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External Josephson effect in Bose-Einstein condensates with a spin degree of freedom

Sahel Ashhab and Carlos Lobo*
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801

~Received 24 July 2001; published 19 July 2002!

We consider the Josephson effect between two spatially separated Bose-Einstein condensates of atoms each
of which can be in two hyperfine states. We derive simple equations of motion for this system closely
analogous to the Bloch equations. We also map the dynamics of the system onto those of a classical particle in
a well. We find density and spin modes of oscillation and stable equilibrium points of the motion that are
unstable in the spinless case. Finally we analyze the oscillation modes in the spin-1 (F51) case.
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I. INTRODUCTION

Recent experiments on the Josephson effect in3He have
uncovered phenomena that have not been previously
served in conventional superconducting junctions or in4He
superleaks@1#. Some authors have attributed these effects
the spin of the Cooper pairs since they are paired in aS
51 configuration@2,3#. By analogy this suggests that th
simple Josephson effect in Bose condensed alkali-m
gases could be qualitatively modified by the presence o
internal spin degree of freedom. Recently several experim
tal groups have succeeded in forming this kind of conden
in which the atoms can be in more than one hyperfine st
Myatt et al. @4# have trapped theuF52,mF51& and uF
51,mF521& states of87Rb using magnetic fields. Stampe
Kurn et al. @5# have trapped theF51 multiplet of 23Na with
optical methods. An important feature of their setup is
possibility of imaging each species separately, thus allow
them to observe their individual motion. There have a
been several theoretical studies of these systems@6–9#.

The external Josephson effect, i.e., between two spat
separated condensates in the case of a single hyperfine
has already been addressed extensively in the literature@10–
17#. Josephson-like phenomena have been observed ex
mentally@18,19#. The internal Josephson effect~between hy-
perfine states! has also been analyzed@20#. In the present
work we study only the external Josephson effect betw
two condensates in a double-well potential whose ato
have two possible internal states designated asu1& andu2&. A
weak link is established between the condensates by lo
ing the potential barrier that separates them.

In this paper we discuss three main results. First we sh
that, under certain conditions, it is possible to map the m
tion of the total condensate density onto that of a fictitio
particle in a simple effective potential. This result is ve
general and it applies also to condensates without a
degree of freedom. Second, we study the motion of ano
dynamical variable, related to the spin motion, and we fi
that, under the same conditions, it can also be mapped
the motion of a fictitious spin precessing in a magnetic fie
Finally we study the equilibrium points and show that ap

*Present address: Laboratoire Kasstler-Brossel, E´ cole Normale
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from the ‘‘trivial’’ one ~the lowest-energy state of the junc
tion!, there are others including some that, in the spinl
case, are experimentally inaccessible.

This paper is organized as follows: First we describe
model and the Hamiltonian of the system in Sec. II. Aft
that, in Secs. III A and III B we derive the equations of m
tion and show that in the so-called isotropic limit, they r
duce to a form which is equivalent to the well-studied Blo
equations. We map the dynamics of density oscillations o
those of a classical particle in a well. In Sec. III C we ide
tify the equilibrium points of the motion and study their d
namic stability. Finally, in Sec. IV we make some consid
ations regarding the extension to theF51 case~when the
trapping potentials for all threemF sublevels are identical!.

II. MODEL SYSTEM AND HAMILTONIAN

Let us take a condensate in a symmetric double-well
tential where the barrier is much larger than the chem
potential and therefore, in order to go from one side to
other, the atoms must tunnel under the barrier. Each atom
two possible hyperfine states, which means that the o
parameter is a two-component function. This setup can
achieved by taking a condensate in a single well and rais
a potential barrier in the middle, thereby splitting it into tw
parts. Following this we may apply laser pulses to each s
selectively in order to choose a particular superposition
the internal states of the atoms on each side.

We shall now make a four-mode approximation to d
scribe the system. Letu1,R&, u2,R&, u1,L&, and u2,L& be the
four single-atom states corresponding to the four mod
where the labelsR andL refer to the right and left wells. The
single atom states are, in principle, time dependent and
be approximately given, in the adiabatic approximation,
the Gross-Pitaevskii ground state, which in turn is det
mined by the number of particles in each single-atom st
When each of the four states defined above is macrosc
cally occupied, the condensate wave functionCR,L

i ( i 51,2)
inside each of the wells can be well described at the Gro
Pitaevskii level.

We shall assume that the system is always in the se
classical regime, i.e., that the fluctuations around the m
values of the physical quantities are small~see below!. With
this proviso we can describe the system in terms of class
(c-number! canonically conjugate variables@17#. The semi-
©2002 The American Physical Society09-1
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SAHEL ASHHAB AND CARLOS LOBO PHYSICAL REVIEW A66, 013609 ~2002!
classical variables are:DNi[(Ni ,R2Ni ,L)/2, i.e., one-half of
the difference in the number of atoms between the two w
in each internal state and the corresponding relative ph
Dw i . Each pair ofDNi andDw i are canonically conjugate t
each other. The condensate wave function can be expre
in terms of these variables asCR,L

j 5ANj6DNj exp(6iDwj/
2) up to an overall phase factor, where theNj ’s are one-half
of the total number of atoms in statej. Since we are assum
ing in this paper that there is no laser coupling between
different spin states, it follows that the differentNj ’s are
conserved separately. Therefore the dynamics is not natu
described by using as variables the relative phases betw
internal states in each well. Although the difference
chemical potential between the two species in each well
be very large, this does not affect the Josephson dynam
For the same reason, the dephasing between states of d
ent hyperfine spin is irrelevant.

Furthermore, if we restrict ourselves to values of (DN1
1DN2)/(N11N2)!1, we can write down an approximat
Hamiltonian, which is the straightforward generalization
the spinless case and reduces to it when one of theNi ’s ~and
thereforeDNi) goes to zero:

H5HJ1H int , ~1!

HJ52v0 (
i 51,2

ANi
22DNi

2 cosDw i ~2!

and

H int5
1

2
~e11DN1

21e22DN2
212e12DN1DN2!. ~3!

HJ is the Josephson coupling Hamiltonian andH int is the
interaction Hamiltonian ~for a derivation of these se
@11,15#!. The interaction term conserves the total number
atoms in each hyperfine state separately~we are here ignor-
ing loss processes that occur in the real system!. v0 is the
Josephson tunneling energy, which we take to be the s
for both hyperfine states for simplicity, ande i j are the effec-
tive interaction coefficients. We assume thatv0 is indepen-
dent ofDNi andDw i , although we do expect some depe
dence for large values ofDNi . The expression for the
coefficientse i j in terms of the densityr i of speciesi and the
interaction parametergi j 54p\2ai j /m is

e i j 5
gi j

NiNj
E drr ir j , ~4!

whereai j is the s-wave scattering length between atoms
type i and j. We assume here that the gas is very dilu
(r iai j

3 ;1025), which means that the mean-field approxim
tion works extremely well.

In order to justify the the effective Hamiltonian we sha
assume that alle ’s are positive because we want to avoid tw
possible complications: the collapse of the gas and a pos
accumulation of atoms on one side of the junction. The t
components must also be miscible. In other words, there
be no component separation. If this were not the case,
01360
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might not have the same tunneling matrix elementv0 for
both species, and the mean-field interaction energy wo
not have the form that we assume. This means that a co
tion must be imposed on the interaction parameters, nam
that e11e22.e12

2 @21#.
In the spinless case we can identify four different dynam

cal regimes as the parametersv0 ande are varied. By ana-
lyzing the topology of the phase space@Figs. 1~a!–1~c!#, we
find two sharp transitions and one crossover. Starting fr
the weakly interacting limit@the so-called Rabi regime, Fig
1~a!# the transition to the intermediate regime is marked
the appearance of closed orbits oscillating around nonz
values ofDN and centered atDw5p @Fig. 1~b!#. The second
one occurs when open orbits appear whereDw extends over
all values@Fig. 1~c!#. This is a transition from the intermedi
ate to the Josephson regimes. These transitions happen
valuesv05eN and 2v05eN, respectively, for our model
Finally whenv0N;e there is a crossover to the Fock regim
where quantum phase fluctuations cannot be neglected. D
in the Rabi regime~when v0@eN) the tunneling energy
dominates. In the Josephson regime bothHJ and H int are
important (v0!eN!v0N2) and finally, in the Fock regime
H int dominates (v0N!e) @17#.

Under current experimental conditionsv0 can be varied
anywhere from 0 to 100 s21. On the other hand,e can go
from 0.01 to 0.1 s21 @15#, andN is usually between 104 and
107. With this range of parameters the Fock and Joseph
regimes are easily accessible, whereas the Rabi regim
more difficult to achieve. It is important that the frequency
any oscillation between the wells be smaller than the low
intrawell excitation frequencies so that, during the motio
these degrees of freedom are not excited. In practice
means that bothv0 andAv0eN have to be smaller than th
frequency of the lowest intrawell collective mode~as will
become clear below!.

To be consistent with the semiclassical description we
quire that the standard deviations of the quantum opera
Dŵ and DN̂ satisfy the conditionss(Dŵ)!1 ands(DN̂)
!N during the motion of the system. Generally speakin
the experimental setups will be such thats(DN̂)
;s21(Dŵ);(e/v0N11/N2)21/4. The second inequality is
always satisfied for positivee ’s. The first is satisfied only in
the Josephson and Rabi regimes, to which we shall res
our analysis from now on.

Finally, the experimental observations can be made
measuring the density~and thereforeDN1,2) in the usual
way, either destructively or by phase-contrast imaging.
mentioned before, an important point is that these meth
allow us to determine experimentally the behavior of ea
hyperfine species separately.

III. DYNAMICS, BLOCH EQUATIONS,
AND EQUILIBRIUM POINTS

The equations of motion are

D Ṅi52
]H

]Dw i
52v0ANi

22DNi
2 sinDw i , ~5!
9-2
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EXTERNAL JOSEPHSON EFFECT IN BOSE-EINSTEIN . . . PHYSICAL REVIEW A66, 013609 ~2002!
Ḋw i5
]H

]DNi

5v0

DNi

ANi
22DNi

2
cosDw i1(

j
e i j DNj . ~6!

In Secs. III A and III B we will rewrite the equations o

FIG. 1. Orbits in phase space of the spinless Josephson e
~a! Rabi regime v0 /eN51.2, ~b! intermediate regimev0 /eN
50.6, ~c! Josephson regimev0 /eN50.4.
01360
motion in terms of new variables in order to provide som
insight into the dynamics of the system.

A. Isotropic case

We first consider the isotropic case, wheree115e12
5e22. We shall be working with the quantitye[(e111e22
12e12)/4, which is in fact equal to any of thee ’s in the
isotropic case. This definition, however, will be useful ahe
when we deal with the anisotropic situation. The equality
the interaction parameters in the isotropic case seems to
late the miscibility condition thate11e22.e12

2 . However this
condition does not take into account the kinetic ener
which favors miscibility. Therefore isotropy does not po
any such problems.

We notice that the Hamiltonian~1! is invariant under ar-
bitrary spin rotations and more generally under SU~2! trans-
formations applied simultaneously to the spins in both we
That is, if we transform the two-component spinorsCL and
CR with the same unitary operator, the dynamics should
main unchanged. This suggests that we reexpress the e
tions of motion in terms of quantities that are invariant und
such transformations. This conclusion of course depends
the isotropy of the interaction HamiltonianH int . We there-
fore define the following dot products of spinors:

DN1[
uCRu22uCLu2

2
5(

i
DNi , ~7!

a1[
CL* CR2CR* CL

2i
5(

i
ANi

22DNi
2 sinDw i , ~8!

b1[
CL* CR1CR* CL

2
5(

i
ANi

22DNi
2 cosDw i . ~9!

The subscript~1! will be used to distinguish this set of var
ables from another one with subscript (2) to be defined
below. Using the equations of motion forDNi andDw i , we
obtain

S D Ṅ1

ȧ1

ḃ1

D 5S 0 2v0 0

v0 0 1eDN1

0 2eDN1 0
D S DN1

a1

b1

D .

~10!

If we now define the three-component vectorsr1

5(DN1 ,a1 ,b1) and B(t)5(2eDN1,0,v0), we can re-
write the equations of motion succinctly as

ṙ1ÄB~ t !3r1. ~11!

Note though thatB andr1 are not independent since they a
both functions ofDN1 .

Straightforward manipulation of Eq.~10!, or directly of
Eqs.~5! and ~6!, leads to

D N̈152@v0
22eH~0!#DN12

e2

2
DN1

3 , ~12!

ct:
9-3
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SAHEL ASHHAB AND CARLOS LOBO PHYSICAL REVIEW A66, 013609 ~2002!
whereH(0)52v0b1(0)1(e/2)DN1(0)2.
This equation is quite general since it is valid not only f

two hyperfine states but for any number of them, as long
they interact only through aDN1

2 [(( iDNi)
2 term. In par-

ticular, it also applies to a single-state~i.e., spinless! system.
It is formally identical to the equation of motion of a partic
with unit mass in the quadratic-plus-quartic effective pote
tial

Ve f f~DN1!5
1

2
@v0

22eH~0!#DN1
2 1

e2

8
DN1

4 ~13!

with effective total energy

Ee f f5Ve f f~DN1!1
1

2
D Ṅ1

2 . ~14!

An important point to notice is thatEe f f andVe f f cannot be
chosen independently since they both depend on the in
conditions. The variation ofH(0) and of a1(0) ~since

D Ṅ152v0a1) allows us to find three different types o
motion @Figs. 2~a–c!#. In the first type the coefficient of the
quadratic term is positive andDN1 oscillates around zero
which is the minimum ofVe f f @Fig. 2~a!#. In the spinless case
this corresponds to either oscillations around the origin@Figs.
1~a!–1~c!# or to small oscillations around thep state@Fig.
1~a!#. The second case occurs when the coefficient is ne
tive andEe f f is positive, which also leads to oscillations
DN1 around zero although that point is no longer a mi
mum of Ve f f @Fig. 2~b!#. It corresponds to large oscillation
around the origin or thep state@Figs. 1~b! and 1~c!#. The
third one corresponds to bothEe f f and the coefficient being
negative@Fig. 2~c!# and leads to self-trapped behavior@oscil-
lations aroundDN15” 0; Figs. 1~b! and 1~c!#. For the spin-
less case there is a well-known analogy with a momentu
shortened pendulum in a gravitational field, whose beha
is also fully reproduced by this particle-in-a-well mode
Since the analysis of the spinless junction has already b
carried out in Ref.@11# we shall not continue it here and sha
proceed to the two-hyperfine-state case.

Specifying the dynamics ofDN1 does not describe th
motion completely. For example, even in the spinless cas
is known that the third regime includes two different beha
iors of the relative phases, the so-called ‘‘running’’ and ‘‘o
cillating’’ phases. For a description of these as well asp
states and the momentum-shortened pendulum analogy
e.g., Ref.@11#. To further understand the dynamics of th
two-hyperfine-state Josephson effect we introduce the a
tional variables

DN2[DN12DN2 , ~15!

a2[AN1
22DN1

2 sinDw12AN2
22DN2

2 sinDw2 , ~16!

b2[AN1
22DN1

2 cosDw12AN2
22DN2

2 cosDw2, ~17!

and their equations of motion are
01360
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di- S D Ṅ2

ȧ2

ḃ2

D 5S 0 2v0 0

v0 0 1eDN1

0 2eDN1 0
D S DN2

a2

b2

D .

~18!

Since the matrix is the same as in Eq.~10! we define the
three-component vectorr25(DN2 ,a2 ,b2) and rewrite the
equations of motion as

ṙÀÄB„t…3rÀ. ~19!

FIG. 2. Ve f f(DN1) for different initial conditions:~a! when the
coefficient of the quadratic term in Eq.~13!, namely, 1

2 v0
2

2eH(0), is positive; ~b! when the coefficient is negative andEe f f

.0; ~c! when both the coefficient andEe f f are negative. The hori-
zontal line corresponds toEe f f .
9-4
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TABLE I. Equilibrium points, and oscillation modes around them, in the isotropic case.

Dw1 ,Dw2 DN1 ,DN2 Existence condition Type of mode Frequency Stability conditi

0,0 0,0 Always exists Density Av0
21v0eN Always stable

Spin v0

p,0 0,0 Always exists Mixed Av0
21v0e(N22N1) N12N22v0 /e,0

Spin v0 Always stable
5” 0 N12N22v0 /e.0 Mixed euDN1

0 u Always stable
Spin Av0

21e2(DN1
0 )2

p,p 0,0 Always exists Density Av0
22v0eN N11N22v0 /e,0

Spin v0 Always stable
5” 0 N11N22v0 /e.0 Density euDN1

0 u Always stable
spin Av0

21e2(DN1
0 )2
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Now, however,B andrÀ are independent and therefore the
equations are formally identical to the Bloch equatio
~without any relaxation terms!, familiar from the context of
nuclear magnetic resonance and quantum optics. Notice
in going from the original four variables to six we are e
larging the configuration space, which means that not
points described by the new set of variables are physic
allowed. Therefore care must be taken in choosing the in
conditions of the motion.

We can obtain some physical insight into the variab
DN6 by noting thatDN1 is one-half of the difference in
total number between the right and left wells andDN2 is one
half of the difference in thez component of spin between th
wells (uCR

1 u22uCR
2 u2)/22(uCL

1u22uCL
2u2)/2. This means

that the former describes the density mode whereas the la
in that limit, describes the spin mode.

We can now analyze Eqs.~11! and~19! in a few limiting
cases to gain some insight into the behavior of the syst
Under appropriate conditions it is possible to have small
cillations in DN1 and no motion inDN2 or vice versa. We
consider two cases: the Rabi limit, whereeN!v0, and the
Josephson regime, whereeN@v0. In the Rabi case, neglec
ing higher-order terms, the frequency of oscillation ofDN1

~and therefore of the density mode! can be calculated from
Eq. ~13! to beAv0

21v0eb1. Also, using Eq.~19!, we can
neglect the component of theB field along theDN2 axis, so
that rÀ ~the spin mode! rotates around theb2 axis with
frequencyv0. In the Josephson case we consider two ty
of situations—small oscillations ofDN1 around zero and
around nonzero values. For zero values we get density
spin modes with frequenciesAv0

21v0eN and v0, respec-
tively. For nonzero values~i.e., whenDN1 is ‘‘self-trapped’’
around a valueDN1

0 ), DN1 oscillates with frequency
euDN1

0 u and DN2 oscillates with frequency
Av0

21e2(DN1
0 )2. In Sec. III C we shall treat special cases

the above results using a different method that applies in
limit of small oscillations.

B. Anisotropic case

As we would expect, the equations in this case beco
much more complicated. However, for the sake of comple
ness, we include them here. We find that the equations foṙ1

and ṙ2 become coupled:
01360
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ṙ1ÄB1~ t !3r11B2~ t !3r2, ~20!

ṙ25B1~ t !3r21B2~ t !3r1, ~21!

where B15(2eDN12eBDN2,0,v0), B25(2eADN2

2eBDN1,0,0), e[ 1
4 (e111e2212e12) as before, eA

[ 1
4 (e111e2222e12) andeB[ 1

4 (e112e22).

C. Discussion of the equilibrium points of the motion

In this section we study the existence and stability of
equilibrium points of motion. To do this we can use the equ
tions derived in the preceding section. However we w
work directly with Eqs.~5! and~6! since it turns out that they
are more intuitive for our purposes. The detailed calculatio
are done in the Appendix and the main results for the iso
pic case are summarized in Table I.

As can be expected, the lowest-energy state is chara
ized by Dw1,25DN1,250. The density and spin modes o
oscillation around that equilibrium point can also be und
stood in a simple way as in and out of phase oscillations
two coupled Josephson currents. The condition of stability
thep states (Dw15p andDw250) can be satisfied by con
trolling the number of atoms in the two componentsN1,2.
This means that the stability ofp states in spinor conden
sates is robust regardless of the ratiov/e. As far as self-
trapped equilibrium points are concerned, we find two sta
ones. In the case of theDw15p, Dw250 state, the two
components are self-trapped on opposite sides of the ju
tion, whereas in the case ofDw15Dw25p the two compo-
nents are self-trapped on the same side. However, as we
see below, for typical experimental parameters, these st
are outside of the region of validity of the Gross-Pitaevs
~mean-field! description.

D. Experimental considerations

The typical frequencies of small oscillations can be c
culated using the following parameters:N;106 atoms, e
;0.01 s21, eA,B;1024 s21, and v0;10 s21. For these
values most of the frequencies lie between 10 s21 and
100 s21, whenever stable oscillations exist.

For a general initial state near the trivial equilibriu
point, which isDw1,250 andDN1,250, the oscillations in
9-5
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SAHEL ASHHAB AND CARLOS LOBO PHYSICAL REVIEW A66, 013609 ~2002!
DN1,2 andDw1,2 will be a superposition of both density an
spin modes. For the typical parameters that we are using
frequency of the density mode is one order of magnitu
larger than that of the spin mode and, therefore, it should
simple to distinguish between them experimentally. It sho
also be possible to prepare an initial state in which only o
of the two modes is significantly excited.

Although p states are unstable in the spinless case
typical parameters, we have shown that they can be st
lized in spinor condensates. To prepare them experimen
we must haveN1,N2 as explained in the Appendix, wher
thep phase difference is in species 1. A frequency meas
ment of the density mode could be used to detect that in
a p phase exists in species 1. Alternatively, one could
serve the destabilization of the state suddenly appearin
the form of density oscillations due to the reduction ofN2.
Finally, a third possibility would be the direct imaging of th
interference pattern between the left and right condensate

FIG. 3. Equations~A1! and ~A2! plotted on the (DN1 ,DN2)
plane for different possible values of the relevant parameters.
intersection of the two curves is the graphical solution for the eq
librium points for Dw15Dw250 ~a!,~b!, Dw15p and Dw250
~c!,~d!, andDw15Dw25p ~e!–~g!. The criteria of applicability for
the different figures are given in the Appendix.
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species 1 during its expansion, after the trapping potent
have been switched off.

In the spinless case the self-trappedp state occurs at the
value DN05AN22(v0 /e)2. For the values of the param
eters that we have assumed we getDN05N2o(1), which
means that one of the sides of the junction is not macrosc
cally occupied, rendering the Gross-Pitaevskii description
valid. In the spinor case we see from Figs. 3~d!–3~f! that it is
plausible thatDNi

0 is very close toNi and we no longer
expect our model to work in that region.

IV. FÄ1 SPIN JOSEPHSON EFFECT

In this section we look at the Hamiltonian, mean-fie
ground state, and oscillation modes of a Josephson junc
containing atoms withF51 total spin. We also study the
stability of certainp states. The ground state of a sing
spinor condensate has been analyzed in the literature@6–9#.
Here we extend the analysis to the case where the conde
is comprised of two spatially separated parts linked by
weak junction. Some of the results in this section are sim
to those of Ref.@6# and are related to the bulk excitatio
spectrum of spin-1 condensates. As in the preceding sect
we assume that the trapping potentials are identical for
three hyperfine states~which can be achieved using optic
dipole traps!. Under these conditions it is known that a
three hyperfine states of the multiplet are miscible.

One might try to proceed as in Sec. III by deriving a set
equations for invariant quantities such asDN1 , a1 , b1 ,
and so on. However it turns out that while this is possible
does not lead to simple equations of motion as in the tw
internal-state system and therefore this approach does
seem to provide a clear insight into the dynamics.

We shall now study the small oscillations around some
the equilibrium points in both the ferromagnetic and antif
romagnetic cases,

H5HJ1H int , ~22!

where

HJ52
v0

2 (
i

ai ,L
† ai ,R1H.c., ~23!

and ~see@8#!

H int5 (
i 5R,L

e0

4
~a1,i

† a1,i
† a1,ia1,i1a0,i

† a0,i
† a0,ia0,i

1a21,i
† a21,i

† a21,ia21,i12a1,i
† a0,i

† a0,ia1,i

12a0,i
† a21,i

† a21,ia0,i12a1,i
† a21,i

† a21,ia1,i !

1
e2

4
~a1,i

† a1,i
† a1,ia1,i1a21,i

† a21,i
† a21,ia21,i

12a1,i
† a0,i

† a0,ia1,i12a0,i
† a21,i

† a21,ia0,i

22a1,i
† a21,i

† a21,ia1,i12a1,i
† a21,i

† a0,ia0,i

12a0,i
† a0,i

† a1,ia21,i2a1,i
† a1,i2a21,i

† a21,i !. ~24!

For 23Na and 87Rb, e2 is a few percent ofe0.

he
i-
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We now derive the equations of motion and, in the me
field approximation, since we are assuming a macrosco
occupation, we linearize by keeping only terms at least
orderN in H int .

For the ferromagnetic case, if we assume that only
mF51 has macroscopic occupation, we obtain the equat

S m1 i
d

dtD S df1,L

df0,L

df21,L

D 52
v0

2 S df1,R

df0,R

df21,R

D
1

N

2 S e01e2 0 0

0 e01e2 0

0 0 e02e2

D
3S 2df1,L1df1,L*

df0,L

df21,L

D , ~25!

and a similar set fordf i ,R . m is the chemical potential given
by

m57
v0

2
1

e01e2

2
N, ~26!

where the upper and lower signs correspond to a 0 andp
phase between the two condensates, respectively.

Solving them gives the following results: for the groun
state ~the relative phase betweenf1,R and f1,L equal to
zero!, we find a density mode with frequenc
Av0

21v0(e01e2)N, a spin mode with frequencyv0, and a
quadrupole mode with frequencyv01ue2uN.

For thep state we find the same modes with frequenc
Av0

22v0(e01e2)N, 2v0, and 2v01ue2uN. The density
mode can clearly become unstable forv0,(e01e2)N,
which is the case for the typical parameters quoted in
preceding section. The two modes with negative frequen
are dynamically stable but thermodynamically unstable,
in the presence of dissipation this equilibrium point becom
unstable.

For the antiferromagnetic case, if we assume that only
mF50 state is macroscopically occupied, we obtain
equations

S m1 i
d

dtD S df1,L

df0,L

df21,L

D
52

v0

2 S df1,R

df0,R

df21,R

D 1
N

2 S e01e2 0 0

0 e0 0

0 0 e01e2

D
3S df1,L

2df0,L1df0,L*

df21,L

D 1
Ne2

2 S df21,L*

0

df1,L*
D , ~27!
01360
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and a similar set fordf i ,R . The chemical potentialm is
given by Eq.~26! with e0 replacing (e01e2).

Solving them gives the following results. For the grou
state ~the relative phase betweenf0,R and f0,L equal to
zero!, we have the following three modes: a density mo
with frequency Av0

21v0e0N and two degenerate spi
modes with frequencyAv0

21v0e2N.
For thep state we find the same modes with frequenc

Av0
22v0e0N andAv0

22v0e2N. The density mode become
unstable forv0,e0N and the spin modes become unstab
for v0,e2N. With the parameters that we are using, at t
very least the density mode is unstable.

V. CONCLUSIONS

We have considered the Josephson junction between
spatially separated condensates with a hyperfine degre
freedom. We have derived a set of simple equations wh
in the isotropic limit, are formally identical to the Bloc
equations and which provide insight into the dynamics of
two-hyperfine-state condensate in a double-well setup.
find a partial mapping to the simple problem of a particle
a (6x21x4)-type potential, which becomes a comple
mapping in the spinless case. We have also demonstrate
existence in this system of density and spin oscillat
modes. In particular, we have foundp states that are stabl
under experimentally accessible conditions due to the in
actions between the two species. Finally we analyzed
spin-1 case in the same geometry both for the ferromagn
and antiferromagnetic cases and found the low-lying osci
tion modes. Our results indicate a wide range of pheno
enology for Josephson oscillations when the superfluid ha
spin degree of freedom. Future possible directions of
search might include tunneling between fragmented st
@23# and more general solutions of the Bloch equations.
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APPENDIX: CALCULATION OF EQUILIBRIUM
POINTS AND OSCILLATION FREQUENCIES

FOR THE TWO-COMPONENT CASE

At an equilibrium point,D Ṅ1,25Dẇ1,250. Using Eq.~5!
this implies that the phasesDw1 andDw2 are either zero or
p. From Eq.~6! we get
9-7
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DN1
052DN2

0S e22

e12
1

v0

e12AN2
22~DN2

0!2z2
D , ~A1!

DN2
052DN1

0S e11

e12
1

v0

e12AN1
22~DN1

0!2z1
D , ~A2!

whereDNi
0 andDw i

0 are the coordinates of the equilibrium
point. We have definedz1[cosDw1

0 andz2[cosDw2
0 to ab-

breviate the formulas.
These equations define two functions,DN1

0(DN2
0) and

DN2
0(DN1

0), which we can plot on the (DN1
0 ,DN2

0) plane
~Fig. 3!. Since bothz1 andz2 can be 1 or21 ~corresponding
to Dw i

050 or p) we have three distinct cases. For all
them the trivial pointDN1

05DN2
050 is always a solution.

Therefore in all cases we have at least one solution.

a. Case 1.z1Äz2Ä1 „Dw1ÄDw2Ä0…

As is clear from Figs. 3~a! and 3~b!, the condition for the
existence of three solutions imposes a condition on
slopes of the curves at the origin, which leads to

S e22

e12
1

v0

e12N2
D S e11

e12
1

v0

e12N1
D,1. ~A3!

b. Case 2.z1ÄÀ1, z2Ä1 „Dw1Äp, Dw2Ä0…

For three solutions to exist@Figs. 3~c! and 3~d!#, we re-
quire this time that

S e11

e12
2

v0

e12N1
D S e22

e12
1

v0

e12N2
D.1. ~A4!

c. Case 3:z1Äz2ÄÀ1 „Dw1ÄDw2Äp…

This time we may have one@Fig. 3~e!#, three@Fig. 3~f!#,
or five @Fig. 3~g!# solutions. To have three we need that

S e22

e12
2

v0

e12N2
D S e11

e12
2

v0

e12N1
D,1. ~A5!

If this condition is not met, we will have one or five solu
tions, depending on whether the factors on the left-hand
are both negative or both positive, respectively.

In the rest of this appendix we will analyze the behav
of the system close to the various equilibrium points. Not
that the global ground state is the trivial solutionDN1,250
and Dw1,250. All the other equilibrium points are thermo
dynamically unstable although possibly dynamically sta
@22#.

1. Isotropic case

If all e i j ’s are equal then some of the conditions abo
cannot be satisfied. For case 1, condition~A3! cannot be
satisfied and therefore only the equilibrium pointDN1
5DN250 is allowed.
01360
e

e

r
e

e

e

In case 2 both single and triple solutions are allowe
Condition ~A4! for the existence of three equilibrium poin
becomesN12N22v0 /e.0.

In case 3 the conditions for the existence of one or th
equilibrium points can be satisfied. The condition for three
N11N22v0 /e.0. However we cannot have five equilib
rium points since if both terms are positive in condition~A5!
and each of them is smaller than 1, their product will also
smaller than 1.

To study the behavior in the neighborhood of an equil
rium point we shall work with the second-order differenti
equations forDN1 andDN2. To obtain these we differentiat

Eq. ~5! with respect to time and eliminateDẇ1,2 and

D Ṅ1,2 using Eqs.~5! and~6!. We now introduce the variable
d1 ,d2 defined by

DN15DN1
01d1 , ~A6!

DN25DN2
01d2 . ~A7!

The linearized equations of motion for the isotropic case

S d̈1

d̈2
D 52V2S d1

d2
D , ~A8!

where

V25~v0
21e2~DN1

0 !2!Id

1v0eS AN1
22~DN1

0!2z1 AN1
22~DN1

0!2z1

AN2
22~DN2

0!2z2 AN2
22~DN2

0!2z2
D .

~A9!

a. Case 1:z1Äz2Ä1

As mentioned before, the only stable point is atDN1
0

5DN2
050. In the basis (d1 ,d2) we find the modes (N1 ,N2)

and (1,21) ~note that the matrix of the linearized equatio
of motion is not Hermitian and therefore the two eigenve
tors are not guaranteed to be orthogonal even if the co
sponding frequencies are different!. The first corresponds to
a density mode with frequencyAv0

21v0eN and the second
to a spin mode with frequencyv0. Note though that, even in
the density mode, the total spin on each side of the junc
changes as a function of time~unlessN15N2).

b. Case 2.z1ÄÀ1, z2Ä1

Near DN1
05DN2

050 we proceed as above and find th
eigenfrequenciesAv0

21v0e(N22N1) and v0 with corre-
sponding eigenvectors (N1 ,2N2) and (1,21). The system
is dynamically stable as long as the frequencies are r
which leads to the conditionN12N22v0 /e,0. SinceN1
andN2 are easy to change experimentally, this state can
ways be made stable regardless of the values ofv0 ande. It
is therefore much easier to obtain ap state this way than in
the spinless case. However there is an additional compl
tion: if N15N2, the eigenvectors become parallel and, sin
the representation of arbitrary vectors in an almost collin
9-8
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basis can involve very large amplitudes~especially for the
vectors perpendicular to the basis vectors!, the amplitude of
the oscillations for initial displacements in the in-phase
rection will tend to diverge as (N22N1)/N→0 after some
time. Experimentally it is not difficult to avoid this pitfall
Near the equilibrium pointDN1

05” 0 and DN2
05” 0 the fre-

quencies becomeeuDN1
0 u for the density mode and

Av0
21e2(DN1

0 )2 for the spin mode. Both frequencies a
real and therefore this equilibrium point is stable~however,
see Sec. III D!.

c. Case 3.z1Äz2ÄÀ1

For DN1
05DN2

050 we find the eigenfrequencie
Av0

22v0eN and v0 with corresponding eigenvector
e
h
l

ta

-
s
er

01360
-

(N1 ,N2) and (1,21). The system is dynamically stable a
long asN,v0 /e. For DN1

0 ,DN2
05” 0 the frequencies of the

two eigenmodes are given by the same expressions as t
for DN1

0 ,DN2
05” 0 in case 2@euDN1

0 u andAv0
21e2(DN1

0 )2]
and therefore they are both stable as long as the points e

Note that all the frequencies found in Sec. III A are
agreement with those derived here by studying the sm
oscillation behavior directly from Eqs.~5! and ~6!.

2. Anisotropic case

In the anisotropic case we can still use Eq.~A8! but with
V2 given by
V25S v0
21~e11DN1

01e12DN2
0!2 0

0 v0
21~e22DN2

01e12DN1
0!2D 1v0S e11AN1

22~DN1
0!2z1 e12AN1

22~DN1
0!2z1

e12AN2
22~DN2

0!2z2 e22AN2
22~DN2

0!2z2
D .

~A10!
e-

n

le:
,
to
if

r-
-

is
am-
ble

ity
p-
ity
a. Case 1.z1Äz2Ä1

WhenDN1
05DN2

050 the eigenvalues are

v25v0
21v0S e11N1z11e22N2z2

2

6A~e11N1z12e22N2z2!2

4
1e12

2 N1N2z1z2D
~A11!

with z15z251. For simplicity we shall address only th
nearly isotropic case. It is experimentally relevant since t
is the case for both23Na and 87Rb, where the experimenta
values for thee11,e22, ande12 are similar. To do this we use
the variablese,eA,B defined in Sec. III B, sinceeA and eB
quantify the degree of anisotropy. We therefore treat them
small parameters. Expanding the square root in Eq.~A11!
and keeping terms to first order in those variables we ob
the two eigenvalues

v25v0
21v0e~N1z11N2z2!1v0eA

~N1z12N2z2!2

N1z11N2z2

12v0eB~N1z12N2z2!, ~A12!

v25v0
214v0eA

N1N2z1z2

N1z11N2z2
. ~A13!

We have assumed thatN11N2;N12N2;N. SinceeA.0
~which is implied by the miscibility condition! both modes
are stable (eB!e). The instability that would arise at suffi
ciently large and negative values ofeA has the same origin a
the immiscibility condition. However, we do not consid
is

as

in

this region in this paper since immiscibility would have s
vere consequences~see end of Sec. II!. It is easy to see from
Eq. ~A3! that the caseDN1

0 ,DN2
05” 0 is also ruled out due to

the miscibility condition.

b. Case 2.z1ÄÀ1,z2Ä1

At the origin DN1
05DN2

050 the frequencies are agai
given by Eqs.~A12! and~A13! but with z1521,z251. Let
us divide the region into two parts:N12N2.0 and N1

2N2,0. In the first region the motion is always unstab
for large values ofN12N2 the first frequency is imaginary
and for small values the resonance of Sec. IV A will tend
destabilize the equilibrium point. In the second region,
N12N2.24eAN1N2 /v0 then again it is unstable. Othe
wise it is stable~provided it is outside the region of reso
nance!. For DN1

0 ,DN2
05” 0, the conditions for stability be-

come rather complex and offer little insight. However, it
reasonable to believe that, by suitably choosing the par
eters, most of the equilibrium points can be made sta
~here also, see caution in Sec. III D!.

c. Case 3.z1Äz2ÄÀ1

The frequencies at the pointDN1
05DN2

050 are those
given by Eqs.~A12! and~A13! with z15z2521. As in the
isotropic case, the pointDN1

05DN2
050 is unstable for typi-

cal experimental conditions, namely, wheneN.v0. The cor-
rections to this criterion are of order (eA ,eB)/e. Finally,
when DN1

0 ,DN2
05” 0, as in the preceding case, the stabil

can generally be achieved for all equilibrium points for a
propriate values of the parameters, barring immiscibil
problems.
9-9
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