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Scenario of strongly nonequilibrated Bose-Einstein condensation
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Large scale numerical simulations of the Gross-Pitaevskii equation are used to elucidate the self-evolution of
a Bose gas from a strongly nonequilibrium initial state. The stages of the process confirm and refine the
theoretical scenario of Bose-Einstein condensation developed by Svistunov and co-Warkdosc. Phys.
Soc.1, 373(1991); Sov. Phys. JETR5, 387(1992; 78, 187 (1994]: the system evolves from the regime of
weak turbulence to superfluid turbulence via states of strong turbulence in the long-wavelength region of
energy space.
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[. INTRODUCTION short-range order, which is a state of superfluid turbulence
with quasicondensate local correlation properties.

The notions of weak turbulence and superfluid turbulence

The experimental realization of Bose-Einstein condengre crucial to our understanding of ordering kinetics. In the
sates(BEC) in dilute alkali-metal and hydrogen gasgl|  regime of weak turbulencéor an introduction to weak tur-
and more recently in a gas of metastable helil2h has  pylence theory for the GPE, see R§t4]), the “single-
stimulated great interest in the dynamics of BEC. In the cas@article” modes of the field are almost independent due to
of a pure condensate, both the equilibrium and dynamicajyeak nonlinearity of the system. The smallness of the corre-
properties of the system can be described by the Grosgations between harmonics in the regime of weak turbulence
Pitaevskii equation(GPE [3] (in nonlinear physics this mplies the absence of any order. On the other hand, the
equation is known as the defocusing nonlinear Sgimger  regime of superfluid turbulendéor an introduction, see Ref.
equation. The GPE has been remarkably successful in prefy5)) is the regime of strong coherence where the local cor-
dicting the condensate shape in an external potential, thgyation properties correspond to the superfluid state, but

d%/namut:_s O(]; thet_expgrl:j_mgIcondensa’:e clou<|j_,t ind the g“l)t' Bng-range order is absent because of the presence of a cha-
of quantized vortices, 1t1s also a popular qualitative model ol ;4 ek tangle and nonequilibrium long-wave phonons

superfluid helium. . : :
An important and often overlooked feature of the GPE is[8gj' In_the case of & Wegﬁlyr:ntere_lctmg gasf, Ioca! supderflwd
that it gives an accurate microscopic description of the forOrder 1S synonymous with the emstencg of quasicondensate
mation of a BEC from a strongly degenerate gas of Weakl)}:orrelatlon propertief7]. In a macroscopically Iarge system,
interacting bosong4,5]. By large scale numerical simula- fthe crossover f_rom weak turbulence t_o superflu_ld turbulence
tions of the GPE it is possible, in principle, to reveal all the!S @ key ordering process. Indeed, in the regime of weak
stages of this evolution from weak turbulence to superfluidurbulence there is no order at all, while in the regime of
turbulence with a tangle of quantized vortices, as was arguedtPerfluid turbulencelocal) superfiuid order has already
by Svistunov, Kagan, and Shlyapnikg6—8] (for a brief ~ been formed. Meanwhile, rigorous theoretical as well as nu-
review, see Refl9]). This task has up to now remained un- merical or experimental studies of this stage of evolution
fulfilled, although some important steps in this directionhave been lacking. The general conclusions concerning this
were made in Refd.10,11]. We would also like to mention stage[7,8] were made on the basis of a qualitative analysis
the description of the equilibrium fluctuations of the conden-that naturally containedd hocelements. The difficulty with
sateand highly occupiednoncondensatenodes using the an accurate analysis of the transition from weak turbulence
time-dependent GPEL2,13. to superfluid turbulence comes from the fact that the evolu-
The goal of this paper is to obtain a conclusive descriptiortion between these two qualitatively different states takes
of the process of strongly nonequilibrium BEC formation in place in the regime of strong turbulence, which is hardly
a macroscopically large uniform weakly interacting Bose gasamenable to analytical treatment. Large computational re-
using the GPE. We are especially interested in tracing theources are necessary for a numerical analysis of this stage
development of the so-called coherent regiMég—8 at a  since the problem involves significantly different length
certain stage of evolution. According to the theoretical prescales and, therefore, requires high spatial resolution.
dictions[7,8], this regime sets in after the breakdown of the In the present paper we demonstrate that this problem can
regime of weak turbulence in a low-energy region of wavebe unambiguously solved with a powerful enough computer.
number space. It corresponds to the formation of superfluiur numerics clearly reveal the dramatic process of transfor-
mation from weak turbulence to superfluid turbulence and
thus fills in a serious gap in the rigorous theoretic description
*Electronic address: nberloff@math.ucla.edu of strongly nonequilibrated BEC formation kinetics in a
"Electronic address: svist@kurm.polyn.kiae.su macroscopic system.

A. Statement of the problem
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The paper is organized as follows. In Sec. | B we discusglering process takes place. Even if the occupation numbers
the relevance of the time-dependent GPE to the descriptioare of order unity in the initial state, so that the classical
of BEC formation kinetics and its relation to the other for- matter field description is not yet applicable, the evolution,
malisms. In Sec. | C we give some important details of thewhich can be described at this stage by the standard Boltz-
evolution scenario that we are going to observe. In Sec. Il Wenann quantum kinetic equation, inevitably results in the ap-
describe our numerical procedure. In Sec. Il we present thgearance of |arge Occupation numbers in the |ow_energy re-
results of our simulations. In Sec. IV we conclude by outlin-gion of the particle distributior(see, e.g., Ref[17]). The
ing the observed evolution scenario and making a commemjoup scenarid6] indicates that only the low-energy part

on the case of a confined gas. of the field is initially involved in the process. Therefore, one
can switch from the kinetic equation to the matter field de-

B. Time-dependent Gross-Pitaevskii equation and BEC scription for the long-wavelength component of the field at a
formation kinetics certain moment of the evolution when the occupation num-

In this section we will discuss the question of applicabil-bers become appropriately large. As the time scale of the
ity of the GPE to BEC formation kinetics, and its connec- formation of the local quasicondensate correlations is much
tions to other—fully quantum—treatments. This discussionsmaller than any other characteristic time scale of evolution
is especially relevant in the wake of a recent controversy oh/], the cutoff of the high-frequency modes, associated with
the applicability of the classical-field description to a non-the matter field description, is not important. By the time the
condensed bosonic field. interactions(particle exchangebetween the high- and low-

A general analysis of the kinetics of a weakly interactingfrequency modes became significant, the local superfluid or-
bosonic field was performed in Ref16]. In terms of the der had already been developed. The interaction wavelengths
coherent-state formalism, it was demonstrated that if the ocare of the order of the typical thermal de Broglie wavelength
cupation numbers are large and somewhat uncefiaith and therefore these interactions are essentially local with re-
the absolute value of the uncertainty being much larger thagPect to the quasicondensate and can be described in terms of
unity and with the relative value of the uncertainty beingthe kinetic equatior6,17].
arbitrarily smal), then the system evolves as an ensemble of The thesis of the applicability of the matter field descrip-
classical fields with corresponding classical-field actigior ~ tion at large occupation numbers was justified by the analysis
an elementary demonstration of this fact for a weakly inter0f Ref.[16]. Later, Stoof questioned the validity of this thesis
acting Bose gas and especially for a discussion of the strudy introducing the concept of “quantum nucleation” of the
ture of theinitial state see Ref[5].) This has a direct anal- condensate as a result of an essentially quantum instability
ogy with the electromagnetic field) the density matrix of a  [18]; the path-integral version of the Keldysh formalism was
completely disordered weakly interacting Bose gas withused to substantiate this poncept. For a criticism of the con-
large and somewhat uncertain occupation numbers is almo§€Pt of “quantum nucleation” see Reft5,19].
diagonal in the coherent-state representation, so that the ini- It is important to emphasize, however, that the path-
tial state can be viewed as a mixture or statistical ensembli&tegral approach developed i8] appears to be the most
of coherent statedji) to leading order each coherent state fundamental, powerful, and universal way of deriving the
evolves along its classical trajectory, which in our case ifasic equations for the dynamics of a weakly interacting

given by the GPE Bose gas. In _particular, we believe that the demonstration of
the applicability of the time-dependent GPE to the descrip-

dY h? ) ) tion of highly occupied single-particle modes of a noncon-

i o ﬁv g+ Uy, D) densed gas within this formalism would be the most natural

since the effective action for the bosonic field is simply the

classical-field action of the GPE. Basically, one simply has to
where ¢ is the complex-valued classical field that specifiesmake sure that for the modes with large and somewhat un-
the index of the coherent state, is the mass of the boson, certain occupation numbers the main contribution to the path
U=4mh?a/m is the strength of thes-function interaction integral comes from the close vicinity of the classical trajec-
(pseudgpotential, anda is the scattering lengtliNote thatin  tories with the quantum corrections being relevant only at
a strongly interacting system it is impossible to divide single-large enough times of evolution.
particle modes into highly occupied and essentially empty An interesting all-quantum description of the BEC kinet-
ones, so the requirement of weak interactions is essentiats was implemented in Rdf11]. This technique is based on
here. In a strongly interacting system there are always quarassociating the quantum-field density matrix in the coherent-
tum modes with occupation numbers of order unity that arestate representation with a correlator of a pair of classical
coupled to the rest of the systeritherefore, the behavior of fields, whose evolution is governed by a system of two
the quantum field is equivalent to that of an ensemble otoupled nonlinear equations with stochastic terms. Using this
classical matter fields. method the authors performed a numerical simulation of

It is important to emphasize that in the context of stronglyBEC formation in a trapped gas of a moderate size. We be-

nonequilibrium BEC formation kinetics the condition of lieve (in particular, in view of the general results of Refs.
large occupation numbers is self-consistent: the evolution5,16]) that this approach might be further developsta-
leads to an explosive increase of occupation numbers in thigtically to demonstrate explicit overlapping with the other
low-energy region of wave number spd@& where the or- treatments and with the time-dependent GPE. Indeed, the
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form of the system of two coupled equations of Réfl] is  where e=%2k?/2m. The dimensional constanfs andB re-
reminiscent of that of the GPE. This suggests that under thiate to each other by o(—1)m3U2A%=\73%"B2(@~ 1),
condition of large occupation numbers the system can behere the parametetsand\ were determined by numerical
decoupled, leading to the GPE for the diagonal part of theynalysis ase~1.24[17] and A\~1.2 [6]. The form of the
density matrix with relative smallness of the nondiagonalkynction f was also determined numerically in RE8]. The
terms. If the standard Boltzmann equation is applicable, sQq|ytion (3)—(5) has only one free parameter, saywhich

that the system can be viewed as an ensemble of weaklyapends on the conditions of the nonuniversal dynamics pre-
cr?upled glemer;tgry ?Odggol]a :t 'Sd natLrJ]raII(Fo expect thal  ceging the appearance of self-similarity. This dynamics is
the equations of Ref11] should lead to the kinetic equation. sensitive to the details of the initial condition or/and cooling

A natu_ral way fqr deriving this _k|net|c Lequation from the mechanism as well as to the spontaneous-scattering terms in
dynamical equations of Refl1l] is to utilize the standard he kineti tion. which cannot be nealected until the oc-
formalism of the weak turbulence theory. In the case of thet € KInetic equation, 9 o
GPE, the weak turbulence approximation leads to theCUp.atlon nur_nbers are '?‘rge enough. When the self-§|m|lar
guantum-field Boltzmann kinetic equation with@gontane- regime sets in at a certain ste.p of evolution all the partpular
ousscattering processésee, e.g., Ref14]; note also that it details of the previous evolution are absorbed in the single
is the simplest way to make sure that the GPE is immediatelfarametei. _ _ _
applicable once the occupation numbers are Jaigés natu- The self-similar sol_utlor(S)—(S)_ describes a wave in en-
ral to expect that in the full-quantum treatment of Rdfl] ~ €rgy space propagating from high to lower energies. The
the weak turbulence procedure over the dynamical equatior¥1€rgy €o(t) defines the “head” of the wave. The wave
would result in the complete quantum-field Boltzmann ki- Propagates in a blow-up fashiog(t) —0 andn, (t)—x as
netic equation with the spontaneous processes retained. Up=st, . In reality the validity of the kinetic equations associ-
fortunately, we are not aware of such investigations of theyted with the random-phase approximation breaks down
equations of Ref[11], which might be very instructive for  shortly before the blowup time, . This moment marks the
the general understanding of the dynamics of a weakly interheginning of a qualitatively different stage in the evolution

acting Bose gas. of the coherent regime: strong turbulence evolves into a qua-
sicondensate state. In the coherent regime the phases of the
C. Initial state and evolution scenario complex amplitudes, of the field ¥ become strongly cor-

related and the periods of their oscillations are then compa-
rable with the evolution times of the occupation numbers.
The formation of the quasicondensate is manifested by the
appearance of a well-defined tangle of quantized vortices
w(r,t=0)=2 aexplik-r), (2 and, therefore, by the beginning of the final stage of the
K evolution: superfluid turbulence. In this regime the vortex
tangle starts to relax over macroscopically large times.

In what follows we consider the evolution of Eq.) start-
ing with a strongly nonequilibrium initial condition

where the phases of the complex amplitudgsare distrib-
uted randomly. Such an initial condition follows from the

microscopic quantum-mechanical analysis of the state of a Il. NUMERICAL PROCEDURE
weakly interacting Bose gas in the kinetic regif®¢. Theo- S
retical investigations of the relaxation of such an initial state A. Finite-difference scheme

toward the equilibrium configuration were performed by e performed a large scale numerical integration of a
Svistunov and co-workerf6—8]. The analysis revealed a dimensionless form of the GPE:

number of stages in the evolution. Initially the system is in

the weak turbulence regime and thus can be described by the 0 ) )

Boltzmann kinetic equation. The kinetic equation is obtained —2i— =Vt |gty, (6)
as the random-phase approximation of Eg.for occupation

numbersn, defined by(aka’k*,>~nk5kk/. Alternatively, the

weak turbulence kinetic equation follows from the generalstarting with a strongly nonequilibrium initial condition. Our
quantum Boltzmann kinetic equation if one neglects spontacalculations were done in a periodic bd®, with N= 256,
neous scattering as compared to stimulated scattédeg using a fourth-ordefwith respect to the spatial variabes
cause of the large occupation numbeSvistunov[6] and finite-difference scheme. The scheme corresponds to the
later Semikoz and Tkacheg\W7] considered the self-similar Hamiltonian system in the discrete variablgg, :

solution of the Boltzmann kinetic equation:

né(t):Aeaa(t)f(Glfo), tst* ’ (3) al//'llk _ oH (7)
_ Tt _a‘ﬁﬁk’
eo(t)=B(t, —t)"2™ Y, 4
f(x)—x"¢ at x—owo, f(0)=1, (5  where
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1 ) When choosing the parameters of the initial conditi@n
H=3 > Pl — 5oy i2jkt Yijrok— Yij—2k specified by the complex Fourier amplitudé4), we have to
1k take e small enough to be free from the systematic error of

a2 Vi) T3 Yiogjkt Yk large finite differences. On the other hand, takigg too
- v a ) "; o small reduces the physical size of the system. Let us define
=ikt Ui Y01 2 i (8 one period of the amplitude oscillation gs=27/€, and the

_ . . - number of periods before the blowup Bs=t, /t,. When
(in the numerics we set the space step in each direction of théhoosing the value afi, in combination witheo, we would
grid asdx=dy=dz=1). like to avoid havingP too small when the time scale of the
Equation(7) conserves the energy and the total particle kinetic regime becomes too short, or haviRgtoo large
number =, | ¢j|> exactly. In time stepping, the leapfrog when the finite-size effectéhe discreteness of the domi-
scheme was implemented: nate the calculation. Given the maximal available grid size
N=256, we found that it is optimal to take,=15 ande
i ( H )” =1/18, so that,~113,
| = )
2dt 5¢/,i*jk

9
t, =4\l (a—1)e3n3~893, (12)

with dt=0.03. To prevent the even-odd instability of the
leapfrog iterations, we introduce the backward Euler step

andP~8.
ilﬂﬂzl_lﬂ{}k:( 9H )n+1
dt Pk

(10
IIl. DATA PROCESSING AND RESULTS

every 10 time steps. The leapfrog scheme is nondissipative, 1h€ Instantaneous values of the occupation numbers
so the only loss of energy and of the total particle numbefk(t) =|ax(t)|* are extremely “noisy” functions of time. To
occurs during the backward Euler step and, since we takB€ @ble to draw some quantitative comparisons and conclu-
this step very rarely, these losses are insignificant. sions we need either to perform some averaging or to deal
The code was tested against known solutions of the GPBYith some coarse-grained self-averaging characteristics of
vortex rings and rarefaction pulsé21]. The simulations the particle d_|str|but|on. Taking the second option, we intro-
were performed on a Sun Enterprise 450 server and toofuc€ shells in momentum space. By théth shell (

about three months to complete for the main set of calcula=1,2,3 - . -) weunderstand the set of momenta satisfying
tions discussed below. the conditioni—1<log,(k/27r)<i. The idea behind this

definition is that each shell represents some typical momen-
tum (wavelength scale and thus allows us to introduce a
coarse-grained characteristic of the occupation numbers cor-
To eliminate the computationally expensitand the least responding to a given scale; namely, for each shelle
physically interestingtransient regime, we started directly introduce the mean occupation numbery;(t)

B. Initial condition

from the self-similar solution Eq(2) with Egs. (3)—(5), so  =X=6"lDn, (t)/M,;, whereM; is the number of harmonics
that in the ith shell. The harmoni&=0, which plays a special
_ role (at the very end of the evolutignis not assigned to any

ax= Véxnof (€ o) exli ], (1) shell.

Another instructive coarse-grained characteristic of the
where &, and ¢, are random numbergNote that in the particle distribution is the integral distribution functid®,
simulations the momentui is the momentum of the lattice =3,,_,n,, which shows how many particles have momenta
Fourier transform.The phasep, is uniformly distributed on  not exceedind. We use the functiofr, to keep track of the
[0,27] in accordance with the basic statement of the theorformation of the quasicondensate and to determine the wave
of weak turbulence and with the explicit microscopic analy-number span of the above-the-condensate particles. This in-
sis of corresponding quantum field stafé$ The choice of formation is used, in particular, for filtering out the high-
& 1s rather arbitrary: we only fix its mean value to be equalfrequency harmonics in order to interpret the results of our
to unity, introducing, therefore, the parameigt The weak numerical calculations in the superfluid turbulence regime.
turbulence evolution is invariant to the details of the statistics With the above-introduced quantities we now turn to the
of |a,]. By the time the system enters the regime of stronganalysis of the results of our numerical simulations. The self-
turbulence, the proper statistics is established automaticallgimilar character of the evolution is clearly observed in Fig.
since each harmonic participates in a large number of scat. The insets in Fig. 1 give a comparison of the theoretical
tering events. We tried different distributions f§f and saw  prediction of the evolution of the occupation number func-
no systematic difference in the evolution picture. The maintion n(t) defined by Eq(3) and the evolution of the first
set of our simulations was done with the distribution functionand the second shells. The agreement with the theoretical
w(&) =exp(—§&) (heuristically suggested by equilibrium predictions[6] is quite good fort<<600. After that the nu-
Gibbs statistics of harmonics in the noninteracting mpdel merical solution deviates from the self-similar theoretical so-
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FIG. 1. The time evolution ofy;(t=100j) in the weak turbu-
lence regime foij =0, . .. 6. In theinsets we show the theoretical  F|G. 3. Evolution of topological defects in the phase of the
self-similar solutlon_(S)—.(S) (soll_d line) and the solutlpn obtained long-wavelength part~// of the field ¢ in the computational box
through the numerical integration of E(5) (dashed ling for the 3 . . . ~ ~ 12
shellsi=1 (a) andi=2 (b). 256°. The defects are visualized by isosurfa¢e$>=0.05|y|?).

High-frequency spatial waves are suppressed by the factoflmax
—k2/k§,o}, where the cutoff wave number is chosen according to the

lution, which is the manifestation of the onset of the Strongphenomenological formulls,= 9 t/1000.

turbulence stage of evolution.

As follows from the dimensional analysisee, e.g., Ref.
[9]), the characteristic timé, and the characteristic wave
vector ky at the beginning of the strong turbulence regime
are given by the relations

comes sharper and sharper as the evolution continues. Note
that by definition of the functiorr, the height of the shoul-

der is equal to the number of quasicondensate particles.
From Fig. 2 we estimatk, as the characteristic wave num-
ber at whichF,(t=600) changes its slope, so thaj~ 15,
which implies that

ko~ Ci[AU(m/A) e +1]Ha=D), (14 C1~Co~40. (15

t*_t0~Co[h2a+5/m3u2A2]l/(2a71), (13)

where C, and C, are some dimensionless constants. Our jithin the coherent regime the momentum distribution of
numerical resultsFig. 1) indicate that the characteristic time the harmonics yields a rather incomplete picture of the evo-
of the begining of the strong turbulence regimetjs-600  |ytion and it becomes reasonable to follow the ordering pro-
which together with the theoretical blowup tint&2) gives  cess in coordinate space. It is important to trace the topologi-
t, —to~300 and implies tha€,~40. After the formation of  ¢a| defects in the phase of the long-wavelength part of the
the quasicondensateé> 1000), the distribution of particles complex matter fields since the transformation of these de-
acquires a bimodal shape, which is seen in Fig. 2. The saliefiécts into a tangle of well-separated vortex lines is the most
characteristic of the distribution is the shoulder, which be-essentia| feature of superfluid short-range ordeﬁ&h To
this end we first filter out the high-frequency harmonics by
performing the transformation a,— a,max1—k%/k2,0},
wherek, is a cutoff wave number. When the functiép has
a pronounced quasicondensate shoulder, the natural choice is
to takek. somewhat larger than the momentum of the shoul-
der in order to remove the above-the-condensate part of the
field . In the regime of weak turbulence, when there is no
guasicondensate, the procedure of filtering is ambiguous: the
distribution is not bimodal, so there is no special low mo-
mentumk, ; also, the structure of the defects in the filtered
field essentially depends on the cutoff parameter and thus has
/‘.' 0 5="T600 2000 3000 @000 T no phySicaI meani_ng. o )
- : : The results of visualizing the topological defects are pre-
sented in Fig. 3. The formation of a tangle of well-separated
FIG. 2. Evolution of the integral distribution of particles, ~ Vortices and the decay of superfluid turbulence are clearly
=S - . Notice the appearance of a “shoulder” Bf indica-  S€€n. This is the key point of our simulation. To the best of
tive of quasicondensate formation. The evolutiomgE0 is pre-  our knowledge, this is the first unambiguous demonstration
sented in the inset. Note the strong fluctuations typical for the evoof the formation of the state of superfluid turbulence in the
lution of a single harmonic. The fluctuations are also seen in th&€ourse of self-evolution of a weakly interacting Bose gas.
graph of the first shellsee inseta) of Fig. 1]. This result forms a solid basis for the analysis of the further

6
10°F; | eeee =600 ¢ = 3000

e = t=1000 o— 1 = 5000
1.50 ¢

e == t=2000

1..25:

1.00 ¢

0.75 t

0.50

0.25

0 10 20 30 40 50 k
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FIG. 5. Comparison of two isosurfaces obtained by different
filtering techniques. The solution &t 4000 is obtained by numeri-
cal integration of Eq.(6) in the periodic box withN=128. The

isosurface|y/|2=0.05|%|?) is plotted in(a) using high-frequency
filtering with k.=5. The isosurfacé#|?=0.2|#|?) is plotted in
(b), where is defined by Eq(16).

D)= f Uiy(Dexd — (r—0Z100dr. (16

FIG. 4. Evolution of topological defects in the phase of the The width of the Gaussian kernel in E@L6) is chosen in
long-wavelength pary of the field ¢ in the computational box such a way that thédisordered high-frequency part of the
128. The defects are visualized by isosurfa¢es’=0.05||?.  field ¢ is averaged out, revealing the strongly correlated low-
High-frequency spatial waves are suppressed by the factofimax frequency part). Figure 5 compares the density isosurfaces
—kzlkg,O}, where the cutoff wave number is chosen according to thegptained by two different methods: by high_frequency sup-
phenomenological formulle=9—t/1000. pressiorn Fig. 5a)] and by time averaginfFig. 5b)]. In the

stages of long-range ordering in terms of the weII-deveIopeéuatter case we reveal the actual shape of the vortex core and
theory of superfluid turbulence that was performed in Ref/€S0IVe the rarefaction pulses.
[8] (see also Ref.22)).

The characteristic time of the evolution of the vortex IV. CONCLUSION

tangle depends on the typical interline spaci®y as . . :
R%/In(R/ag), wherea, is the vortex core sizésee, e.g.[8)). We have performed large scale numerical simulations of

During the final stage of evolution, whdis of the order of ~ the process of strongly nonequilibrated Bose-Einstein con-
the linear size of the computational box, the slowing down ofdensation in a uniform weakly interacting Bose gas. In the
the relaxation process makes numerical simulation of the filimit of weak interactions under the condition of strong
nal stage of the vortex tangle decay enormously expensive i@nough deviation from equilibrium, the key stage of ordering
a large computational box. For example, according to theglynamics—superfluid turbulence formation—is universal
above-mentioned estimate of the relaxation time, to achievand corresponds to the process of self-ordering of a classical
the complete disappearance of the vortex tangle in ur matter field whose dynamics is governed by the time-
=256 system we would need several years. To observe thidependent Gross-Pitaevskii equati@@efocusing nonlinear
final stage of the vortex tangle decay, we repeated the calciBchralinger equation The universality implies indepen-
lations for a smaller computational box with=128 (reduc-  dence of the evolution of the details of initial processes such
ing in this way the computational time by a factor 6f32  as, for example, the cooling mechanism and rate as well as of
=23%2?); see Fig. 4. Parameters of the initial condition arequantum effects such as spontaneous scattering. All the in-
€=1/2 andny= 2, so that the number of periods before the formation about the evolution preceding the universal stage
blowup isP~5. A single vortex ring remains at=4000 as is absorbed in the single paramefethat defines the scaling
a result of the turbulence decay; see Figr)5 of the characteristic time and wave number in accordance
The above-mentioned filtering method allows us to visu-with Egs.(13)—(15).
alize the position of the core of a quantized vortex line, but The most important features of the BEC formation sce-
not the actual size of the core, since we force the solution tmario observed in our simulation are as follows. The low-
be represented by a relatively small number of harmonics. Tenergy part of the quantum field, characterized by large oc-
get a better representation of the actual size of the core asipation numbers and described by a classical complex
well as to resolve another objects of interest—rarefactiormatter field obeying Eq.(1), initially evolves in a weak
pulseq 21], which are likely to appear in the course of trans-turbulent self-similar fashion according to E¢3)—(5). The
formation of strong turbulence into  superfluid occupation numbers at small energies become progressively
turbulence—we implement a different type of filtering basedlarger. At the characteristic time momety; given by Eg.
on time averaging. We introduce a Gaussian-weighted tim¢l3), close to the formal blowup timeé, of the solution
average of the field: (3)—(5), the self-similarity of the energy distribution breaks
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down. The distribution gradually becomes bimodal; the low-ine condensatf20,24]. Clearly, our numerical approach can
energy quasicondensate part of the field sets to a state bk extended to the case of a trapped Bose gas by simply
superfluid turbulence characterized by a tangle of vortexncluding a term with an external potential in EG). Such a
lines. The further evolution of the quasicondensate is indesimulation could provide a deeper interpretation of the first
pendent of the rest of the systef@part from a permanent experiments on the kinetics of BEC formatip25,26], an-
flux of the particles into the quasicondensated basically is  swering, in particular, the question of whether the process
the process of relaxation of superfluid turbulence. All vortexinvolves the formation of a vortex tangle; and if not, under
lines relax in a macroscopically large time. what conditions one may expect formation of superfluid tur-
In the present paper we considered the case of macrdsulence(quasicondensaten a realistic experimental situa-
scopically large uniform system. As far as the case of dion.
trapped gas is concerned, the situation becomes sensitive to
the competition between finite size and nonlinear effects. If
nonlinear effects dominate, the basic physics of the ordering
process is predicted to be analogous to that revealed by our N.G.B. was supported by the NSF under Grant No. DMS-
simulation[23]. If finite-size effects dominatéavhich means 0104288. B.V.S. acknowledges support from the Russian
that the initial size of the condensate is smaller than thd-oundation for Basic Research under Grant No. 01-02-16508
corresponding healing length, so that, for example, vorticeand from the Netherlands Organization for Scientific Re-
cannot arise in principlg23]), the ordering kinetics is sub- search(NWO). The authors are very grateful to Professor
stantially simplified, being reduced to the growth of a genu-Paul Roberts for fruitful discussions.
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