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Loop structure of the lowest Bloch band for a Bose-Einstein condensate
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We investigate analytically and numerically Bloch waves for a Bose-Einstein condensate in a sinusoidal
external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for
a single particle, but at densities greater than a critical one the lowest band becomes triple valued near the
boundary of the first Brillouin zone and develops the structure characteristic of the swallowtail catastrophe. We
comment on the experimental consequences of this behavior.
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The possibility of studying experimentally the propertiesby U,=4#%2%a/m, wherea is the scattering length for two-

of Bose-Einstein condensates in periodic potentials creategldy collisions. The condensate wave function satisfies the
by optical lattices(see, e.g.[1,2]) has stimulated a number gniinear Schidinger equation

of theoretical investigations. These include nonlinear tunnel-

ing phenomeng3,4], Bloch oscillationg5,6], the stability of 72 d2y

Bloch waves[7], oscillations of condensates, and localized — — ——+[V(X)+Uq|¢|>— n]w=0. (4)
excitations[8]. In a two-level model of nonlinear Landau- 2m gx?

Zener tunneling, evidence was found for a loop structure in

the adiabatic energy leve[8]. Recently, Bronskiet al. [9] ~ The quantityu is the chemical potential, and this depends
discovered a remarkable exact solution of the Grossboth on the mean density of particles and on the quasimo-
Pitaevskii equation for a condensate in a one-dimensiondnentum. We shall look for solutions where the mean density
optical lattice for a quasimomentum corresponding to thdS independent of position, and therefore these must satisfy
boundary of the first Brillouin zone. Subsequently, in Ref.the condition for quasiperiodicity,

[10] it was shown by numerical studies that the current of the )

condensate for quasimomenta in the vicinity of the zone p(x+d)=exp(ikd) () ®)
boundary had a singular behavior, and it was speculated that ) ) ,

the chemical potential of the condensate became multivalugfgr all x- The quantityik is the quasimomentum of the con-
near the zone boundary. In this article we use analytical and€nsate. Our objective is to find the energy per particle, the
numerical methods to show that the lowest band has thehemical potential, and the current density of nonlinear
structure associated with the swallowtail catastroptd,  Bloch waves as a function éfand ofn. The current density
and we comment on implications of this result for experi-°f the condensate is given by

ment.

The potentiaM(x) produced by a one-dimensional stand- j(k)= i o d_‘ﬂ _ wd‘ﬂ* ) _ (6)
ing light wave has the form 2mi dx dx

X It is independent ok providedy satisfies Eq(4). By direct
V(x)=Vosin’ q/ () calculation one can demonstrate that

whered is the period of the lattice. We shall assume that the o1 a&(k,n) 7
condensate may be described by the Gross-Pitaevskii func- 1= Ao ok @)
tional for the energy density, which when averaged over a
lattice period is given by The quantityj/n is the mean particle velocity.

Without loss of generality, we may choogg0) to be

o }fd’z dx 2 |dy 2+V(x)| o2+ ﬁh’/“}, (2  real. Since the periodic potential is evenirone infers from
d)_gp |2m|dx 2 the quasiperiodicity conditiori5) that the real part of the
condensate wave function is an even functiorxand the
and the mean number densityis given by imaginary part an odd function.
The solution at the zone centek=€0) corresponds to a
. }fd’z dx| g2 3 purely real and periodic wave functiaf(x + d) = ¢(x). Also
dJ_gp ' at the zone boundankE& + r/d) there is a purely real solu-

tion which is antiperiodic,(x+d)=— (x). Since ¢ is
Here ¢ is the wave function of the condensatg,is the real, these solutions have zero currgrt,0. Other solutions
particle mass, and the effective two-body interaction is giverare complex and the current is nonzero. Since the potential in
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Eq. (4) is real, it follows thaty, (x) = ¢* (x). Naturally, all
physical quantities are periodic kwith period 27/d.
The structure of the energy as a functionlohear the

zone boundary may be brought out by making a variational

calculation of the energy. We use a trial function of the form

#(x) = Jn{cosa exp(ikx)
+sina exp(i[k—27/d]x)}, (8)

where « is a variational parameter. This is similar to that
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(units of n/d)

FIG. 2. Chemical potentiak in units of 4w as a function of

used in the almost-free-electron approximation for the ban@uasimomentum for densitiey'n.=0.57 (dotted, 0.78 (dashed|
structure of a single particle, and it also corresponds to th@nd 0.99(full line).

two-level model studied in Ref3]. The energy functional
(2) evaluated for the trial functio(8) is given by

o= — Ae o n\% 1 1 ino
=n 6+TCOS +T ESII"I o
n?U, 1
+——|1t3 sm22a), 9

The two possible signs for the current density reflect the fact
that, if @ is a solution to the stationarity condition, so is
72— a.

Equations(10)—(12) are in factexact the variational trial
function (8) being in this case identical with the analytical
solution found in Refs[9,10]. At the critical density when
the analytical solution first appears with= /4, the current
is zero sincay(x) is real. We note that the critical chemical
potential is the height of the barrier, plus the kinetic energy

where the three terms are the kinetic, potential, and interef a free particle with a momentum equal to the quasimo-

action energies, respectively, withe= (€t €x_2./q)/2.
Here e,=%2k?/2m, and Ae=e,— €,_.q=(27h%/md)(k
—ar/d). The optimal value ot is obtained by requiring Eq.
(9) to be stationary with respect to variationsdr and the
chemical potential is then found by differentiating the re-
sulting energy with respect to the density= d&/on.
At the zone boundari= =+ 7/d the stationarity of Eq(9)

yields two solutions: sin@=Vy2nU, and cos 2=0. The

mentum at the zone boundary.

For n>n, the exact solution8) with sin 2a=Vy/2nU,
<1 is complex and carries a nonzero current. Remarkably,
although this state hds= = 77/d, it has neither the highest
energy nor the highest chemical potential of all states in the
band: thereal antiperiodic wave function, also wittk
=+q/d, has higheru, and it corresponds to the second
solution of the stationarity condition, coa20 or a=w/4

first solution, which requires that the density exceed a criticalthe other possibilityex=37/4, belongs to the next, excited

valuen, given by

ne=Vo/2Ug, (10

has an energy density
o ﬁ271-2+V0 n2U, V3 1
M ome T 2) 2 10, WY

a chemical potentialu;=u.+(n—nyUqy, where u.=V,
+#2m?/2md?, and a current density

h

ko

j=+—/n2—nZ (12
J md c
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Bloch band and will not be considered her€his solution
exists at all densities and corresponds to a chemical potential
mo=uct3(N—ny)Uy/2, which is higher thame, atn>n..

For a general value df, the Ae term in Eq.(9) for the
total energy tends to make the roots of the stationarity con-
dition initially at «= /4 and a=[arcsin{/y/2nU,)1/2 ap-
proach one another, and the two roots merge and disappear
for a sufficiently large value of the magnitude afe. The
energy per particle obtained using the trial functi@) is
shown in Fig. 1, where one sees the swallowtail structure
near the zone boundary. Throughout, we shall measure ener-
gies in units ofi w, wherew=(2V,/m)*?7/d is the angular
frequency of small oscillations about a minimum of the po-
tential.

{units of n/d)

FIG. 3. Energy per particlé/n in units of Aw as a function of

FIG. 1. Swallowtail structure of the energy per particle as aquasimomentum for densitie¥n.=0.57 (dotted, 0.78 (dashedq,

function ofk for Vo=3#%w® andn/n.=1.20.

and 0.99(full line).
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(units of n/d)

k (units of mx/d)

FIG. 4. The current densityas a function of quasimomentum at FIG. 6. Current density as a function of quasimomentum for
densitiesn/n.=0.57 (dotted, 0.78 (dashegl and 0.99(full line). densitiesn/n = 1.14 (dashed and 1.25(full line). The unit of cur-
Here jo=mAn/md is the current density &= 7/d in the absence rentj, is the same as in Fig. 4.
of a lattice.

. . ) , an infinite derivative at this poir(see Fig. 4. Consequently,
A gquantitative analysis shows that the trial fo®) is a (k,ny) develops a singularity &= = =/d (see Fig. 2, as
good approximation near the zone boundary providecﬁOes the energy density.
h?m?/2md?>nU,. The analytical calculations may be im- o - n. the Bloch wave evolves from a real periodic
proved by including plane-wave components with wave,e function ak=0 to the analytical plane-wave solution
numbers that differ from the ones in E®) by multiples of (8) at k=m/d, which, however, is now complex. Ak
the reciprocal lattice vector2/d. ' ; i '

Wi d hat th I 1 lso 7r/d there is a second solution equal to the complex con-
Ve now em.onstrate .t at the swal OWt&_“ structure asquga\te of the first one and, in addition, a third one which is
arises in numerical solutions of E¢). We first solve the

. . real, and which therefore carries no current. Alsok@lose
equation for different values o and k and calculate 1, -/ one finds three solutions for a givénWe plot the
n(k,w). By interpolation, we then finge(k,n) and £(k,n).

. B chemical potentiaju(k,n), the current density(k,n), and
At condensate densities below the critical one, the wavey o energy per particlé(k,n)/n in Figs. 5-7, respectively

function and dispersion relation for nonlinear Bloch wavesg '\ 1 es of the densitp>n,. We note tha (k,n) calcu-
c- 1

are qualita_tively simi_lar to t_hose for a single particle. TO_I ted from the wave function using E() is consistent with
illustrate this, we again consider the case where the potenti e relation(7)
barrier isVo=3% . The unusual structure of the energy bands has important

In Eigs. 2 and 3 we [_)Icl)t tfhe chemicl:al [I)otentj?(k,n)_ implications for experiment. If a single particle in a periodic
and the energy per particle for several values of demsity ,tential is subjected to a small constant forcearies lin-

<n.. When the chemical potential lies below the top of theg, 1y in time, and the particle velocity and position execute
potential barriers, the energy bands are relatively narrowg)qch ggcillations. Such behavior has been observed in opti-
since the motion of the condensate involves tunnelingg| |attices for thermal atoms above the Bose-Einstein tran-
through the barriers. _ sition temperatur¢12]. Similar arguments apply to the mo-
_ InFig. 4 we show the current densifyk,n) of the non- 5 of 4 Bose-Einstein condensate, provided the energy of
linear waves for the same number densities as in Figs. 2 anfle condensate in the lowest band is a continuous, single-
3. The current goes to zero both at the zone center and they,eq function ofk. Bloch oscillations have indeed been
zone boundary. At the critical density the real antiperiodic,pganed for condensaté®]. At densities greater than,,
wave function corresponding to the top of the band and havg,q sjtyation is different because of the swallowtail structure
ing k= r/d coincides with the analytical solution of the energy band. When a weak force is applied to a con-
densate initially at rest, in the simple picture of the motion
K=+ m/d [Vo X will increase and with time will reach the value/d. With
e (x)= U_0 COS?' 13 further increase ok, the system will continue on the branch
of the spectrum fok>7/d which has the same slope lat

The current density(k,n.) goes to zero at=+ m/d buthas = 7/d as that of the initial branch. With this choice of
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FIG. 5. Chemical potentiglk as a function of quasimomentum FIG. 7. Energy per particl€é/n of a Bloch wave as a function of
for densitiesn/n.= 1.14 (dashegland 1.25(full line). guasimomentum for a condensate denasity,=1.20.
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branch, the wave function varies continuouslykaecreases potential due to the optical lattice. To see the strong nonlin-

past 7r/d, whereas there is a discontinuous change in thear effects predicted here, the potential due to the optical
wave function of the lowest energy state. A dramatic mani{attice should be reduced by roughly one order of magnitude,
festation of this is that the current density in the lowest enif the other parameters in the experiment remain unchanged.
ergy state changes signkat 77/d. With time, k will eventu-  Theoretically, the stability of a condensate moving in a peri-

ally reach the tip of the swallowtail, and it then becomesgdic potential has been examined for relatively low values of

impossible to describe the condensate motion in terms of thg,e two-body interactiofi7], and such studies should be ex-

usual adiabatic picture, as was found in R& for a two-  tended to higher values of the interaction, where the swal-
level model. How to treat the dynamics under such condijgytajl develops.

tions remains a challenging open problem.
In the experiments on Bloch oscillations in RE2], the We are grateful to D. Aristov and S. J. Chang for very
interaction energy was small compared with the depth of theiseful discussions.
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