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Scenario of strongly nonequilibrated Bose-Einstein condensation
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Large scale numerical simulations of the Gross-Pitaevskii equation are used to elucidate the self-evolution of
a Bose gas from a strongly nonequilibrium initial state. The stages of the process confirm and refine the
theoretical scenario of Bose-Einstein condensation developed by Svistunov and co-workers@J. Mosc. Phys.
Soc.1, 373 ~1991!; Sov. Phys. JETP75, 387 ~1992!; 78, 187 ~1994!#: the system evolves from the regime of
weak turbulence to superfluid turbulence via states of strong turbulence in the long-wavelength region of
energy space.
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I. INTRODUCTION

A. Statement of the problem

The experimental realization of Bose-Einstein cond
sates~BEC! in dilute alkali-metal and hydrogen gases@1#
and more recently in a gas of metastable helium@2# has
stimulated great interest in the dynamics of BEC. In the c
of a pure condensate, both the equilibrium and dynam
properties of the system can be described by the Gr
Pitaevskii equation~GPE! @3# ~in nonlinear physics this
equation is known as the defocusing nonlinear Schro¨dinger
equation!. The GPE has been remarkably successful in p
dicting the condensate shape in an external potential,
dynamics of the expanding condensate cloud, and the mo
of quantized vortices; it is also a popular qualitative mode
superfluid helium.

An important and often overlooked feature of the GPE
that it gives an accurate microscopic description of the f
mation of a BEC from a strongly degenerate gas of wea
interacting bosons@4,5#. By large scale numerical simula
tions of the GPE it is possible, in principle, to reveal all t
stages of this evolution from weak turbulence to superfl
turbulence with a tangle of quantized vortices, as was arg
by Svistunov, Kagan, and Shlyapnikov@6–8# ~for a brief
review, see Ref.@9#!. This task has up to now remained u
fulfilled, although some important steps in this directi
were made in Refs.@10,11#. We would also like to mention
the description of the equilibrium fluctuations of the conde
sate and highly occupiednoncondensatemodes using the
time-dependent GPE@12,13#.

The goal of this paper is to obtain a conclusive descript
of the process of strongly nonequilibrium BEC formation
a macroscopically large uniform weakly interacting Bose g
using the GPE. We are especially interested in tracing
development of the so-called coherent regime@4,6–8# at a
certain stage of evolution. According to the theoretical p
dictions@7,8#, this regime sets in after the breakdown of t
regime of weak turbulence in a low-energy region of wa
number space. It corresponds to the formation of superfl
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short-range order, which is a state of superfluid turbule
with quasicondensate local correlation properties.

The notions of weak turbulence and superfluid turbulen
are crucial to our understanding of ordering kinetics. In t
regime of weak turbulence~for an introduction to weak tur-
bulence theory for the GPE, see Ref.@14#!, the ‘‘single-
particle’’ modes of the field are almost independent due
weak nonlinearity of the system. The smallness of the co
lations between harmonics in the regime of weak turbule
implies the absence of any order. On the other hand,
regime of superfluid turbulence~for an introduction, see Ref
@15#! is the regime of strong coherence where the local c
relation properties correspond to the superfluid state,
long-range order is absent because of the presence of a
otic vortex tangle and nonequilibrium long-wave phono
@8#. In the case of a weakly interacting gas, local superfl
order is synonymous with the existence of quasiconden
correlation properties@7#. In a macroscopically large system
the crossover from weak turbulence to superfluid turbule
is a key ordering process. Indeed, in the regime of we
turbulence there is no order at all, while in the regime
superfluid turbulence~local! superfluid order has alread
been formed. Meanwhile, rigorous theoretical as well as
merical or experimental studies of this stage of evolut
have been lacking. The general conclusions concerning
stage@7,8# were made on the basis of a qualitative analy
that naturally containedad hocelements. The difficulty with
an accurate analysis of the transition from weak turbule
to superfluid turbulence comes from the fact that the evo
tion between these two qualitatively different states ta
place in the regime of strong turbulence, which is hard
amenable to analytical treatment. Large computational
sources are necessary for a numerical analysis of this s
since the problem involves significantly different leng
scales and, therefore, requires high spatial resolution.

In the present paper we demonstrate that this problem
be unambiguously solved with a powerful enough compu
Our numerics clearly reveal the dramatic process of trans
mation from weak turbulence to superfluid turbulence a
thus fills in a serious gap in the rigorous theoretic descript
of strongly nonequilibrated BEC formation kinetics in
macroscopic system.
©2002 The American Physical Society03-1
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The paper is organized as follows. In Sec. I B we disc
the relevance of the time-dependent GPE to the descrip
of BEC formation kinetics and its relation to the other fo
malisms. In Sec. I C we give some important details of
evolution scenario that we are going to observe. In Sec. II
describe our numerical procedure. In Sec. III we present
results of our simulations. In Sec. IV we conclude by outl
ing the observed evolution scenario and making a comm
on the case of a confined gas.

B. Time-dependent Gross-Pitaevskii equation and BEC
formation kinetics

In this section we will discuss the question of applicab
ity of the GPE to BEC formation kinetics, and its conne
tions to other—fully quantum—treatments. This discuss
is especially relevant in the wake of a recent controversy
the applicability of the classical-field description to a no
condensed bosonic field.

A general analysis of the kinetics of a weakly interacti
bosonic field was performed in Ref.@16#. In terms of the
coherent-state formalism, it was demonstrated that if the
cupation numbers are large and somewhat uncertain~with
the absolute value of the uncertainty being much larger t
unity and with the relative value of the uncertainty bei
arbitrarily small!, then the system evolves as an ensemble
classical fields with corresponding classical-field action.~For
an elementary demonstration of this fact for a weakly int
acting Bose gas and especially for a discussion of the st
ture of theinitial state, see Ref.@5#.! This has a direct anal
ogy with the electromagnetic field:~i! the density matrix of a
completely disordered weakly interacting Bose gas w
large and somewhat uncertain occupation numbers is alm
diagonal in the coherent-state representation, so that the
tial state can be viewed as a mixture or statistical ensem
of coherent states;~ii ! to leading order each coherent sta
evolves along its classical trajectory, which in our case
given by the GPE

i\
]c

]t
52

\2

2m
¹2c1Uucu2c, ~1!

wherec is the complex-valued classical field that specifi
the index of the coherent state,m is the mass of the boson
U54p\2a/m is the strength of thed-function interaction
~pseudo!potential, anda is the scattering length.~Note that in
a strongly interacting system it is impossible to divide sing
particle modes into highly occupied and essentially em
ones, so the requirement of weak interactions is esse
here. In a strongly interacting system there are always qu
tum modes with occupation numbers of order unity that
coupled to the rest of the system.! Therefore, the behavior o
the quantum field is equivalent to that of an ensemble
classical matter fields.

It is important to emphasize that in the context of stron
nonequilibrium BEC formation kinetics the condition o
large occupation numbers is self-consistent: the evolu
leads to an explosive increase of occupation numbers in
low-energy region of wave number space@6# where the or-
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dering process takes place. Even if the occupation num
are of order unity in the initial state, so that the classi
matter field description is not yet applicable, the evolutio
which can be described at this stage by the standard Bo
mann quantum kinetic equation, inevitably results in the
pearance of large occupation numbers in the low-energy
gion of the particle distribution~see, e.g., Ref.@17#!. The
blowup scenario@6# indicates that only the low-energy pa
of the field is initially involved in the process. Therefore, o
can switch from the kinetic equation to the matter field d
scription for the long-wavelength component of the field a
certain moment of the evolution when the occupation nu
bers become appropriately large. As the time scale of
formation of the local quasicondensate correlations is m
smaller than any other characteristic time scale of evolut
@7#, the cutoff of the high-frequency modes, associated w
the matter field description, is not important. By the time t
interactions~particle exchange! between the high- and low
frequency modes became significant, the local superfluid
der had already been developed. The interaction wavelen
are of the order of the typical thermal de Broglie waveleng
and therefore these interactions are essentially local with
spect to the quasicondensate and can be described in term
the kinetic equation@6,17#.

The thesis of the applicability of the matter field descr
tion at large occupation numbers was justified by the anal
of Ref. @16#. Later, Stoof questioned the validity of this thes
by introducing the concept of ‘‘quantum nucleation’’ of th
condensate as a result of an essentially quantum instab
@18#; the path-integral version of the Keldysh formalism w
used to substantiate this concept. For a criticism of the c
cept of ‘‘quantum nucleation’’ see Refs.@5,19#.

It is important to emphasize, however, that the pa
integral approach developed in@18# appears to be the mos
fundamental, powerful, and universal way of deriving t
basic equations for the dynamics of a weakly interact
Bose gas. In particular, we believe that the demonstration
the applicability of the time-dependent GPE to the desc
tion of highly occupied single-particle modes of a nonco
densed gas within this formalism would be the most natu
since the effective action for the bosonic field is simply t
classical-field action of the GPE. Basically, one simply has
make sure that for the modes with large and somewhat
certain occupation numbers the main contribution to the p
integral comes from the close vicinity of the classical traje
tories with the quantum corrections being relevant only
large enough times of evolution.

An interesting all-quantum description of the BEC kine
ics was implemented in Ref.@11#. This technique is based o
associating the quantum-field density matrix in the cohere
state representation with a correlator of a pair of class
fields, whose evolution is governed by a system of t
coupled nonlinear equations with stochastic terms. Using
method the authors performed a numerical simulation
BEC formation in a trapped gas of a moderate size. We
lieve ~in particular, in view of the general results of Ref
@5,16#! that this approach might be further developedana-
lytically to demonstrate explicit overlapping with the oth
treatments and with the time-dependent GPE. Indeed,
3-2
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SCENARIO OF STRONGLY NONEQUILIBRATED BOSE- . . . PHYSICAL REVIEW A 66, 013603 ~2002!
form of the system of two coupled equations of Ref.@11# is
reminiscent of that of the GPE. This suggests that under
condition of large occupation numbers the system can
decoupled, leading to the GPE for the diagonal part of
density matrix with relative smallness of the nondiago
terms. If the standard Boltzmann equation is applicable
that the system can be viewed as an ensemble of we
coupled elementary modes@20#, it is natural to expect tha
the equations of Ref.@11# should lead to the kinetic equation
A natural way for deriving this kinetic equation from th
dynamical equations of Ref.@11# is to utilize the standard
formalism of the weak turbulence theory. In the case of
GPE, the weak turbulence approximation leads to
quantum-field Boltzmann kinetic equation withoutspontane-
ousscattering processes~see, e.g., Ref.@14#; note also that it
is the simplest way to make sure that the GPE is immedia
applicable once the occupation numbers are large!. It is natu-
ral to expect that in the full-quantum treatment of Ref.@11#
the weak turbulence procedure over the dynamical equat
would result in the complete quantum-field Boltzmann
netic equation with the spontaneous processes retained.
fortunately, we are not aware of such investigations of
equations of Ref.@11#, which might be very instructive for
the general understanding of the dynamics of a weakly in
acting Bose gas.

C. Initial state and evolution scenario

In what follows we consider the evolution of Eq.~1! start-
ing with a strongly nonequilibrium initial condition

c~r ,t50!5(
k

ak exp~ ik•r !, ~2!

where the phases of the complex amplitudesak are distrib-
uted randomly. Such an initial condition follows from th
microscopic quantum-mechanical analysis of the state o
weakly interacting Bose gas in the kinetic regime@5#. Theo-
retical investigations of the relaxation of such an initial st
toward the equilibrium configuration were performed
Svistunov and co-workers@6–8#. The analysis revealed
number of stages in the evolution. Initially the system is
the weak turbulence regime and thus can be described b
Boltzmann kinetic equation. The kinetic equation is obtain
as the random-phase approximation of Eq.~1! for occupation
numbersnk defined by^akak8

* &'nkdkk8. Alternatively, the
weak turbulence kinetic equation follows from the gene
quantum Boltzmann kinetic equation if one neglects spon
neous scattering as compared to stimulated scattering~be-
cause of the large occupation numbers!. Svistunov@6# and
later Semikoz and Tkachev@17# considered the self-simila
solution of the Boltzmann kinetic equation:

ne~ t !5Ae0
2a~ t ! f ~e/e0!, t<t* , ~3!

e0~ t !5B~ t* 2t !1/2(a21), ~4!

f ~x!→x2a at x→`, f ~0!51, ~5!
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wheree5\2k2/2m. The dimensional constantsA and B re-
late to each other by (a21)m3U2A25lp3\7B2(a21),
where the parametersa andl were determined by numerica
analysis asa'1.24 @17# and l'1.2 @6#. The form of the
function f was also determined numerically in Ref.@6#. The
solution ~3!–~5! has only one free parameter, sayA, which
depends on the conditions of the nonuniversal dynamics
ceding the appearance of self-similarity. This dynamics
sensitive to the details of the initial condition or/and cooli
mechanism as well as to the spontaneous-scattering term
the kinetic equation, which cannot be neglected until the
cupation numbers are large enough. When the self-sim
regime sets in at a certain step of evolution all the particu
details of the previous evolution are absorbed in the sin
parameterA.

The self-similar solution~3!–~5! describes a wave in en
ergy space propagating from high to lower energies. T
energy e0(t) defines the ‘‘head’’ of the wave. The wav
propagates in a blow-up fashion:e0(t)→0 andne0

(t)→` as

t→t* . In reality the validity of the kinetic equations assoc
ated with the random-phase approximation breaks do
shortly before the blowup timet* . This moment marks the
beginning of a qualitatively different stage in the evolutio
of the coherent regime: strong turbulence evolves into a q
sicondensate state. In the coherent regime the phases o
complex amplitudesak of the field c become strongly cor-
related and the periods of their oscillations are then com
rable with the evolution times of the occupation numbe
The formation of the quasicondensate is manifested by
appearance of a well-defined tangle of quantized vorti
and, therefore, by the beginning of the final stage of
evolution: superfluid turbulence. In this regime the vort
tangle starts to relax over macroscopically large times.

II. NUMERICAL PROCEDURE

A. Finite-difference scheme

We performed a large scale numerical integration o
dimensionless form of the GPE:

22i
]c

]t
5¹2c1ucu2c, ~6!

starting with a strongly nonequilibrium initial condition. Ou
calculations were done in a periodic boxN3, with N5256,
using a fourth-order~with respect to the spatial variables!
finite-difference scheme. The scheme corresponds to
Hamiltonian system in the discrete variablesc i jk :

i
]c i jk

]t
5

]H

]c i jk*
, ~7!

where
3-3
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H5
1

2 (
i jk

c i jk* @2 1
12 ~c i 12,j ,k2c i 22,j ,k1c i , j 12,k2c i , j 22,k

1c i , j ,k122c i , j ,k22!1 4
3 ~c i 11,j ,k2c i 21,j ,k1c i , j 11,k

2c i , j 21,k1c i , j ,k112c i , j ,k21!#2 1
2 uc i jk u4 ~8!

~in the numerics we set the space step in each direction o
grid asdx5dy5dz51!.

Equation~7! conserves the energyH and the total particle
number ( i jk uc i jk u2 exactly. In time stepping, the leapfro
scheme was implemented:

i
c i jk

n112c i jk
n21

2dt
5S ]H

]c i jk* D n

, ~9!

with dt50.03. To prevent the even-odd instability of th
leapfrog iterations, we introduce the backward Euler step

i
c i jk

n112c i jk
n

dt
5S ]H

]c i jk* D n11

~10!

every 104 time steps. The leapfrog scheme is nondissipat
so the only loss of energy and of the total particle num
occurs during the backward Euler step and, since we t
this step very rarely, these losses are insignificant.

The code was tested against known solutions of the G
vortex rings and rarefaction pulses@21#. The simulations
were performed on a Sun Enterprise 450 server and t
about three months to complete for the main set of calc
tions discussed below.

B. Initial condition

To eliminate the computationally expensive~and the least
physically interesting! transient regime, we started direct
from the self-similar solution Eq.~2! with Eqs. ~3!–~5!, so
that

ak5Ajkn0f ~e/e0! exp@ ifk#, ~11!

where jk and fk are random numbers.~Note that in the
simulations the momentumk is the momentum of the lattice
Fourier transform.! The phasefk is uniformly distributed on
@0,2p# in accordance with the basic statement of the the
of weak turbulence and with the explicit microscopic ana
sis of corresponding quantum field states@5#. The choice of
jk is rather arbitrary: we only fix its mean value to be equ
to unity, introducing, therefore, the parametern0. The weak
turbulence evolution is invariant to the details of the statis
of uaku. By the time the system enters the regime of stro
turbulence, the proper statistics is established automatic
since each harmonic participates in a large number of s
tering events. We tried different distributions forjk and saw
no systematic difference in the evolution picture. The m
set of our simulations was done with the distribution functi
w(jk)5exp(2jk) ~heuristically suggested by equilibrium
Gibbs statistics of harmonics in the noninteracting mode!.
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When choosing the parameters of the initial condition~2!
specified by the complex Fourier amplitudes~11!, we have to
takee0 small enough to be free from the systematic error
large finite differences. On the other hand, takinge0 too
small reduces the physical size of the system. Let us de
one period of the amplitude oscillation astp52p/e0 and the
number of periods before the blowup asP5t* /tp . When
choosing the value ofn0 in combination withe0, we would
like to avoid havingP too small when the time scale of th
kinetic regime becomes too short, or havingP too large
when the finite-size effects~the discreteness of thek) domi-
nate the calculation. Given the maximal available grid s
N5256, we found that it is optimal to taken0515 ande0
51/18, so thattp'113,

t* 54lp3/~a21!e0
2n0

2'893, ~12!

andP'8.

III. DATA PROCESSING AND RESULTS

The instantaneous values of the occupation numb
nk(t)5uak(t)u2 are extremely ‘‘noisy’’ functions of time. To
be able to draw some quantitative comparisons and con
sions we need either to perform some averaging or to d
with some coarse-grained self-averaging characteristics
the particle distribution. Taking the second option, we int
duce shells in momentum space. By thei th shell (i
51,2,3, . . . ) we understand the set of momenta satisfyi
the condition i 21< log2(k/2p), i . The idea behind this
definition is that each shell represents some typical mom
tum ~wavelength! scale and thus allows us to introduce
coarse-grained characteristic of the occupation numbers
responding to a given scale; namely, for each shelli we
introduce the mean occupation numberh i(t)
5( (shell i )nk(t)/Mi , whereMi is the number of harmonics
in the i th shell. The harmonick50, which plays a specia
role ~at the very end of the evolution!, is not assigned to any
shell.

Another instructive coarse-grained characteristic of
particle distribution is the integral distribution functionFk
5(k8<knk8 which shows how many particles have momen
not exceedingk. We use the functionFk to keep track of the
formation of the quasicondensate and to determine the w
number span of the above-the-condensate particles. Thi
formation is used, in particular, for filtering out the high
frequency harmonics in order to interpret the results of
numerical calculations in the superfluid turbulence regim

With the above-introduced quantities we now turn to t
analysis of the results of our numerical simulations. The s
similar character of the evolution is clearly observed in F
1. The insets in Fig. 1 give a comparison of the theoreti
prediction of the evolution of the occupation number fun
tion ne(t) defined by Eq.~3! and the evolution of the firs
and the second shells. The agreement with the theore
predictions@6# is quite good fort,600. After that the nu-
merical solution deviates from the self-similar theoretical s
3-4
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lution, which is the manifestation of the onset of the stro
turbulence stage of evolution.

As follows from the dimensional analysis~see, e.g., Ref.
@9#!, the characteristic timet0 and the characteristic wav
vector k0 at the beginning of the strong turbulence regim
are given by the relations

t* 2t0;C0@\2a15/m3U2A2#1/(2a21), ~13!

k0;C1@AU~m/\!a11#1/(2a21), ~14!

where C0 and C1 are some dimensionless constants. O
numerical results~Fig. 1! indicate that the characteristic tim
of the begining of the strong turbulence regime ist0;600
which together with the theoretical blowup time~12! gives
t* 2t0;300 and implies thatC0;40. After the formation of
the quasicondensate (t.1000), the distribution of particles
acquires a bimodal shape, which is seen in Fig. 2. The sa
characteristic of the distribution is the shoulder, which b

FIG. 1. The time evolution ofh i(t5100j ) in the weak turbu-
lence regime forj 50, . . . ,6. In theinsets we show the theoretica
self-similar solution~3!–~5! ~solid line! and the solution obtained
through the numerical integration of Eq.~6! ~dashed line! for the
shellsi 51 ~a! and i 52 ~b!.

FIG. 2. Evolution of the integral distribution of particlesFk

5(k8<knk8 . Notice the appearance of a ‘‘shoulder’’ ofFk indica-
tive of quasicondensate formation. The evolution ofnk50 is pre-
sented in the inset. Note the strong fluctuations typical for the e
lution of a single harmonic. The fluctuations are also seen in
graph of the first shell@see inset~a! of Fig. 1#.
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comes sharper and sharper as the evolution continues.
that by definition of the functionFk the height of the shoul-
der is equal to the number of quasicondensate partic
From Fig. 2 we estimatek0 as the characteristic wave num
ber at whichFk(t5600) changes its slope, so thatk0;15,
which implies that

C1;C0;40. ~15!

Within the coherent regime the momentum distribution
the harmonics yields a rather incomplete picture of the e
lution and it becomes reasonable to follow the ordering p
cess in coordinate space. It is important to trace the topol
cal defects in the phase of the long-wavelength part of
complex matter fieldc since the transformation of these d
fects into a tangle of well-separated vortex lines is the m
essential feature of superfluid short-range ordering@8#. To
this end we first filter out the high-frequency harmonics
performing the transformation ak→akmax$12k2/kc

2,0%,
wherekc is a cutoff wave number. When the functionFk has
a pronounced quasicondensate shoulder, the natural cho
to takekc somewhat larger than the momentum of the sho
der in order to remove the above-the-condensate part of
field c. In the regime of weak turbulence, when there is
quasicondensate, the procedure of filtering is ambiguous:
distribution is not bimodal, so there is no special low m
mentumkc ; also, the structure of the defects in the filter
field essentially depends on the cutoff parameter and thus
no physical meaning.

The results of visualizing the topological defects are p
sented in Fig. 3. The formation of a tangle of well-separa
vortices and the decay of superfluid turbulence are cle
seen. This is the key point of our simulation. To the best
our knowledge, this is the first unambiguous demonstrat
of the formation of the state of superfluid turbulence in t
course of self-evolution of a weakly interacting Bose g
This result forms a solid basis for the analysis of the furth

-
e

FIG. 3. Evolution of topological defects in the phase of t

long-wavelength partc̃ of the field c in the computational box

2563. The defects are visualized by isosurfacesuc̃u250.05̂ uc̃u2&.
High-frequency spatial waves are suppressed by the factor m$1
2k2/kc

2,0%, where the cutoff wave number is chosen according to
phenomenological formulakc592t/1000.
3-5
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NATALIA G. BERLOFF AND BORIS V. SVISTUNOV PHYSICAL REVIEW A66, 013603 ~2002!
stages of long-range ordering in terms of the well-develo
theory of superfluid turbulence that was performed in R
@8# ~see also Ref.@22#!.

The characteristic time of the evolution of the vort
tangle depends on the typical interline spacingR as
R2/ln(R/a0), wherea0 is the vortex core size~see, e.g.,@8#!.
During the final stage of evolution, whenR is of the order of
the linear size of the computational box, the slowing down
the relaxation process makes numerical simulation of the
nal stage of the vortex tangle decay enormously expensiv
a large computational box. For example, according to
above-mentioned estimate of the relaxation time, to achi
the complete disappearance of the vortex tangle in ouN
5256 system we would need several years. To observe
final stage of the vortex tangle decay, we repeated the ca
lations for a smaller computational box withN5128 ~reduc-
ing in this way the computational time by a factor of;32
523322); see Fig. 4. Parameters of the initial condition a
e51/2 andn052p, so that the number of periods before t
blowup isP'5. A single vortex ring remains att54000 as
a result of the turbulence decay; see Fig. 5~a!.

The above-mentioned filtering method allows us to vis
alize the position of the core of a quantized vortex line, b
not the actual size of the core, since we force the solutio
be represented by a relatively small number of harmonics
get a better representation of the actual size of the cor
well as to resolve another objects of interest—rarefact
pulses@21#, which are likely to appear in the course of tran
formation of strong turbulence into superflu
turbulence—we implement a different type of filtering bas
on time averaging. We introduce a Gaussian-weighted t
average of the fieldc:

FIG. 4. Evolution of topological defects in the phase of t

long-wavelength partc̃ of the field c in the computational box

1283. The defects are visualized by isosurfacesuc̃u250.05̂ uc̃u2&.
High-frequency spatial waves are suppressed by the factor m$1
2k2/kc

2,0%, where the cutoff wave number is chosen according to
phenomenological formulakc592t/1000.
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ĉ i jk~ t !5E c i jk~t!exp@2~t2t !2/100#dt. ~16!

The width of the Gaussian kernel in Eq.~16! is chosen in
such a way that the~disordered! high-frequency part of the
field c is averaged out, revealing the strongly correlated lo
frequency partĉ. Figure 5 compares the density isosurfac
obtained by two different methods: by high-frequency su
pression@Fig. 5~a!# and by time averaging@Fig. 5~b!#. In the
latter case we reveal the actual shape of the vortex core
resolve the rarefaction pulses.

IV. CONCLUSION

We have performed large scale numerical simulations
the process of strongly nonequilibrated Bose-Einstein c
densation in a uniform weakly interacting Bose gas. In
limit of weak interactions under the condition of stron
enough deviation from equilibrium, the key stage of orderi
dynamics—superfluid turbulence formation—is univers
and corresponds to the process of self-ordering of a class
matter field whose dynamics is governed by the tim
dependent Gross-Pitaevskii equation~defocusing nonlinear
Schrödinger equation!. The universality implies indepen
dence of the evolution of the details of initial processes s
as, for example, the cooling mechanism and rate as well a
quantum effects such as spontaneous scattering. All the
formation about the evolution preceding the universal st
is absorbed in the single parameterA that defines the scaling
of the characteristic time and wave number in accorda
with Eqs.~13!–~15!.

The most important features of the BEC formation sc
nario observed in our simulation are as follows. The lo
energy part of the quantum field, characterized by large
cupation numbers and described by a classical comp
matter fieldc obeying Eq.~1!, initially evolves in a weak
turbulent self-similar fashion according to Eqs.~3!–~5!. The
occupation numbers at small energies become progress
larger. At the characteristic time momentt0, given by Eq.
~13!, close to the formal blowup timet* of the solution
~3!–~5!, the self-similarity of the energy distribution break

e

FIG. 5. Comparison of two isosurfaces obtained by differe
filtering techniques. The solution att54000 is obtained by numeri
cal integration of Eq.~6! in the periodic box withN5128. The

isosurfaceuc̃u250.05̂ uc̃u2& is plotted in ~a! using high-frequency

filtering with kc55. The isosurfaceuĉu250.2̂ uĉu2& is plotted in

~b!, whereĉ is defined by Eq.~16!.
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down. The distribution gradually becomes bimodal; the lo
energy quasicondensate part of the field sets to a stat
superfluid turbulence characterized by a tangle of vor
lines. The further evolution of the quasicondensate is in
pendent of the rest of the system~apart from a permanen
flux of the particles into the quasicondensate! and basically is
the process of relaxation of superfluid turbulence. All vort
lines relax in a macroscopically large time.

In the present paper we considered the case of ma
scopically large uniform system. As far as the case o
trapped gas is concerned, the situation becomes sensiti
the competition between finite size and nonlinear effects
nonlinear effects dominate, the basic physics of the orde
process is predicted to be analogous to that revealed by
simulation@23#. If finite-size effects dominate~which means
that the initial size of the condensate is smaller than
corresponding healing length, so that, for example, vorti
cannot arise in principle@23#!, the ordering kinetics is sub
stantially simplified, being reduced to the growth of a gen
2

.

id

is

01360
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of
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x
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ine condensate@20,24#. Clearly, our numerical approach ca
be extended to the case of a trapped Bose gas by sim
including a term with an external potential in Eq.~1!. Such a
simulation could provide a deeper interpretation of the fi
experiments on the kinetics of BEC formation@25,26#, an-
swering, in particular, the question of whether the proc
involves the formation of a vortex tangle; and if not, und
what conditions one may expect formation of superfluid t
bulence~quasicondensate! in a realistic experimental situa
tion.
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