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Bifurcation effects in coupled Bose-Einstein condensates
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Bifurcation behavior of effective Hamiltonians is investigated for coupled systems of Bose-Einstein con-
densates. Phase-space structure mapped on the Bloch sphere shows a variety of Josephson-related behavior,
systematically classified in the bifurcation analysis, leading to a phase diagram with prediction of some
physical effects.
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When Bose-Einstein condense(BEC) systems are wo=(w1+ wy)2, P=w;—wy, Q=ay—ay,
coupled, dramatic phenomena occur, owing to macroscopic
phase coherence. Effective second-quantized Hamiltonians o, = q,/2+ a2+ a1y, ar= a2+ azd2—ay,. (4)
are often used as simple mod¢ls-3,5—7 to bring out the
characteristic behavior of these systems. Very similar Hamilywhile the Hamiltonian(3) is defined in terms of states of the
tonians are usefB—10] to model striking effects in vibra- individual traps 1, 2, a representation in terms of symme-
tional spectra of polyatomic molecules, related to classicalrized states is sometimes usgd8,11], and will be consid-
nonlinearity and chaos. This paper explores bifurcation pheered later. It is easily showf8] with the use of the S(2)
nomena and their classification as phases of BEC systemgigebra that the two representations are equivalent.
and describes additional BEC effects, possibly accessible to |n both the BEC and molecular systems, a semiclassical
experiment. limit is very useful, but this limit arises in rather different
We start with a Hamiltonian for two states, e.g., two BECways. In a BEC system, each condensatd, 2 is described
traps or two vibrational degrees of freedom in a molecule: py a macroscopic wave function of forh = \/N;e ¢t
- N . Lo Each phasep; can be thought of in terms of spontaneous
H=w1(n1+32)+ wa(nz+3) + arf/2(ny +2)7+ azdl2(n, breaking of a W1) gauge symmetrj12,13, resulting in the

+1y24 Nt DN+ 5428+ e(n+n.+1 “rigidity” of ¢;. Regarded as a dynamical variabli, can
2" edntz) (N2t 2) +zl B+ ze(nut gt 1) be taken as the coordinate of the Goldstone boson corre-
X (ala,+ala;)+ 8(alala,a,+alajaa;). (1)  sponding to the broken @) symmetry[12].

In a molecular vibrational system each boson mode is an

The Hamiltonian has linear and nonlinear terms, as welbscillator, rather than a field, unlike in the condensate. Rather
as coupling terms, the first-order one proportional 4da,  than being a macroscopic wave functigfy;e'#®i -9 for the
+a£a1) being the “Josephson coupling” in BEC systems. oscillator is a dynamical quantity. It can be regarded as a
This Hamiltonian and special cases have been [ed| for  semiclassical limi{8], obtained via the “Heisenberg corre-
coupled BEC systems. It has great familiarity in molecularspondence,” of an oscillator coherent state. The rigid semi-
spectroscopy8,9]. Note that subsystems 1 and 2 in Efj)  classical phase angle of the coherent state is the molecular
are not necessarily taken to be identical, e.g., there can beorrelate of the broken symmetry.

different trap frequencie®, w-. Systematic analysis of the bifurcation behavior of the
The raising and lowering operators may be used to defineemiclassical Hamiltonian reveals information about dy-
operators that satisfy &) commutation relations, namical stabilities and instabilities. In molecular physics,
~ these are reflected in the fully quantum dynamics, and in
|x=%(alaz+ aZal), detailed(i.e., not statistical patterns of the quantum spec-
trum [14,15. In BEC systems, bifurcations are expected to
1,=—i/2(ala,—abay), have consequences both for classical behavior and semiclas-
sical corrections.
i,=L(ala;—alay) =(n,—ny)/2, Even though the physical meaning ¢N;e ¢ i ! is dif-
ferent in the BEC and molecular systems, the formal anal-
i= %(a{aﬁa}az) =(ny+n,)/2. (2) ogy, along with many of its consequences, is very close. The

semiclassical correlate of the HamiltoniéB) is
The Hamiltonian(1) can be written in terms of the 3P)

operators as H=2wol +[P+Ql]l,+ ail?+a,l?
N ~ ~ ~ A A 2 2
A=wy(21+1)+[P+(12)Q21 + V)], + eyl (1+ 1)+ as/4 +[B+ el ]V12=1; cosy+ 8(12=17)cos 2, (5)
+ azi§+ [B+Lie(2+1)]T,+ 5(?2; +12) (3)  wherey=(¢$1— ¢,) and now the semiclassical total actibn
is understood a$=(n;+n,+1)/2=(N+1)/2. It is a con-
with stant of motion, conjugate to the phase anglg{ ¢,). In
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the BEC, this constant corresponds to the total particle num-
ber; in the molecule, to the total number of vibrational
quanta.

The actionl ,=(n;—n,)/2 is not conserved, sk, and its
conjugate angle/= (¢, — ¢,) are the significant dynamical
variables of Hamiltonian(5). These variables are identified
in the moleculd 16] with the coset space SR)/U(1). In the
condensate, by standard results in quantum field thigidtly
the coset space 3P)/U(1) parametrizes the Goldstone
modes with coordinatek,,  which remain after spontane-
ous breaking of the dual-condensate (3lUsymmetry to
U(d).

States of a given energy can be plotted Bs ) trajec-
tories on the Bloch sphef8,17,6, parametrized bys as the
azimuthal angle and by the longitudinal angtewith sina
=1,/I. Examples will be considered below.

We seek to classify and interpret the dynamics of the
Hamiltonian(5), with attention to bifurcations and instabili-
ties. A variety of special assumptions are commonly made:
whether the traps are identiddl,3,5-7, or not[2]; whether
the Josephson coupling has the number dependence given by
the parameteg;, and whether the second-order coupling pa-
rameter 6 is significant. This is often reasonable in mol-
ecules, but there are important exceptigtid]. The most
common assumption in BEC systems is to take0, though
this assumption is sometimes relaxed, e.g., in the work of
Helmerson and YoUy18] on “massive entanglement” in
Bose-Einstein systems, where an essential property of the
coupling is the assumption that+ 0. The consequences for
the semiclassical dynamics are important, and will be con-
sidered later for BEC systems.

We want to obtain as comprehensive a classification as
possible, systematically encompassing the special cases. We
first consider6=0, and within this approximation consider
traps that may be identical or different. The Hamilton{&n
is then classified9,10] by just two reduced control param-

etersu, A, distilled from the Hamiltonian parameters and the o
particle numbeN=2|—1: FIG. 1. Catastrophe map of Hamiltoni&h). Bloch spheres are

shown for indicated points.

w=(B+el(2asl), A=(P+Ql/(2asl). (6)
An important consequence of EqS) and(7) is that all fixed
The parametep gives the relative strength of the Josephsonpoints lie on the great circle lying in thig, 1, plane, with
coupling term; A the asymmetry between the subsystems] =0, as can be seen from the spheres in Fig. 1. From Eq.
The denominators in Ed6) take account of the nonlineari- (7) the fixed points are the critical points of the Hamiltonian
ties in Eq.(5). In the BEC system this role is played by the evaluated on the great circle. We call this the “pseudopoten-
chemical potentials in the traps; in the molecule system, byial” H(«a), where the range of is taken ag(0, 2m). The
anharmonicity of the oscillators. Note that for a given set Ofsphere has symmetry across thge=0 plane. When the
Hamiltonian parameters, each total particle numier (2l asymmetryA is 0, there is also symmetry across the=0
—1) has its own dynamics on a distinct Bloch sphere, corplane. (As will be seen later, the asymmetric situatidn
responding to a distinct pair of reduced control parameters: 0 has important consequengedowever, the sphere is not
(1, A). symmetrical across thg,=0 plane. This accounts for the
We now look for the basic periodic orbits of the Hamil- gistinction between $=0 modes” and ‘= modes”[2].
tonian, i.e., the normal modes and the new modes born in A very useful analytical device is to map the bifurcations
their bifurcations. Since the actidnis fixed, and the Hamil- as a function of the control parameter space. This gives the
tonian does not depend on the conjugate anglet(#,),  catastrophe mafl0,19. The map gives a complete classifi-
these are determined by the fixed points of the two remainingation of the bifurcation behavior of the Hamiltonian. This
dynamical variables,, i, which satisfy classification can be thought of as a kind of phase diagram.
_ _ The catastrophe map for the Hamiltonian systén (with
() =0HI1d1,=0, 1,(1,,4)=—0dHIdp=0. (7) 6=0) is shown in Fig. 1. A particular experimental arrange-
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ment is represented as a point on the map, defined by thaf zones | and Il a tangent bifurcation takes place. In the
values of the control parameteys, A). As seen in Fig. 1, the interior of zone Il, the sphere 6 is asymmetric and divided by
catastrophe map has a “diamond cusp” shape, dividing thé separatrix.
parameter space into two zones, or phases, labeled | and Il. With [A|>1, a much different situation results. At
Bifurcations on the sphere occur as zone boundaries are0, A==*1, zone | ends in a cusp. Above the cusp, the
crossed. sphere evolves continuously, without bifurcations, from the
We examine the structure of the sphere and the bifurcalimit of strongly coupled trapgu = —, sphere ¥, to inter-
tions it undergoes as the control parameters are varied, afdediatex with an asymmetric, undivided sphere 8, to the
the physical meaning in the BEC system. First, we consideincoupled limit(u=0, sphere 9, identical in appearance to
the symmetric system, i.e., with asymmetry parameter sphere 4
=0. This corresponds to two identical traggough not This continuous change has an interesting physical mean-
identical numbers of particles. ing. When the fixed point is at the equator, there is minimum
In zone |, the sphere 1 has an undivided phase space. certainty in the relative phase(classically, there is defi-
has been argudd)] that in the BEC system, this corresponds hite phasey); when it is at the north pole, there is minimum
to a single trap. The sphere has stable fixed points on thencertainty in the particle number, (classically, there is
equator. One fixed point corresponds to all the particles irflefinite particle numbgr The continuous transition between
the ground vibrational state of the trap, with symmetricthese limits corresponds to a continuous evolutiom,caind
single-particle state. The other fixed point corresponds to al, with Al,A ¢ fixed, behavior absent in systems with asym-
the particles in the first excited vibrational statth mol-  metry |A[<1.
ecules, the fixed points are the symmetric and antisymmetric Now we let the higher-order Josephson couplig0 in
normal modes.The ground state has a fixed angte=(¢;  Eq.(1). This is relevant in molecular systerfsl], with pro-
—¢,)=0. nounced effects on the dynamics and phase-space structure.
When the condensate is separated into two traps, e.g., bhhe couplingd# 0 has received attention in BEC systems as
“splitting” the single trap with a lasef7], effectively the creating the possibility of “massive entanglement8]. We
coupling u between condensates 1 and 2 is reduced. On the
catastrophe map, there is a cusp@atA)= (% 1,0). A pitch-
fork bifurcation takes place at the cusp, sphere 2, and the 3 1
system crosses into zone Il. This bifurcation is important in
molecules[9], and has been noted in model BEC systems 2 1
[1,6]. The bifurcated sphere 3 now has a phase space divide
by a separatrix. One of the original fixed points, at the back 1 {
of sphere 3 on the equator, remains stable. In BEC system] T
[6], this is the one with phasg¢=0. In this “resonance re- 0
gion” of the sphere, Josephson tunneling occurs as oscilla:
tion around the stable equatorial fixed point. The other equa- -1 1
torial fixed point becomes unstable, with the birth in the
bifurcation of two new stable modes, which correspond to -2 1
“macroscopic self-trapped[2] conditions. As the coupling
u between traps approaches 0, the self-trapped regions grov -3 -
At u=0 the resonance region closes, leaving stable fixed
points on the sphere 4 at the north and south poles. Thes
represent systems with all the particles in one trap or the
other. Trajectories away from the poles represent states witl
definite 1 ,=(n;—n,)/2, hence the numbers of particles in
each trap, so there is no Josephson tunneling. Conversely, tr
phasey=(¢1— ¢,) is completely indefinite.
These bifurcations and associated changes in the phasf'o
space structure of the sphere are associated with definit
/A
N

physical effects. For example, the pitchfork bifurcation and ‘
27

the resonance-closing bifurcation correspond to the param ~ |
z

eter values at which qualitative changes occur in the atorr|
\
L

number quantum fluctuations between the left and right sides

of a “split trap” (see Fig. 1 of Ref[3]). ,
We now consider asymmetric systems, i.e., nonidentical NI5—" //

traps, withA#0 in Eq. (3). Asymmetric traps have been “\-“é,/

considered in Ref[2]. With |A|<1, there are still distinct

catastrophe map zones | and Il. Sphere 5 in zone | in Fig. 1 FIG. 2. Catastrophe map of Hamiltoni&B). Bloch spheres are

has an undivided phase space. The fixed points are again @Rown for points 10 and 11These are rotated by about the
the great circle, but asymmetrically situated. At the boundaryertical axis from the orientation of the spheres of Fig. 1.
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restrict ourselves to symmetric systems wit = 0. than anything seen previously in Fig. 1. With sphere 40,
The catastrophe map fa@i# 0 is more conveniently ana- #0 has caused the stable fixed point on the equator of sphere
lyzed [11] in the symmetrized representation with single-3 at =0 to undergo a pitchfork bifurcation, in which the
particle operatorsal=1#2(aj+a}), al=1n2(al—al), stable fixed point becomes unstable, and two new stable
and number variables and conjugate anglgsn,, ¢s, ¢,.  modes are born on the equator. Sphere 11 shows the latter
This representation has been used for BEC sys{@idt is when they have moved away frof=0. In the 5= limit,
obtained by an S(2) transformation in which the operatb{ they move toy= /2, 3m/2. Physically, this bifurcation rep-
becomes diagon#8]. The semiclassical Hamiltonia®) be-  resents the onset of instability in the BEC and its gradual
comes division into two subsystems with phases locked at new val-
uesy# ; in the limit, at /2, 3n7/2.
Finally, we note that Hamiltonians analogous to Eb).
but with coupling like @'a’b+aab') have been considered
420,21 for photoassociation of atoms to form molecular con-
densates. The bifurcation and catastrophe map classification
of systems with this coupling has been extensively studied in
A=kl2y,, T=y/2ly, (99  molecular spectr§9,10,14,13 The bifurcation classification
and sphere structures are distinctly different from either of
(there being no third control parameter because of the restrithe catastrophe maps of Figs. 1 and 2.
tion to symmetric systems This paper has systematically analyzed bifurcation behav-
The catastrophe map is shown in Fig. 2. It has an elaboior, represented by dynamics on the Bloch sphere, for model
rate division into five zones, each having a different kind ofsystems of coupled Bose-Einstein condensates. The catastro-
sphere structure. The connection with the earlier catastrophghe map phase classification gives a complete analysis of the
map of Fig. 1 of the unsymmetrized representation is madelynamics possible for the model Hamiltonian. Additional
by noting that points 1-4 of Fig. 1 correspond to points 1—-4phenomena, possibly accessible to experiment, are predicted
of Fig. 2. for asymmetric systems, and systems with higher-order Jo-
The characteristic behavior associated &0 is seen sephson coupling. It is noteworthy that the reduced control
with spheres 10 and 11In order to show their most salient parameters of the catastrophe map depend on the total par-
features, these spheres are rotatedshy about the vertical ticle number, suggesting experiments that tune through vari-
axis from the orientation of the spheres of Fig) These ous bifurcation scenarios by variation of system size, as well
spheres lie in zone IV, which has different sphere structures variation of the Hamiltonian parameters.

H=Q+ yil+ v,12+ k(12— 12)cos 2¥, (8)

where nowWV = (¢s— ¢,) is the angle conjugate tig.. The
relevant control parameters in this symmetrized represent
tion are

[1] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, Phys. [12] S. Weinberg,The Quantum Theory of Field€ambridge Uni-

Rev. A55, 4318(1997. versity Press, 1996\Vol. Il.
[2] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Phy$13] A. J. Leggett and F. Sols, Found. Phg4, 353(1991).

Rev. A59, 620(1999. [14] J. Svitak, Z. Li, J. Rose, and M. E. Kellman, J. Chem. Phys.
[3] J. Javanainen and M. Yu. lvanov, Phys. Rev.68, 2351 102, 4340(1995.

(1999. [15] M. Joyeux, D. Sugny, V. Tyng, M. E. Kellman, H. Ishikawa, R.
[4] F. Sols inBose-Einstein Condensation in Atomic Gasem- W. Field, C. Beck, and R. Schinke, J. Chem. PI8@0Q 112

ceedings of the International School of Physics, Italian Physi- (2000; 200Q 4162(2000.
cal Society, Course CXL, edited by M. Inguscio, S. Stringari, [16] M. E. Kellman and E. D. Lynch, J. Chem. Phy&9, 3396

and C. W. Wiemar(IOS Press, Amsterdam, 1999 (1988.
[5] R. W. Spekkens and J. E. Sipe, Phys. Re%9A3868(1999. [17] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M.
[6] A. Vardi and J. R. Anglin, Phys. Rev. Le®6, 568 (2001). J. Holland, J. E. Williams, C. E. Wieman, and E. A. Cornell,
[7] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. Phys. Rev. Lett83, 3358(1999.

A. Kasevich, Scienc91, 2386(2001). [18] K. Helmerson and L. You, Phys. Rev. Le#fz, 170402(2001).
[8] L. Xiao and M. E. Kellman, J. Chem. Phy30, 6086 (1989. [19] T. Poston and I. Stewar€atastrophe Theory and its Applica-
[9] Z. Li, L. Xiao, and M. E. Kellman, J. Chem. Phy82, 2251 tions (Pitman, London, 19738

(1990. [20] M. Kostrun, M. Mackie, R. Ctg, and J. Javanainen, Phys. Rev.
[10] L. Xiao and M. E. Kellman, J. Chem. Phy83, 5805(1990. A 62, 063616(2000.
[11] J. P. Rose and M. E. Kellman, J. Chem. Phy85 10743  [21] A. Vardi, V. A. Yurovsky, and J. R. Anglin, Phys. Rev. &4,

(1996. 063611(2001).

013602-4



