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Bistability and macroscopic quantum coherence in a Bose-Einstein condensate of7Li
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We consider a Bose-Einstein condensate of7Li in a situation where the density undergoes a symmetry
breaking in real space. This occurs for a suitable number of condensed atoms in a double-well potential,
obtained by adding a standing-wave light field to the trap potential. Evidence of bistability results from the
solution of the Gross-Pitaevskii equation. By second quantization, we show that the classical bistable situation
leads, in fact, to a macroscopic quantum superposition or Schro¨dinger cat~SC! and evaluate the tunneling rate
between the two SC states. The oscillation between the two states is called macroscopic quantum coherence
~MQC!; we study the effects of losses on MQC.
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I. INTRODUCTION

The availability of Bose-Einstein condensates of trapp
cold atoms@1–4# has opened the possibility of a laborato
engineering of quantum states with a large number of ato
@5# ~around a thousand for7Li @4,6#!.

One of the most challenging endeavors of quantum e
neering is the evidence of superposition states@so-called
Schrödinger cat~SC!# whose mutual interference is calle
macroscopic quantum coherence~MQC!. SC have been ob
served, e.g., for states of a trapped ion@7# and of a micro-
wave field in a high-Q cavity @8#.

In this paper we demonstrate the reliable preparation
SC consisting of a Bose-Einstein condensate~BEC! of 7Li
atoms that have negative scattering length, trapped i
double-well potential. Realistic calculations have been
fered for macroscopic quantum tunneling~MQT! @9,10#. In-
deed, combining the kinetic and potential terms of a h
monic trap with the interparticle attraction yields
metastable state forN,Nc (Nc5critical population for an
attractive BEC!. Quantum tunneling from this metastab
state towards the collapsed state, which would otherwise
reached forN.Nc , has been shown to be feasible.

A BEC of atoms with negative scattering length, trapp
in a double well, undergoes a space symmetry breaking
yond a threshold number of atomsNi , whereby two stable
states are formed. This phenomenon has been dealt
theoretically by a two-mode approach@11#.

We have studied the problem by finding numerically t
stationary solutions of the Gross-Pitaevskii~GP! equation
discretized over a space lattice, with reference to the7Li
case@12#. Once the stationary solutions have been found,
introduce a quantum two-mode model, with the two mod
chosen in such a way as to reproduce the stationary solu
of GP. The model shows the feasibility of macroscopic qu
tum coherence~MQC!.

Bistability occurs only for an attractive interatomic pote
tial ~negative scattering length!. Two proposals for reaching
SC in a BEC with repulsive atoms have been put forw
@13,14#. They both require a Raman coupling between t
different components; both papers consider copropaga
light beams. In Ref.@13#, MQC is shown to require values o
1050-2947/2002/66~1!/013605~8!/$20.00 66 0136
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the scattering length between atoms of different magn
number substantially larger than the scattering length
tween atoms of equal magnetic number. This requiremen
too strong, since no experimental technique is today ac
sible to provide such a difference; furthermore, if such
difference could be achieved, outstanding symmet
breaking effects would occur@15#. Reference@14# introduces
a time-dependent evolution, so that SC is reached over a
of the order of 1 sec. However, no clear-cut experimental
is offered to discriminate between SC and a statistical m
ture of two separate states.

II. BISTABILITY AND SYMMETRY BREAKING

We refer to a condensate of7Li atoms trapped in a
double-well potential. A suitable model for it is given by

V~xW !5
1

2
m@v i

2x1
21v'

2 ~x2
21x3

2!#1A cosS 2p
x1

s D . ~1!

The quadratic part is due to the interaction of the atoms w
the magnetic field of the trap. According to laboratory imp
mentations@4# we choosev i52p3130 s21 and v'52p
3150 s21. The additional term is generated by two oppos
laser beams in a standing-wave configuration. A suita
choice of the standing-wave parameters yields a double-
potential. Taking into account the interatomic interaction,
atomic system is described by a macroscopic wave func
c that satisfies the GP equation

i\
]c

]t
52

\2

2m
¹2c1Vc1gucu2c[~H1gucu2!c, ~2!

with H52\2/(2m)¹21V. Here,m.7 a.u. is the mass o
the lithium atom, andg5(4p\2/m)as , where as is the
s-wave scattering length for7Li, as.21.45 nm. For a
small number of atoms the GP nonlinearity can be neglec
and Eq.~2! reduces to an ordinary Schro¨dinger equation. In
such a case and for a sufficiently high barrier, the low
energy level is described by a two-peak wave function sy
©2002 The American Physical Society05-1
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metric with respect to inversion of the space axes, once
coordinate origin coincides with the trap center~Fig. 1,
dashed-dot line!.

Figure 1 reports the spatial distribution of the ground st
of Eq. ~2! for different numbers of trapped atoms; we ha
used a numerical method that consists in solving GP o
discrete space lattice and evaluating the lowest energy s
The barrier is specified by the two parametersAn[A/\
52650 s21 and s55 mm @see Eq.~1!#. As shown in the
figure, for N5450 the distribution is symmetric; instead fo
N5500 the nonlinear term is sufficient to destabilize t
symmetric state, giving rise to two asymmetric stable sta
For N5600 one well is almost empty. As we increase t
number of atoms, the nonlinearity plays a relevant role. B
self-consistent argument we realize that the symmetric w
function becomes unstable and we can have two new m
mal energy states with distribution no longer symmetric
inversion~symmetry breaking!. Indeed, let us assume a di
tribution as in Fig. 1~dashed or solid line!; then the effective
potential for such a distribution, due to the sum of the ex
nal potential withgucu2 is an asymmetric double well with
the lower minimum corresponding to the higher populat
peak. For a sufficiently high nonlinear term the potential i
balance stabilizes the asymmetric distribution as in Fig.

We confirm the numerical calculation by the followin
analytic model. Letca be the equilibrium symmetrical wav
function ~either stable or unstable!, andcb be a suitable an-
tisymmetrical wave function such that the weighted sum
the two wave functions lowers either one of the two peaks
the two-dimensional space of these wave functions,
other one can be expressed as

c~xW !5aca~xW !1bcb~xW !. ~3!

Without loss of generality we can chooseca and cb as
real functions and thus consider real values fora andb. As
we take *ca

2d3x5*cb
2d3x51, it follows that a21b2

5*c2d3x[M (a,b), whereM (a,b), the total number of at-
oms in the condensate, depends upona andb. The energy is
then given by

FIG. 1. Density distribution of the lithium BEC in real space f
N5450~dashed-dot line!, N5500~dashed line!, andN5600~solid
line! with An[A/\52650 s21 ands55 mm.
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H5a2Haa1b2Hbb1
1

2
~a4I aa1b4I bb!13a2b2I ab , ~4!

where

Haa5E ca* Hcad3x, Hbb5E cb* Hcbd3x,

I aa5gE ca
4d3x, I bb5gE cb

4d3x,

I ab5gE ca
2cb

2d3x.

We look for the minimal of energy with the constraint of
fixed number N of condensed atoms. These constrain
minima satisfy the relations

]~H2mM !

]a
5

]~H2mM !

]b
50, ~5!

wherem is a Lagrange multiplier. We thus solve fora andb,
with the conditionN5a21b2. The solutionsa50 and b
50 correspond, respectively, to the antisymmetric funct
and the symmetric one. The other solutions, for botha andb
nonzero, yielda2, b2 values as functions ofm. Using the
constraint of fixedN, we eliminatem and find

a25
Haa2Hbb1N~3I ab2I bb!

6I ab2I aa2I bb
, ~6!

b25
Hbb2Haa1N~3I ab2I aa!

6I ab2I aa2I bb
. ~7!

Sinceg is negative, the denominator is always negative.
deed,ca

2 andcb
2 are almost equal at each pointx. For low N,

the dominant terms in the numerators have opposite si
thus one of the two squares has to be negative, which me
that there is no solution with asymmetric wave function. O
the other hand, for sufficiently largeN, the second term in
the numerator of the two equations can compensate for
positive one, since the quantities 3I ab2I aa , 3I ab2I bb are
always negative. Thus, we have proved that two asymme
cal steady states exist beyond a threshold value ofN.

In order to prove that the two states are stable, it is su
cient to show that the symmetrical state becomes unst
above threshold, that is,

d2H
db2 U

b50

<0, ~8!

where we havea25N2b2. It is easily found that

d2H
db2 U

b50

52~Hbb2Haa!12N~3I ab2I aa!. ~9!

Going back to Eq.~7!, the two stationary asymmetrica
states occur when the numerator changes sign. In fact,
5-2
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FIG. 2. First two excited energy levels versus the numberN2Ni of atoms above the thresholdNi . Within each figure we keep the lase
amplitude fixed and just vary the pitch of the potential lattice,~a! corresponds toAn[A/\52650 s21 and ~b! corresponds toAn

52000 s21.
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numerator is the right side of Eq.~9!, hence, at the critica
point the symmetrical state becomes unstable.

One can easily evaluate the threshold valueNi of N for
which this symmetry breaking occurs.

III. MACROSCOPIC QUANTUM COHERENCE

In such a bistable situation the energy displays t
minima of equal value in the infinite-dimensional pha
space. From a classical point of view, as the system is in
lowest energy state, the condensate is localized in either
of the two minima, where it will remain in the absence
thermal noise once we keep the atom number const
Since, however, the condensate is a mesoscopic sys
quantum fluctuations play a relevant role. This can be sho
by second quantization of the field, replacing thec-number
macroscopic wave function by field operators.

Quantum fluctuations allow the passage from one to
other stable state without thermal activation, by pure qu
tum tunneling. Furthermore, due to the coherent nature of
process, we expect coherent oscillations between the
wells, that is, MQC. We now evaluate the tunneling rate a
function of the system parameters showing the feasibility
MQC.

The most natural way of evaluating the tunneling ra
consists in finding the two lowest eigenvalues of the Ham
tonian and taking their difference. Indeed, the sum and
ference of the corresponding states are, respectively, the
and dead states of SC, and the transition time is half
period corresponding to the frequency difference.

The problem is simplified by reducing it to two degrees
freedom by the expansion of Eq.~3!.

We select the basis functionsca andcb as follows. Call-
ing c0(xW ) the minimal-energy wave function of the GP pro
lem ~see, e.g., Fig. 1!, we take forca andcb , respectively,
the symmetric and antisymmetric sumsc0(xW )6c0(2xW ). Ex-
pansion~3! with theseca andcb includes the original func-
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tionsc0(xW ) andc0(2xW ) for suitable values ofa andb. Fur-
thermore, it simplifies the form of the Hamiltonian, as we s
right now @16#.

In second quantization,a and b in Eq. ~3! become the
operatorsâ and b̂, obeying Bose commutation rules wit
their conjugatesâ†, b̂†. Exploiting the operator version o
Eq. ~3! and its adjoint, the Hamiltonian becomes

H5â†âHaa1b̂†b̂Hbb1
1

2
~ â†2â2I aa1b̂†2b̂2I bb!

1S 1

2
â†2b̂21

1

2
b̂†2â212â†b̂†âb̂D I ab , ~10!

where the coefficientsHaa , Hbb , I aa , I bb , and I ab are the
same as in Eq.~4!.

We consider the basis of eigenvectors of the number
erators

u0,N&,u1,N21&, . . . ,uN,0&, ~11!

where â†âuk,m&5kuk,m& and b̂†b̂uk,m&5muk,m&. Let us
call

Hl ,k5^ l ,N2 l uHuk,N2k& ~12!

the generic matrix element of the Hamiltonian on the abo
basis. We evaluate the eigenvalues of this matrix. We h
considered two different wavelengths and two amplitude v
ues of the applied field.

In Fig. 2 we report on the first two excited energy leve
versus the number of condensed atoms beyond the thres
value. In such figure we keep constant the barrier height
just vary the barrier width. Notice that for increasings the
maximum tunneling frequency reduces, but the slope
which it reduces for increasingN2Ni is less steep.
5-3
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FIG. 3. Same as with Fig. 2, but with fixeds, respectively~a! s54.5 mm and~b! s55 mm.
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In Fig. 3 we keep fixed the barrier width and change
height. Here too the maximum frequency decreases for
creased heights, but again as in Fig. 2, the slope decrease
increasingN2Ni .

In Fig. 4 we reduce the threshold for BEC breaking
increasingv' . Precisely, we report on the first two excite
states for v'52p3600 s21, An52000 s21, and s
55 mm. The threshold value isNi.190.

In the number representation there is no explicit evide
of a SC as a two-peak distribution~see Fig. 5!. We look for
a suitable observable, whose probability distribution p
vides such evidence. We take the first component of the b
center coordinatexc5(1/N)*x1ucu2d3x as the appropriate
variable since the corresponding classical states@minima of
the Hamiltonian~4!# have separated barycenters. It is as
ciated with the operator

x̂c5
1

NE x1ca~xW !cb~xW !d3x~ â†b̂1âb̂†!. ~13!

FIG. 4. First two excited energy levels versus the number
atomsN. The system parameters arev'52p3600 s21, v i52p
3130 s21, An[A/\52000 s21, ands55 mm.
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Besides ac-number factor, the observable is thusM̂5â†b̂

1âb̂†. The associated probability density isP(m)
5u^muf0&u2, whereuf0& is the ground state of Hamiltonia
~10! and um& is the eigenstate ofM̂ with eigenvaluem. No-
tice that once the number of atoms is fixed the eigenvec
are not degenerate.

Since we know the components ofuf0& on the number
basis we must expressum& with respect to that basis, that is

um&5(
k

ck
muk,N2k&. ~14!

Applying the operatorM̂ to the above ket we have

mum&5(
k

ck
m~ â†b̂1âb̂†!uk,N2k&. ~15!

Projecting on̂ l ,N2 l u the above ket it follows that

(
k

M l ,kck
m5mcl

m , ~16!

f FIG. 5. Probability distribution of the population in the groun
state as a function of the number of atoms in mode ‘‘b.’’ A
52000 s21, s55 mm, andN5655.
5-4
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FIG. 6. Probability distribution of the ‘‘barycenter’’ indicator fo
the lithium BEC, for differentN values and for a standing wav
with An52000 s21 ands55 mm; ~a! v'52p3150 s21 and~b!
v'52p3600 s21.
wo

01360
where

Ml ,k5^ l ,N2 l uM̂ uk,N2k&. ~17!

Since Ml ,k are known, solving the eigenvector equatio
~16! we can evaluate the coefficientsck

m and henceP(m).
The two-peak distributionP(m) is plotted in Fig. 6~a! for

different N values and forA/\52000 s21, s55 mm. The
same distributions, but forv'52p3600 s21, are given in
Fig. 6~b!.

Experimentally, evidence of SC against a trivial statistic
mixture is obtainable by setting the system at the above
rameter values and observing the coherent oscillation
tween the two energy minima by a measurement not dest
ing the coherence~e.g., a phase contrast technique!. The
condensate can be prepared in the ground state, becaus
system condensates naturally in this state. Then one m
sures the condensate barycenter by the above noninva
technique at the initial time. This measurement collapses
distributionP(m) onto one peak. If the energy transfer of th
measurement is not too large, we expect that only the
excited state is populated and hence we have the super
tion of f0(m) and f1(m) @see Fig. 7~a!#. At the following
times the distribution oscillates between the two peaks. T
symmetry of Hamiltonian~10! with respect to the transfor
mationâ→2â shows thatf0(m) andf1(m) are symmetric
or antisymmetric; by a suitable choice of the phase, bothf0
andf1 can be real functions. We consider a state prepara
such that att50 the statef0(m)1f1(m) has only one
probability peak@see Fig. 7~a!, dashed line#. After a quarter
period corresponding to the frequency separationv f between
ground and first excited states, the superposition will
f0(m)2 if1(m) and the corresponding probability is th
two-peak aspect~solid line!,

Q~m,t5p/v f !5f0~m!21f1~m!2. ~18!

At time t5p/v f the only peak is that missing at timet
50, thus there is a coherent oscillation between the t
Fig.
FIG. 7. Time evolution of the probability distribution.v f is the tunneling frequency. The parameters of the standy wave are as in
6~a!; ~a! number of atomsN5655 and~b! N5645, for which the ground state does not display two separate peaks@see solid line of Fig.
6~a!#.
5-5
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A. MONTINA AND F. T. ARECCHI PHYSICAL REVIEW A 66, 013605 ~2002!
states. Detecting such an oscillation would provide evide
of a SC at an intermediate time when both peaks are pres

The intermediate distribution, given by Eq.~18!, may dis-
play two peaks even when the ground state has only one@see
Fig. 7~b!#. This occurs because the distributionf1(m)2 has
always two peaks.

Notice that if we hadN loosely coupled or independen
atoms~Ng sufficiently low or even zero! the superposition of
ground and first excited state would have a single peak,
cillating as a coherent state inside a harmonic potential. T
would by no means be a SC. On the contrary, we have sh
that forNg sufficiently high, we have a two-peak distributio
with the two partial barycenters at nearly constant positio
During the evolution, the two-peak amplitudes oscillate, t
is, the probability to find the system in either state oscillat

In conclusion, we have found that the oscillation fr
quency between the two states of the SC isv f;50 s21 @see
Fig. 2~a! for N2Ni;5#. In order to neglect thermal activa
tion, the system should be cooled at a temperature of aro
1 nK. To cool at 1 nK is within the reach of present tec
nologies, even though such a low temperature has not
been reported. On the other hand, the collective degree
freedom for which there is quantum coherence may
weakly coupled with the other modes of the condens
which act as a thermal bath. Hence, in such a case it m
not be necessary to cool at 1 nK the whole condensate
just the involved degrees of freedom.

IV. LOSSES AND OBSERVABILITY OF MQC

Besides the finite temperatures effects, we must also
count for atom losses from the condensate.

The entanglement between condensate and lost atoms
imply a decoherence of the superposition. Near the thres
for symmetry breaking, the two macroscopic wave functio
corresponding to the energy minima of the classical sys
are almost coincident~see Fig. 1, forN5500), thus the loss
of one or a few atoms does not allow us yet to discrimin
between the two alternatives, and thus decoherence ef
are almost negligible.

We perform a simple calculation of the decoherence ef
due to atom loss for the condensate. In the Hartree-F
approximation all the atoms are in the same state, given
the GP wave function. Hence, ifc0(xW ) is one of the two
asymmetrical states with minimal energy, the wave funct
for the whole system ofN atoms is given by

c l~xW1 ,xW2 , . . . ,xWN!5)
i 51

N

c0~xW i !. ~19!

But the GP yields another minimumc0(2xW ), for which the
overall wave function is given by

c r~xW1 ,xW2 , . . . ,xWN!5)
i 51

N

c0~2xW i !. ~20!

The coherent superposition of the two alternatives is gi
by
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cs5K~c l1c r !, ~21!

whereK is a normalization factor. Ifc l ,r are orthogonal then
K51/A2.

The density operator is

r̂5
1

2
~ uc l&1uc r&)~^c l u1^c r u!. ~22!

The coherence between the two alternatives is given by

C52Tr@ uc l&^c r ur̂ #51. ~23!

If we assume that the atoms escaping the condensate tra
a negligible energy to the trapped atoms, then the resid
coherence after the loss ofM atoms is

C̃52Tr@ uc̃ l&^c̃ r ur̂ #, ~24!

where the vectorsuc̃ l ,r& refer to theN2M atoms still in the
condensate. The functionsc l ,r can be written as

c l ,r5c̃ l ,r)
i 51

M

c0~6xW i !, ~25!

where i 51,2, . . . ,M are the lost atoms. We rewriter̂ by
using this expansion, and find, provided that^c̃ l uc̃ r&50,

C̃5S E d3xc0~xW !c0~2xW ! D M

[~ I o!M. ~26!

Let us calle512I o . If e!1 then the coherence is given b

C̃.e2eM. ~27!

The quantityNd51/e provides the number of atoms tha
must be lost in order to reduce the coherence by 1/e. Figure
8 shows howNd scales with the total number of atomsN for
A52000 s21 ands55 mm.

Notice that near the threshold value (N5643) Nd is rather
large, and hence, coherence is more robust with respec
atom losses. Far thresholdNd has a weak dependence onN.

We now evaluate the loss rate of the condensate.
relevant processes are two-body inelastic and three-body
lisional decays. The total loss rate of the two decays are@17#

R~N!5aN2E d3r uc0~r !u41LN3E d3r uc0~xW !u6, ~28!

wherea is the two-body dipolar loss rate coefficient andL is
the three-body recombination loss rate coefficient. We
the following values:a51.2310214 cm3 s21 @17#, L52.6
310228 cm6 s21 @18#.

We report in Fig. 9 R(N) for A52000 s21 and s
55 mm. From Figs. 2~b!, 8, and 9 we can infer that nea
threshold atom losses have a small effect on coherence.

For instance, forN5650 the tunneling rate is abou
25 s21 @see Figs. 2~b! and 3~b!#, thus the number of atom
5-6
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BISTABILITY AND MACROSCOPIC QUANTUM . . . PHYSICAL REVIEW A 66, 013605 ~2002!
lost during an oscillation period (;0.25 s21) is around 3.5
~see Fig. 9!; but Fig. 8 shows that such a loss is negligible f
coherence. ForN5655 the tunneling rate is about 10 s21,
thus the number of atoms lost during an oscillation period
about 9, still belowNd.30.

Besides decoherence, the atom loss yields a shift in
tunneling frequencies. As shown in Figs. 2–3, the frequ
cies vary a lot as we reduce the number of condensed at
For N5650 the lost atoms are around 3.5 during an osci
tion period, thus the oscillation frequency changes
;30%.

In order to reduce the effect of losses we lower the thre
old value by increasing the frequencyv' . In Figs. 10 and 11
we report onNd andR(N) for v'52p3600 s21; the lon-
gitudinal frequency and the standing wave have been k
unchanged. The tunneling frequencies and probabili
P(m) are given in Figs. 4~b! and 6~b!, respectively. We no-
tice that here the loss rate is much smaller, and hence
frequency shift is smaller, whereas the tunneling frequen
are slightly larger. A further reduction of the threshold val
should improve the situation.

FIG. 8. NumberNd of lost atoms for which the coherence d
cays by 1/e versus the total number of atoms, forAn[A/\
52000 s21 ands55 mm.

FIG. 9. R(N) for An[A/\52000 s21 ands55 mm.
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V. CONCLUSION

We have solved numerically the Gross-Pitaevskii equat
for a 7Li condensate in a double-well potential and we ha
shown that the spatial density undergoes a symmetry br
ing for a suitable number of condensed atoms. The class
asymmetrical wave function is used to select two mod
With their quantization we have evaluated the tunneling r
for some parameters of the system and we have found th
is within the reach of present laboratory technologies. Th
mal effects could be lower than expected because of a
coupling between the collective variables and the therm
bath. To prove the presence of two alternatives we have
troduced an appropriate observable. We have then evalu
the effects of loss and we have shown that the decoheren
negligible. In a forthcoming work we discuss the conditio
for bistability in the case of mutual repulsion~positive scat-
tering length!.

FIG. 10. NumberNd of lost atoms for which the coherenc
decays by 1/e versus the total number of atoms, for the paramet
of Fig. 4.

FIG. 11. R(N) for the parameters of Fig. 4.
5-7
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