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We consider a Bose-Einstein condensate’of in a situation where the density undergoes a symmetry
breaking in real space. This occurs for a suitable number of condensed atoms in a double-well potential,
obtained by adding a standing-wave light field to the trap potential. Evidence of bistability results from the
solution of the Gross-Pitaevskii equation. By second quantization, we show that the classical bistable situation
leads, in fact, to a macroscopic quantum superposition or 8ifger cat(SC) and evaluate the tunneling rate
between the two SC states. The oscillation between the two states is called macroscopic quantum coherence
(MQC); we study the effects of losses on MQC.
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[. INTRODUCTION the scattering length between atoms of different magnetic
number substantially larger than the scattering length be-

The availability of Bose-Einstein condensates of trappedween atoms of equal magnetic number. This requirement is
cold atomsg[1—4] has opened the possibility of a laboratory to0 strong, since no experimental technique is today acces-
engineering of quantum states with a large number of atomsible to provide such a difference; furthermore, if such a
[5] (around a thousand fofLi [4,6]). difference could be achieved, outstanding symmetry-

One of the most challenging endeavors of quantum engibreaking effects would occyit.5]. Referencg14] introduces
neering is the evidence of superposition stdtes-called atime-dependent evolution, so that SC is reached over a time
Schralinger cat(SC)] whose mutual interference is called of the order of 1 sec. However, no clear-cut experimental test
macroscopic quantum coheren®QC). SC have been ob- is offered to discriminate between SC and a statistical mix-
served, e.g., for states of a trapped [@f and of a micro- ture of two separate states.
wave field in a high@ cavity [8].

In this paper we demonstrate the reliable preparation of
SC consisting of a Bose-Einstein condens@EC) of ’Li
atoms that have negative scattering length, trapped in a We refer to a condensate ofLi atoms trapped in a
double-well potential. Realistic calculations have been of-double-well potential. A suitable model for it is given by
fered for macroscopic quantum tunnelifgQT) [9,10]. In-
deed, combining the kinetic and potential terms of a har- 1 X,
monic trap with the interparticle attraction yields a V(x)= 5 mlof X5+ wf(x§+x§)]+A005{ 277—). 1)
metastable state fak<<N. (N.= critical population for an 2 7
attractive BEQ. Quantum tunneling from this metastable
state towards the collapsed state, which would otherwise b&he quadratic part is due to the interaction of the atoms with
reached foN>N,, has been shown to be feasible. the magnetic field of the trap. According to laboratory imple-

A BEC of atoms with negative scattering length, trappedmentations/4] we choosew|=27x130 s andw, =2
in a double well, undergoes a space symmetry breaking bex 150 s *. The additional term is generated by two opposite
yond a threshold number of ator\, whereby two stable laser beams in a standing-wave configuration. A suitable
states are formed. This phenomenon has been dealt witthoice of the standing-wave parameters yields a double-well
theoretically by a two-mode approafhil]. potential. Taking into account the interatomic interaction, the

We have studied the problem by finding numerically theatomic system is described by a macroscopic wave function
stationary solutions of the Gross-PitaevskBP) equation ¢ that satisfies the GP equation
discretized over a space lattice, with reference to fhe
cas€g12]. Once the stationary solutions have been found, we o 52
introduce a quantum two-mode model, with the two modes i —-=— %Vzwvw alyl2y=H+gl¥®)y, (2
chosen in such a way as to reproduce the stationary solutions
of GP. The model shows the feasibility of macroscopic quan-
tum coherencéMQC). with H=—72/(2m)V?+V. Here,m=7 a.u. is the mass of

Bistability occurs only for an attractive interatomic poten-the lithium atom, andg=(4w7%2%/m)as, where a is the
tial (negative scattering lengthTwo proposals for reaching s-wave scattering length forLi, a;=—1.45 nm. For a
SC in a BEC with repulsive atoms have been put forwardsmall number of atoms the GP nonlinearity can be neglected
[13,14. They both require a Raman coupling between twoand Eq.(2) reduces to an ordinary Scltfimger equation. In
different components; both papers consider copropagatinguch a case and for a sufficiently high barrier, the lowest
light beams. In Refi13], MQC is shown to require values of energy level is described by a two-peak wave function sym-
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We look for the minimal of energy with the constraint of a
FIG. 1. Density distribution of the lithium BEC in real space for fixed numberN of condensed atoms. These constrained

N=450(dashed-dot ling N=500 (dashed ling andN=600 (solid minima satisfy the relations

line) with A,=A/A=2650 s!ando=5 um.

AH—puM) H(H—uM) 0

metric with respect to inversion of the space axes, once the Ja b ' ®)
coordinate origin coincides with the trap centéfig. 1,
dashed-dot ling where is a Lagrange multiplier. We thus solve faandb,

Figure 1 reports the spatial distribution of the ground statewith the conditionN=a?+b?. The solutionsa=0 andb
of Eq. (2) for different numbers of trapped atoms; we have=0 correspond, respectively, to the antisymmetric function
used a numerical method that consists in solving GP on and the symmetric one. The other solutions, for ketmdb
discrete space lattice and evaluating the lowest energy statgonzero, yielda?, b? values as functions of.. Using the
The barrier is specified by the two parametéxs=A/%  constraint of fixed\N, we eliminatex and find
=2650 st ando=5 um [see Eq.(1)]. As shown in the

figure, forN=450 the distribution is symmetric; instead for 5 Haa=Hpp+N(3lap—Ipp)

N=500 the nonlinear term is sufficient to destabilize the ar= 6lap—laa—lbb ' ©®)
symmetric state, giving rise to two asymmetric stable states.

For N=600 one well is almost empty. As we increase the , Hpop=HaatN(Blap—laa)

number of atoms, the nonlinearity plays a relevant role. By a b= : (7)

. ) ) 6l p— 45—
self-consistent argument we realize that the symmetric wave ab- faa Tbb

function becomes unstable and we can have two new minisinceg is negative, the denominator is always negative. In-
mal energy states with distribution no longer symmetric fordee.d,(/,f1 and 2 are almost equal at each pointFor low N,
inversion(symmetry breaking Indeed, let us assume a dis- the dominant terms in the numerators have opposite signs,
tribution as in Fig. 1(dashed or solid ling then the effective  ths one of the two squares has to be negative, which means
potential for such a distribution, due to the sum of the exterthat there is no solution with asymmetric wave function. On
nal potential withg|{* is an asymmetric double well with the other hand, for sufficiently larg, the second term in
the lower minimum corresponding to the higher populationthe numerator of the two equations can compensate for the
peak. For a sufficiently high nonlinear term the potential im-positive one, since the quantities 83— 4, 3lap—Ipp are
balance stabilizes the asymmetric distribution as in Fig. 1. a\ways negative. Thus, we have proved that two asymmetri-
We confirm the numerical calculation by the following g steady states exist beyond a threshold valui. of
analytic model. Let), be the equilibrium symmetrical wave |n order to prove that the two states are stable, it is suffi-

function (either stable or unstableand,, be a suitable an-  cient to show that the symmetrical state becomes unstable
tisymmetrical wave function such that the weighted sum ofapove threshold, that s,

the two wave functions lowers either one of the two peaks. In

the two-dimensional space of these wave functions, any d2H
other one can be expressed as - =0, 8
db™l,_g
Y00 =a¢(X) + bip(x)- ® where we havea?=N-—Db?. It is easily found that
Without loss of generality we can choogg and ¢, as 5
real functions and thus consider real valuesdandb. As d_H =2(Hpp—Haa) + 2N(3l 45— 1 10). 9)
we take [y2d3x=[y2d%x=1, it follows that a’+b? db? |, _,
= [¢y°d®x=M(a,b), whereM(a,b), the total number of at-
oms in the condensate, depends upandb. The energy is Going back to Eq(7), the two stationary asymmetrical
then given by states occur when the numerator changes sign. In fact, the
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FIG. 2. First two excited energy levels versus the nuntberN; of atoms above the threshdh] . Within each figure we keep the laser
amplitude fixed and just vary the pitch of the potential lattit®, corresponds toA,=A/A=2650 s and (b) corresponds toA,
=2000 st

numerator is the r.ight side of E¢9), hence, at the critical {jgng 'J/o(;) and l//o(_;) for suitable values of andb. Fur-
point the symme_trlcal state becomes unstable. thermore, it simplifies the form of the Hamiltonian, as we see
Qne can easily evaluate_ the threshold vaNjeof N for right now [16].
which this symmetry breaking occurs. In second quantizatiom and b in Eq. (3) become the
operatorsa and b, obeying Bose commutation rules with

ll. MACROSCOPIC QUANTUM COHERENCE their conjugatesa’, b'. Exploiting the operator version of

In such a bistable situation the energy displays tonq‘ (3) and its adjoint, the Hamiltonian becomes

minima of equal value in the infinite-dimensional phase 1
space. From a classical point of view, as the system is inits  7/—3taH__+bTbH,,+ = (27242l ..+ bT2H21 )
lowest energy state, the condensate is localized in either one 2
of the two minima, where it will remain in the absence of
i 1AT2"2 lATZ"Z AThTah
th_ermal noise once we keep the_ atom number.constant. +|=a™b2+ -b'2a2+2a'btab|1 4, (10)
Since, however, the condensate is a mesoscopic system, 2 2
guantum fluctuations play a relevant role. This can be shown o
by second quantization of the field, replacing thaumber ~ Where the coefficientsl,., Hpp, laa, lop, andly, are the
macroscopic wave function by field operators. same as in Eq4). . .
Quantum fluctuations allow the passage from one to the We consider the basis of eigenvectors of the number op-
other stable state without thermal activation, by pure quanerators
tum tunneling. Furthermore, due to the coherent nature of the
process, we expect coherent oscillations between the two |ON),[LN=1), ... ,|N,0), (11)
wells, that is, MQC. We now evaluate the tunneling rate as a
I;\L/ljgcct:ion of the system parameters showing the feasibility ofyhere afalk,my=k|k,m) and b'b|k,m)y=m|k,m). Let us
. call
The most natural way of evaluating the tunneling rate
con_sists in find_ing the_ two lowest eigenvalues of the Hami_l- Hy o =(1,N=1|H|k,N—K) (12)
tonian and taking their difference. Indeed, the sum and dif- '

ference of the cafresponding states are,_r_espe_ctivelly, the a“\fﬁe generic matrix element of the Hamiltonian on the above

anq dead states c_>f SC, and the transition time s half th%asis. We evaluate the eigenvalues of this matrix. We have

period Co”espof‘d"?g tq 'the frequenqy d}ﬁerence. considered two different wavelengths and two amplitude val-
The problem is 5|mpl_|f|ed by reducing it to two degrees Ofues of the applied field.

freedom by the expansion O.f E(®). In Fig. 2 we report on the first two excited energy levels

. we %elect th? _baS'S functions, and g, 'as follows. Call- versus the number of condensed atoms beyond the threshold

ing ¢o(x) the minimal-energy wave function of the GP prob- yajue. In such figure we keep constant the barrier height and

lem (see, e.g., Fig.)1 we take fory, and ¢, respectively, just vary the barrier width. Notice that for increasingthe

the symmetric and antisymmetric sumig(X) = ¥o(—Xx). Ex-  maximum tunneling frequency reduces, but the slope at

pansion(3) with thesey, and ¢y, includes the original func-  which it reduces for increasiny— N; is less steep.

013605-3



A. MONTINA AND F. T. ARECCHI PHYSICAL REVIEW A 66, 013605 (2002

T T T T
150 SN T AN
(a) . (b)
s el 100 S LA
~1oor — N=765; A =2000s", 6=4.5 pum | ] o
z -- N=621; A =26505", 6=4.5 um = -
g B — N;=642; A 20005, 6=5 pm
& & == N:=496; A =26505"', 6=5 pm
B 5 50
= s
sof-
o000y el oy T
0 % 5 10 15
N-N,

FIG. 3. Same as with Fig. 2, but with fixaeg, respectively(a) c=4.5 um and(b) c=5 um.

In Fig. 3 we keep fixed the barrier width and change itsesides ac-number factor, the observable is thivs=a'b
height. Here too the maximum frequency decreases for in;L ab'. The associated probability density i®(m)
creased heights, but again as in Fig. 2, the slope decreases fgr|<m|¢0>|2, where| ¢, is the ground state of Hamiltonian

increasingN—N; . d is the e ol with ei |
In Fig. 4 we reduce the threshold for BEC breaking by(_lo) in [m) is L € elget:lstatfe W't. $lgednvr? uem. No-
increasingw, . Precisely, we report on the first two excited tice that once the number of atoms Is fixed the eigenvectors

states for w, =2wXx600 s, A,=2000 s’ and ¢ &renot degenerate.
=5 um. The threshold value i, =190. Since we know the components pbpy) on the number

In the number representation there is no explicit evidenc@aSIS we must expregsn) with respect to that basis, that is,

of a SC as a two-peak distributigeee Fig. 5 We look for

a suitable observable, whose probability distribution pro- Imy="2>, cMk,N—k). (14
vides such evidence. We take the first component of the bary- K

center coordinate.=(1/N) fx;||?d3x as the appropriate
variable since the corresponding classical sthteisima of
the Hamiltonian(4)] have separated barycenters. It is asso-

Applying the operatoM to the above ket we have

ciated with the operator m|m)= zk: c( atp+ éE,T)|k, N—K). (15)
~ 1 - - ain A _— .
XC:NJ X1a(X) Pp(x)d3x(a'b+ab’). (13)  Projecting on{I,N—1]| the above ket it follows that
W———————————————— Ek M, c'=md", (16)
T T T T
150 .
"o A,=20005", 5=5um ] Call -
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FIG. 4. First two excited energy levels versus the number of FIG. 5. Probability distribution of the population in the ground
atomsN. The system parameters apg =27X600 s, =2 state as a function of the number of atoms in mode”“A
X130 s!, A,.=A/A=2000 s ando=5 um. =2000 st o=5 um, andN=655.
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1 where

- (a)

o0

] M, o= (I,N=1|N[k,N—k (17)
== N=655| | L= ' )-

Since M, ¢ are known, solving the eigenvector equation
(16) we can evaluate the coefficiert§ and henceP(m).

The two-peak distributiof?(m) is plotted in Fig. a) for
differentN values and foA/2Z=2000 s, =5 um. The
same distributions, but fap, =27x600 s !, are given in
Fig. &0b).

Experimentally, evidence of SC against a trivial statistical
. mixture is obtainable by setting the system at the above pa-
rameter values and observing the coherent oscillation be-
tween the two energy minima by a measurement not destroy-
S ing the coherencde.g., a phase contrast technigu&he

' ‘ condensate can be prepared in the ground state, because the
system condensates naturally in this state. Then one mea-
sures the condensate barycenter by the above noninvasive
technique at the initial time. This measurement collapses the
L (b) : distributionP(m) onto one peak. If the energy transfer of the
measurement is not too large, we expect that only the first
7 excited state is populated and hence we have the superposi-
tion of ¢y(m) and ¢1(m) [see Fig. 7a)]. At the following
times the distribution oscillates between the two peaks. The
| symmetry of Hamiltonian(10) with respect to the transfor-

mationa— — a shows thatpy(m) and ¢,(m) are symmetric

or antisymmetric; by a suitable choice of the phase, lath
and ¢, can be real functions. We consider a state preparation
such that att=0 the state¢y(m)+ ¢,(m) has only one
probability peak{see Fig. 7a), dashed ling After a quarter
period corresponding to the frequency separadigibetween

03 ground and first excited states, the superposition will be
do(M)—i¢1(m) and the corresponding probability is the
two-peak aspedsolid line),

10° P(m)

20 T T T T T T T T T T

FIG. 6. Probability distribution of the “barycenter” indicator for
the lithium BEC, for differentN values and for a standing wave m,t= 7/ w) = m)2+ m)2. (18)
with A, =2000 s'ando=5 um;(a) w, =27x150 s ! and(b) Q 1) = ol Pl

©, =2mX600 sL. At time t= 7/ w; the only peak is that missing at tinme

=0, thus there is a coherent oscillation between the two

20 1 M 1 M I M 1 ' 1 M 1 ' 1 20 1 N 1 M I M 1 ' 1 M 1 ' 1
———1=0 ———1=0
(a) J— t=ﬂ:/(2(nf) 1 - (b) J— t=ﬂ:/(2(nf)
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FIG. 7. Time evolution of the probability distributiom; is the tunneling frequency. The parameters of the standy wave are as in Fig.
6(a); (a8 number of atomdN=655 and(b) N=645, for which the ground state does not display two separate pea&ssolid line of Fig.

6(a)].
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states. Detecting such an oscillation would provide evidence bs=K(h+ i), (21
of a SC at an intermediate time when both peaks are present.

The intermediate distribution, given by EGd.8), may dis-  whereK is a normalization factor. If, , are orthogonal then
play two peaks even when the ground state has onljfsee K=1/,2.
Fig. 7(b)]. This occurs because the distributigi(m)? has The density operator is
always two peaks.

Notice that if we had\ loosely coupled or independent ~ 1
atoms(Ng sufficiently low or even zerothe superposition of p= §(| )+ 9)) (ol + (). (22)
ground and first excited state would have a single peak, os-
ciIIating as a coherent state inside a harmonic potential. Thishe coherence between the two alternatives is given by
would by no means be a SC. On the contrary, we have shown
that for Ng sufficiently high, we have a two-peak distribution C=2T0 || p1=1. (23
with the two partial barycenters at nearly constant positions.
During the evolution, the two-peak amplitudes oscillate, thalf we assume that the atoms escaping the condensate transfer

is, the probability to find the system in either state oscillatesa negligible energy to the trapped atoms, then the residual
In conclusion, we have found that the oscillation fre-coherence after the loss bf atoms is

quency between the two states of the S@js-50 s ! [see
Fig. 2(a) for N—N;~5]. In order to neglect thermal activa- C=2Td %)Wl p], (24)
tion, the system should be cooled at a temperature of around

1 nK_. To cool at 1 nK is within the reach of present tech-,yhere the vectorg/f, ) refer to theN—M atoms still in the
nologies, even though such a low temperature has not yely densate. The fuhctiorq(ﬁ . can be written as
been reported. On the other hand, the collective degrees of ’

freedom for which there is quantum coherence may be M
weakly coupled with the other modes of the condensate, zp,,,:T//”H do(£X), (25
which act as a thermal bath. Hence, in such a case it might i=1
not be necessary to cool at 1 nK the whole condensate, but .
just the involved degrees of freedom. wherei=1,2,... M are the lost atoms. We rewrite by
using this expansion, and find, provided th|4,)=0,
IV. LOSSES AND OBSERVABILITY OF MQC

6:

M
d3Xeho(X) ho(—X) | =(1x)M. 26
Besides the finite temperatures effects, we must also ac- f YolX) ¢ =) (lo) (8

count for atom losses from the condensate. o

The entanglement between condensate and lost atoms whft US calle=1—1,. If e<1 then the coherence is given by
imply a decoherence of the superposition. Near the threshold -
for symmetry breaking, the two macroscopic wave functions C=e M. 27
corresponding to the energy minima of the classical system ] .
are almost coincidertsee Fig. 1, foN=500), thus the loss The quantityNy=1/e provides the number of atoms that
of one or a few atoms does not allow us yet to discriminateust be lost in order to reduce the coherence Igy Bigure
between the two alternatives, and thus decoherence effeclsShows howNy scales with the total number of atorhsfor
are almost negligible. A=2000 s'ando=5 um.

We perform a simple calculation of the decoherence effect Notice that near the threshold valug 643) Ny is rather
due to atom loss for the condensate. In the Hartree-Foclarge, and hence, coherence is more robust with respect to
approximation all the atoms are in the same state, given btom losses. Far thresholdy has a weak dependence hin
the GP wave function. Hence, ifo(X) is one of the two We now evaluate the loss rate of t'he condensate. The
asymmetrical states with minimal energy, the wave functio _el_evant processes are two-body inelastic and three-body col-
for the whole system ol atoms is given by isional decays. The total loss rate of the two decayd Arg

biaer =TT ol 19 RIN = [ (o)l + e[ el P, 29
=1

R wherea is the two-body dipolar loss rate coefficient dnds

But the GP yields another minimugy(—x), for which the  the three-body recombination loss rate coefficient. We use
overall wave function is given by the following values:a=1.2x10"* cm®s ! [17], L=2.6
X102 cmPs 1 [18].

We report in Fig. 9R(N) for A=2000 s and o
=5 um. From Figs. %), 8, and 9 we can infer that near
threshold atom losses have a small effect on coherence.
The coherent superposition of the two alternatives is given For instance, forN=650 the tunneling rate is about
by 25 s ! [see Figs. &) and 3b)], thus the number of atoms

N
Y (Xy,Xa, - - . ,;N):iljl Yol —Xi). (20
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FIG. 8. NumberNy of lost atoms for which the coherence de-
cays by 1¢ versus the total number of atoms, féy,=A/%
=2000 s!ando=5 um.

FIG. 10. NumberNy of lost atoms for which the coherence
decays by ¥ versus the total number of atoms, for the parameters
of Fig. 4.

lost during an oscillation period~0.25 s1) is around 3.5
(see Fig. 9, but Fig. 8 shows that such a loss is negligible for V. CONCLUSION
coherence. FON=655 the tunneling rate is about 10 's
thus the number of atoms lost during an oscillation period is We have solved numerically the Gross-Pitaevskii equation
about 9, still belowNy=30. for a ’Li condensate in a double-well potential and we have
Besides decoherence, the atom loss yields a shift in thehown that the spatial density undergoes a symmetry break-
tunneling frequencies. As shown in Figs. 2—3, the frequening for a suitable number of condensed atoms. The classical
cies vary a lot as we reduce the number of condensed atomasymmetrical wave function is used to select two modes.
For N=650 the lost atoms are around 3.5 during an oscillaWith their quantization we have evaluated the tunneling rate
tion period, thus the oscillation frequency changes byfor some parameters of the system and we have found that it
~30%. is within the reach of present laboratory technologies. Ther-
In order to reduce the effect of losses we lower the threshmal effects could be lower than expected because of a de-
old value by increasing the frequeney . In Figs. 10 and 11  coupling between the collective variables and the thermal
we report onNy andR(N) for w, =27 X600 s !; the lon- bath. To prove the presence of two alternatives we have in-
gitudinal frequency and the standing wave have been kepgtoduced an appropriate observable. We have then evaluated
unchanged. The tunneling frequencies and probabilitieshe effects of loss and we have shown that the decoherence is
P(m) are given in Figs. @) and b), respectively. We no- negligible. In a forthcoming work we discuss the conditions
tice that here the loss rate is much smaller, and hence tHer bistability in the case of mutual repulsi@positive scat-
frequency shift is smaller, whereas the tunneling frequencietering length.
are slightly larger. A further reduction of the threshold value

should improve the situation. 54 : : : : : : :
17 T T T T T T
52F i
16
5 - -
15 z
z &
& R i
" 4.8
13 4.6F i
1% L 1 L 1 L 1 L 4 1 1 1 | 1 1 |
45 650 655 660 665 405 196 197 198 199 200 201 202 203
N N
FIG. 9. R(N) for A,=A/A=2000 s!ando=5 um. FIG. 11. R(N) for the parameters of Fig. 4.
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