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Superfluid pairing in a polarized dipolar Fermi gas
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We calculate the critical temperature of a superfluid phase transition in a polarized Fermi gas of dipolar
particles. In this case the order parameter is anisotropic and has a nontrivial energy dependence. Cooper pairs
do not have a definite value of the angular momentum and are coherent superpositions of all odd angular
momenta. Our results describe prospects for achieving the superfluid transition in single-component gases of
fermionic polar molecules.
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[. INTRODUCTION clusion principle provides a strong suppression of inelastic
collisional rategse€[12]). Hence one can think of achieving
The recent success in observing quantum degeneracy ftigher densities than in Bose gases.
ultracold atomic Fermi gasdd—4] stimulates a search for Possible realizations of dipolar Fermi gases include an
gaseous Fermi systems with an achievable temperature 6fectrically polarized gas of polar molecules as they have
superfluid phase transition, which is generally very low. Thelarge permanent electric dipoles. The creation of cold clouds
ideas based on Cooper pairing for a short-range Van de@f polar molecules has been recently demonstrated in experi-
Waals interaction between atonfis,6] require a simulta- Mments with buffer-gas coolingl 7] and in experiments based
neous trapping of at least two different fermionic speciesOn deceleration and cooling of polar molecules by time-
with a rather severe constraint on their relative concentradependent electric fields.8]. Another option is to create a
tions. Aside from theswave pairing[5], these ideas also gas of atoms with electric dipole moments induced by a high
employ thep-wave pairing[6] widely discussed in the phys- dc electric field[13] or by laser coupling of the atomic
ics of superfluid®He (see[7] for review). Recent proposals ground state to an electrically polarized Rydberg sfa.
to reach the transition temperature comparable with the Thep-wave Cooper pairing in polarized dipolar Fermi
Fermi energy bring in the ideas of pairing via a Feshbactgashas been discussed 0] for the case of magnetic di-
resonance for the interspecies interacti8g]. The p-wave Ppoles and i 14] for field-induced electric dipoles of atoms,
pairing via a Feshbach resonance for a short-range intera@nd the corresponding critical temperature has been esti-
tion has been discussed [ih0]. mated by using the standard BCS approach. In this paper we
Fermi gases of dipo|ar partic|es present a different physicalculate the value of the critical temperature and find the
cal picture. Being electrically polarized, these particles interenergy and angular dependence of the order parameter. For
act via long-range anisotropipartially attractive dipole-  this purpose we consider the Cooper pairing for all possible
dipole forces. As a result, the orbital angular momentum isscattering channels. These channels are coupled to each other
not conserved in interparticle collisions. In the ultracold Py the dipole-dipole interaction, and the Cooper pairs prove
limit, the dipole-dipole scattering amplitude is energy inde-to be coherent superpositions of contributions of all odd an-
pendent for any angular momenta in the incoming and outgular momenta. In order to find the preexponential factor for
going channels. This follows from the studies of spin relax-the critical temperature, we perform the calculations to sec-
ation collisions[11,12 in the limit of very low magnetic ©ond order in perturbation theory along the lines of the ap-
fields, based on the Born approximatifh6]. The energy Proach of Gor'’kov and Melik-Barkhudaro\GM approach
independence of the amplitude of dipole-dipole elastic scatt21].
tering has been found and expounded in Rgf8—15 on the
basis of multichannel scattering thedi6]. Il. GENERAL EQUATIONS

_ This opens prospects to achieve the superfluid pairing ina \ve consider a spatially homogeneous single-component
single-componerftermi gas, where only scattering with odd a5 of fermions having a dipole momehbriented along the

interaction$ is present. These prospects are especially inter-

esting as in single-component fermionic gases the Pauli ex-
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p>——> ¢ p>—> p hilates with the other colliding partner. In Fig(d) these
O 5 creation and annihilation processes involve one and the same
! colliding particle.
p >—1—>p' —>—m—>— -’ For temperatures just below, the order parameter is
a b small and the gap equation is equivalent to the Ginzburg-
, , Landau equation for the spatially homogeneous order param-
L N A S e eter. This equation can be obtained by expanding the right-
5 hand side(rhs) of Eq. (2) in powers of the order parameter
p 9—!—)—-])' -p A-p, A(p)
c d ,
FIG. 1. The lowest order many-body corrections to the effective A(p)= —f (zﬂ_ﬁ)gv(P-p')

interparticle interaction.

IK(p') A3(p’)
K /A !
(p") (p)+—0§, 2¢

4

where #(r) is the field operator for fermionsyVy(r) X
=(d?/r3)(1—3 cogd,) the dipole-dipole interactiond, is
the angle between the interparticle distanand thez axis,
and u is the chemical potential. In EG1) we omit the con-  WhereK(p) =tanh¢/2T)/2¢, and é=p®/2m— p.
tribution of thep-wave scattering due to the short-range part The occurrence of the Cooper pairing is associated with
of the interparticle interaction, since this contribution isthe existence of a nontrivial solution of E@) for tempera-
small in the dilute ultracold limit. turesT<T,. In order to find the value of the critical tem-
For a single-component Fermi gas, the Cooper pairing i®€rature one can neglect the second, nonlinear term in the
possible only in the states with an odd angular momeritum square brackets in the rhs of E¢) because folf — T, the
On the other hand, the anisotropic character of the dipoleorder parametedd—0. The corresponding linearized gap
dipole interaction leads to coupling between Cooper pairgquation also provides us with the momentum dependence of
with different values of the angular momentum. Thereforethe order parameter, whereas the nonlinear term determines
the problem of superfluid pairing requires us to considetthe absolutdtemperature dependgntalue ofA.
states with any oddl The integral in Eq.4) diverges at large momenta. The
The critical temperatur&, of the superfluid transition and divergency can be eliminated by expressing the bare interac-
the order parameteX can be found from the gap equation in tion Vq in terms of the vertex functiofscattering off-shell
the momentum representatipn,22): amplitude I'(E,p,p’). This is similar to the well-known
procedure of renormalization of the scattering length in di-
, , lute gases of Bose or Fermi particles interacting via short-
A(p)= _f dp V(p,p’ MA( . range force§23,24. One may choose any value Bf and
(27h)® 2E(p’) for simplifying our calculations we sele&=0. Then the
(20 vertex function'(0,p,p")=T"4(p,p’) obeys the equation

Here E(p) = JVA?(p) + (p?/2m— x)?, and we assume the or- dq
der parameter to be real. The functiwiip,p’)=V4(p—p’) Fd(p,p’)=Vd(p—p’)—f 3
+6V(p,p’), whereVy(q) is the Fourier transform of the (2mh)

dipole-dipole interaction potentidly(r): XKo(q)Va(q—p'), (5)

y(p,a)

with Ko(q)=m/q2. We will confine ourselves to the second
order in perturbation theory with respect Y. Omitting
higher order corrections, the renormalized linearized gap

with 6, being the angle between the momentgrand thez ~ €duation reads
axis. The quantitysV(p,p’) originates from many-body ef-

fects and is a correction to the bare interparticle interaction dp’
V4. The leading corrections are second orde¥jnand the p)= _f 573
corresponding diagrams are shown in Figsée Ref[21]). (2#)

4
V(a) = - d°[3 cod(Ay) 1], 3

La(p,p" ){K(p")—Ko(p")}A(P")

They describe the processes in which one of the two collid- do’
ing particles polarizes the medium by virtually creating a —J 5 OV(p,p)K(p)HA(P"). (6)
particle-hole pair. In Fig. (B) the particle-hole pair then an- (2mh)

nihilates due to the interaction with the other colliding par-

ticle. In Figs. 1b)— 1(d) the hole annihilates together with In the dilute ultracold limit only small momengaandp’

one of the colliding particles. In Figs.() and Xc) the are important. We thus have to find the scattering amplitude
particle-hole pair is created due to the interaction of the mefor ultracold particles, in the presence of the dipole-dipole
dium with one of the colliding particles, and the hole anni-interaction between them.
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Ill. SCATTERING AMPLITUDE IN THE ULTRACOLD At distancesr <%/p we may putp=0 in Eg. (8). Then
LIMIT for r<r, we use the well-known procedure of finding an

The anisotropic and long-range character of the dipolefanalyt'caI solution fory(r) in power law potentiald26].

dipole interaction Y4 1/r%) ensures that in the ultracold Assumingr=>r,., this gives
limit all partial waves give an energy independent contribu-

tion to the scattering amplitudé.6]. For any orbital angular W(r)
momentuml one had’4~d?~4=#%r, /m, where the quan-

tity r, ~md?/#2 plays the role of the characteristic radius of

interaction for the dipole-dipole potential. For the interpar-where the constant term is independent pf At r>r, the
ticle separatiom>r, the potentiaM4(r) does not influence motion is free and)(r) depends explicitly on the scattering
the wave function of the relative motion of two colliding phaseé. The solution, which for —« takes the required
particles and the motion becomes free. The ultracold limitasymptotic form &/pr)cospr/a+ ), atr<A/p becomes
requires particle momenta satisfying the condition

L + consg , 9

M

sinéd N (pr/h)cosé)I (10

g[’(r):_(<|or/ﬁ>2 3

pr, /A<<1. (7)

Equalizing the logarithmic derivatives of the wave functions
The anisotropy ol directly couples scattering channels (9) and(10), we immediately obtaid~ psrgr* /%3 and find
with angular momentaandl +2. Thus, strictly speaking, all that y(r)«p for r<#/p. The scattering amplitude then
event (oddd) channels are coupled to each other, whereagroves to bel'y= [ 4(r)V(r)d®r ~d?(pro/#)2. The short-
the scattering with odd angular momenta remains decoupleginge contribution td”, that is the contribution from dis-

from that with even momenta. _ _ tancesr=r, , is obtained from this relation by simply put-
There are two contributions to the scattering amplitudeing r ~r, .
The |Ong-range Contribution comes fl’0m diStanCESﬁ/p We then increaseo and make |t much |arger thd’rfp At

and givesT'y~d” for all angular momenta in the incoming distances ~#/p>r, the potential\7 is much smaller than

and c_)utg_oing channels, aIIoweq by the selection ru]es. .Thi?‘ne kinetic energy term in the left-hand sidks) of Eq. (8).
E:l_?]m”t;]u“?n can be f?ggdt_by using th? Borg_atpproxmatlon.For the contribution of these distances to the scattering am-
€ short-range contribution comes from distances, . plitude the Born approximation givds,~d?. We thus see

For the scatterlng V\’.';Th e\éezh due to the presher;cle of trﬁ that the short-range contribution to the scattering amplitude
wave, we have agaili g or even somewnat 1arger be- s sma|l compared to the long-range contribution coming

cause of the so-called shape resonaf2gs Under the con- : N : L
dition (7), the contribution of thes wave to the wave func- Lr:)dn;rocl)l;st(;\?c%sbr) Alp. The corresponding ratio is of the
«Ih).

tion of the relative motion at distancessr, is independent
of p. This leads to an energy independéht However, it
depends on a detailed behavior of the interparticle potenti
at short interparticle distances. Thus for eveone cannot
make a general statement on the valud’of

In the case of identical fermions only odd orbital angular
momenta are present. Then the short-range contribution
much smaller than the long-range one. We will demonstrat

tE'S for tlhe p-Wa\rge OQ'ShEI: Scﬁﬁe”gg arg;()il__ltudle_, 1om|t(tj|ng the amplitude. This correction is of the orderd¥(pr, /%)
the coupling to the channels with other oddor!=1 an and still greatly exceeds the short-range contribution.

m;=0 in both incoming and outgoing scattering channels |, yhe"second order Born approximation for the off-shell
(m, is the projection ofl on thez axis), the dipole-dipole scattering amplitud& 4(p,p’) we have

potential V4(r) averaged over the angle is equal toVy

=—4d?/5r%. In order to analyze the short- and long-range

This has two important consequences. First, a detailed
hape of the interaction potential is not important for the
cattering amplitude as the latter is determined by the long-

range contribution(The absence of shape resonances in the
odd{ scattering channels was recently demonstrated in Ref.
15].) This contribution is obtained in the Born approxima-
on and depends only on the value of the dipole moment.
%econd, we may include the second order Born correction to

contribution; to the scgtterir)g amplitude, we consider the Fd(p,p')ZVd(p—p')—fd—qSVd(p—q)
relative motion of particles in a truncated potenti(r) (27h)
=Vy(r) for r<rg, andV(r)=0 for r>ry. X Ko(q)Vg(q—p'), (11)

The truncation radiugg is selected such that, <r,
<#/p. The Schrdinger equation for the wave function of

the relative motion reads where the first and second terms in the rhs of 84) are

first and second order Ny, respectively. The integral for
the second order correction to the scattering amplitude in Eq.

52 @ 2d 2 5 (11) is formally divergent at large. This is the same non-
— | —— =S+ W)+ V() Y(r)= P w(r). physical divergency as in the case of short-range interactions
mi dr2 rdr g2 m [23,24), and it will be eliminated in the calculations of the

(8) order parameter and critical temperat@see Sec. ¥
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IV. CRITICAL TEMPERATURE IN THE BCS APPROACH wherey=0.5772 is the Euler constant. In pén) we replace

f ) o )
In a quantum degenerate Fermi gas characteristic mc;[—anhe /2T) by the step functiorfomitting the unimportant

menta of colliding particles are of the order of the Fermicontribution from a narrow intervgld’|<T<w) and inte-
momentumpg= (672n)Y% (n is the gas densily Then, grate in parts. As a result, E¢L3) takes the form

with r, ~md?/#2, the condition(7) of the ultracold limit for

- i isi - 2exgy)o| [ dn’
interparticle collisions can be written as A(£n)=—1In Hy)w f “R(£n:0,0")A(ON")
Tl 4
nd2/8|:< 1, (12)
= €
wheree = pZ/2m is the Fermi energy. The Ihs of E€L2) is +§f f3 |n7 m
Cer

the ratio of the mean dipole-dipole interaction enefggr
particle to the Fermi energy. As in the case of short-range n’'
interactions[23,24, this is a small parameter of the many- X f 2. \(R(EME,NDAE )}, (14
body theory. It is the conditioflL2) that allows us to omit the
contribution of higher order diagrams and use the renormalyhere the first and second terms in the rhs come from parts
ized gap equatiol). _ N _(a) and(b), respectively.

Generally, in dilute Fermi gases the critical temperature is  gpe can easily see that the ratio of the second to the first

exponentially small compared to the Fermi enesgy The term in Eq.(14) is as small as 1/[”2 exp(y)E/wT]. Therefore

exp;nn deir;’tésetgr\/rﬁirsg(ljybprgfggfgﬁ tteorr:qhs?'{ Fe_:_rrr]]; chrgﬁgtumthe second term is only important for the preexponential fac-
Pr y 9. tor in the expression for the critical temperature and will be

of the second order terms provides us with the PrEEXPONEery itted in this section. This is equivalent to the commonly

tial factor. CE ATy _
We first calculateA (p) to first order inVy and find the used BCS approach where the ke_nﬁE(Ig,n,g ) is re
laced byR(0,n;0,n") for |€],|¢'|<w and by zero other-

correct exponent in the dependence of the critical temperaP_ ] ! g &
ture on the particle density. For this purpose we should kee}yiSe: Puttingé=0 in Eq.(14) we obtain the following equa-
in Eq. (6) only the terms which are first order . Thisis  ton for finding the critical temperature:
the first term in the rhs of this equation, withy(p,p’)
=Vy(p—p’). Then, Eq.6) can be rewritten in the form A(ON)=—In

2exgy)w
T

fdn,RO ;0,n")A(O,n’
P (O,n;0,n")A(ON").
* 1
A(g,n)z—f d&'[tanh(&'/2T)/2¢' ] 19
e The anisotropic character of the scattering amplitude
dn’ leads to a nontrivial angular dependence of the order param-
X f 2. REMENHAE ). (13 eterA(0n). In order to analyze the possibility of pairing we
expandA(0,n) in terms of a complete set of eigenfunctions
Heren=pl/p, and ¢4(n) of the integral operator with the kernB{0,n;0,n"):

R(&,n;¢"n")=v(&)Tg(p(&)n,p(£)n’)
X[1=&'/(&' + p)tanh(£'/2T)],

wherev(&)=mp(&)/27?#2 is the density of states at energy f dn’ e " _

&+ u. The chemical potentiak is equal to the Fermi energy: 4 ROOMON) Ss(n)=Ass(n),  $=0.1,... .

M=EE. 17
The main contribution to the pairing comes from the ] ) N

states near the Fermi surface, whégk|&'|<eg. In order  The funchgns ¢s(n) are normalized by the condition

to single out this contribution in the rhs of EGL3), we  J(dn/4m)¢s(n)=1, and they are labeled by the indexn

introduce a characteristic energythat obeys the constraint su(;:h a v;/ay thatt t?e elgtgnvalua§<)\s+l. Then Eq.(15)

T<w, and is of the order of the Fermi energy. We reduces 1o a set ot equations

then divide the integral ove¢’ in Eq. (13) into two parts:

A(o,n>=s§0 Agpe(n), (16)

. . 2expy)w
(@ the integration ofR(¢,n;0,n")A(0O,n") from —w 10 w, Ag 1+)\Sln—_|_ =0.
and (b) the integration of [R(£n;¢',n")A(&',n") ™
—R(£,n;0n")A(0n")] from —w to , plus the integration The appearance of a nontrivial solution #¢0,n) below
of R(&,m & ,n")A(&',n") from —ep to —w and fromw to  a certain critical temperature requires the presence of at least
. In part(a) we use the asymptotic formula one negative eigenvalug;. For a single eigenvalua.,
. <0, the critical temperature immediately follows from the
o ) L 2expy)w condition {1+ \ g IN[2 exp@)w/7T]}=0, and we have\ «
_;dg [tank(¢"/2T)/2¢"]~In T #0 andAg=0 for s#s*. In the case of several negative
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eigenvalues\4<0, one has to choose the solution that cor- V. GM APPROACH. THE CALCULATION OF THE
responds to the lowest eigenvalue as it gives the highest PREEXPONENTIAL FACTOR

critical temperature. We now proceed with the calculation of the preexponen-

i Lejz:‘zglcigng) ocviigﬂd;éh;t dgegit(;\glst gcf)rtrﬁzp:;i?nsu:ﬁal tial factor in the expressio(20) for the critical temperature.
9 s P We first consider the contribution of the second term in the

anglee. This means that only spherical harmonics with Zero o of Eq.(14), which is logarithmically small compared to

projectionm of the angular m_omentumappear .|n tr)elr de- the already calculated first term. For this purpose we specify
composition. For these functions the keriD,n;0,n’) can — .
the value ofw by the condition

be reduced to its average over the azimuthal anglesd
¢'. Using Eq.(3) for I"y(pen,pen’), we obtain
dn - &' d
nd?(3 f Ed)(’(n)J df’ln:d—,
R(O,cos&;O,cos&’)=Zw; §|cos¢9—cos¢9’|—1), —eF w d|¢'|
dn’

(18) XJE{R(O,n;g’,n’)A(§’,n’)}=0. (22
where# and§’ are the polar angles for the vectorandn’,
andn is the gas density. Note that the first multiple in the rhs
of Eq. (18) is a small parameter of the theory, given by Eq.
(12) and representing the ratio of the mean dipole-dipoleD
interaction energy to the Fermi energy .

Then, using_Eqs(16) and (17) we obtain the following ex-
ression forw:

Keeping in mind that due to the Pauli principle only odd No=— if d_”¢ (n)sz dé'In[é’| d
angular momenta are present, we obtain the solutions of Eq. No) 4702 —ep d|&'|
(16):

A(g’,n’)] 23

dn’
XJE(R(O,n;g ,n") A,

(19 This definition of w immediately leads to Eq20) for the
B nd? 12 critical temperature and allows us to rewrite Ef) in the

eF m(1+2s)? form

¢s<n>=ﬁsin(§<1+2s>cosw>),

As

The lowest eigenvalue o= —12nd?/ 7rer . Therefore the
angular dependence of the order parameter will be character-
ized by the functiongy(n) (see Sec. VI for details The

1 (dn’
A(§,n)=)\—0fER(&n;O,n’)A(O,n’)

critical temperature is then given b dn’ 1 (= d¢’
P e -[&=5] |§—,|(R(§,n;g',n'm<§',n')
2 eX[:()/); ]
C—Tex‘(‘m>- 20 R(EMON) A(in’)f%
)\0 0 ar

In the BCS approach the preexponential facta) (re- q
mains undetermined. One can only argue that it is of the Xfﬂ¢o(n1)R(0,n1;§',nz)A(§',nz)], (24)
order ofer. We thus have 4

TEE where the second term in the rhs is proportional to the small
ond) (21) parameter of the theomyd?/e¢ and can thus be considered
as a perturbation. This follows from the fact that the bracket

In Ref. [14] the exponent in the expression fﬁECS is only in this term vanishes fof’ — 0. As a result, in contrast to the

. : . . Hrst term of the rhs, the second term does not contain the
expressed in terms of the scattering amplitude which shoul i — 1 P
be found from the solution of a set of coupled equations. Thearge logarithm Ine/T)~\g "~ (¢ /ndf).
estimate for this exponent in Ref20] takes into account The leading contribution to _the angular dependence of the
only the p—p scattering channel and contains a numericalP'der parameter on the Fermi surface comes from the term
error with s=0 in Eq. (16): A(0,n)=Ay¢o(n). Therefore, to the
. . . 2 . .
In order to find the preexponential factor one has to in-€@ding order imd/sg, the solution of Eq(24) is
clude the contribution from the second term in E4), 1 dn
together with the second order corrections to the eigenvalue A - _f lR 0N A , 25
\o. These corrections originate from the second order many- (& No) 4w (&0 Aodo(n"). (25
body effects and from the second order corrections to the
scattering amplitude, described by the second terms in Eqéfter substituting this expression into E@®3) and perform-
(6) and (11, respectively. ing a numerical integration, we obtain

TECS~gp exp( -
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2\ 2
— 1f dn 1= d 1) 4md
w~exp —— | —d¢o(n)= | d¢'ln|¢'|—— O\ '=0.43 v(0) :
p( no) amdoM3 ) dEmlE 3
% f di[ R(O,n;g,,n,)w] ) =0.42. The second term in thg integrand of E{Q?) comes from
4m Ao the second order correction to the scattering amplitigle

(26) For the correction ta\y, originating from this term, our nu-
merical calculation gives

Corrections to Eqs(25) and (26) are related to the terms

with s#0 in Eq. (16), and from Eq.(24) we find that the 4742\ 2
quantitiesA .. o~ Ag(nd?/e¢). These corrections lead to the 5)\(()2): —0.86( »(0) ) )
relative contribution of the order afd?/ ¢ to the preexpo- 3

nential factor for the critical temperature and hence will be
neglected.

We now calculate the contributions from the second term
in Egs. (6) and (11). As one can see from Eq16), these
terms result in the correction for the eigenvalug

Note that the functiorpy(n) is odd with respect to cas For
this reason, the integration ovdn anddn’ eliminates the
formal divergency of the integral ovelg at largeq.

The total correction to the eigenvalg is then

dn [ dn’
6xo=v<0>fEfmwn)[awppn,ppn') )

47rd?\?
Sho= N+ 5>\§)2>=—0.41< v(0) ) . (29

3

d
—f > : 3Vd(p—q)Ko(q)Vd(q—p’)]¢O(n').
e On the basis of Eq420), (26), and(28), we obtain the final

(27) expression for the critical temperature:

The first term in the integrand of E@27) originates from

many-body effects, and the quantiéy/(p,p’) is shown dia- 2 expgy)
grammatically in Fig. 1. The analytical expressions for the Te=——_—x0.42e¢ exp(—L[\o+ o))
diagrams in Figs. (B)—1(d), read:
~1.44ep exp(— meg/l2nd?). (29
dg N(g+p_/2)—N(q—p_/2
aipp)= [ HEE NOEP By . |
(2m) Eq+p 2" Eq-p_12 It is worth noting that if we include only thp-p scattering
channel the exponent in E9) will be larger by a factor of
dg N(gq+p_/2)—N(q—p_/2) 10/72. The preexponential factor becomes then larger by a
oVp(p,p')= —f — factor of 1.1. This shows that the main contribution to the
(277')3 §q+p,/2 fq—p,/Z

pairing comes from th@-wave scattering channel.
XVy(p-)Va(q—p+/2),
VI. ANISOTROPIC ORDER PARAMETER

N dg N(g+p-/2)=N(q—p-/2)
oVe(p,p')=— (2m)° Earo —Eao 1 In order to find the temperature dependence of the order
4P ap- parameter foM<T_, we have to include the nonlinear term
XVqy(p-)Va(q+p4/2), in the gap equatiofil5). This term can be written as
) dg N(gq+p+/2)—N(q—p./2) )
Wd(p'p):_f@ )3 §++ 1~ &q- /; J W Vpp)| —
7 AP is 24Py (27h)3 cosi(&'12T)
XVy(q—p_12)V4(q+p_/2).
a(d—p-/12)Vy4(q+p-12) tank&'/2T) | A%p")
Herep.=p=p’, andN(p) is the Fermi-Dirac distribution at B grT 8T’

zero temperature. The integrals related to the first term in the

rhs of Eq.(27), with 6V(p,p') =2 =4 ... a6V.(P,p"), were

calculated numerically by using the Monte Carlo method.where we neglect the many-body correction to the interpar-
Each of the terms5V,(p,p’) provides a correctionﬁ)\g‘“) ticle interaction. The expression in the square brackets van-
=[v(0)4wd?/3)%y,. For the coefficientsy, we find 7, ishes ag¢’| 2 for |£'|—oe. Therefore the main contribution
=0.19, ,= .= —0.08, andny=0.42. Thus the first term to the integral comes from the region of sméll i.e., from

in the rhs of Eq(27) gives the correction p’ close to the Fermi momentupt . This allows us to write
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|
(27h)3

B tanh(&'/2T)
&neT

1
costt(&'/2T)

A3(p")
8¢'°T

a(p—p’)

dn’ ’ 3 !
*f 27 Va(P=pen)A%(pen’)

p12dp/ 1
2w2h3 | cost(&'/2T)
_tanr(g’/ZT) 1
grT  |8gcT
13
= g2 R(g, n;0n")A%00n"),

where{(z) is the Riemann zeta function. As a result, to first

order inV4 the nonlinear gap equation reads

— 2’)/; dn, . ’ ’
A(g,n)——lnﬁf ER(g,n,O,n )A(O,n")

743)

~ a2 R(g n;0,n")A30n").

(30

With the order paramete(0,n) from Eq. (16), where
now Ag=A((T) andA((T)—0 for T—T., Eq. (30) takes
the form

> Ag
s=0

1+X\n U%( n——— “ ) 2 Nsps(N)

Ec

(31

S15283

A 1A52A53> =0

The coefficientC? follow from the relation

$1S,S3

Be, (M b, (M s (M) =2, C3 s, ().

S15283

For temperatures beloW,, satisfying the inequality T,
—T)/T.<1, Eq.(31) can be rewritten as

74(3)

- No—Ns  T—T
2 AS( WRECE S L B 22 Nsds(n)
E. CslszssA 1A52A53> =0, (32

where we neglect higher powers of (—T)/T.. It can be
easily seen from Eq(32) that for T— T, one hasAy~ (T,

—T)2, and thatA with s>0 are either equal to zero or
T)%2. Therefore the equation for the

proportional to T.—
leading coefficient\, is
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Ap,8)/A(R,9)
1

0.8
0.6
0.4
0.2

> 4 6 & 1%

FIG. 2. The order parameté(p, 6) [in units of A(pg,#)] as a
function of the momentunp (in units of pg) for various values of
the polar angles.

where the coefficientd,, is equal to 3/2. We thus obtain the
following expression for the order parameter on the Fermi
surface €=0):

T T—T
T %o, <L (33

For ¢é#0, i.e.,p#pg, the order parameter can be calcu-
lated by using Eq(25). Figure 2 shows the numerically cal-
culated dependence of the order parameter on the modulus of
the momentunp for various values of the anglé between
the vectomp and the direction of dipoles. Note that for bath
andp-wave pairing due to a short-range interaction, the order
parameter is momentum independent forsatisfying the
condition of the ultracold limit and rapidly decays at larger
The momentum dependence of the order parameter for dipo-
lar gases results in a nonuniform energy gap for single-
particle excitations and can, for example, manifest itself in
processes with a largef the order ofpr) momentum trans-
fer.

In Eqg. (33 the anisotropy of the order parameter in the
momentum space is described by the functign(n)
= /2 sif{(#/2) cosh]. The order parameter is an odd function
of cosé and is negative fotr/2< <. This does not cause
any problems as all physical quantities are determined by
|A]. The maximum value dfA(0,n)| is reached in the direc-
tion of the dipoles, i.e., fo#=0 (Hg= V2). In the direction
perpendicular to the dipoles#& 7/2) the order parameter
vanishes.

If we consider only thep-p scattering channel, the angu-
lar dependence of the order parameter will be determined by
the function/3 cosé instead ofgo(n). The coefficientC800
is then equal to 9/4, and the result for the order parameter
reads
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A 2 T—T two points on the Fermi sphere, i.e., at the poles of the
App(On)= ?\/7“3) TC\/ - J3 cosf spheref=0 and 6= .
¢ The anisotropy of the order parameter of dipolar gases is
T—T T—-T similar to that in the polar phase of superfluid liguide, not
=2.5T; T V2 coss, T <1. realized in experiments as it has higher energy than experi-
C C

mentally observed\ andB phasegsee, e.g., Ref.27]). For
(34)  the polar phase the order parameter is also equal to zero on
the equator of the Fermi spheré= 7/2 and an arbitrary).
The angular dependence [@,,(0,n)| is qualitatively simi- ~ The situation where the order parameter is zero on one or
lar to that of the true order paramete¥(0,n)|. The maxi- several lines on the Fermi surface is encountered in heavy-
mum value of|A,,(0,n)| is also reached in the direction of fermion compoundsfor a review of possible superconduct-
the dipoles and it is exactly equal to the maximum value ofing phases of heavy-fermion compounds belonging to differ-
|A(0On)|. Also, |A,,(0,n)| vanishes in the perpendicular di- ent crystalline groups see, e.g., Reg)). In these cases the
rection. However, for intermediate values @fthe quantity —temperature dependence of the specific heat isoelgo(see,
|App(O,n)| can be up to 40% smaller thaA (0,n)]. e.g., Ref[29]). However, from a general point of view, one
The anisotropy of the order parameter provides a majowould expect a different physical behavior of dipolar gases,
difference of the properties of the superfluid dipolar Fermifor example, with regard to the frequency and angular depen-
gas from those of thétwo-componentfermionic gas with ~ dence of the response. This is because of the different types
the sswave pairing due to short-range intercomponent interof symmetry groups: continuous rotational group for dipolar
action. This anisotropy ensures the anisotropic momenturgases and discrete crystalline group in the case of heavy-
dependence of the gap in the spectrum of single-particle exermion materialgsee Ref[28] for more details
citations, which appears below the transition temperalyre
For example, excitations with momenta in the direction of VIl. CONCLUDING REMARKS
the dipoles acquire the largest gap. In contrast to this, the
eigenenergies of excitations with momenta perpendicular to Our results show prospects for achieving the BCS transi-
the dipoles remain unchanged. The properties of collectivéion in single-component trapped gases of dipolar particles,
excitations are also expected to have a nontrivial dependend@ particular for(electrically polarizegifermionic polar mol-
on the direction of their momenta. Therefore the response dgcules. As has been shown in R¢#0,30,31, the BCS tran-
the dipolar superfluid Fermi gas to small external perturbasition temperaturd in trapped Fermi gases is very close to
tions will have a pronounced anisotropic character. that for the uniform gas of density equal to the maximum
The Fourier transform ofA(p,#) shows that the density in the trap. This result is valid T is much larger
momentum-space anisotropy of the order parameter tranghan the trap frequencies, which is generally the case for
forms into its spatial anisotropy. The order parameter isachievable temperatures. As we consider temperatliges
maximum in the direction of the dipoles, and is equal to zercsignificantly lower than the Fermi enerdffermi tempera-
in the direction perpendicular to the dipoles. ture) e = (672n)**4%/2m, the density profile of the trapped
Another distinguished feature of the superfluid dipolargas is already independent of the temperature and is given by
Fermi gas is related to the temperature dependence of tibe well-known Thomas-Fermi relation. Thus, for estimating
specific heat. Well below the critical temperature the single-T. in the trapped case, we will use EQ9) where the quan-
particle contribution to the specific heat is proportionalfp  tity nis now the temperature-independent maximum density
rather than being exponentially small as in the case of thén the trap.
swave pairing. This follows from the fact that the energy We first compare our equatior(21) and (29) with the
of single-particle excitations has a line of zeros on the Fermwell-known BCS formula(see, e.g.,[23]) for the two-
surface:e(pg) =0 for the angles at which (pg,n)=0, i.e., component Fermi gas with short-range attractive intercom-
for =m/2 and an arbitrary azimuthal angle As a conse- ponent interaction. In the latter case the exponent is ex-
quence, the density of states in the vicinity of the Fermipressed in terms of the-wave scattering lengtla and is
energy isv(e)~e for e<A,. Therefore, at temperaturds ~ equal tonfi/2pg|al. We then see that our dipole-dipole scat-
<Ay~T,, the temperature dependent part of the energy ofering with odd orbital angular momenta is equivalent to hav-
the system is proportional t@°, and the specific heat is ing thes-wave scattering length
hence proportional td2. This contribution is much larger
than the one of collective modes which«g and is domi- 2md?
nant in the case of thewave pairing. a¢= — 242"
It should also be mentioned that the properties of the su- 7
perfluid dipolar fermionic gas are different from the proper-
ties of the gas with the-wave pairing originating from a
short-range attractive interaction in thevave channel. The
reason is that in the latter case the order parameter is isotro- T.=1.44 exp{ _ mh ] (36)
. .. . Cc . F i
pic, similar to theB-phase of superfluidHe. The order pa- 2pg|ay|
rameter of dipolar gases is also different from the order pa-
rameter of theA phase of’He where the gap vanishes only at wherepg=#(672n

(35

Accordingly, Eq.(29) takes the form

)1/3
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Qualitatively, the result of Eq(35) is more or less ex- atomic deuteriunj12]. For the rate of three-body recombi-
pected, sincéay| turns out to be of the order of the charac- nation we expect even a stronger suppression, i.e., by a factor
teristic radius of the dipole-dipole interaction, ~md?®/#2, of (T/ey)? for the nondegenerate gas and by a factor of
introduced in Sec. Ill. Our approach assumes a small rati¢sg/go)? in the regime of quantum degenerady<{(s¢). On
T./eg following from Eq.(36). In the present stage, it is not the other hand, the dipole-dipole elastic scattering occurs at
clear to which temperatures one can cool the gas of fermidistances of the order of the de Broglie wavelength of par-
onic polar moleculegfor example, in current studies of ticles and is not suppressed by the reduction of the pair cor-
atomic Fermi gases one has severe limitations, althougtelation function at small distances. As discussed above, the
technical, to reach below Q2 (see[2,32))]. Below, giving amplitude of dipole-dipole elastic scattering remains con-
the numbers for absolute valuesf andn we will keep in ~ stant in the ultracold limit. Therefore at temperatures above
mind the ratioT,/e~0.1. e the elastic collisional rate and, hence, the rate of forced
For most polar molecules the electric dipole momentevaporative cooling are proportional t6T, similar to the
ranges from 0.1 to 1 Debye. For example, the dipole momentase of Bose gases. Together with the suppression of inelas-
of fermionic ammonia molecule®ND,! is d=1.5 D, and tic rates, this is important for cooling dipolar fermionic gases
we have the effective scattering lengih= —1450 A. This  at temperatures abowsg: .
is larger than the scattering length for the intercomponent At temperatures significantly lower thas: the Pauli
interaction in the widely discussed case of two-species ferblocking will suppress the rates of elastic collisions and
mionic gas of °Li. From Eq. (36) we find that the BCS forced evaporative coolingsee [32]). Nevertheless, the
transition temperature for the single-component;Niipolar ~ above discussed suppression of inelastic rates can help to
gas approaches 100 nK at densities exceeding reach lower temperatures and/or higher densities than in the
~10" cm 3. Another interesting example is a linear fermi- common case of two-component atomic Fermi gases. In par-
onic molecule HCN which has dipole mometht=2.98 D, ticular, it will reduce the recently predicte®3] effect of
and the corresponding effective scattering length= heating induced by the creation of holes in the single-particle
—7400 A. distribution. These holes appear due to inelastic losses of
Remarkably, in ultracold single-component fermionic particles and the corresponding heating rate is proportional
gases inelastic decay processes will be strongly suppressé@ithe loss rate.
due to the Pauli exclusion principle. For two identical fermi-  Interestingly, in gases of atoms with induced dipole mo-
ons with momentunp of the relative motion, the pair corre- ments one can obtain the effective scattering lenigtd}
lation function behaves ap(/4)? at interparticle distances ~100 A [34,35. By using a high dc electric field
smaller than the de Broglie wavelengttip. Generally, in-  (~10° V/cm) [13] one can induce permanent atomic dipole
elastic processes occur at short interparticle distafiges moments close to O One obtains the same or even larger
which in the ultracold limit are much smaller than/p.  values ofd for the time averaged dipole moment of an atom,
Therefore, two-body inelastic collisions will be suppressednduced by a stroboscopic laser coupling of the ground
as (pRy)? compared to the bosonic case where the pair coratomic state to a Rydberg stdt&9]. Then one can think of
relation function is of order unity at anyoutside the region achieving the BCS transition in such single-component fer-
of interparticle interaction. As a result, in a nondegeneraténionic gases at temperaturesl00 nK and atomic densities
gas of fermions the inelastic rate decreases with temperatui@ between 18 and 13° cm™2.

and is suppressed @se, where the energy,=7%2/m I% In

a quantum degenerate Fermi gas a characteristic momentum

of particles is of the order g and the suppression factor is
~(eglep). The suppression of two-body inelastic collisions
in fermionic gases was first found for spin relaxation in

!Bosonic ¢“ND;3) and fermionic #*ND;) ammonia molecules
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