allowed
us to investigate the equilibrium properties and the dynam
of separation. Several papers@17–20# describe collective ex-
citations in the two-component Bose-Einstein condensat

In the present paper, we explore the boundary betw
two repulsively interacting condensates at zero tempera
in the limiting cases corresponding to the weak and str
separations of the condensates. We show that in the ca
weak separation it is possible to derive equations for
densities and, using the iteration method, to solve them a
lytically. We show that the asymptotic behavior of our so
tion coincides with those predicted in Ref.@11#. For the sake
of completeness, we also present the solution of these e
tions in the case of strong separation. The importance
these solutions lies in the possibility to explore quantitativ
the different types of excitations at the boundary. The str
ture of the boundary in both cases allows one to cons
one-particle excitations as well as surface waves assoc
with the existence of the boundary. The expressions obta
for the dispersion relation of surface waves can be use
explore the phenomenon experimentally.

The Hamiltonian describing the mixture of two weak
interacting Bose-Einstein condensates can be written in
form

H5 (
i 51,2

E drC i
1F2

\2¹2

2mi
1Vi~r !1

ui

2
C i

1C i GC i

1u12E drC1
1C2

1C1C2 . ~1!
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Hereui54p\2ai /mi.0 characterizes the interaction insid
each condensate;u1252p\2a12(m11m2)/(m1m2).0, the
intercondensate interaction;mi is the mass of a particle o
each condensate;ai , a12 are the corresponding scatterin
lengths; andVi(r ) are the external trapping potentials. Th
theoretical treatment of the mixtures@10,11# has shown that
the separation takes place whenu12/Au1u2.1.

Starting with the Hamiltonian~1!, we obtain the Gross-
Pitaevskii equations for the condensate wave functions:

i\
]C1

]t
5S 2

\2¹2

2m1
1V1~r !1u1uC1u21u12uC2u2DC1 ,

~2!

i\
]C2

]t
5S 2

\2¹2

2m2
1V2~r !1u2uC2u21u12uC1u2DC2 .

Since we are interested in studying the station
solutions of these equations, we assume as usualC j
}exp(2imjt), where m j are the chemical potentials of th
condensates, and we obtain two coupled nonlinear equat
for the density of gasesni(r )5uC i(r )u2:

m152
\2

2m1

¹2An1

An1

1V1~r !1u1n11u12n2 ,

~3!

m252
\2

2m2

¹2An2

An2

1V2~r !1u2n21u12n1 .

These equations are essentially nonlinear. Thus, to
the solutions, we are in need to make some simplificatio
We assume thatV1(r )5V2(r ) and consider the case whe
the size of a boundary between the condensates is much
than the characteristic size of the system. In the case
parabolic trap potential within the Thomas-Fermi regimed
!RTF , whered is the size of the boundary andRTF is the
Thomas-Fermi radius of the atomic cloud. Physically, t
approximation helps to avoid the effect of the potential
the shape of the boundary. To simplify the calculations mo
we also suppose that the separation takes place in one d
tion along thez axis. This allows us to write the system o
equations~3! in the following form:
©2002 The American Physical Society12-1
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m152
\2

2m1An1

d2

dz2
An11u1n11u12n2 ,

~4!

m252
\2

2m2An2

d2

dz2
An21u2n21u12n1 .

To find the solution of these equations corresponding
the separation of the condensates, we have to impose e
nal boundary conditions on the densities,n1(z) and n2(z).
Let us assume that the condensate ‘‘1’’ is on the right-ha
side and ‘‘2’’ is on the left-hand side from the bounda
Then, asymptotically we require

n1~z→1`!→n10, n1~z→2`!→0,
~5!

n2~z→2`!→n20, n2~z→1`!→0,

wheren10 and n20 are the equilibrium densities of the con
densates far from the boundary. Substituting these condit
into Eqs.~4! for the densities and using the equilibrium co
dition, we obtain

m15u1n10, m25u2n20,
~6!

P15u1n10
2 /25P25u2n20

2 /2.

Here we used the well-known expression for the pressur
a weakly interacting homogeneous Bose gas. This condi
presents the relation between the equilibrium densities of
condensates far from the boundary.

To reduce the number of parameters in Eqs.~4!, we notice
that it is possible to exclude the difference in the masses
replacing

u1* 5u1m1 /m2 , u2* 5u2m2 /m1 ,

n1* 5n1Am2 /m1, n2* 5n2Am1 /m2,
~7!

m1* 5u1* n10* , m2* 5u2* n20* ,

m* 5Am1m2.

After that we obtain the same Eqs.~4! and conditions~5! and
~6! but for the asterisks quantities and with the same m
m* . To simplify the notations, in the following discussion w
will omit the asterisks. Note that both parametersu12 andD
are not affected by the above procedure of eliminating
difference in the masses.

We can solve the equations for the densities~4! with con-
ditions ~5! and~6! analytically in the two limiting cases: fo
the weak separation whenD5u12/Au1u221!1 and for the
strong separation whenD@1.

II. WEAK SEPARATION

Let us consider the weak separation when the condi
D5u12/Au1u221!1 is satisfied. We expect that in the sim
plest case, whenu15u2, the total density of a gasn(z)
5n1(z)1n2(z) is approximately constant. Then, instead
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n1 andn2 it is natural to introduce other quantities and sol
Eqs. ~4! using the small parameterD. Let us consider the
functions

r5~u1 /u2!1/4n11~u2 /u1!1/4n2 ,
~8!

g5@~u1 /u2!1/4n12~u2 /u1!1/4n2#/r.

Conditions~5! and ~6! give us the simple asymptotic be
havior of these functions:

r~z→6`!→r05An10n20,
~9!

g~z→6`!→61.

The densities of condensates 1 and 2 are easily obtain
functionsr andg are known:

n15~u2 /u1!1/4r@11g#/2,
~10!

n25~u1 /u2!1/4r@12g#/2.

It is straightforward to derive the equations forr andg:

Ar9

Ar
2

r

r0
F11ag1

D

2
~12g2!G5

g82

4~12g2!
212ag,

g9

12g2
1

2Ar8g8

Ar~12g2!
1

gg82

~12g2!2
12a ~11!

5
r

r0
@2a1D~a2g!#.

Here f 85j0(d f /dz) and we also introduceda5(Au1

2Au2)/(Au11Au2) and 1/j0
25m(u1u2)1/4(Au11Au2)r0 /

\2.
To find the asymptotic solutions of Eqs.~11! in the case of

D!1, we use the iteration method. Let us assume that
terms with derivatives ofr are much smaller than the other
We will justify this assumption at the end of our calculation

Neglecting the terms with derivatives inr, we get from
Eqs.~8!,

r/r0512
g8212D~12g2!2

4~12g2!~11ag!
,

~12!

g9

12g2
1

2g1a~11g2!

2~12g2!~11ag!
g82 1

D~12a2!g

11ag
50.

The equation forg can be solved by substitutingg85 f .
Taking into account conditions~9!, we get thatg is the solu-
tion of the equation

g85AD~12a2!
~12g2!

A11ag
. ~13!
2-2
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At this point it is clear that the assumptions we us
were correct. Namely, we obtainAr8}D3/2, Ar9}D2, and
g8}AD, so the terms we neglected are byD times less than
the others.

Now we can write down the solutions for bothr andg in
the parametric form,

12
r

r0
5

D

4

12g2

~11ag!2
@32a212ag#,

~14!

z2z0

j0 /AD~12a2!
5

A11a

2
lnUA11ag1A11a

A11ag2A11a
U

2
A12a

2
lnUA11ag1A12a

A11ag2A12a
U .

Here the second equation is the solution of Eq.~13!. In these
expressions an arbitrary constantz0 defines the position o
the boundary and, in the case of the finite geometry with
given average number of particles in the condensates, it
be obtained from the condition of equal pressures~6!. The
symmetriesz2z0→z02z, g→2g, a→2a are also physi-
cally obvious.

Finally, the densities of condensates have the follow
form:

n15
n10

2 S 12
D

4

12g2

~11ag!2
@32a212ag# D @11g#,

~15!

n25
n20

2 S 12
D

4

12g2

~11ag!2
@32a212ag# D @12g#.

Together with the parametric equation forg these densities
are the main result of the paper. Using the method descri
it is possible to derive the expressions for the densities
next orders in small parameterD in the form of an
asymptotic series. As follows from the above estimations
the neglected terms in Eqs.~11!, next order is proportional to
D2. The typical dependence of the densities on the dista
from the boundary is shown in Figs. 1 and 2.

We notice that the total densityn5n11n2 at some values
of the parameters has a hollowlike behavior at the bound
as shown in Fig. 1. In the case of the weak separation we
that the hollow is broad and shallow. Provided the interact
between particles of different species is larger than tha
each species, that isD.1, we expect the probability of a
particle to be close to the boundary to decrease, meani
lower density. The existence of such a hollow allows us
consider the possibility of confining a particle of another s
in the vicinity of the boundary. This is discussed below. A
though we cannot further simplify solutions~14!, we can
derive the asymptotic behavior of these functions in the s
cific limits:
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12g~z→1`!}expF2
2zAD

j2
G ,

11g~z→2`!}expF2zAD

j1
G ,

~16!

g~z→z0!→ ~z2z0!AD~12a2!

j0
.

Here j i5\/A2mim i are the correlation lengths of the con
densates determined by the chemical potentialsm1 and m2.
We used Eq.~7! to include the difference in the masses. T
asymptotic behavior far from the boundary of each cond
sate is governed by its correlation length. As we see, the

FIG. 1. Distribution of the densities in the case of weak sepa
tion: D50.3, a50.1. Dotted and dashed lines correspond to s
cies 1 and 2. The solid line is the total density.

FIG. 2. Distribution of the densities in the case of weak sepa
tion: D50.3, a50.3. Dotted and dashed lines correspond to s
cies 1 and 2. The solid line is the total density.
2-3
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of the boundary can be approximated asd'(j1

1j2)/(2AD) and forD!1 it appears to be much larger tha
the correlation lengths. We notice that the limiting behav
of densities~16! coincides with the result of Ref.@11#. The
solutions have the simplest form whena50:

n1~z!5
n0

2 S 12
3D

4 cosh2F zAD

j0
G D S 11tanhF zAD

j0
G D ,

~17!

n2~z!5
n0

2 S 12
3D

4 cosh2F zAD

j0
G D S 12tanhF zAD

j0
G D .

Here we chosez050.
The case of the weak separation has been first observ

the experiment with the spinor Bose-Einstein condensates@6#
with D.1024. The size of the boundary is of the same ord
of the magnitude as the size of the condensate.

III. STRONG SEPARATION

To analyze the case of strong separationD5u12/Au1u2
@1 ~we use the same notation but for another quantity!, we
start from Eqs.~4! for the density. In this case we expect th
the density at the boundary will be approximately zero
cause the interparticle interactions make it almost imposs
for one condensate to penetrate inside the other. To estim
the density of the condensates at the boundary, we can
the fact that second derivatives of the wave functions sho
be approximately zero there. This transforms the system
Eqs.~4! into a set of two linear equations with the solutio

n1B5
n10

D11
'

n10

D
!n10,

~18!

n2B5
n20

D11
'

n20

D
!n20.

This allows us, in zero approximation, to use the sim
conditions for the densitiesn1(z<0)5n2(z>0)50. Then
Eqs.~4! have the simple form:

m152
\2

2m1An1

d2

dz2
An11u1n1 for z>0,

~19!

m252
\2

2m2An2

d2

dz2
An21u2n2 for z<0.

The solutions are easily obtained:

n1~z>0!5n10 tanh2F z

A2j1
G ,
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n2~z<0!5n20 tanh2F z

A2j2
G . ~20!

Here n10 and n20 are connected by the condition of equ
pressures~6! and we choose the position of the boundary
z50.

The size of the boundary in this case is approximatelyd
'2A2(j11j2). The dependence of the densities on the d
tance from the boundary is shown in Fig. 3. As in the p
ceding section, we can see that again there is a hollow in
total density but in the case of the strong separation it
comes narrower and deeper in comparison with that for
weak separation.

IV. ONE-PARTICLE EXCITATIONS ON THE BOUNDARY

The existence of a hollow in the total density allows us
consider the confinement of a particle of another sort in
vicinity of the boundary. The general property of a quantu
mechanical motion in a one-dimensional well is an existe
of a confined state. As an example, we consider the simp
case whena50 and a particle of another sort interacts wi
both the condensates repulsively with the same constanl.
The Schro¨dinger equation for the wave function of a partic
with the massM has the form

F2
\2

2M

d2

dz2
1ln~z!Gf5Ef. ~21!

We can solve Eq.~21! for the weak and strong separatio
cases simultaneously. It has the universal form

d2f

dz2
1

2M

\2 S e1
U0

cosh2@bz#
D f50, ~22!

where e5E2ln0, and U053Dln0/4, b5AD/j0 for the
weak separation; andU05ln0 , b51/(A2j0) for the strong
separation. The spectrum of energye is well known:

FIG. 3. Distribution of the densities in the case of strong se
ration whenu1 /u254. Dotted and dashed lines correspond to s
cies 1 and 2.
2-4



e

it
o
e

e
rs

io

e

p
re

io
nl
e
s
ce

ca
le
sio

the
s the
is

e
re
n-

the

ary.
f

es

ible

n-
ex-

two
pul-
nd

the
n

s

s.

-
the
he
the

sate
ma-

BOUNDARY OF TWO MIXED BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A66, 013612 ~2002!
e j52m
Dm

4M F2~112 j !1A113
Ml

muG2

weak,

~23!

e j52m
m

8M F2~112 j !1A118
Ml

muG2

strong,

wherem5un0 is the chemical potential andj 50,1, . . . . The
condition that an expression in@•••# in Eq. ~23! is positive
determines the upper limit forj. There is always at least on
state withj 50.

V. SURFACE WAVES AT THE BOUNDARY

There is also another type of excitation associated w
the boundary. As we can see, the spatially inhomogene
distribution of the condensate densities gives rise to nonz
surface tension previously analyzed in Ref.@11#. Here we use
the expression for the surface tension derived there:

s5
1

2E2`

1`

dz (
i 51,2

\2

2mi
S dAni

dz D 2

. ~24!

Substituting expressions~15! for the densities in the cas
of the weak separation and taking into account only fi
nonzero order inD, we obtain for the surface tension

sw5
PAD

6 F ~j11j2!
2a2211A12a2

a2

2~j12j2!
12A12a2

a G , ~25!

where a5(m1Au12m2Au2)/(m1Au11m2Au2) and we
used Eq.~7! to involve the difference in the masses. Herej1 ,
j2 are the correlation lengths of condensates andP is the
pressure given by Eq.~6!. When a50, sw5PAD(j1
1j2)/4.

In the case of the strong separation we use express
~20! in order to get the surface tension

ss5
PA2

3
~j11j2!. ~26!

Let us note that the expressions~25! and~26! differ from
those obtained in Ref.@11#. Although in a qualitative sens
our expressions coincide with those of Ref.@11#, using our
method of solution, we can get the general expression ap
cable for a variety of parameters and retrieve the cor
numerical factor for the case considered in Ref.@11#. As
follows from the general expression for the surface tens
~24!, we should know the behavior of the densities not o
far but also in the vicinity of the boundary. That is why, th
approximate character of the expressions for the densitie
Ref. @11# could give only a qualitative answer for the surfa
tension.

For the velocities smaller than the speed of sound, we
consider the gas to be incompressible, so that it is possib
use the hydrodynamic equations and to find the disper
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relation of the surface waves at the boundary due to
presence of the surface tension. Suppose that one ha
condensates in a ‘‘box’’ and the position of the boundary
determined by the distancesL1 and L2 from the box walls
where labels ‘‘1’’ and ‘‘2’’ correspond to the side with th
same condensate. The box sizes in the other directions aLx
andLy . Taking into account the fact that the velocities va
ish at the walls, we get the dispersion relation

v2~k!5
sk3

r10coth~kL1!1r20coth~kL2!
, ~27!

where s is the surface tension. Herer105m1n10, r20
5m2n20 are the mass densities, the wave vector along
boundary is k5A(pnx /Lx)

21(pny /Ly)
2, where nx ,ny

50,1, . . . , notnx5ny50, andL1 , L2 are the sizes of the
condensates in the direction perpendicular to the bound
We assume thatL1 andL2 are much larger than the size o
the boundaryd.

For the dispersion relation, we consider two limiting cas
corresponding to the wavelengthsl!Li (kLi@1) and l
@Li (kLi!1). Let us note that the second case is poss
only if Li!Lx,y .

In the first case, we obtain

v~k!5S s

r101r20
D 1/2

k3/2. ~28!

In the long-wavelength limit, we get

v~k!5S sL1L2

r10L21r20L1
D 1/2

k2. ~29!

As we see that for the weak separationv}D1/4, and the
surface waves are relatively ‘‘soft;’’ in this case, we can co
sider them as a dissipative channel for other condensate
citations.

VI. CONCLUSION

We presented here the analysis of the boundary of
overlapping Bose-Einstein condensates interacting re
sively in the limiting cases corresponding to the weak a
strong separations at zero temperature.

For the weak separation, we obtained solutions~15! of
two coupled nonlinear Gross-Pitaevskii equations using
small parameterD. The solutions show that the penetratio
depth of the condensate ‘‘i ’’ inside the other is estimated a
j i /(2AD), i.e., the size of the boundaryd'(j1

1j2)/(2AD) is much larger than the correlation length
This is observed experimentally@6#. In addition, there is a
hollow in the full density profile, resulting from the wave
function behavior near the boundary. On the whole,
method proposed for obtaining density distributions for t
case of the weak separation can be extended to obtain
expressions for next orders inD.

We also considered the case of the strong conden
separation, but restricted ourselves to zero-order approxi
tion. In this case the size of the boundary isd'2A2(j1
2-5
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1j2), and the total density of gases tends to vanish at
boundary. The existence of a hollow in the density profile
some parameters allowed us to consider one-particle ex
tions at the boundary. Using the expressions for the densi
we found the excitation spectrum of a particle in the simpl
case when the constants of the particle-condensate inte
tion are the same and the distribution of the densities at
boundary corresponds toa50. The generalization to othe
cases can be done with the use of expressions~15! and ~20!
for the density distributions. We notice that the existence o
potential well depends on the interaction constants of a
ticle with the condensates as well as on the relationship
tween the interaction constants of the condensates. The
servation of such confined states can be possible only if
temperature is smaller than the energy of a bound state.
an
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et

.
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ll,
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It was shown that there also exist collective excitatio
associated with the surface tension. The expressions for
surface tension were obtained for the both weak and str
separations. The dispersion relation for surface waves is
lyzed in the case when the condensates fill the finite v
umes. The dispersion relation has different forms in the ca
corresponding to the short- and long-wavelength limits.
the case of weak separation, the soft surface modes can
resent a dissipative channel for other condensate excitati
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