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Loop structure of the lowest Bloch band for a Bose-Einstein condensate
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We investigate analytically and numerically Bloch waves for a Bose-Einstein condensate in a sinusoidal
external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for
a single particle, but at densities greater than a critical one the lowest band becomes triple valued near the
boundary of the first Brillouin zone and develops the structure characteristic of the swallowtail catastrophe. We
comment on the experimental consequences of this behavior.
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The possibility of studying experimentally the properti
of Bose-Einstein condensates in periodic potentials cre
by optical lattices~see, e.g.,@1,2#! has stimulated a numbe
of theoretical investigations. These include nonlinear tunn
ing phenomena@3,4#, Bloch oscillations@5,6#, the stability of
Bloch waves@7#, oscillations of condensates, and localiz
excitations@8#. In a two-level model of nonlinear Landau
Zener tunneling, evidence was found for a loop structure
the adiabatic energy levels@3#. Recently, Bronskiet al. @9#
discovered a remarkable exact solution of the Gro
Pitaevskii equation for a condensate in a one-dimensio
optical lattice for a quasimomentum corresponding to
boundary of the first Brillouin zone. Subsequently, in R
@10# it was shown by numerical studies that the current of
condensate for quasimomenta in the vicinity of the zo
boundary had a singular behavior, and it was speculated
the chemical potential of the condensate became multiva
near the zone boundary. In this article we use analytical
numerical methods to show that the lowest band has
structure associated with the swallowtail catastrophe@11#,
and we comment on implications of this result for expe
ment.

The potentialV(x) produced by a one-dimensional stan
ing light wave has the form

V~x!5V0 sin2 S px

d D , ~1!

whered is the period of the lattice. We shall assume that
condensate may be described by the Gross-Pitaevskii f
tional for the energy density, which when averaged ove
lattice period is given by

E5
1

dE2d/2

d/2

dxF \2

2mUdc

dxU
2

1V~x!ucu21
U0

2
ucu4G , ~2!

and the mean number densityn is given by

n5
1

dE2d/2

d/2

dxucu2. ~3!

Here c is the wave function of the condensate,m is the
particle mass, and the effective two-body interaction is giv
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by U054p\2a/m, wherea is the scattering length for two
body collisions. The condensate wave function satisfies
nonlinear Schro¨dinger equation

2
\2

2m

d2c

dx2
1@V~x!1U0ucu22m#c50. ~4!

The quantitym is the chemical potential, and this depen
both on the mean density of particles and on the quasi
mentum. We shall look for solutions where the mean den
is independent of position, and therefore these must sa
the condition for quasiperiodicity,

c~x1d!5exp~ ikd!c~x! ~5!

for all x. The quantity\k is the quasimomentum of the con
densate. Our objective is to find the energy per particle,
chemical potential, and the current density of nonline
Bloch waves as a function ofk and ofn. The current density
of the condensate is given by

j ~k!5
\

2mi S c*
dc

dx
2c

dc*

dx D . ~6!

It is independent ofx providedc satisfies Eq.~4!. By direct
calculation one can demonstrate that

j ~k!5
1

\

]E~k,n!

]k
. ~7!

The quantityj /n is the mean particle velocity.
Without loss of generality, we may choosec(0) to be

real. Since the periodic potential is even inx, one infers from
the quasiperiodicity condition~5! that the real part of the
condensate wave function is an even function ofx and the
imaginary part an odd function.

The solution at the zone center (k50) corresponds to a
purely real and periodic wave functionc(x1d)5c(x). Also
at the zone boundary (k56p/d) there is a purely real solu
tion which is antiperiodic,c(x1d)52c(x). Since c is
real, these solutions have zero current,j 50. Other solutions
are complex and the current is nonzero. Since the potenti
©2002 The American Physical Society04-1
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Eq. ~4! is real, it follows thatck(x)5c2k* (x). Naturally, all
physical quantities are periodic ink with period 2p/d.

The structure of the energy as a function ofk near the
zone boundary may be brought out by making a variatio
calculation of the energy. We use a trial function of the fo

c~x!5An$cosa exp~ ikx!

1sina exp~ i @k22p/d#x!%, ~8!

where a is a variational parameter. This is similar to th
used in the almost-free-electron approximation for the b
structure of a single particle, and it also corresponds to
two-level model studied in Ref.@3#. The energy functiona
~2! evaluated for the trial function~8! is given by

E5nS ē1
De

2
cos 2a D1

nV0

2 S 12
1

2
sin 2a D

1
n2U0

2 S 11
1

2
sin22a D , ~9!

where the three terms are the kinetic, potential, and in
action energies, respectively, withē5(ek1ek22p/d)/2.
Here ek5\2k2/2m, and De5ek2ek22p/d5(2p\2/md)(k
2p/d). The optimal value ofa is obtained by requiring Eq
~9! to be stationary with respect to variations ina, and the
chemical potentialm is then found by differentiating the re
sulting energy with respect to the density,m5]E/]n.

At the zone boundaryk56p/d the stationarity of Eq.~9!
yields two solutions: sin 2a5V0/2nU0 and cos 2a50. The
first solution, which requires that the density exceed a crit
valuenc given by

nc5V0/2U0 , ~10!

has an energy density

E15nS \2p2

2md2
1

V0

2 D 1
n2U0

2
2

V0
2

16U0
, ~11!

a chemical potentialm15mc1(n2nc)U0, where mc5V0
1\2p2/2md2, and a current density

j 56
\p

md
An22nc

2. ~12!

FIG. 1. Swallowtail structure of the energy per particle as
function of k for V053\v andn/nc51.20.
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The two possible signs for the current density reflect the f
that, if a is a solution to the stationarity condition, so
p/22a.

Equations~10!–~12! are in factexact, the variational trial
function ~8! being in this case identical with the analytic
solution found in Refs.@9,10#. At the critical density when
the analytical solution first appears witha5p/4, the current
is zero sincec(x) is real. We note that the critical chemica
potential is the height of the barrier, plus the kinetic ene
of a free particle with a momentum equal to the quasim
mentum at the zone boundary.

For n.nc the exact solution~8! with sin 2a5V0/2nU0
,1 is complex and carries a nonzero current. Remarka
although this state hask56p/d, it has neither the highes
energy nor the highest chemical potential of all states in
band: the real antiperiodic wave function, also withk
56p/d, has higherm, and it corresponds to the secon
solution of the stationarity condition, cos 2a50 or a5p/4
~the other possibility,a53p/4, belongs to the next, excite
Bloch band and will not be considered here!. This solution
exists at all densities and corresponds to a chemical pote
m25mc13(n2nc)U0/2, which is higher thanm1 at n.nc .

For a general value ofk, the De term in Eq.~9! for the
total energy tends to make the roots of the stationarity c
dition initially at a5p/4 and a5@arcsin(V0/2nU0)#/2 ap-
proach one another, and the two roots merge and disap
for a sufficiently large value of the magnitude ofDe. The
energy per particle obtained using the trial function~8! is
shown in Fig. 1, where one sees the swallowtail struct
near the zone boundary. Throughout, we shall measure e
gies in units of\v, wherev5(2V0 /m)1/2p/d is the angular
frequency of small oscillations about a minimum of the p
tential.

FIG. 2. Chemical potentialm in units of \v as a function of
quasimomentum for densitiesn/nc50.57 ~dotted!, 0.78 ~dashed!,
and 0.99~full line!.

FIG. 3. Energy per particleE/n in units of \v as a function of
quasimomentum for densitiesn/nc50.57 ~dotted!, 0.78 ~dashed!,
and 0.99~full line!.
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A quantitative analysis shows that the trial form~8! is a
good approximation near the zone boundary provid
\2p2/2md2@nU0. The analytical calculations may be im
proved by including plane-wave components with wa
numbers that differ from the ones in Eq.~8! by multiples of
the reciprocal lattice vector 2p/d.

We now demonstrate that the swallowtail structure a
arises in numerical solutions of Eq.~4!. We first solve the
equation for different values ofm and k, and calculate
n(k,m). By interpolation, we then findm(k,n) andE(k,n).
At condensate densities below the critical one, the w
function and dispersion relation for nonlinear Bloch wav
are qualitatively similar to those for a single particle.
illustrate this, we again consider the case where the pote
barrier isV053\v.

In Figs. 2 and 3 we plot the chemical potentialm(k,n)
and the energy per particle for several values of densitn
,nc . When the chemical potential lies below the top of t
potential barriers, the energy bands are relatively narr
since the motion of the condensate involves tunnel
through the barriers.

In Fig. 4 we show the current densityj (k,n) of the non-
linear waves for the same number densities as in Figs. 2
3. The current goes to zero both at the zone center and
zone boundary. At the critical density the real antiperio
wave function corresponding to the top of the band and h
ing k56p/d coincides with the analytical solution

cc
k56p/d~x!5AV0

U0
cos

px

d
. ~13!

The current densityj (k,nc) goes to zero atk56p/d but has

FIG. 5. Chemical potentialm as a function of quasimomentum
for densitiesn/nc51.14 ~dashed! and 1.25~full line!.

FIG. 4. The current densityj as a function of quasimomentum a
densitiesn/nc50.57 ~dotted!, 0.78 ~dashed!, and 0.99~full line!.
Here j 05p\n/md is the current density atk5p/d in the absence
of a lattice.
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an infinite derivative at this point~see Fig. 4!. Consequently,
m(k,nc) develops a singularity atk56p/d ~see Fig. 2!, as
does the energy density.

For n.nc the Bloch wave evolves from a real period
wave function atk50 to the analytical plane-wave solutio
~8! at k5p/d, which, however, is now complex. Atk
5p/d there is a second solution equal to the complex c
jugate of the first one and, in addition, a third one which
real, and which therefore carries no current. Also fork close
to p/d one finds three solutions for a givenk. We plot the
chemical potentialm(k,n), the current densityj (k,n), and
the energy per particleE(k,n)/n in Figs. 5–7, respectively
for values of the densityn.nc . We note thatj (k,n) calcu-
lated from the wave function using Eq.~6! is consistent with
the relation~7!.

The unusual structure of the energy bands has impor
implications for experiment. If a single particle in a period
potential is subjected to a small constant force,k varies lin-
early in time, and the particle velocity and position execu
Bloch oscillations. Such behavior has been observed in o
cal lattices for thermal atoms above the Bose-Einstein tr
sition temperature@12#. Similar arguments apply to the mo
tion of a Bose-Einstein condensate, provided the energy
the condensate in the lowest band is a continuous, sin
valued function ofk. Bloch oscillations have indeed bee
observed for condensates@2#. At densities greater thannc ,
the situation is different because of the swallowtail struct
of the energy band. When a weak force is applied to a c
densate initially at rest, in the simple picture of the motionk
will increase and with time will reach the valuep/d. With
further increase ofk, the system will continue on the branc
of the spectrum fork.p/d which has the same slope atk
5p/d as that of the initial branch. With this choice o

FIG. 6. Current densityj as a function of quasimomentum fo
densitiesn/nc51.14 ~dashed! and 1.25~full line!. The unit of cur-
rent j 0 is the same as in Fig. 4.

FIG. 7. Energy per particleE/n of a Bloch wave as a function o
quasimomentum for a condensate densityn/nc51.20.
4-3
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branch, the wave function varies continuously ask increases
past p/d, whereas there is a discontinuous change in
wave function of the lowest energy state. A dramatic ma
festation of this is that the current density in the lowest
ergy state changes sign atk5p/d. With time,k will eventu-
ally reach the tip of the swallowtail, and it then becom
impossible to describe the condensate motion in terms of
usual adiabatic picture, as was found in Ref.@3# for a two-
level model. How to treat the dynamics under such con
tions remains a challenging open problem.

In the experiments on Bloch oscillations in Ref.@2#, the
interaction energy was small compared with the depth of
.

A.
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potential due to the optical lattice. To see the strong non
ear effects predicted here, the potential due to the opt
lattice should be reduced by roughly one order of magnitu
if the other parameters in the experiment remain unchang
Theoretically, the stability of a condensate moving in a pe
odic potential has been examined for relatively low values
the two-body interaction@7#, and such studies should be e
tended to higher values of the interaction, where the sw
lowtail develops.

We are grateful to D. Aristov and S. J. Chang for ve
useful discussions.
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