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Bifurcation effects in coupled Bose-Einstein condensates
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Bifurcation behavior of effective Hamiltonians is investigated for coupled systems of Bose-Einstein con-
densates. Phase-space structure mapped on the Bloch sphere shows a variety of Josephson-related behavior,
systematically classified in the bifurcation analysis, leading to a phase diagram with prediction of some
physical effects.
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When Bose-Einstein condensed~BEC! systems are
coupled, dramatic phenomena occur, owing to macrosc
phase coherence. Effective second-quantized Hamilton
are often used as simple models@1–3,5–7# to bring out the
characteristic behavior of these systems. Very similar Ham
tonians are used@8–10# to model striking effects in vibra-
tional spectra of polyatomic molecules, related to class
nonlinearity and chaos. This paper explores bifurcation p
nomena and their classification as phases of BEC syste
and describes additional BEC effects, possibly accessibl
experiment.

We start with a Hamiltonian for two states, e.g., two BE
traps or two vibrational degrees of freedom in a molecul

Ĥ5v1~n11 1
2 !1v2~n21 1

2 !1a11/2~n11 1
2 !21a22/2~n2

1 1
2 !21a12~n11 1

2 !~n21 1
2 !1 1

2 @b1 1
2 e~n11n211!#

3~a1
†a21a2

†a1!1d~a1
†a1

†a2a21a2
†a2

†a1a1!. ~1!

The Hamiltonian has linear and nonlinear terms, as w
as coupling terms, the first-order one proportional to (a1

†a2

1a2
†a1) being the ‘‘Josephson coupling’’ in BEC system

This Hamiltonian and special cases have been used@1–7# for
coupled BEC systems. It has great familiarity in molecu
spectroscopy@8,9#. Note that subsystems 1 and 2 in Eq.~1!
are not necessarily taken to be identical, e.g., there ca
different trap frequenciesv1 , v2 .

The raising and lowering operators may be used to de
operators that satisfy SU~2! commutation relations,

Î x5 1
2 ~a1

†a21a2
†a1!,

Î y52 i /2~a1
†a22a2

†a1!,

Î z5
1
2 ~a1

†a12a2
†a2!5~n12n2!/2,

Î 5 1
2 ~a1

†a11a2
†a2!5~n11n2!/2. ~2!

The Hamiltonian~1! can be written in terms of the SU~2!
operators as

Ĥ5v0~2Î 11!1@P1~1/2!Q~2Î 11!# Î z1a1Î ~ Î 11!1a1/4

1a2Î z
21@b1 1

2 e~2Î 11!# Î x1d~ Î 1
2 1 Î 2

2 ! ~3!
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v05~v11v2!/2, P5v12v2 , Q5a112a22,

a15a11/21a22/21a12, a25a11/21a22/22a12. ~4!

While the Hamiltonian~3! is defined in terms of states of th
individual traps 1, 2, a representation in terms of symm
trized states is sometimes used@3,8,11#, and will be consid-
ered later. It is easily shown@8# with the use of the SU~2!
algebra that the two representations are equivalent.

In both the BEC and molecular systems, a semiclass
limit is very useful, but this limit arises in rather differen
ways. In a BEC system, each condensatei 51, 2 is described
by a macroscopic wave function of formF5ANie

if i (xi ,t).
Each phasef i can be thought of in terms of spontaneo
breaking of a U~1! gauge symmetry@12,13#, resulting in the
‘‘rigidity’’ of f i . Regarded as a dynamical variable,f i can
be taken as the coordinate of the Goldstone boson co
sponding to the broken U~1! symmetry@12#.

In a molecular vibrational system each boson mode is
oscillator, rather than a field, unlike in the condensate. Ra
than being a macroscopic wave function,ANie

if i (xi ,t) for the
oscillator is a dynamical quantity. It can be regarded a
semiclassical limit@8#, obtained via the ‘‘Heisenberg corre
spondence,’’ of an oscillator coherent state. The rigid se
classical phase angle of the coherent state is the molec
correlate of the broken symmetry.

Systematic analysis of the bifurcation behavior of t
semiclassical Hamiltonian reveals information about d
namical stabilities and instabilities. In molecular physic
these are reflected in the fully quantum dynamics, and
detailed~i.e., not statistical! patterns of the quantum spec
trum @14,15#. In BEC systems, bifurcations are expected
have consequences both for classical behavior and semi
sical corrections.

Even though the physical meaning ofANie
if i (xi ,t) is dif-

ferent in the BEC and molecular systems, the formal an
ogy, along with many of its consequences, is very close. T
semiclassical correlate of the Hamiltonian~3! is

H52v0I 1@P1QI#I z1a1I 21a2I z
2

1@b1eI #AI 22I z
2 cosc1d~ I 22I z

2!cos 2c, ~5!

wherec5(f12f2) and now the semiclassical total actionI
is understood asI 5(n11n211)/25(N11)/2. It is a con-
stant of motion, conjugate to the phase angle (f11f2). In
©2002 The American Physical Society02-1
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the BEC, this constant corresponds to the total particle n
ber; in the molecule, to the total number of vibration
quanta.

The actionI z5(n12n2)/2 is not conserved, soI z and its
conjugate anglec5(f12f2) are the significant dynamica
variables of Hamiltonian~5!. These variables are identifie
in the molecule@16# with the coset space SU~2!/U~1!. In the
condensate, by standard results in quantum field theory@12#,
the coset space SU~2!/U~1! parametrizes the Goldston
modes with coordinatesI z , c which remain after spontane
ous breaking of the dual-condensate SU~2! symmetry to
U~1!.

States of a given energy can be plotted as (I z ,c) trajec-
tories on the Bloch sphere@8,17,6#, parametrized byc as the
azimuthal angle and by the longitudinal anglea with sina
5Iz/I. Examples will be considered below.

We seek to classify and interpret the dynamics of
Hamiltonian~5!, with attention to bifurcations and instabil
ties. A variety of special assumptions are commonly ma
whether the traps are identical@1,3,5–7#, or not @2#; whether
the Josephson coupling has the number dependence give
the parametere; and whether the second-order coupling p
rameterd is significant. This is often reasonable in mo
ecules, but there are important exceptions@11#. The most
common assumption in BEC systems is to taked50, though
this assumption is sometimes relaxed, e.g., in the work
Helmerson and You@18# on ‘‘massive entanglement’’ in
Bose-Einstein systems, where an essential property of
coupling is the assumption thatdÞ0. The consequences fo
the semiclassical dynamics are important, and will be c
sidered later for BEC systems.

We want to obtain as comprehensive a classification
possible, systematically encompassing the special cases
first considerd50, and within this approximation conside
traps that may be identical or different. The Hamiltonian~5!
is then classified@9,10# by just two reduced control param
etersm, L, distilled from the Hamiltonian parameters and t
particle numberN52I 21:

m5~b1eI !/~2a2I !, L5~P1QI !/~2a2I !. ~6!

The parameterm gives the relative strength of the Josephs
coupling term;L the asymmetry between the subsystem
The denominators in Eq.~6! take account of the nonlinear
ties in Eq.~5!. In the BEC system this role is played by th
chemical potentials in the traps; in the molecule system,
anharmonicity of the oscillators. Note that for a given set
Hamiltonian parameters, each total particle numberN5(2I
21) has its own dynamics on a distinct Bloch sphere, c
responding to a distinct pair of reduced control parame
~m, L!.

We now look for the basic periodic orbits of the Ham
tonian, i.e., the normal modes and the new modes bor
their bifurcations. Since the actionI is fixed, and the Hamil-
tonian does not depend on the conjugate angle (f11f2),
these are determined by the fixed points of the two remain
dynamical variablesI z , c, which satisfy

ċ~ I z ,c!5]H/]I z50, İ z~ I z ,c!52]H/]c50. ~7!
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An important consequence of Eqs.~5! and~7! is that all fixed
points lie on the great circle lying in theI x , I z plane, with
I y50, as can be seen from the spheres in Fig. 1. From
~7! the fixed points are the critical points of the Hamiltonia
evaluated on the great circle. We call this the ‘‘pseudopot
tial’’ H(a), where the range ofa is taken as~0, 2p!. The
sphere has symmetry across theI y50 plane. When the
asymmetryL is 0, there is also symmetry across theI z50
plane. ~As will be seen later, the asymmetric situationL
Þ0 has important consequences.! However, the sphere is no
symmetrical across theI y50 plane. This accounts for th
distinction between ‘‘f50 modes’’ and ‘‘f5p modes’’@2#.

A very useful analytical device is to map the bifurcatio
as a function of the control parameter space. This gives
catastrophe map@10,19#. The map gives a complete classifi
cation of the bifurcation behavior of the Hamiltonian. Th
classification can be thought of as a kind of phase diagr
The catastrophe map for the Hamiltonian system~5! ~with
d50! is shown in Fig. 1. A particular experimental arrang

FIG. 1. Catastrophe map of Hamiltonian~5!. Bloch spheres are
shown for indicated points.
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ment is represented as a point on the map, defined by
values of the control parameters~m, L!. As seen in Fig. 1, the
catastrophe map has a ‘‘diamond cusp’’ shape, dividing
parameter space into two zones, or phases, labeled I an
Bifurcations on the sphere occur as zone boundaries
crossed.

We examine the structure of the sphere and the bifu
tions it undergoes as the control parameters are varied,
the physical meaning in the BEC system. First, we cons
the symmetric system, i.e., with asymmetry parameterL
50. This corresponds to two identical traps~though not
identical numbers of particles.!

In zone I, the sphere 1 has an undivided phase spac
has been argued@5# that in the BEC system, this correspon
to a single trap. The sphere has stable fixed points on
equator. One fixed point corresponds to all the particles
the ground vibrational state of the trap, with symmet
single-particle state. The other fixed point corresponds to
the particles in the first excited vibrational state.~In mol-
ecules, the fixed points are the symmetric and antisymme
normal modes.! The ground state has a fixed anglec5(f1
2f2)50.

When the condensate is separated into two traps, e.g
‘‘splitting’’ the single trap with a laser@7#, effectively the
couplingm between condensates 1 and 2 is reduced. On
catastrophe map, there is a cusp at (m,L)5(61,0). A pitch-
fork bifurcation takes place at the cusp, sphere 2, and
system crosses into zone II. This bifurcation is important
molecules@9#, and has been noted in model BEC syste
@1,6#. The bifurcated sphere 3 now has a phase space div
by a separatrix. One of the original fixed points, at the ba
of sphere 3 on the equator, remains stable. In BEC syst
@6#, this is the one with phasec50. In this ‘‘resonance re-
gion’’ of the sphere, Josephson tunneling occurs as osc
tion around the stable equatorial fixed point. The other eq
torial fixed point becomes unstable, with the birth in t
bifurcation of two new stable modes, which correspond
‘‘macroscopic self-trapped’’@2# conditions. As the coupling
m between traps approaches 0, the self-trapped regions g
At m50 the resonance region closes, leaving stable fi
points on the sphere 4 at the north and south poles. Th
represent systems with all the particles in one trap or
other. Trajectories away from the poles represent states
definite I z5(n12n2)/2, hence the numbers of particles
each trap, so there is no Josephson tunneling. Conversely
phasec5(f12f2) is completely indefinite.

These bifurcations and associated changes in the ph
space structure of the sphere are associated with defi
physical effects. For example, the pitchfork bifurcation a
the resonance-closing bifurcation correspond to the par
eter values at which qualitative changes occur in the a
number quantum fluctuations between the left and right s
of a ‘‘split trap’’ ~see Fig. 1 of Ref.@3#!.

We now consider asymmetric systems, i.e., nonident
traps, with LÞ0 in Eq. ~3!. Asymmetric traps have bee
considered in Ref.@2#. With uLu,1, there are still distinct
catastrophe map zones I and II. Sphere 5 in zone I in Fi
has an undivided phase space. The fixed points are aga
the great circle, but asymmetrically situated. At the bound
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of zones I and II a tangent bifurcation takes place. In
interior of zone II, the sphere 6 is asymmetric and divided
a separatrix.

With uLu.1, a much different situation results. Atm
50, L561, zone I ends in a cusp. Above the cusp, t
sphere evolves continuously, without bifurcations, from t
limit of strongly coupled traps~m52`, sphere 7!, to inter-
mediatem with an asymmetric, undivided sphere 8, to t
uncoupled limit~m50, sphere 9, identical in appearance
sphere 4!.

This continuous change has an interesting physical me
ing. When the fixed point is at the equator, there is minim
uncertainty in the relative phasec ~classically, there is defi-
nite phasec!; when it is at the north pole, there is minimum
uncertainty in the particle numberI z ~classically, there is
definite particle number!. The continuous transition betwee
these limits corresponds to a continuous evolution ofI z and
c, with DI zDc fixed, behavior absent in systems with asym
metry uLu,1.

Now we let the higher-order Josephson couplingdÞ0 in
Eq. ~1!. This is relevant in molecular systems@11#, with pro-
nounced effects on the dynamics and phase-space struc
The couplingdÞ0 has received attention in BEC systems
creating the possibility of ‘‘massive entanglement’’@18#. We

FIG. 2. Catastrophe map of Hamiltonian~8!. Bloch spheres are
shown for points 10 and 11.~These are rotated by'p about the
vertical axis from the orientation of the spheres of Fig. 1.!
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restrict ourselves to symmetric systems withuLu50.
The catastrophe map fordÞ0 is more conveniently ana

lyzed @11# in the symmetrized representation with sing
particle operatorsas

†51/&(a1
†1a2

†), aa
†51/&(a1

†2a2
†),

and number variables and conjugate anglesns , na , fs , fa .
This representation has been used for BEC systems@3#. It is
obtained by an SU~2! transformation in which the operatorÎ x
becomes diagonal@8#. The semiclassical Hamiltonian~5! be-
comes

H5V1g1I x1g2I x
21k~ I 22I x

2!cos 2C, ~8!

where nowC5(fs2fa) is the angle conjugate toI x . The
relevant control parameters in this symmetrized represe
tion are

D5k/2g2 , P5g1/2Ig2 ~9!

~there being no third control parameter because of the res
tion to symmetric systems!.

The catastrophe map is shown in Fig. 2. It has an ela
rate division into five zones, each having a different kind
sphere structure. The connection with the earlier catastro
map of Fig. 1 of the unsymmetrized representation is m
by noting that points 1–4 of Fig. 1 correspond to points 1
of Fig. 2.

The characteristic behavior associated todÞ0 is seen
with spheres 10 and 11.~In order to show their most salien
features, these spheres are rotated by'p about the vertical
axis from the orientation of the spheres of Fig. 1.! These
spheres lie in zone IV, which has different sphere struct
s.
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than anything seen previously in Fig. 1. With sphere 10d
Þ0 has caused the stable fixed point on the equator of sp
3 at c50 to undergo a pitchfork bifurcation, in which th
stable fixed point becomes unstable, and two new sta
modes are born on the equator. Sphere 11 shows the l
when they have moved away fromc50. In thed5` limit,
they move toc5p/2, 3p/2. Physically, this bifurcation rep
resents the onset of instability in the BEC and its grad
division into two subsystems with phases locked at new v
uescÞp; in the limit, atp/2, 3p/2.

Finally, we note that Hamiltonians analogous to Eq.~1!
but with coupling like (a†a†b1aab†) have been considere
@20,21# for photoassociation of atoms to form molecular co
densates. The bifurcation and catastrophe map classifica
of systems with this coupling has been extensively studie
molecular spectra@9,10,14,15#. The bifurcation classification
and sphere structures are distinctly different from either
the catastrophe maps of Figs. 1 and 2.

This paper has systematically analyzed bifurcation beh
ior, represented by dynamics on the Bloch sphere, for mo
systems of coupled Bose-Einstein condensates. The cata
phe map phase classification gives a complete analysis o
dynamics possible for the model Hamiltonian. Addition
phenomena, possibly accessible to experiment, are pred
for asymmetric systems, and systems with higher-order
sephson coupling. It is noteworthy that the reduced con
parameters of the catastrophe map depend on the total
ticle number, suggesting experiments that tune through v
ous bifurcation scenarios by variation of system size, as w
as variation of the Hamiltonian parameters.
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