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External Josephson effect in Bose-Einstein condensates with a spin degree of freedom
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We consider the Josephson effect between two spatially separated Bose-Einstein condensates of atoms each
of which can be in two hyperfine states. We derive simple equations of motion for this system closely
analogous to the Bloch equations. We also map the dynamics of the system onto those of a classical particle in
a well. We find density and spin modes of oscillation and stable equilibrium points of the motion that are
unstable in the spinless case. Finally we analyze the oscillation modes in the dpinil) (case.
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[. INTRODUCTION from the “trivial” one (the lowest-energy state of the junc-
tion), there are others including some that, in the spinless
Recent experiments on the Josephson effectHe have case, are experimentally inaccessible.
uncovered phenomena that have not been previously ob- This paper is organized as follows: First we describe the
served in conventional superconducting junctions oftte  model and the Hamiltonian of the system in Sec. II. After
superleak$1]. Some authors have attributed these effects tdghat, in Secs. Ill A and Ill B we derive the equations of mo-
the spin of the Cooper pairs since they are paired irSan tion and show that in the so-called isotropic limit, they re-
=1 configuration[2,3]. By analogy this suggests that the duce to a form which is equivalent to the well-studied Bloch
simple Josephson effect in Bose condensed alkali-metalquations. We map the dynamics of density oscillations onto
gases could be qualitatively modified by the presence of athose of a classical particle in a well. In Sec. 1l1 C we iden-
internal spin degree of freedom. Recently several experimeriify the equilibrium points of the motion and study their dy-
tal groups have succeeded in forming this kind of condensatgamic stability. Finally, in Sec. IV we make some consider-
in which the atoms can be in more than one hyperfine statetions regarding the extension to the=1 case(when the
Myatt et al. [4] have trapped théF=2m:=1) and |F trapping potentials for all threm: sublevels are identichl
=1mg=—1) states off’Rb using magnetic fields. Stamper-
Kurn et al.[5] have trapped thE =1 multiplet of ZNa with .. MODEL SYSTEM AND HAMILTONIAN
optical methods. An important feature of their setup is the
possibility of imaging each species separately, thus allowing Let us take a condensate in a symmetric double-well po-
them to observe their individual motion. There have alsatential where the barrier is much larger than the chemical
been several theoretical studies of these sys{@&s9). potential and therefore, in order to go from one side to the
The external Josephson effect, i.e., between two spatiallpther, the atoms must tunnel under the barrier. Each atom has
separated condensates in the case of a single hyperfine stdtgp possible hyperfine states, which means that the order
has already been addressed extensively in the literftOre ~ parameter is a two-component function. This setup can be
17]. Josephson-like phenomena have been observed expegichieved by taking a condensate in a single well and raising
mentally[18,19. The internal Josephson effgbietween hy- a potential barrier in the middle, thereby splitting it into two
perfine statgshas also been analyzg@0]. In the present parts. Following this we may apply laser pulses to each side
work we study only the external Josephson effect betweeselectively in order to choose a particular superposition of
two condensates in a double-well potential whose atoméhe internal states of the atoms on each side.

have two possible internal states designateld pand|2). A We shall now make a four-mode approximation to de-
weak link is established between the condensates by lowescribe the system. Léi,R), |2R), |[1L), and|2,L) be the
ing the potential barrier that separates them. four single-atom states corresponding to the four modes,

In this paper we discuss three main results. First we showhere the labelR andL refer to the right and left wells. The
that, under certain conditions, it is possible to map the mosingle atom states are, in principle, time dependent and will
tion of the total condensate density onto that of a fictitiousbe approximately given, in the adiabatic approximation, by
particle in a simple effective potential. This result is verythe Gross-Pitaevskii ground state, which in turn is deter-
general and it applies also to condensates without a spimined by the number of particles in each single-atom state.
degree of freedom. Second, we study the motion of anothéVhen each of the four states defined above is macroscopi-
dynamical variable, related to the spin motion, and we findcally occupied, the condensate wave funct}bh L(i=1,2)
that, under the same conditions, it can also be mapped ontaside each of the wells can be well described at the Gross-
the motion of a fictitious spin precessing in a magnetic field Pitaevskii level.

Finally we study the equilibrium points and show that apart We shall assume that the system is always in the semi-
classical regime, i.e., that the fluctuations around the mean
) values of the physical quantities are smake below. With
*Present address: Laboratoire Kasstler-BrossebléE Normale  this proviso we can describe the system in terms of classical
Supeieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. (c-numbej canonically conjugate variabl¢4&7]. The semi-
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classical variables ar&N;=(N; r—N; | )/2, i.e., one-half of might not have the same tunneling matrix elemexpt for
the difference in the number of atoms between the two wellboth species, and the mean-field interaction energy would
in each internal state and the corresponding relative phase®t have the form that we assume. This means that a condi-
A ¢; . Each pair ofAN; andA ¢; are canonically conjugate to tion must be imposed on the interaction parameters, namely,
each other. The condensate wave function can be expressetht e;;e,,> €1, [21].
in terms of these variables a8 | = N; = AN; exp(iAg;/ In the spinless case we can identify four different dynami-
2) up to an overall phase factor, where tigs are one-half  cal regimes as the parametesg and e are varied. By ana-
of the total number of atoms in stateSince we are assum- lyzing the topology of the phase spddggs. 1a)—1(c)], we
ing in this paper that there is no laser coupling between th&nd two sharp transitions and one crossover. Starting from
different spin states, it follows that the differeNt's are  the weakly interacting limifthe so-called Rabi regime, Fig.
conserved separately. Therefore the dynamics is not naturalli{a)] the transition to the intermediate regime is marked by
described by using as variables the relative phases betwedime appearance of closed orbits oscillating around nonzero
internal states in each well. Although the difference invalues ofAN and centered at ¢ = 7 [Fig. 1(b)]. The second
chemical potential between the two species in each well canne occurs when open orbits appear white extends over
be very large, this does not affect the Josephson dynamicall values[Fig. 1(c)]. This is a transition from the intermedi-
For the same reason, the dephasing between states of diffete to the Josephson regimes. These transitions happen at the
ent hyperfine spin is irrelevant. valueswy=€eN and 2wy= €N, respectively, for our model.
Furthermore, if we restrict ourselves to values afN; Finally whenwoN~ € there is a crossover to the Fock regime
+AN,)/(N1+N,)<1, we can write down an approximate where quantum phase fluctuations cannot be neglected. Deep
Hamiltonian, which is the straightforward generalization ofin the Rabi regime(when wy>€eN) the tunneling energy
the spinless case and reduces to it when one oR{lee(and  dominates. In the Josephson regime bbthand H,,; are
thereforeAN;) goes to zero: important o< eN<wyN?) and finally, in the Fock regime,
H;.. dominates poN<e) [17].
H=H+Hin, &) Under current experimental conditions, can be varied
anywhere from 0 to 100 §. On the other hande can go
Hy=—wp S JNZ—ANZcosA g, @) fro7m 0.01t00.1 s1[15], andN is usually between Foand
i=12 10'. With this range of parameters the Fock and Josephson
regimes are easily accessible, whereas the Rabi regime is
and more difficult to achieve. It is important that the frequency of
1 any oscillation between the wells be smaller than the lowest
2 2 intrawell excitation frequencies so that, during the motion,
Him=75 (e ANT+ €22AN5+2€1,AN;1 ANo). ©®  these degrees of free?:jom are not excited. I?] practice this
means that botlwy and ywgeN have to be smaller than the
H; is the Josephson coupling Hamiltonian aHg; is the  frequency of the lowest intrawell collective modas will
interaction Hamiltonian (for a derivation of these see pecome clear below
[11,185)). The interaction term conserves the total number of To pe consistent with the semiclassical description we re-
atoms in each hyperfine state separately are here ignor- quire that the standard deviations of the quantum operators
ing loss processes that occur |n_the real systeng is the A{o and AN satisfy the conditionszr(A{o)<1 and U(AN)
Josephson tunneling energy, which we take to be the SamE N during the motion of the system. Generally speaking,

for both hyperfine states for simplicity, arg| are the effec- . ) -
tive interaction coefficients. We assume tlgf is indepen- the experimental setups will be such ihat(AN)

dent of AN; andA ¢, , although we do expect some depen-~ 0 “(A¢)~ (e woN+1IN?) " The second inequality is

dence for large values oAN;. The expression for the @always satisfied for positive’s. The first is satisfied only in
coefficientse;; in terms of the density; of species and the the Josephson and Rabi regimes, to which we shall restrict

interaction parametey;; =4m#%a;; /m is our analysis from now on. .
Finally, the experimental observations can be made by
gij measuring the densityand thereforeAN; ,) in the usual
Eij:WJ drpip;, 4 way, either destructively or by phase-contrast imaging. As

mentioned before, an important point is that these methods

wherea;; is the swave scattering length between atoms ofallow us to determine experimentally the behavior of each
type i andj. We assume here that the gas is very dilutehyperfine species separately.
(pia?j~10‘5), which means that the mean-field approxima-
tion works extremely well. IIl. DYNAMICS, BLOCH EQUATIONS,

In order to justify the the effective Hamiltonian we shall AND EQUILIBRIUM POINTS
assume that al’s are positive because we want to avoid two
possible complications: the collapse of the gas and a possible
accumulation of atoms on one side of the junction. The two JH
components must also be miscible. In other words, there can A.Ni— - wo\/mSinA% , (5)

be no component separation. If this were not the case, we A ¢

The equations of motion are
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motion in terms of new variables in order to provide some
insight into the dynamics of the system.

A. Isotropic case

We first consider the isotropic case, wheeg;=¢€;,
= e55. We shall be working with the quantity=(e;,+ €5,
+2€49)/4, which is in fact equal to any of the's in the
isotropic case. This definition, however, will be useful ahead,
when we deal with the anisotropic situation. The equality of
the interaction parameters in the isotropic case seems to vio-
late the miscibility condition thag;;e5,> efz. However this
condition does not take into account the kinetic energy,
which favors miscibility. Therefore isotropy does not pose
any such problems.

We notice that the Hamiltoniafl) is invariant under ar-
bitrary spin rotations and more generally under(3Urans-
formations applied simultaneously to the spins in both wells.
That is, if we transform the two-component spindrs and
V¥ with the same unitary operator, the dynamics should re-
main unchanged. This suggests that we reexpress the equa-
tions of motion in terms of quantities that are invariant under
such transformations. This conclusion of course depends on
the isotropy of the interaction Hamiltonias;,;. We there-
fore define the following dot products of spinors:

PR

2
AN+=%:2 AN;j, (7)

\P’LC\I,R_’\P’F;\PL

5 =>, VN’—AN?sinA¢;, (8

VYot UEY,

5 =Z JYNZ—AN?cosAg;. (9)

The subscript+) will be used to distinguish this set of vari-
ables from another one with subscript) to be defined
below. Using the equations of motion fAlN; andA ¢;, we
obtain

a

B.

0 AN,
oy =| wg 0 +eAN,
B+ 0 —€eAN, 0

. .
B+
(10)

If we now define the three-component vectors
=(AN; ,ay,B4) and B(t)=(—€AN,,0,wp), we can re-

Sirite the equations of motion succinctly as

r.=B(t)Xr,. (12)

Note though thaB andr , are not independent since they are

Aei=on N; both functions ofAN, .
Straightforward manipulation of Eq10), or directly of

AN;
i cosAgoi+E ey AN; . ©) Egs.(5) and(6), leads to
i ]

~ O NZ-AN?

In Secs. lll A and Il B we will rewrite the equations of

2

. €
AN+=—[w§—eH(O)]AN+—EANi, (12)
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whereH(0)=— w8, (0)+ (e/2)AN_(0)2. a)
This equation is quite general since it is valid not only for
two hyperfine states but for any number of them, as long as
they interact only through AN% =(3;AN;)? term. In par-
ticular, it also applies to a single-stdiee., spinlesssystem.
It is formally identical to the equation of motion of a particle
with unit mass in the quadratic-plus-quartic effective poten-
tial

Vett

2

1 €
Ver(AN,)= S[0f— eH(0)JANZ + ZANY (13 AN,
with effective total energy
1. 2
Eerr=Ver(AN. )+ 5ANY . (14 b)

An important point to notice is thd.;; andV.¢; cannot be
chosen independently since they both depend on the initial
conditions. The variation oH(0) and of a,(0) (SinCe M ciioocicieca i iaaeeeees A

AN, =—wqa,) allows us to find three different types of AN,
motion [Figs. 4a—qg]. In the first type the coefficient of the

guadratic term is positive andN, oscillates around zero,

which is the minimum oW ¢ [Fig. 2(a)]. In the spinless case

this corresponds to either oscillations around the ofifigs.

1(a)-1(c)] or to small oscillations around the state[Fig.

1(a)]. The second case occurs when the coefficient is nega-

tive andE¢ is positive, which also leads to oscillations of

AN, around zero although that point is no longer a mini-

mum of V¢ [Fig. 2(b)]. It corresponds to large oscillations

around the origin or ther state[Figs. 1b) and 1c)]. The C)
third one corresponds to botf.;; and the coefficient being Vetf
negative[Fig. 2(c)] and leads to self-trapped behavjoscil-
lations aroundAN, #0; Figs. Xb) and Xc)]. For the spin-
less case there is a well-known analogy with a momentum-
shortened pendulum in a gravitational field, whose behavior
is also fully reproduced by this particle-in-a-well model.
Since the analysis of the spinless junction has already been
carried out in Ref[11] we shall not continue it here and shall
proceed to the two-hyperfine-state case.

Specifying the dynamics cAN, does not describe the ) o .
motion completely. For example, even in the spinless case it FIG- 2 Vers(AN,) for different initial conditionsi(a) when thze
is known that the third regime includes two different behay-coefficient of the quadratic term in Eq13), namely, 3wg
iors of the relative phases, the so-called “running” and “os- ~ €H(0). is positive: (b) when the coefficient is negative afitd;
cillating” phases. For a description of these as well s >0; (c).when both the coefficient arfl,; are negative. The hori-
states and the momentum-shortened pendulum analogy sezéJ,ntaI line corresponds -

e.g., Ref.[11]. To further understand the dynamics of the

AN+

two-hyperfine-state Josephson effect we introduce the addi- AN_ 0 —wq 0 AN_
tional variables a | =] wo 0 +€eAN, o
AN_=AN;—AN,, (15) B 0 —eAN, 0 B-

(18)
— IN2_— 2 o N2 _ANZ e
a-=yNi—ANjsinAe,— YNz~ AN;sinAg,, (16) Since the matrix is the same as in E40) we define the
three-component vector = (AN_,a_,B_) and rewrite the

B_= \/le—Ale COSA¢@;— \/NZZ—ANZz cosA¢,, (17)  equations of motion as
and their equations of motion are r_=B(t)Xr_. (29
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TABLE |. Equilibrium points, and oscillation modes around them, in the isotropic case.

A¢;,Ap, AN{,AN, Existence condition Type of mode Frequency Stability condition
0,0 0,0 Always exists Density Jwi+ woeN Always stable
Spin o
m,0 0,0 Always exists Mixed w2+ woe(N;—N;) Ni—Ny—wo/e<0
Spin o Always stable
#0 N;—N,—wg/e>0 Mixed €|ANY| Always stable
Spin Joi+ (ANT)?
T 0,0 Always exists Density Jwi— wgeN N;+N,— wo/e<0
Spin g Always stable
#0 Ni+N,— wo/e>0 Density €| AN?| Always stable

spin w5+ €2(AND)?

Now, howeverB andr_ are independent and therefore these F o =By(t)Xr, +By(t)Xr (20)
equations are formally identical to the Bloch equations - - -
(without any relaxation termsfamiliar from the context of -
nuclear magnetic resonance and quantum optics. Notice that r-=By()Xr_+By(t)xr,, (D)
in going from the original four variables to six we are en-

going 9 where B;=(—eAN, —egAN_00g), B,=(—e€nAN_

larging the configuration space, which means that not all” _1
points described by the new set of variables are physically 8AN+:0.0), €=a(ent expt2e;,) as  before, e,

y 1 _ i,
allowed. Therefore care must be taken in choosing the initial™ a(ent €2~ 2€;) andeg=3(e11~€2)).
conditions of the motion. . . . . .
We can obtain some physical insight into the variables  C. Discussion of the equilibrium points of the motion

AN.. by noting thatAN. is one-half of the difference in In this section we study the existence and stability of the
thOtﬁl r}u?bg_rﬁbetweer! thﬁ right and left wfells.ant;N_ IS oneh equilibrium points of motion. To do this we can use the equa-
alf of the difference in the component of spin between the ;s gerived in the preceding section. However we will

112 1212\ /9 (112 2|2 ;
wells (W[~ |Wg[%)/2— (|Wi|"~|W{[")/2. This means work directly with Egs(5) and(6) since it turns out that they

that the former describes the density mode whereas the lattefie more intuitive for our purposes. The detailed calculations
in that limit, describes the spin mode.

We can now analyze Eq&l1) and (19) in a few limiting are done in the Apper_ldix gnd the main results for the isotro-
cases to gain some insight into the behavior of the systerrp.IC case are summarized in Table I. .
Under appropriate conditions it is possible to have small os: As can be expected, the Iowest-gnergy sta_te is character-
cillations in AN, and no motion inAN_ or vice versa. We 126d by A@1,=AN;,=0. The density and spin modes of
consider two cases: the Rabi limit, whe¢Bl<w,, and the oscnlayon a_round that qu|l|br|um point can also .be ynder—
Josephson regime, wheedl> w,. In the Rabi case, neglect- stood in a simple way as in and out of pha}sfe OSC'”a"‘?F‘S of
ing higher-order terms, the frequency of oscillationAdf, two coupled Josephson currents. The condition of stability of

(and therefore of the density modean be calculated from trc()all?;;t?r:(ésn% ﬁlb:eroingtérﬁé:ir?)thcsrt]vﬁ sg;;sgf:e?g;on'
Jo2 T wgefs ; 2

Eq. (13) 10 be ywy + woef.. AI.SO’ using Eq.(19), We Can - rhis means that the stability af states in spinor conden-

neglect the component of thifield along theAN_ axis, SO gates is robust regardless of the radibe. As far as self-

that r_ (the spin modg rotates around thes_ axis with trapped equilibrium points are concerned, we find two stable

frquenqywo. In the Josgphson case we consider two type%nes. In the case of thep,=m, A¢p,=0 state, the two

of situations—small oscillations oAN, around zero and . mponents are self-trapped on opposite sides of the junc-

around nonzero values. For zero values we get density an[?g

) : X é—zi n, whereas in the case d&fp;=A ¢,= 7 the two compo-
spin modes with frequenciegwy+ woeN and wo, reSpec-  nanis are self-trapped on the same side. However, as we will

tively. For nonzero v(z)ilueé.e., whenAN, is “self-trapped”  gee pelow, for typical experimental parameters, these states
around a valueAN:), AN, oscillates with frequency gare outside of the region of validity of the Gross-Pitaevskii

elAN®| and AN_ oscillates with  frequency (mean-field description.
Vo2+e2(ANY)2. In Sec. Il C we shall treat special cases of
the above results using a different method that applies in the D. Experimental considerations

limit of small oscillations. . . I
The typical frequencies of small oscillations can be cal-

B. Anisotropic case culated using the following parameters~10° atoms, €
L ~0.01 s, exg~10* s !, and wy~10 s*. For these
As we would expect, the equations in this case becomg,,es most of the frequencies lie between 10 @nd
much more complicated. However, for the sake of complete15g s \whenever stable oscillations exist.
ness, we include them here. We find that the equations,for  For a general initial state near the trivial equilibrium
andr _ become coupled: point, which isA¢; ,=0 andAN; ,=0, the oscillations in
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species 1 during its expansion, after the trapping potentials
have been switched off.

In the spinless case the self-trappedstate occurs at the
value AN®= \/N?— (wq/€)?. For the values of the param-
eters that we have assumed we g&4°=N—o0(1), which
means that one of the sides of the junction is not macroscopi-
cally occupied, rendering the Gross-Pitaevskii description in-
valid. In the spinor case we see from Fig&d)3-3(f) that it is
plausible thatANi0 is very close toN; and we no longer
expect our model to work in that region.

IV. F=1 SPIN JOSEPHSON EFFECT

In this section we look at the Hamiltonian, mean-field
ground state, and oscillation modes of a Josephson junction
containing atoms withF=1 total spin. We also study the
stability of certain7r states. The ground state of a single
spinor condensate has been analyzed in the liter@68).

Here we extend the analysis to the case where the condensate
is comprised of two spatially separated parts linked by a
weak junction. Some of the results in this section are similar
to those of Ref[6] and are related to the bulk excitation
spectrum of spin-1 condensates. As in the preceding sections
we assume that the trapping potentials are identical for all
three hyperfine statesvhich can be achieved using optical
dipole trapg. Under these conditions it is known that all
three hyperfine states of the multiplet are miscible.

One might try to proceed as in Sec. Il by deriving a set of
equations for invariant quantities such asl, , a., B4,
and so on. However it turns out that while this is possible, it
does not lead to simple equations of motion as in the two-
internal-state system and therefore this approach does not
seem to provide a clear insight into the dynamics.

We shall now study the small oscillations around some of
the equilibrium points in both the ferromagnetic and antifer-
romagnetic cases,

plane for different possible values of the relevant parameters. The

intersection of the two curves is the graphical solution for the equi- H=H;+H, (22
librium points for A¢;=A¢,=0 (a),(b), Ap;=7 and Ap,=0
(0),(d), andA ¢, =A ¢,= 7 (e)—(g). The criteria of applicability for
the different figures are given in the Appendix.

where

HJ:—% Z al ar+H.c., (23
AN, , andA ¢, , will be a superposition of both density and
spin modes. For the typical parameters that we are using, thnd (see[8])
frequency of the density mode is one order of magnitude .
Ia_lrger than'th.at of the spin mode and, the_refore, it should be Hin= Zo(alia;ial,ial,i+ag,ia(1;,iao,ia0,i
simple to distinguish between them experimentally. It should i=RL

also be possible to prepare an initial state in which only one
of the two modes is significantly excited.

Although 7 states are unstable in the spinless case for +2ajal ja a0, +2a] 2 2 ay))
typical parameters, we have shown that they can be stabi-
lized in spinor condensates. To prepare them experimentally
we must haveN; <N, as explained in the Appendix, where
the = phase difference is in species 1. A frequency measure-
ment of the density mode could be used to detect that in fact +2a1,ia5,i agjag+ ZaEEYi al 1j@-1;20;
a m phase exists in species 1. Alternatively, one could ob-
serve the destabilization of the state suddenly appearing in
the form of density oscillations due to the reductionNof.
Finally, a third possibility would be the direct imaging of the
interference pattern between the left and right condensates &br 2Na and®'Rb, ¢, is a few percent ok,,.

T T T 4t
+a_jjaljjajagi+2a;a5ia0ay;
€2+ 1t toat
+ Z(al,i ajjajajta_jjaja_gja_g;j

t oot tot
—2aj;a ;@ qja;;+t2a;;a” 1;a;a;

Tt + t
+2ap;ap;8,@2-1j— @@, —a-;a-1j). (24
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We now derive the equations of motion and, in the meanand a similar set forS¢; . The chemical potential is
field approximation, since we are assuming a macroscopigiven by Eq.(26) with €, replacing €+ €5).
occupation, we linearize by keeping only terms at least of Solving them gives the following results. For the ground
orderN in Hi,. state (the relative phase betweefipg and ¢q, equal to
For the ferromagnetic case, if we assume that only theerg, we have the following three modes: a density mode
me=1 has macroscopic occupation, we obtain the equationgith frequency ‘/w02+ woeoN and two degenerate spin

modes with frequency/wOZJr woe,N.

oL ® S¢1R For the s state we find the same modes with frequencies
ptig S | =— 70 Sor Jwi— woegN andw§— woe,N. The density mode becomes
Sh_q, Sb_1r unstable forwg<egN and the spin modes become unstable
’ ’ for wg<e,N. With the parameters that we are using, at the
€0t €y 0 0 very least the density mode is unstable.
+§ 0 60+ € 0
0 0 e—e V. CONCLUSIONS
26y + 6(1)’1",_ We have considered the Josephson junction between two
« S (25) spatially separated condensates with a hyperfine degree of
oL ' freedom. We have derived a set of simple equations which,
011 in the isotropic limit, are formally identical to the Bloch

o . . o equations and which provide insight into the dynamics of the
and a similar set fob¢; r. w is the chemical potential given  to-hyperfine-state condensate in a double-well setup. We

by find a partial mapping to the simple problem of a particle in
a (=x?+x%-type potential, which becomes a complete

_ I@ n €t €2 N (26) mapping in the spinless case. We have also demonstrated the
K 2 2 ' existence in this system of density and spin oscillation

modes. In particular, we have fountl states that are stable

where the upper and lower signs correspoodatO andw  under experimentally accessible conditions due to the inter-
phase between the two condensates, respectively. actions between the two species. Finally we analyzed the

Solving them gives the following results: for the ground spin-1 case in the same geometry both for the ferromagnetic
state (the relative phase betweepi;g and ¢;, equal to and antiferromagnetic cases and found the low-lying oscilla-
zerg, we find a density mode with frequency tion modes. Our results indicate a wide range of phenom-
Jwi+ wo(ey+ €2)N, a spin mode with frequenay,, and a  enology for Josephson oscillations when the superfluid has a
quadrupole mode with frequenayy+ | e,|N. spin degree of freedom. Future possible directions of re-

For the state we find the same modes with frequenciessearch might include tunneling between fragmented states
Joi—wo(€gt €2)N, —wo, and — wo+|e,|N. The density [23] and more general solutions of the Bloch equations.
mode can clearly become unstable fap<(ep+e€)N,
which is the case for the typical parameters quoted in the
preceding section. The two modes with negative frequencies

are dynamically stable but thermodynamically unstable, i.e., Wwe would like to thank A. J. Leggett for many insightful
in the presence of dissipation this equilibrium point becomegomments and especially for drawing our attention to this
unstable. problem. We would also like to thank N. Hatakenaka and |I.
For the antiferromagnetic case, if we assume that only thgapata for several stimulating discussions. Additionally we
meg=0 state is macroscopically occupied, we obtain thereceived useful advice from G. Baym, Y. Castin, S. Kurihara,
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5¢1,R €0+ €y 0 0
o
=—> Oor | + 5 0 €o 0 APPENDIX: CALCULATION OF EQUILIBRIUM
Sb_1n 0 0 epte POINTS AND OSCILLATION FREQUENCIES
’ . FOR THE TWO-COMPONENT CASE
6¢1,L N 5¢’—1,L . .
€ At an equilibrium pointAN; ,=A =0. Using Eq.(5)
28¢o, + SP2 2 0 q POINLAN; ;=A@ 2 sing Eq
X| 20Po+ 0oL | + L @D ihis implies that the phasese, andA ¢, are either zero or
Od_11 od1 . From Eq.(6) we get
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€22 Wo
ANO=—ANY| =+ . (AL
! %\ €r2 612\/N§_(AN(2))2§2) (AD
€11 wWq
ANS=—AN?| —+ ) (A2)
€12 €1NI—(AND)?,

whereAN? and A ¢! are the coordinates of the equilibrium
point. We have defined;=cosA¢? and {,=cosA¢) to ab-
breviate the formulas.

These equations define two functionsSNS(ANY) and
ANS(ANY), which we can plot on the AN?,AN9) plane
(Fig. 3. Since both; and{, can be 1 or-1 (corresponding
to Ae’=0 or 7) we have three distinct cases. For all of
them the trivial pointAN=ANJ=0 is always a solution.
Therefore in all cases we have at least one solution.

a. Case 1£;=0,=1 (A=A ¢,=0)
As is clear from Figs. @) and 3b), the condition for the

PHYSICAL REVIEW A66, 013609 (2002

In case 2 both single and triple solutions are allowed.
Condition (A4) for the existence of three equilibrium points
becomedN;—N,—wqy/e>0.

In case 3 the conditions for the existence of one or three
equilibrium points can be satisfied. The condition for three is
N;+N>,—wy/e>0. However we cannot have five equilib-
rium points since if both terms are positive in conditi@®)
and each of them is smaller than 1, their product will also be
smaller than 1.

To study the behavior in the neighborhood of an equilib-
rium point we shall work with the second-order differential
equations foAN; andAN,. To obtain these we differentiate

Eq. (5 with respect to time and eIiminath'goLZ and
ANj , using Egs(5) and(6). We now introduce the variables
61,6, defined by

AN;=AN?+ 6, (AB)
AN,= AN+ 65,. (A7)

The linearized equations of motion for the isotropic case are

existence of three solutions imposes a condition on the

slopes of the curves at the origin, which leads to

el

b. Case 2;1=_1, §2=l (A¢l= w, A€02=0)

For three solutions to exigFigs. 3c) and 3d)], we re-
quire this time that

|

c. Case 3:(1=0=—1 (Ap1=A@p,=m)

This time we may have onlgrig. 3(e)], three[Fig. 3(f)],
or five [Fig. 3(g)] solutions. To have three we need that

el

If this condition is not met, we will have one or five solu-
tions, depending on whether the factors on the left-hand sid
are both negative or both positive, respectively.

In the rest of this appendix we will analyze the behavior

wo €11 wo

€12 €1oNg

€22

€12

) <1. (A3)

€1oN;

wo €22 wo

€12 €Ny

€11

€12

) >1. (A4)

€1oNq

€22 Wo €11 @o

€12Ng

<1. (A5)

€12

€12 €12\

of the system close to the various equilibrium points. Notice

that the global ground state is the trivial solutidiN; ,=0
and A¢; ,=0. All the other equilibrium points are thermo-

o1
3

0

5, (A8)

it

OQ?=(wi+€*(AN%)?)Id
JNI—(AND)ZZ;  YNI—(AND)ZZy
INS—(AND)2Z,  N3—(AND)ZL,

where

+ W€

(A9)

a. Case 1:{;=0(,=1

As mentioned before, the only stable point is Aalt\l?
=AN9=0. In the basis §;,5,) we find the modesN;,N,)
and (1 1) (note that the matrix of the linearized equations
of motion is not Hermitian and therefore the two eigenvec-
tors are not guaranteed to be orthogonal even if the corre-
sponding frequencies are differgnthe first corresponds to
a density mode with frequencywonr woeN and the second
to a spin mode with frequenay,. Note though that, even in
the density mode, the total spin on each side of the junction
Ehanges as a function of tim@nlessN;=N,).

b. Case 2{,=—1, {=1

Near ANS=AN9=0 we proceed as above and find the
genfrequencies,/wg+ woe(N,—N;) and w, with corre-

el

dynamically unstable although possibly dynamically stablesponding eigenvectorsNg, —N;) and (1;-1). The system

[22].

1. Isotropic case

is dynamically stable as long as the frequencies are real,
which leads to the conditiolN;—N,— wg/e<0. SinceN;
andN, are easy to change experimentally, this state can al-
ways be made stable regardless of the valuasgodnde. It

If all ¢;’s are equal then some of the conditions aboveis therefore much easier to obtainmastate this way than in

cannot be satisfied. For case 1, conditi@&B) cannot be
satisfied and therefore only the equilibrium poiatN,
=AN,=0 is allowed.

the spinless case. However there is an additional complica-
tion: if N;y=N,, the eigenvectors become parallel and, since
the representation of arbitrary vectors in an almost collinear

013609-8
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basis can involve very large amplitudésspecially for the
vectors perpendicular to the basis vectptBe amplitude of

PHYSICAL REVIEW6GS, 013609 (2002

(N1,N,) and (1-1). The system is dynamically stable as
long asN<wq/e. For ANY,AN9#0 the frequencies of the

the oscillations for initial displacements in the in—phase di'tWO eigenmodes are given by the same expressions as those

rection will tend to diverge asN,—N;)/N—O0 after some
time. Experimentally it is not difficult to avoid this pitfall.
Near the equilibrium poinANJ#0 and AN9#0 the fre-

quencies becomee|AN®| for the density mode and

Vw2+e2(ANY)? for the spin mode. Both frequencies are

real and therefore this equilibrium point is stalffewever,
see Sec. Il D.

c. Case 341=¢,=—1

For ANJ=ANY=0 we find the eigenfrequencies
\/woz—woeN and wy with corresponding eigenvectors

for AN9,AN9#0 in case 7 ¢]AN?| and w2+ €(ANY)?]

and therefore they are both stable as long as the points exist.
Note that all the frequencies found in Sec. llI A are in

agreement with those derived here by studying the small

oscillation behavior directly from Eq$5) and(6).

2. Anisotropic case

In the anisotropic case we can still use E48) but with
Q2 given by

) w§+(611AN§_)+ 612AN2)2 0 n EllVNi_(ANg)Zél ElZVNi_(ANg)zgl
— w .
0 w2+ (AN + €1,AN9)2 0 e12VN5— (AND)?L,  exN5— (AND)ZZ,

a. Case 1£,=0,=1
WhenAN{=ANJ=0 the eigenvalues are

€11N1 {1+ €2N» {5
2

2_ 2
W = wyt wg

(e1aN141— €2N200)?
* \/ 2 +€2,N;Ny ¢ Lo

(A11)

with ¢;=¢,=1. For simplicity we shall address only the

nearly isotropic case. It is experimentally relevant since thi

is the case for boti°Na and®'Rb, where the experimental
values for theeq;, €55, andeq, are similar. To do this we use
the variablese, e, g defined in Sec. Il B, since, and eg

(A10)

this region in this paper since immiscibility would have se-
vere consequencésee end of Sec. )l It is easy to see from
Eq. (A3) that the case&AN?,AN9#0 is also ruled out due to
the miscibility condition.

b. Case 24,=—1,(,=1

At the origin AN=ANS=0 the frequencies are again
given by Egs(A12) and (A13) but with {;=—1,{,=1. Let
us divide the region into two part?;—N,>0 and N;
—N,<0. In the first region the motion is always unstable:

Sfor large values ofN;— N, the first frequency is imaginary,

and for small values the resonance of Sec. IV A will tend to
destabilize the equilibrium point. In the second region, if
N;—Ny>—4e,N;N,/wy then again it is unstable. Other-

quantify the degree of anisotropy. We therefore treat them a¥ise it is stable(provided it is outside the region of reso-

small parameters. Expanding the square root in &d.l)

nance. For AN?,AN9#0, the conditions for stability be-

and keeping terms to first order in those variables we obtaigome rather complex and offer little insight. However, it is

the two eigenvalues

(N141—NaZp)?
®?= 0§+ woe(N1L1+Nolp) + woea—

Ni{1+N2d>
+2wpeg(N141—Ny{ly), (A12)
N;N»Z ¢
2_ 2 11N26162
w w0+4w06A—N1§1+N2§2. (AlS)

We have assumed that; +N,~N;—N,~N. Sincee >0
(which is implied by the miscibility conditionboth modes

reasonable to believe that, by suitably choosing the param-
eters, most of the equilibrium points can be made stable
(here also, see caution in Sec. Ill.D

c. Case 34,=8,=—1

The frequencies at the poifkNI=ANS=0 are those
given by Egqs(A12) and(A13) with {;={,=—1. As in the
isotropic case, the poiltN9=ANS=0 is unstable for typi-
cal experimental conditions, namely, wheld> wq. The cor-
rections to this criterion are of orderef,eg)/e. Finally,
when AN?,ANS+0, as in the preceding case, the stability

are stable éz<¢€). The instability that would arise at suffi- can generally be achieved for all equilibrium points for ap-
ciently large and negative values &f has the same origin as propriate values of the parameters, barring immiscibility
the immiscibility condition. However, we do not consider problems.

013609-9



SAHEL ASHHAB AND CARLOS LOBO PHYSICAL REVIEW A66, 013609 (2002

[1] S. Backhaus, S. Pereverzev, R. W. Simmonds, A. Loshak, J. C.  Rev. A55, 4318(1997).
Davis, and R. E. Packard, Natufieondon 398 687 (1998. [13] J. Ruostekoski and D. F. Walls, Phys. Rev58 R50(1998.

[2] S.-K. Yip, Phys. Rev. Lett83, 3864(1999. [14] P. Villain and M. Lewenstein, Phys. Rev.%9, 2250(1999.

[3] J. K. Viljas and E. V. Thuneberg, Phys. Rev. L8, 3868 [15] I. Zapata, F. Sols, and A. J. Leggett, Phys. Re\6A R28
(1999. (1998.

[4] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. [16] J. williams, R. Walser, J. Cooper, E. Cornell, and M. Holland,
Wieman, Phys. Rev. Let#8, 586 (1997). Phys. Rev. A59, R31(1999.

[5] D. M. Stamper-KUrn, M. R. AndreWS, A. P. Chlkkatur, S. In- [17] A. J. Leggett, Rev. Mod. Phyge, 307 (200])

ouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev[18] B. P. Anderson and M. A. Kasevich, Scier2@2, 1686(1998.
(6] _ll‘_etlf' ?_'o’ 2357(19;8' Let81, 742/(1998 [19] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A.
. L. Ho, Phys. Rev. Lett81, . . . . .
Trombettoni, A. Smerzi, and M. Inguscio, Scien2@3 843
[7] T. Ohmi and K. Machida, J. Phys. Soc. J, 1822(1998. 2001 9 3
(] E:l'ggél‘aw' H. Pu, and N. P. Bigelow, Phys. Rev. L&, 5257 [20] J. williams, R. Walser, J. Cooper, E. Cornell, and M. Holland,
[9] M. Koashi and M. Ueda, Phys. Rev. Lefi4, 1066(2000. Phys. Rev. /69, R31(1999.
[21] T. L. Ho and V. B. Shenoy, Phys. Rev. LetfZ, 3276(1996. It

[10] S. Giovanazzi, A. Smerzi, and S. Fantoni, Phys. Rev. [8dit. ]
4521(2000 is known that thgF=2mz=1) and|F=1m:=—1) hyper-

) 7 L
[11] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys. _ fine states of'Rb are miscible(see, e.g.[4]).
Rev. Lett. 79, 4950(1997; S. Raghavan, A. Smerzi, S. Fan- [22] For a discussion of thermodynamic vs dynamic stability, see,
toni, and S. R. Shenoy, Phys. Rev58, 620(1999. e.g., Y. Castin and R. Dum, Eur. Phys. J7D399 (1999.
[12] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys. [23] M. Oktel and T. L. Ho(unpublishedl

013609-10



