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Superfluid pairing in a polarized dipolar Fermi gas
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We calculate the critical temperature of a superfluid phase transition in a polarized Fermi gas of dipolar
particles. In this case the order parameter is anisotropic and has a nontrivial energy dependence. Cooper pairs
do not have a definite value of the angular momentum and are coherent superpositions of all odd angular
momenta. Our results describe prospects for achieving the superfluid transition in single-component gases of
fermionic polar molecules.
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I. INTRODUCTION

The recent success in observing quantum degenerac
ultracold atomic Fermi gases@1–4# stimulates a search fo
gaseous Fermi systems with an achievable temperatur
superfluid phase transition, which is generally very low. T
ideas based on Cooper pairing for a short-range Van
Waals interaction between atoms@5,6# require a simulta-
neous trapping of at least two different fermionic speci
with a rather severe constraint on their relative concen
tions. Aside from thes-wave pairing@5#, these ideas also
employ thep-wave pairing@6# widely discussed in the phys
ics of superfluid3He ~see@7# for review!. Recent proposals
to reach the transition temperature comparable with
Fermi energy bring in the ideas of pairing via a Feshba
resonance for the interspecies interaction@8,9#. The p-wave
pairing via a Feshbach resonance for a short-range inte
tion has been discussed in@10#.

Fermi gases of dipolar particles present a different ph
cal picture. Being electrically polarized, these particles int
act via long-range anisotropic~partially attractive! dipole-
dipole forces. As a result, the orbital angular momentum
not conserved in interparticle collisions. In the ultraco
limit, the dipole-dipole scattering amplitude is energy ind
pendent for any angular momenta in the incoming and o
going channels. This follows from the studies of spin rela
ation collisions@11,12# in the limit of very low magnetic
fields, based on the Born approximation@16#. The energy
independence of the amplitude of dipole-dipole elastic s
tering has been found and expounded in Refs.@13–15# on the
basis of multichannel scattering theory@16#.

This opens prospects to achieve the superfluid pairing
single-componentFermi gas, where only scattering with od
orbital momenta~negligible in the case of Van der Waa
interactions! is present. These prospects are especially in
esting as in single-component fermionic gases the Pauli

*LKB is a unitéde recherche de l’Ecole Normale Supe´rieure et de
l’Université Pierre et Marie Curie, associe´e au CNRS.
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clusion principle provides a strong suppression of inela
collisional rates~see@12#!. Hence one can think of achievin
higher densities than in Bose gases.

Possible realizations of dipolar Fermi gases include
electrically polarized gas of polar molecules as they ha
large permanent electric dipoles. The creation of cold clo
of polar molecules has been recently demonstrated in exp
ments with buffer-gas cooling@17# and in experiments base
on deceleration and cooling of polar molecules by tim
dependent electric fields@18#. Another option is to create a
gas of atoms with electric dipole moments induced by a h
dc electric field @13# or by laser coupling of the atomic
ground state to an electrically polarized Rydberg state@19#.

The p-wave Cooper pairing in apolarized dipolar Fermi
gas has been discussed in@20# for the case of magnetic di
poles and in@14# for field-induced electric dipoles of atoms
and the corresponding critical temperature has been
mated by using the standard BCS approach. In this pape
calculate the value of the critical temperature and find
energy and angular dependence of the order parameter
this purpose we consider the Cooper pairing for all poss
scattering channels. These channels are coupled to each
by the dipole-dipole interaction, and the Cooper pairs pro
to be coherent superpositions of contributions of all odd
gular momenta. In order to find the preexponential factor
the critical temperature, we perform the calculations to s
ond order in perturbation theory along the lines of the a
proach of Gor’kov and Melik-Barkhudarov~GM approach!
@21#.

II. GENERAL EQUATIONS

We consider a spatially homogeneous single-compon
gas of fermions having a dipole momentd oriented along the
z axis. The Hamiltonian of the system has the form

H5E dr ĉ†~r !H 2
\2

2m
¹22mJ ĉ~r !

1
1

2E drdr 8uĉ~r !u2Vd~r2r 8!uĉ~r 8!u2, ~1!
©2002 The American Physical Society06-1
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where ĉ(r ) is the field operator for fermions,Vd(r )
5(d2/r 3)(123 cos2ur) the dipole-dipole interaction,u r is
the angle between the interparticle distancer and thez axis,
andm is the chemical potential. In Eq.~1! we omit the con-
tribution of thep-wave scattering due to the short-range p
of the interparticle interaction, since this contribution
small in the dilute ultracold limit.

For a single-component Fermi gas, the Cooper pairin
possible only in the states with an odd angular momentul.
On the other hand, the anisotropic character of the dip
dipole interaction leads to coupling between Cooper p
with different values of the angular momentum. Therefo
the problem of superfluid pairing requires us to consi
states with any oddl.

The critical temperatureTc of the superfluid transition and
the order parameterD can be found from the gap equation
the momentum representation@7,22#:

D~p!52E dp8

~2p\!3
V~p,p8!

tanh@E~p8!/2T#

2E~p8!
D~p8!.

~2!

HereE(p)5AD2(p)1(p2/2m2m)2, and we assume the o
der parameter to be real. The functionV(p,p8)5Vd(p2p8)
1dV(p,p8), where Vd(q) is the Fourier transform of the
dipole-dipole interaction potentialVd(r ):

Vd~q!5
4p

3
d2@3 cos2~uq!21#, ~3!

with uq being the angle between the momentumq and thez
axis. The quantitydV(p,p8) originates from many-body ef
fects and is a correction to the bare interparticle interac
Vd . The leading corrections are second order inVd and the
corresponding diagrams are shown in Fig. 1~see Ref.@21#!.
They describe the processes in which one of the two co
ing particles polarizes the medium by virtually creating
particle-hole pair. In Fig. 1~a! the particle-hole pair then an
nihilates due to the interaction with the other colliding pa
ticle. In Figs. 1~b!– 1~d! the hole annihilates together wit
one of the colliding particles. In Figs. 1~b! and 1~c! the
particle-hole pair is created due to the interaction of the m
dium with one of the colliding particles, and the hole an

FIG. 1. The lowest order many-body corrections to the effect
interparticle interaction.
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hilates with the other colliding partner. In Fig. 1~d! these
creation and annihilation processes involve one and the s
colliding particle.

For temperatures just belowTc the order parameter is
small and the gap equation is equivalent to the Ginzbu
Landau equation for the spatially homogeneous order par
eter. This equation can be obtained by expanding the rig
hand side~rhs! of Eq. ~2! in powers of the order paramete
D(p):

D~p!52E dp8

~2p\!3
V~p,p8!

3FK~p8!D~p8!1
]K~p8!

]j8

D3~p8!

2j8
G , ~4!

whereK(p)5tanh(j/2T)/2j, andj5p2/2m2m.
The occurrence of the Cooper pairing is associated w

the existence of a nontrivial solution of Eq.~4! for tempera-
turesT<Tc . In order to find the value of the critical tem
perature one can neglect the second, nonlinear term in
square brackets in the rhs of Eq.~4! because forT→Tc the
order parameterD→0. The corresponding linearized ga
equation also provides us with the momentum dependenc
the order parameter, whereas the nonlinear term determ
the absolute~temperature dependent! value ofD.

The integral in Eq.~4! diverges at large momenta. Th
divergency can be eliminated by expressing the bare inte
tion Vd in terms of the vertex function~scattering off-shell
amplitude! G(E,p,p8). This is similar to the well-known
procedure of renormalization of the scattering length in
lute gases of Bose or Fermi particles interacting via sh
range forces@23,24#. One may choose any value ofE, and
for simplifying our calculations we selectE50. Then the
vertex functionG(0,p,p8)5Gd(p,p8) obeys the equation

Gd~p,p8!5Vd~p2p8!2E dq

~2p\!3
Gd~p,q!

3K0~q!Vd~q2p8!, ~5!

with K0(q)5m/q2. We will confine ourselves to the secon
order in perturbation theory with respect toVd . Omitting
higher order corrections, the renormalized linearized g
equation reads

D~p!52E dp8

~2p\!3
Gd~p,p8!$K~p8!2K0~p8!%D~p8!

2E dp8

~2p\!3
dV~p,p8!K~p8!D~p8!. ~6!

In the dilute ultracold limit only small momentap andp8
are important. We thus have to find the scattering amplitu
for ultracold particles, in the presence of the dipole-dipo
interaction between them.

e

6-2
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III. SCATTERING AMPLITUDE IN THE ULTRACOLD
LIMIT

The anisotropic and long-range character of the dipo
dipole interaction (Vd}1/r 3) ensures that in the ultracol
limit all partial waves give an energy independent contrib
tion to the scattering amplitude@16#. For any orbital angular
momentuml one hasGd;d2;4p\2r * /m, where the quan-
tity r * ;md2/\2 plays the role of the characteristic radius
interaction for the dipole-dipole potential. For the interp
ticle separationr @r * the potentialVd(r ) does not influence
the wave function of the relative motion of two collidin
particles and the motion becomes free. The ultracold li
requires particle momenta satisfying the condition

pr* /\!1. ~7!

The anisotropy ofVd directly couples scattering channe
with angular momental andl 62. Thus, strictly speaking, al
even-l ~odd-l ) channels are coupled to each other, wher
the scattering with odd angular momenta remains decou
from that with even momenta.

There are two contributions to the scattering amplitu
The long-range contribution comes from distancesr *\/p
and givesGd;d2 for all angular momenta in the incomin
and outgoing channels, allowed by the selection rules. T
contribution can be found by using the Born approximatio
The short-range contribution comes from distancesr &r * .
For the scattering with evenl, due to the presence of thes
wave, we have againGd;d2 or even somewhat larger be
cause of the so-called shape resonances@25#. Under the con-
dition ~7!, the contribution of thes wave to the wave func-
tion of the relative motion at distancesr &r * is independent
of p. This leads to an energy independentG. However, it
depends on a detailed behavior of the interparticle poten
at short interparticle distances. Thus for evenl one cannot
make a general statement on the value ofG.

In the case of identical fermions only odd orbital angu
momenta are present. Then the short-range contributio
much smaller than the long-range one. We will demonstr
this for the p-wave on-shell scattering amplitude, omittin
the coupling to the channels with other oddl. For l 51 and
ml50 in both incoming and outgoing scattering chann
(ml is the projection ofl on the z axis!, the dipole-dipole
potential Vd(r ) averaged over the angleu r is equal toV̄d
524d2/5r 3. In order to analyze the short- and long-ran
contributions to the scattering amplitude, we consider
relative motion of particles in a truncated potentialV(r )
5V̄d(r ) for r ,r 0, andV(r )50 for r .r 0.

The truncation radiusr 0 is selected such thatr * &r 0
!\/p. The Schro¨dinger equation for the wave function o
the relative motion reads

\2

m S 2
d2

dr2
2

2

r

d

dr
1

2

r 2D c~r !1V~r !c~r !5
p2

m
c~r !.

~8!
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At distancesr !\/p we may putp50 in Eq. ~8!. Then
for r ,r 0 we use the well-known procedure of finding a
analytical solution forc(r ) in power law potentials@26#.
Assumingr @r * , this gives

c~r !}S r

r *
1constD , ~9!

where the constant term is independent ofr * . At r .r 0 the
motion is free andc(r ) depends explicitly on the scatterin
phased. The solution, which forr→` takes the required
asymptotic form (\/pr)cos(pr/\1d), at r !\/p becomes

c~r !52S sind

~pr/\!2
1

~pr/\!cosd

3 D . ~10!

Equalizing the logarithmic derivatives of the wave functio
~9! and~10!, we immediately obtaind;p3r 0

2r * /\3 and find
that c(r )}p for r !\/p. The scattering amplitude the
proves to beGd5*c(r )V(r )d3r;d2(pr0 /\)2. The short-
range contribution toG, that is the contribution from dis-
tancesr &r * , is obtained from this relation by simply put
ting r 0;r * .

We then increaser 0 and make it much larger than\/p. At
distancesr;\/p@r * the potentialV̄ is much smaller than
the kinetic energy term in the left-hand side~lhs! of Eq. ~8!.
For the contribution of these distances to the scattering
plitude the Born approximation givesGd;d2. We thus see
that the short-range contribution to the scattering amplitu
is small compared to the long-range contribution com
from distancesr;\/p. The corresponding ratio is of th
order of (pr* /\).

This has two important consequences. First, a deta
shape of the interaction potential is not important for t
scattering amplitude as the latter is determined by the lo
range contribution.~The absence of shape resonances in
odd-l scattering channels was recently demonstrated in R
@15#.! This contribution is obtained in the Born approxim
tion and depends only on the value of the dipole mome
Second, we may include the second order Born correctio
the amplitude. This correction is of the order ofd2(pr* /\)
and still greatly exceeds the short-range contribution.

In the second order Born approximation for the off-sh
scattering amplitudeGd(p,p8) we have

Gd~p,p8!5Vd~p2p8!2E dq

~2p\!3
Vd~p2q!

3K0~q!Vd~q2p8!, ~11!

where the first and second terms in the rhs of Eq.~11! are
first and second order inVd , respectively. The integral fo
the second order correction to the scattering amplitude in
~11! is formally divergent at largeq. This is the same non
physical divergency as in the case of short-range interact
@23,24#, and it will be eliminated in the calculations of th
order parameter and critical temperature~see Sec. V!.
6-3
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IV. CRITICAL TEMPERATURE IN THE BCS APPROACH

In a quantum degenerate Fermi gas characteristic
menta of colliding particles are of the order of the Fer
momentumpF5(6p2n)1/3\ (n is the gas density!. Then,
with r * ;md2/\2, the condition~7! of the ultracold limit for
interparticle collisions can be written as

nd2/«F!1, ~12!

where«F5pF
2/2m is the Fermi energy. The lhs of Eq.~12! is

the ratio of the mean dipole-dipole interaction energy~per
particle! to the Fermi energy. As in the case of short-ran
interactions@23,24#, this is a small parameter of the man
body theory. It is the condition~12! that allows us to omit the
contribution of higher order diagrams and use the renorm
ized gap equation~6!.

Generally, in dilute Fermi gases the critical temperature
exponentially small compared to the Fermi energy«F . The
exponent is inversely proportional to the Fermi moment
pF and is determined by first order terms inVd . The account
of the second order terms provides us with the preexpon
tial factor.

We first calculateD(p) to first order inVd and find the
correct exponent in the dependence of the critical temp
ture on the particle density. For this purpose we should k
in Eq. ~6! only the terms which are first order inVd . This is
the first term in the rhs of this equation, withGd(p,p8)
5Vd(p2p8). Then, Eq.~6! can be rewritten in the form

D~j,n!52E
2m

`

dj8@ tanh~j8/2T!/2j8#

3E dn8

4p
R~j,n;j8,n8!D~j8,n8!. ~13!

Heren5p/p, and

R~j,n;j8,n8!5n~j8!Gd„p~j!n,p~j8!n8)

3@12j8/~j81m!tanh~j8/2T!#,

wheren(j)5mp(j)/2p2\3 is the density of states at energ
j1m. The chemical potentialm is equal to the Fermi energy
m5«F .

The main contribution to the pairing comes from t
states near the Fermi surface, whereuju,uj8u!«F . In order
to single out this contribution in the rhs of Eq.~13!, we
introduce a characteristic energyv̄ that obeys the constrain
T!v̄, and is of the order of the Fermi energy. W
then divide the integral overj8 in Eq. ~13! into two parts:
~a! the integration ofR(j,n;0,n8)D(0,n8) from 2v̄ to v̄,
and ~b! the integration of @R(j,n;j8,n8)D(j8,n8)
2R(j,n;0,n8)D(0,n8)# from 2v̄ to v̄, plus the integration
of R(j,n;j8,n8)D(j8,n8) from 2«F to 2v̄ and fromv̄ to
`. In part ~a! we use the asymptotic formula

E
2v̄

v̄
dj8@ tanh~j8/2T!/2j8#' ln

2 exp~g!v̄

pT
,

01360
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whereg50.5772 is the Euler constant. In part~b! we replace
tanh(j8/2T) by the step function~omitting the unimportant
contribution from a narrow intervaluj8u&T!v̄) and inte-
grate in parts. As a result, Eq.~13! takes the form

D~j,n!52 lnF2 exp~g!v̄

pT
G E dn8

4p
R~j,n;0,n8!D~0,n8!

1
1

2E2«F

`

dj8ln
uj8u

v̄

d

duj8u

3E dn8

4p
$R~j,n;j8,n8!D~j8,n8!%, ~14!

where the first and second terms in the rhs come from p
~a! and ~b!, respectively.

One can easily see that the ratio of the second to the
term in Eq.~14! is as small as 1/ln@2 exp(g)v̄/pT#. Therefore
the second term is only important for the preexponential f
tor in the expression for the critical temperature and will
omitted in this section. This is equivalent to the common
used BCS approach where the kernelR(j,n;j8,n8) is re-
placed byR(0,n;0,n8) for uju,uj8u<v̄ and by zero other-
wise. Puttingj50 in Eq.~14! we obtain the following equa-
tion for finding the critical temperature:

D~0,n!52 lnF2 exp~g!v̄

pT
G E dn8

4p
R~0,n;0,n8!D~0,n8!.

~15!

The anisotropic character of the scattering amplitu
leads to a nontrivial angular dependence of the order par
eterD(0,n). In order to analyze the possibility of pairing w
expandD(0,n) in terms of a complete set of eigenfunction
fs(n) of the integral operator with the kernelR(0,n;0,n8):

D~0,n!5(
s50

`

Dsfs~n!, ~16!

E dn8

4p
R~0,n;0,n8!fs~n8!5lsfs~n!, s50,1, . . . .

~17!

The functions fs(n) are normalized by the condition
*(dn/4p)fs

2(n)51, and they are labeled by the indexs in
such a way that the eigenvaluesls,ls11. Then Eq.~15!
reduces to a set of equations

DsS 11lsln
2 exp~g!v̄

pT
D 50.

The appearance of a nontrivial solution forD(0,n… below
a certain critical temperature requires the presence of at l
one negative eigenvaluels . For a single eigenvaluels*
,0, the critical temperature immediately follows from th
condition $11ls* ln@2 exp(g)v̄/pTc#%50, and we haveDs*
Þ0 and Ds50 for sÞs* . In the case of several negativ
6-4
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eigenvaluesls,0, one has to choose the solution that c
responds to the lowest eigenvalue as it gives the hig
critical temperature.

Using Eq.~3! one finds that negativels corresponds to
eigenfunctionsfs which are independent of the azimuth
anglew. This means that only spherical harmonics with ze
projectionm of the angular momentuml appear in their de-
composition. For these functions the kernelR(0,n;0,n8) can
be reduced to its average over the azimuthal anglesw and
w8. Using Eq.~3! for Gd(pFn,pFn8), we obtain

R~0,cosu;0,cosu8!52p
nd2

«F
S 3

2
ucosu2cosu8u21D ,

~18!

whereu andu8 are the polar angles for the vectorsn andn8,
andn is the gas density. Note that the first multiple in the r
of Eq. ~18! is a small parameter of the theory, given by E
~12! and representing the ratio of the mean dipole-dip
interaction energy to the Fermi energy«F .

Keeping in mind that due to the Pauli principle only od
angular momenta are present, we obtain the solutions of
~16!:

fs~n!5A2sinS p

2
~112s!cos~u! D ,

~19!

ls52
nd2

«F

12

p~112s!2
.

The lowest eigenvalue isl05212nd2/p«F . Therefore the
angular dependence of the order parameter will be chara
ized by the functionf0(n) ~see Sec. VI for details!. The
critical temperature is then given by

Tc5
2 exp~g!v̄

p
expS 2

1

ul0u D . ~20!

In the BCS approach the preexponential factor (v̄) re-
mains undetermined. One can only argue that it is of
order of«F . We thus have

Tc
BCS;«F expS 2

p«F

12nd2D . ~21!

In Ref. @14# the exponent in the expression forTc
BCS is only

expressed in terms of the scattering amplitude which sho
be found from the solution of a set of coupled equations. T
estimate for this exponent in Ref.@20# takes into accoun
only the p2p scattering channel and contains a numeri
error.

In order to find the preexponential factor one has to
clude the contribution from the second term in Eq.~14!,
together with the second order corrections to the eigenv
l0. These corrections originate from the second order ma
body effects and from the second order corrections to
scattering amplitude, described by the second terms in
~6! and ~11!, respectively.
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V. GM APPROACH. THE CALCULATION OF THE
PREEXPONENTIAL FACTOR

We now proceed with the calculation of the preexpone
tial factor in the expression~20! for the critical temperature
We first consider the contribution of the second term in
rhs of Eq.~14!, which is logarithmically small compared t
the already calculated first term. For this purpose we spe
the value ofv̄ by the condition

E dn

4p
f0~n!E

2«F

`

dj8ln
uj8u

v̄

d

duj8u

3E dn8

4p
$R~0,n;j8,n8!D~j8,n8!%50. ~22!

Then, using Eqs.~16! and ~17! we obtain the following ex-
pression forv̄:

ln v̄52
1

l0
E dn

4p
f0~n!

1

2E2«F

`

dj8lnuj8u
d

duj8u

3E dn8

4p H R~0,n;j8,n8!
D~j8,n8!

D0
J . ~23!

This definition of v̄ immediately leads to Eq.~20! for the
critical temperature and allows us to rewrite Eq.~14! in the
form

D~j,n!5
1

l0
E dn8

4p
R~j,n;0,n8!D~0,n8!

2E dn8

4p
•

1

2E2«F

` dj8

uj8u
H R~j,n;j8,n8!D~j8,n8!

2
R~j,n;0,n8!

l0

D~0,n8!

D0
E dn1

4p

3E dn2

4p
f0~n1!R~0,n1 ;j8,n2!D~j8,n2!J , ~24!

where the second term in the rhs is proportional to the sm
parameter of the theorynd2/«F and can thus be considere
as a perturbation. This follows from the fact that the brac
in this term vanishes forj8→0. As a result, in contrast to th
first term of the rhs, the second term does not contain
large logarithm ln(v̄/T);l0

21;(«F /nd2).
The leading contribution to the angular dependence of

order parameter on the Fermi surface comes from the t
with s50 in Eq. ~16!: D(0,n)5D0f0(n). Therefore, to the
leading order innd2/«F , the solution of Eq.~24! is

D~j,n!'
1

l0
E dn8

4p
R~j,n;0,n8!D0f0~n8!. ~25!

After substituting this expression into Eq.~23! and perform-
ing a numerical integration, we obtain
6-5
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v̄'expS 2
1

l0
E dn

4p
f0~n!

1

2E2«F

`

dj8lnuj8u
d

duj8u

3E dn8

4p H R~0,n;j8,n8!
D~j8,n8!

D0
J D 50.42«F .

~26!

Corrections to Eqs.~25! and ~26! are related to the term
with sÞ0 in Eq. ~16!, and from Eq.~24! we find that the
quantitiesDsÞ0;D0(nd2/«F). These corrections lead to th
relative contribution of the order ofnd2/«F to the preexpo-
nential factor for the critical temperature and hence will
neglected.

We now calculate the contributions from the second ter
in Eqs. ~6! and ~11!. As one can see from Eq.~16!, these
terms result in the correction for the eigenvaluel0:

dl05n~0!E dn

4pE dn8

4p
f0~n!H dV~pFn,pFn8!

2E dq

~2p\!3
Vd~p2q!K0~q!Vd~q2p8!J f0~n8!.

~27!

The first term in the integrand of Eq.~27! originates from
many-body effects, and the quantitydV(p,p8) is shown dia-
grammatically in Fig. 1. The analytical expressions for t
diagrams in Figs. 1~a!–1~d!, read:

dVa~p,p8!5E dq

~2p!3

N~q1p2/2!2N~q2p2/2!

jq1p2/22jq2p2/2
Vd

2~p2!,

dVb~p,p8!52E dq

~2p!3

N~q1p2/2!2N~q2p2/2!

jq1p2/22jq2p2/2

3Vd~p2!Vd~q2p1/2!,

dVc~p,p8!52E dq

~2p!3

N~q1p2/2!2N~q2p2/2!

jq1p2/22jq2p2/2

3Vd~p2!Vd~q1p1/2!,

dVd~p,p8!52E dq

~2p!3

N~q1p1/2!2N~q2p1/2!

jq1p1/22jq2p1/2

3Vd~q2p2/2!Vd~q1p2/2!.

Herep65p6p8, andN(p) is the Fermi-Dirac distribution a
zero temperature. The integrals related to the first term in
rhs of Eq.~27!, with dV(p,p8)5(a5a, . . . ,ddVa(p,p8), were
calculated numerically by using the Monte Carlo metho
Each of the termsdVa(p,p8) provides a correctiondl0

(a)

5@n(0)4pd2/3#2ha . For the coefficientsha we find ha
50.19, hb5hc520.08, andhd50.42. Thus the first term
in the rhs of Eq.~27! gives the correction
01360
s

e

.

dl0
(1)50.45S n~0!

4pd2

3 D 2

.

The second term in the integrand of Eq.~27! comes from
the second order correction to the scattering amplitudeGd .
For the correction tol0, originating from this term, our nu-
merical calculation gives

dl0
(2)520.86S n~0!

4pd2

3 D 2

.

Note that the functionf0(n) is odd with respect to cosu. For
this reason, the integration overdn and dn8 eliminates the
formal divergency of the integral overdq at largeq.

The total correction to the eigenvaluel0 is then

dl05dl0
(1)1dl0

(2)520.41S n~0!
4pd2

3 D 2

. ~28!

On the basis of Eqs.~20!, ~26!, and~28!, we obtain the final
expression for the critical temperature:

Tc5
2 exp~g!

p
30.42«F exp~21/ul01dl0u!

'1.44«F exp~2p«F/12nd2!. ~29!

It is worth noting that if we include only thep-p scattering
channel the exponent in Eq.~29! will be larger by a factor of
10/p2. The preexponential factor becomes then larger b
factor of 1.1. This shows that the main contribution to t
pairing comes from thep-wave scattering channel.

VI. ANISOTROPIC ORDER PARAMETER

In order to find the temperature dependence of the or
parameter forT<Tc , we have to include the nonlinear term
in the gap equation~15!. This term can be written as

E dp8

~2p\!3
Vd~p2p8!F 1

cosh2~j8/2T!

2
tanh~j8/2T!

j8/2T
GD3~p8!

8j82 T
,

where we neglect the many-body correction to the interp
ticle interaction. The expression in the square brackets v
ishes asuj8u23 for uj8u→`. Therefore the main contribution
to the integral comes from the region of smallj8, i.e., from
p8 close to the Fermi momentumpF . This allows us to write
6-6
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E dp8

~2p\!3
Vd~p2p8!F 1

cosh2~j8/2T!

2
tanh~j8/2T!

j8/2T
GD3~p8!

8j82 T

'E dn8

4p
Vd~p2pFn8!D3~pFn8!

3E p82 dp8

2p2\3 F 1

cosh2~j8/2T!

2
tanh~j8/2T!

j8/2T
G 1

8j82 T

52
7z~3!

8p2T2E dn8

4p
R~j,n;0,n8!D3~0,n8!,

wherez(z) is the Riemann zeta function. As a result, to fi
order inVd the nonlinear gap equation reads

D~j,n!52 ln
2gv̄

pT E dn8

4p
R~j,n;0,n8!D~0,n8!

2
7z~3!

8p2T2E dn8

4p
R~j,n;0,n8!D3~0,n8!. ~30!

With the order parameterD(0,n) from Eq. ~16!, where
now Ds5Ds(T) and Ds(T)→0 for T→Tc , Eq. ~30! takes
the form

(
s50

`

DsS 11lsln
2gv̄

pT
Dfs~n!2

7z~3!

8p2T2 (
s50

`

lsfs~n!

3S (
$si %

Cs1s2s3

s Ds1
Ds2

Ds3D 50. ~31!

The coefficientsCs1s2s3

s follow from the relation

fs1
~n!fs2

~n!fs3
~n!5(

s
Cs1s2s3

s fs~n!.

For temperatures belowTc , satisfying the inequality (Tc
2T)/Tc!1, Eq. ~31! can be rewritten as

(
s50

`

DsS l02ls

l0
1ls

Tc2T

Tc
Dfs~n!2

7z~3!

8p2Tc
2 (

s50

`

lsfs~n!

3S (
$si %

Cs1s2s3

s Ds1
Ds2

Ds3D 50, ~32!

where we neglect higher powers of (Tc2T)/Tc . It can be
easily seen from Eq.~32! that for T→Tc one hasD0;(Tc
2T)1/2, and thatDs with s.0 are either equal to zero o
proportional to (Tc2T)3/2. Therefore the equation for th
leading coefficientD0 is
01360
t

Tc2T

Tc
D02

7z~3!

8p2Tc
2

C000
0 D0

350,

where the coefficientC000
0 is equal to 3/2. We thus obtain th

following expression for the order parameter on the Fe
surface (j50):

D~0,n!5
4p

A21z~3!
TcATc2T

Tc
f0~n!

52.5TcATc2T

Tc
f0~n!,

Tc2T

Tc
!1. ~33!

For jÞ0, i.e., pÞpF , the order parameter can be calc
lated by using Eq.~25!. Figure 2 shows the numerically ca
culated dependence of the order parameter on the modulu
the momentump for various values of the angleu between
the vectorp and the direction of dipoles. Note that for boths-
andp-wave pairing due to a short-range interaction, the or
parameter is momentum independent forp satisfying the
condition of the ultracold limit and rapidly decays at largerp.
The momentum dependence of the order parameter for d
lar gases results in a nonuniform energy gap for sing
particle excitations and can, for example, manifest itself
processes with a large~of the order ofpF) momentum trans-
fer.

In Eq. ~33! the anisotropy of the order parameter in t
momentum space is described by the functionf0(n)
5A2 sin@(p/2)cosu#. The order parameter is an odd functio
of cosu and is negative forp/2,u<p. This does not cause
any problems as all physical quantities are determined
uDu. The maximum value ofuD(0,n)u is reached in the direc
tion of the dipoles, i.e., foru50 (f05A2). In the direction
perpendicular to the dipoles (u5p/2) the order paramete
vanishes.

If we consider only thep-p scattering channel, the angu
lar dependence of the order parameter will be determined
the functionA3 cosu instead off0(n). The coefficientC000

0

is then equal to 9/4, and the result for the order param
reads

FIG. 2. The order parameterD(p,u) @in units ofD(pF ,u)] as a
function of the momentump ~in units of pF) for various values of
the polar angleu.
6-7



f
o

i-

jo
m

e
tu
e

o
th
r
tiv
en
e
ba

an
i

er

la
f t
le

th

rm

m

o
s
r

su
r

ot

pa
at

the

s is

eri-

o on

or
vy-

t-
er-

e
es,
en-
pes

lar
avy-

si-
les,

to

for

d
n by
ng

sity

m-
ex-

t-
v-

BARANOV, MAR’ENKO, RYCHKOV, AND SHLYAPNIKOV PHYSICAL REVIEW A 66, 013606 ~2002!
Dpp~0,n!5
4p

3
A 2

7z~3!
TcATc2T

Tc
A3 cosu

52.5TcATc2T

Tc
A2 cosu,

Tc2T

Tc
!1.

~34!

The angular dependence ofuDpp(0,n)u is qualitatively simi-
lar to that of the true order parameteruD(0,n)u. The maxi-
mum value ofuDpp(0,n)u is also reached in the direction o
the dipoles and it is exactly equal to the maximum value
uD(0,n)u. Also, uDpp(0,n)u vanishes in the perpendicular d
rection. However, for intermediate values ofu the quantity
uDpp(0,n)u can be up to 40% smaller thanuD(0,n)u.

The anisotropy of the order parameter provides a ma
difference of the properties of the superfluid dipolar Fer
gas from those of the~two-component! fermionic gas with
the s-wave pairing due to short-range intercomponent int
action. This anisotropy ensures the anisotropic momen
dependence of the gap in the spectrum of single-particle
citations, which appears below the transition temperatureTc .
For example, excitations with momenta in the direction
the dipoles acquire the largest gap. In contrast to this,
eigenenergies of excitations with momenta perpendicula
the dipoles remain unchanged. The properties of collec
excitations are also expected to have a nontrivial depend
on the direction of their momenta. Therefore the respons
the dipolar superfluid Fermi gas to small external pertur
tions will have a pronounced anisotropic character.

The Fourier transform ofD(p,u) shows that the
momentum-space anisotropy of the order parameter tr
forms into its spatial anisotropy. The order parameter
maximum in the direction of the dipoles, and is equal to z
in the direction perpendicular to the dipoles.

Another distinguished feature of the superfluid dipo
Fermi gas is related to the temperature dependence o
specific heat. Well below the critical temperature the sing
particle contribution to the specific heat is proportional toT2,
rather than being exponentially small as in the case of
s-wave pairing. This follows from the fact that the energy«
of single-particle excitations has a line of zeros on the Fe
surface:«(pF)50 for the angles at whichD(pF ,n)50, i.e.,
for u5p/2 and an arbitrary azimuthal anglew. As a conse-
quence, the density of states in the vicinity of the Fer
energy isn(«);« for «!D0. Therefore, at temperaturesT
!D0;Tc , the temperature dependent part of the energy
the system is proportional toT3, and the specific heat i
hence proportional toT2. This contribution is much large
than the one of collective modes which is}T3 and is domi-
nant in the case of thes-wave pairing.

It should also be mentioned that the properties of the
perfluid dipolar fermionic gas are different from the prope
ties of the gas with thep-wave pairing originating from a
short-range attractive interaction in thep-wave channel. The
reason is that in the latter case the order parameter is is
pic, similar to theB-phase of superfluid3He. The order pa-
rameter of dipolar gases is also different from the order
rameter of theA phase of3He where the gap vanishes only
01360
f
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two points on the Fermi sphere, i.e., at the poles of
sphereu50 andu5p.

The anisotropy of the order parameter of dipolar gase
similar to that in the polar phase of superfluid liquid3He, not
realized in experiments as it has higher energy than exp
mentally observedA andB phases~see, e.g., Ref.@27#!. For
the polar phase the order parameter is also equal to zer
the equator of the Fermi sphere (u5p/2 and an arbitraryw).
The situation where the order parameter is zero on one
several lines on the Fermi surface is encountered in hea
fermion compounds~for a review of possible superconduc
ing phases of heavy-fermion compounds belonging to diff
ent crystalline groups see, e.g., Ref.@28#!. In these cases the
temperature dependence of the specific heat is also}T2 ~see,
e.g., Ref.@29#!. However, from a general point of view, on
would expect a different physical behavior of dipolar gas
for example, with regard to the frequency and angular dep
dence of the response. This is because of the different ty
of symmetry groups: continuous rotational group for dipo
gases and discrete crystalline group in the case of he
fermion materials~see Ref.@28# for more details!.

VII. CONCLUDING REMARKS

Our results show prospects for achieving the BCS tran
tion in single-component trapped gases of dipolar partic
in particular for~electrically polarized! fermionic polar mol-
ecules. As has been shown in Refs.@20,30,31#, the BCS tran-
sition temperatureTc in trapped Fermi gases is very close
that for the uniform gas of densityn equal to the maximum
density in the trap. This result is valid ifTc is much larger
than the trap frequencies, which is generally the case
achievable temperatures. As we consider temperaturesTc
significantly lower than the Fermi energy~Fermi tempera-
ture! «F5(6p2n)2/3\2/2m, the density profile of the trappe
gas is already independent of the temperature and is give
the well-known Thomas-Fermi relation. Thus, for estimati
Tc in the trapped case, we will use Eq.~29! where the quan-
tity n is now the temperature-independent maximum den
in the trap.

We first compare our equations~21! and ~29! with the
well-known BCS formula ~see, e.g.,@23#! for the two-
component Fermi gas with short-range attractive interco
ponent interaction. In the latter case the exponent is
pressed in terms of thes-wave scattering lengtha and is
equal top\/2pFuau. We then see that our dipole-dipole sca
tering with odd orbital angular momenta is equivalent to ha
ing thes-wave scattering length

ad52
2md2

p2\2
. ~35!

Accordingly, Eq.~29! takes the form

Tc51.44«F expH 2
p\

2pFuaduJ , ~36!

wherepF5\(6p2n)1/3.
6-8
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Qualitatively, the result of Eq.~35! is more or less ex-
pected, sinceuadu turns out to be of the order of the chara
teristic radius of the dipole-dipole interaction,r * ;md2/\2,
introduced in Sec. III. Our approach assumes a small r
Tc /«F following from Eq.~36!. In the present stage, it is no
clear to which temperatures one can cool the gas of fer
onic polar molecules@for example, in current studies o
atomic Fermi gases one has severe limitations, altho
technical, to reach below 0.2«F ~see@2,32#!#. Below, giving
the numbers for absolute values ofTc andn we will keep in
mind the ratioTc /«F;0.1.

For most polar molecules the electric dipole mome
ranges from 0.1 to 1 Debye. For example, the dipole mom
of fermionic ammonia molecules15ND3

1 is d51.5 D, and
we have the effective scattering lengthad521450 Å. This
is larger than the scattering length for the intercompon
interaction in the widely discussed case of two-species
mionic gas of 6Li. From Eq. ~36! we find that the BCS
transition temperature for the single-component ND3 dipolar
gas approaches 100 nK at densities exceedingn
;1012 cm23. Another interesting example is a linear ferm
onic molecule HCN which has dipole momentd52.98 D,
and the corresponding effective scattering lengthad5
27400 Å.

Remarkably, in ultracold single-component fermion
gases inelastic decay processes will be strongly suppre
due to the Pauli exclusion principle. For two identical ferm
ons with momentump of the relative motion, the pair corre
lation function behaves as (pr/\)2 at interparticle distancesr
smaller than the de Broglie wavelength\/p. Generally, in-
elastic processes occur at short interparticle distancesR0
which in the ultracold limit are much smaller than\/p.
Therefore, two-body inelastic collisions will be suppress
as (pR0)2 compared to the bosonic case where the pair c
relation function is of order unity at anyr outside the region
of interparticle interaction. As a result, in a nondegener
gas of fermions the inelastic rate decreases with tempera
and is suppressed asT/«0, where the energy«05\2/mR0

2. In
a quantum degenerate Fermi gas a characteristic mome
of particles is of the order ofpF and the suppression factor
;(«F /«0). The suppression of two-body inelastic collisio
in fermionic gases was first found for spin relaxation

1Bosonic (14ND3) and fermionic (15ND3) ammonia molecules
were recently trapped at temperatures of around 30 mK in the R
huizen experiment@18#.
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atomic deuterium@12#. For the rate of three-body recomb
nation we expect even a stronger suppression, i.e., by a fa
of (T/«0)2 for the nondegenerate gas and by a factor
(«F /«0)2 in the regime of quantum degeneracy (T,«F). On
the other hand, the dipole-dipole elastic scattering occur
distances of the order of the de Broglie wavelength of p
ticles and is not suppressed by the reduction of the pair
relation function at small distances. As discussed above,
amplitude of dipole-dipole elastic scattering remains co
stant in the ultracold limit. Therefore at temperatures abo
«F the elastic collisional rate and, hence, the rate of forc
evaporative cooling are proportional toAT, similar to the
case of Bose gases. Together with the suppression of ine
tic rates, this is important for cooling dipolar fermionic gas
at temperatures above«F .

At temperatures significantly lower than«F the Pauli
blocking will suppress the rates of elastic collisions a
forced evaporative cooling~see @32#!. Nevertheless, the
above discussed suppression of inelastic rates can he
reach lower temperatures and/or higher densities than in
common case of two-component atomic Fermi gases. In
ticular, it will reduce the recently predicted@33# effect of
heating induced by the creation of holes in the single-part
distribution. These holes appear due to inelastic losse
particles and the corresponding heating rate is proportio
to the loss rate.

Interestingly, in gases of atoms with induced dipole m
ments one can obtain the effective scattering lengthuadu
;100 Å @34,35#. By using a high dc electric field
(;106 V/cm) @13# one can induce permanent atomic dipo
moments close to 0.1D. One obtains the same or even larg
values ofd for the time averaged dipole moment of an ato
induced by a stroboscopic laser coupling of the grou
atomic state to a Rydberg state@19#. Then one can think of
achieving the BCS transition in such single-component f
mionic gases at temperatures;100 nK and atomic densitie
in between 1014 and 1015 cm23.
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