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Boundary of two mixed Bose-Einstein condensates

R. A. Barankov
Department of Physics, The University of Texas at Austin, Austin, Texas 78712
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We study the boundary between two interpenetrating Bose-Einstein condensates interacting repulsively in
the case of their spatial separation. We show that the analytical expressions for the distribution of the conden-
sate density can be obtained in the limiting cases corresponding to the weak and strong separations. Using
these expressions, we consider the excitation spectrum of a particle confined in the vicinity of the boundary and
the surface waves at the boundary.
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I. INTRODUCTION Hereu;=4mh2a,/m;>0 characterizes the interaction inside
each condensate),,=2m%%a;,(m;+m,)/(m;m,)>0, the
The experimental realization of Bose-Einstein condensaintercondensate interactiom; is the mass of a particle of
tion in trapped dilute gasgd—3] has allowed us to investi- each condensatey;, a;, are the corresponding scattering
gate a variety of the properties of quantum gases both thegengths; andv,(r) are the external trapping potentials. The
retically and experimentally. In recent years, it has becomgnheoretical treatment of the mixtur$0,11] has shown that
possible to produce and explore mixtures of Bose-Einsteif,q separation takes place whep/\/uyu,> 1.
condensates corresponding to the different internal states Starting with the Hamiltoniar{1), we obtain the Gross-

[4-8]. The two-component condensates have been extens: » . SN
sively studied both analyticall@—12] and numerically 13— 'Bitaevskii equations for the condensate wave functions:

15]. The theoretical treatment of the mixtufd®,11] assures

that it is possible to observe the spatial separation depending ., /¥1 h2v?
P P P e g —=(_—+V1(f)+U1|‘I’1|2+U12|‘I’2|2 vy,

on the relative strength of the interactions inside each con- = 2m,

densate and between them. A general discussion of all pos- )
sible classes of the solutions for the two-component Bose- 902

Einstein condensates has been presented in [R6}. The &:( _ﬂ+v (F)+ Un| W52+ g W |2)\If
experimental realization of such systefds-8] has allowed ot 2m, 2 2lrz2 12 2

us to investigate the equilibrium properties and the dynamics

of separation. Several pap¢s’—2( describe collective ex-  since we are interested in studying the stationary

In the present paper, we explore the boundary betweegexp(_wjt), where u; are the chemical potentials of the

two repulsively interacting condensates at zero temperaturgondensates, and we obtain two coupled nonlinear equations
in the limiting cases corresponding to the weak and strongyr the density of gases;(r)=|¥;(r)|?:

separations of the condensates. We show that in the case of
weak separation it is possible to derive equations for the

densities and, using the iteration method, to solve them ana- _ ﬁ_z VZ\/n—1+V n n

lytically. We show that the asymptotic behavior of our solu- M= om, Jn, (1) ugny gy,

tion coincides with those predicted in REL1]. For the sake 3)
of completeness, we also present the solution of these equa-

tions in the case of strong separation. The importance of h? Vz\/n—z

these solutions lies in the possibility to explore quantitatively M2= " om, N +Vo(r) + U+ U .

the different types of excitations at the boundary. The struc-

ture of the boundary in both cases allows one to consider . ) . i

one-particle excitations as well as surface waves associated 1hese equations are essentially nonlinear. Thus, to find

with the existence of the boundary. The expressions obtaingd€ solutions, we are in need to make some simplifications.

for the dispersion relation of surface waves can be used t¥/& assume tha¥,(r)=Vy(r) and consider the case when

explore the phenomenon experimentally. the size of a bound_ary bgtween the condensates is much less
The Hamiltonian describing the mixture of two weakly than the characteristic size of the system. In the case of a

interacting Bose-Einstein condensates can be written in thBarabolic trap potential within the Thomas-Fermi regirde,
form <Rrp, whered is the size of the boundary aril is the

Thomas-Fermi radius of the atomic cloud. Physically, this
approximation helps to avoid the effect of the potential on
the shape of the boundary. To simplify the calculations more,
we also suppose that the separation takes place in one direc-
tion along thez axis. This allows us to write the system of
equationg3) in the following form:

H= > fd«lﬁ ﬁzvz+v Ly e
=4, r; " om i(r) CRARIRd

+u12f drv W w,w,. (1
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B2 g2 n,; andn, it is natural to introduce other quantities and solve
py=— —————n;+un;Fuph,, Egs. (4) using the small parametek. Let us consider the
2myn, dZ2 functions
%2 d? (4) 144 140
p=(uz/uz)™ N+ (uz/uy)"ny,
=— ——— —— Nyt UNy+Hupn;.
M2 2m2\/n—2d22 27 Uplx = Ugolly (8)

9=[(us/uz)n;—(up/uy)n,1/p.

To find the solution of these equations corresponding to
the separation of the condensates, we have to impose exter- Conditions(5) and (6) give us the simple asymptotic be-
nal boundary conditions on the densitiég(z) andn,(z).  havior of these functions:
Let us assume that the condensate “1” is on the right-hand
side and “2” is on the left-hand side from the boundary. p(z— £ ) — po=/N1gN20,
Then, asymptotically we require (9)

g(z—*ow)—=*1.
Ny(Z—+%°)—nNyg, Ny(z——2)—0,

) The densities of condensates 1 and 2 are easily obtained if

Ny(2— =) =Nz, Ny(2—+2)—0, functionsp andg are known:

wheren;y and n,q are the equilibrium densities of the con-

— 1/4
densates far from the boundary. Substituting these conditions Ny =(uz/uy)“p[ 119172,

into Egs.(4) for the densities and using the equilibrium con- (10
dition, we obtain nz=(uz/uz)"p[1-gl/2.

w1=UqN10, M2=UsNyg, It is straightforward to derive the equations ferandg:

(6)
P;=u;n3y2=P,=u,n5y2. " A 2

1= Uingy 2= UN5/ \/—i_ﬁ 1+ag+5(1—g2) =g—2—1—ag,
Here we used the well-known expression for the pressure of ‘/’; Po 4(1-9%
a weakly interacting homogeneous Bose gas. This condition
presents the relation between the equilibrium densities of the g” N 2\/,—)’g' N gg’2 o (11

a

condensates far from the boundary. 1-g? \/;(1_92) (1—g?)2

To reduce the number of parameters in Eg.we notice
that it is possible to exclude the difference in the masses by

replacing =p£[2a+A(a—g)].
0

uy=umy/m,, u3=u,m,/my,
Here f'=¢y(df/dz) and we also introducede=(\u;

NI =nyVmp/my, N3 =npymy/my, —ZJu—z)/(\/u—ﬁ Vug) and LE5=m(uup) " (Vus+u) po/
7 he.
Ul =Uuini,, u3=usnig, " To find the asymptotic solutions of Eq4.1) in the case of
A<1, we use the iteration method. Let us assume that the
m* =ymyms. terms with derivatives op are much smaller than the others.
We will justify this assumption at the end of our calculations.
After that we obtain the same Edd) and conditions5) and Neglecting the terms with derivatives jn we get from

(6) but for the asterisks quantities and with the same masggs. (8),
m* . To simplify the notations, in the following discussion we

will omit the asterisks. Note that both parameteys and A 9’24+ 2A(1—g?)2
are not affected by the above procedure of eliminating the plpo=1— 5 ,
difference in the masses. 4(1-g%)(1+ag)
We can solve the equations for the densit#swith con- (12
ditions (5) and(6) analytically in the two limiting cases: for g” 2g+a(1+g? A(1-a?g

12 —
1—g? 2(1—92)(1+ag)g 1+ag

the weak separation wheXi=u,,/+u;u,—1<1 and for the
strong separation wheh>1.

The equation foig can be solved by substituting =f.
Taking into account condition®), we get thag is the solu-

Let us consider the weak separation when the conditioffon ©Of the equation
A=u,/\uu,—1<1 is satisfied. We expect that in the sim-

Il. WEAK SEPARATION

L . 1-g¢°
plest case, whem;=u,, the total density of a gas(z) ,:m( ) 13)
=n,(2) +ny(z) is approximately constant. Then, instead of 9 ( : V1+ag (
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At this point it is clear that the assumptions we used 1.5 . . .
were correct. Namely, we obtaiglp’=A%2 \/p"«A?, and
g’ =+\/A, so the terms we neglected are bytimes less than
the others.

Now we can write down the solutions for bgthandg in
the parametric form,

p A 1-¢°

_ - _ 2
o A (1ragyls @ T2a9l

(14

n,/n,, nJ/n,,

z— 7, Vita |[Vitag+l+a
= n
Eo/NA(1—a?) 2 Vit+ag—Vl+a

Vi—a |1+ ag+ Ji—a

n .
2 vitag—Vl—-«a
FIG. 1. Distribution of the densities in the case of weak separa-

Here the second equation is the solution of B@). In these  tion: A=0.3, «=0.1. Dotted and dashed lines correspond to spe-
expressions an arbitrary constantdefines the position of cies 1 and 2. The solid line is the total density.
the boundary and, in the case of the finite geometry with the

given average number of particles in the condensates, it can 2z\A
be obtained from the condition of equal pressui@s The 1-9(z—+o=)=exp - g |
symmetriez—z,—2z9—2, g— —0, a— — « are also physi-
cally obvious. N . F{ZZ\/K}
Finally, the densities of condensates have the following 1+g(z— —©)xex ,
form: &1
(16)
(z—29) VA(1—a?)
nlo A 1_g2 3 2+2 14 g(z_>20)_) 50 .
n=- 4(1+ag)2[ a”+2ag]|[1+9],

(15) Here &=#/y2m;u; are the correlation lengths of the con-
densates determined by the chemical potentiglsand ..
) We used Eq(7) to include the difference in the masses. The
[3—a“+2ag]|[1-g]. asymptotic behavior far from the boundary of each conden-

n 2
20( A 1-g
sate is governed by its correlation length. As we see, the size

n [ — —_———
22 4 (14 ag)?

Together with the parametric equation forthese densities 20 . . .
are the main result of the paper. Using the method describec
it is possible to derive the expressions for the densities in
next orders in small parametek in the form of an
asymptotic series. As follows from the above estimations of
the neglected terms in Eqd.1), next order is proportional to
A2. The typical dependence of the densities on the distance °
from the boundary is shown in Figs. 1 and 2. EN 10
We notice that the total density=n;+n, at some values <
of the parameters has a hollowlike behavior at the boundary &
as shown in Fig. 1. In the case of the weak separation we seE‘_
that the hollow is broad and shallow. Provided the interaction© g5 |-
between particles of different species is larger than that of
each species, that &>1, we expect the probability of a
particle to be close to the boundary to decrease, meaning
lower density. The existence of such a hollow allows us to 0.0 %
consider the possibility of confining a patrticle of another sort '
in the vicinity of the boundary. This is discussed below. Al-

15

though we cannot further simplify solutiord4), we can FIG. 2. Distribution of the densities in the case of weak separa-
derive the asymptotic behavior of these functions in the spetion: A=0.3, «=0.3. Dotted and dashed lines correspond to spe-
cific limits: cies 1 and 2. The solid line is the total density.
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of the boundary can be approximated ab~(¢; 20 m=— ' . . .
+&,)/(2/A) and forA<1 it appears to be much larger than ~
the correlation lengths. We notice that the limiting behavior \
of densities(16) coincides with the result of Refl11]. The \

solutions have the simplest form wher=0: 15 ¢ \\ .

=)

Ny 3A

nz)=—| 1-——
1( 2 Z\/K
4cosﬁ§—

L &o |

(1+tanr

n,/n,, NJ/n,,

_ . (17) 0.5 \ 'i:' B
( z\/Z ) \\ 7

—— || 1-tanh—||.

=y % | o
4 cosR| — 0.0 . . S . .
| o | 60  -40 20 0.0 2.0 4.0 6.0

1

Ny 3A
na(z)=— 1=

Here we choseg,=0.

The case of the weak separation has been first observed in FIG. 3. Distribution of the densities in the case of strong sepa-
the experiment with the spinor Bose-Einstein condengéfes ration whenu, /u,=4. Dotted and dashed lines correspond to spe-
with A=10"4. The size of the boundary is of the same ordercies 1 and 2.
of the magnitude as the size of the condensate.
= (20

V2¢,

To analyze the case of strong separatios u;,/\u U, Here n,q and n,, are connected by the condition of equal
>1 (we use the same notation but for another quantite pressures6) and we choose the position of the boundary at
start from Eqs(4) for the density. In this case we expect thatZ=0. o ) )
the density at the boundary will be approximately zero be- The size of the boundary in this case is approximately
cause the interparticle interactions make it almost impossibl&®2V2(£1+ £5). The dependence of the densities on the dis-
for one condensate to penetrate inside the other. To estimat@nce from the boundary is shown in Fig. 3. As in the pre-
the density of the condensates at the boundary, we can u§€ding section, we can see that again there is a hollow in the
the fact that second derivatives of the wave functions shouléPtal density but in the case of the strong separation it be-
be approximately zero there. This transforms the system df0mes narrower and deeper in comparison with that for the

Egs.(4) into a set of two linear equations with the solution Weak separation.

N,(z=<0)=nytanl?

Ill. STRONG SEPARATION

IV. ONE-PARTICLE EXCITATIONS ON THE BOUNDARY

N Nio
Me=37 1~ 3 <o The existence of a hollow in the total density allows us to
(18)  consider the confinement of a particle of another sort in the
Ny Nag vicinity of the boundary. The general property of a quantum-

Nee=2 1~ T<n2°' mechanical motion in a one-dimensional well is an existence
of a confined state. As an example, we consider the simplest

. . L . case whenr=0 and a particle of another sort interacts with
This allows us, in zero approximation, to use the Slmpleboth the condensates repulsively with the same conatant
conditions for the densitien;(z=<0)=n,(z=0)=0. Then P y

. \ The Schrdinger equation for the wave function of a particle
Egs.(4) have the simple form: with the masdM has the form

ﬁz d2 \/_ 2 d2
=—————yJnytuyn; for z=0, - =Edg.
M1 2m1\/n—1 42 1 1N1 oM d22+)\n(z) ¢=Eo¢ (21
" 5 (19 We can solve Eq(21) for the weak and strong separation

o= — h d—\ﬁz*— u,n, for z<0. cases simultaneously. It has the universal form

2my\/n, dZ2

o S M Yo =0 (22)
The solutions are easily obtained: dz2 #2 € cosH[ Bz] ¢=0,
. where e=E—\n,, and Uy=3A\Nny/4, B=/Al¢, for the
n,(z=0)=ntant? 1 weak separation; ando=\n,, B=1/(\2&,) for the strong
\/551 separation. The spectrum of energys well known:
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weak, presence of the surface tension. Suppose that one has the
23 condensates in a “box” and the position of the boundary is

2
€= _Mﬂ[ —(1+2j)+ A /1+8m} strong, where labels “1” and “2” correspond to the side with the
. 8M mu same condensate. The box sizes in the other directioris,are

andL, . Taking into account the fact that the velocities van-

whereu =ung is the chemical potential arjd=0,1, . ... The ish at the walls, we get the dispersion relation
condition that an expression jn- -] in Eq. (23) is positive

determines the upper limit fgr There is always at least one ok3

state withj =0. w?(k)= (27)

p1oCOth(kL) + pyocoth(kLy) *
V. SURFACE WAVES AT THE BOUNDARY where o is the surface tension. Herp;p=m;Nip, pao

There is also another type of excitation associated with~ M2Nzo aré the mass denszities, the wave vector along the
the boundary. As we can see, the spatially inhomogeneodoundary is k=(mn/L)*+(mny/Ly)?, where ny,n,

distribution of the condensate densities gives rise to nonzerg 01, ---, notn,=n,=0, andL,, L, are the sizes of the
surface tension previously analyzed in HafL]. Here we use condensates in the direction perpendicular to the bqundary.
the expression for the surface tension derived there: We assume thdt, andL, are much larger than the size of
the boundanyd.
1 [+ #2 (dyn;\? For the dispersion relation, we consider two limiting cases
o= Ef_m dziglzz_rni(F) (24)  corresponding to the wavelengths<L; (kL;>1) and x

>L; (kL;j<1). Let us note that the second case is possible

Substituting expressior(d5) for the densities in the case ONY If Li<Lyy. _
of the weak separation and taking into account only first [N the first case, we obtain
nonzero order im\, we obtain for the surface tension

1/2
w(k)= —) K32, (29
PJA 20°—1+\1-a? P10t P20
ow=—g | (611 &2) > o
@ In the long-wavelength limit, we get
1—\/1—a2 oL.L 1/2
—(§1—§2)—1. (25 w(k :(;) 2, 29
@ (k) piokatpaol @9
where a=(m;\u;—my\u,)/(myu;+myu,) and we As we see that for the weak separatior AY4, and the

used Eq(7) to involve the difference in the masses. Héfe  surface waves are relatively “soft;” in this case, we can con-
&, are the correlation lengths of condensates Bnid the  sider them as a dissipative channel for other condensate ex-
pressure given by Eq(6). When a=0, o,=PyJA(¢,  citations.
+&5)14.

In the case of the strong separation we use expressions VI. CONCLUSION

(20) in order to get the surface tension .
We presented here the analysis of the boundary of two

P2 overlapping Bose-Einstein condensates interacting repul-
os=—3 (&1+&). (26)  sively in the limiting cases corresponding to the weak and
strong separations at zero temperature.
Let us note that the expressiof®5) and (26) differ from For the weak separation, we obtained soluti¢hs) of

those obtained in Ref11]. Although in a qualitative sense W0 coupled nonlinear Gross-Pitaevskii equations using the
our expressions coincide with those of RgF1], using our small parameteA. The solutions show that the penetration
method of solution, we can get the general expression appldepth of the condensaté ™inside the other is estimated as
cable for a variety of parameters and retrieve the correcéi/(2VA), ie., the size of the boundaryd~ (&,
numerical factor for the case considered in Réfl]. As  +£&)/(24/A) is much larger than the correlation lengths.
follows from the general expression for the surface tensiorf his is observed experimentall$]. In addition, there is a
(24), we should know the behavior of the densities not onlyhollow in the full density profile, resulting from the wave-
far but also in the vicinity of the boundary. That is why, the function behavior near the boundary. On the whole, the
approximate character of the expressions for the densities imethod proposed for obtaining density distributions for the
Ref.[11] could give only a qualitative answer for the surfacecase of the weak separation can be extended to obtain the
tension. expressions for next orders ix.

For the velocities smaller than the speed of sound, we can We also considered the case of the strong condensate
consider the gas to be incompressible, so that it is possible geparation, but restricted ourselves to zero-order approxima-

use the hydrodynamic equations and to find the dispersiotion. In this case the size of the boundaryds-22(¢;
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+¢&,), and the total density of gases tends to vanish at the It was shown that there also exist collective excitations
boundary. The existence of a hollow in the density profile atassociated with the surface tension. The expressions for the
some parameters allowed us to consider one-particle excitgurface tension were obtained for the both weak and strong
tions at the boundary. Using the expressions for the densitie§eparations. The dispersion relation for surface waves is ana-
we found the excitation spectrum of a particle in the simplestyzed in the case when the condensates fill the finite vol-
case when the constants of the particle-condensate interaétes. The dispersion relation has different forms in the cases

tion are the same and the distribution of the densities at theorresponding to the short- and long-wavelength limits. In
boundary corresponds i@=0. The generalization to other the case of weak separation, the soft surface modes can rep-

cases can be done with the use of expressidBsand (20) resent a dissipative channel for other condensate excitations.

for the_densny distributions. Wg notice .that the existence of a ACKNOWLEDGMENTS
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