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Three particles in an external trap: Nature of the completeJ=0 spectrum
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Three bosonic, spin-polarized atoms in a spherical oscillator potential constitutes the simplest nontrivial
Bose-Einstein condensatBEC). The present paper develops the tools needed to understand the nature of the
completeJ=0 energy spectrum for this prototype system, assuming a sum of two-body potentials. The
resulting spectrum is calculated as a function of the two-body scattering leggthwhich documents the
evolution of certain many-body levels that evolve from BEC-type to molecular-type as the scattering length is
decreased. Implications for the behavior of the condensate excited-state spectrum and for condensate formation
and decay are elucidated. The energy levels evolve smoothly, even through the regime where the number of
two-body bound stateN, increases by 1, and,. switches from—« to + . We point out the possibility of
suppressing three-body recombination by tuning the two-body scattering length to values that are larger than
the size of the condensate ground state. Comparisons with mean-field treatments are presented.
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I. INTRODUCTION namely, our initial restriction to onl\N=3 particles with
angular momentund=0 in the trap(see Sec. ) For this
Mean-field methods are commonly used to characterize &simple” system, however, we are able to include all
Bose-Einstein condensatBEC), i.e., an atomic vapor con- channels in the calculation, molecular three-body bound-
fined by an external trapping potentjall. These approaches, state channels, diatom plus atom channels, and metastable
which account for the interaction between particles through gaseouslike channel47].
mean-field term in an effective single-particle Hamiltonian, ~ This paper focuses on regimes whetandardmean-field
accurately describe much of the dilute condensate energetidseatments [1], i.e., mean-field treatments that neglect
However, these shape-independentave scattering length molecular-field dynamics, break down. For large positive
approximations break down for strongly interacting gasedisc— +, the mean-field treatment results in unphysically
with large interaction parametef$—5]. large diverging energies. In contrast, the three-body energies
Very recent experiments by Greinet al. [6,7] have en- change smoothly in the pole region, where the scattering
tered this regime: A quantum phase transition from a superengthag, changes from-o to +2 and the number of two-
fluid to a Mott insulator was observed for ultracold atomsbody swave bound statehl, increases by 1. Additionally,
held in a three-dimensional optical lattice. Most relevant toour three-body study implies that the excitation frequencies
our studies here, the atoms are held in tigiatropic lattice  are well behaved arour|@s — .
sites with an occupancy of 1-3 atoms per site. The experi- The mean-field treatment also exhibits limitations in the
ment thus realizes a strongly correlated many-b@ihd in a  parameter range around the negative critical scattering length
sense, few-bodyquantum system with unprecedented con-a.,, wherea., is defined through the instability criterion
trol of parameters. In this paper, we present the quahtal (N—1)a.,/an,=—0.575 derived from the mean-field equa-
=0 energy spectrum of three particles under external isotrotion [11,18. The lowest gaseous energy leveé., the BEC
pic confinement, and compare with results obtained usinground statechanges its character from metastable to mo-
mean-field theory. lecular arounds., , while some of the higher-lying BEC-like
The lowest-order mean-field approximatiofGross- states remain almost completely unaffected by criticality. In
Pitaevskii(GP) or Hartree-FockHF) equation[1,8—11 and  contrast, the mean-field equation simply has no solution for
also higher-order approaches such as second-order perturke; lower than the critical value.
tion theory[12,13 treat the metastable BEC state of the Three-particle studies have been used previously to shed
trapped alkali vapor as if it was the “true” ground state of light on the many-body physics of BECs. In 1996, Estyal.
the system. This means that these approaches cannot dé&9] explored the role of the two-body scattering length in
scribe recombination processes or atom-loss processes, sifrBECs. More recently, three research groups explained ex-
coupling to the trudsolidlike/liquidlike) ground state is ne- periments regarding the three-body recombination rate in
glected completely. Attempts to include additional “empiri- many-atom BECs via three-body calculations that include
cal” terms in these mean-field equations, which account forchannel coupling17,20—23. Three-body studies have also
“reaction processes,” exist, and have been able to describbeen used to test the validity of shape-independent two-body
some experimental findings successfilly}—16. However, interaction potential§24].
the ad hocnature of some of these empirical terms is less The studies presented here are based on time-independent
than satisfactory. Schralinger wave mechanics. The energy levels show sev-
The nonperturbative quantal calculations permit us to cireral avoided crossings when plotted as functionagf(see
cumvent these problems. These calculations come at a pric8gec. Ill); nevertheless, dynamical behavior such as Landau-
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Zener-type branching ratios or recombination rates remainsiass of the three-body system, while? denotes the

beyond the scope of this paper. Studies along these lines wilsquared grand angular momentum” operaf@0]. Here,

be a natural continuation of the static studies presented hereie introduce a rescaling of the wusual wave func-
Section Il describes our three-body system, and outlinegon W(R,9,¢) by R%2 i.e., writing it as W(ry,ro,rs)

the formalism for its investigation. Section Il presents _ R™52y(R, 9, <P)¢k|m(x) in order to eliminate first deriva-

guantum-mechanical three-body energetics, and Sec. I\t/

ih its d dqF “fiold treat N Ives from the hyper-radial kinetic-energy operator.
compares with results derived from mean-field treatments. Equation(3) is solved here using two different, but related
Finally, Sec. V summarizes our main results.

approaches: a coupled-adiabatic-channels approach and a
strict adiabatic approximation. The coupled-adiabatic-
IIl. THE THREE-PARTICLE SYSTEM channel calculation can in principle be made exact. The strict
adiabatic approximation can be viewed as an “incomplete”
coupled-adiabatic-channel calculation, truncated to one
channel only, which neglects all off-diagonal coupling ele-
ments. It is important to keep in mind that the strict adiabatic

The Schrdinger equation for three mass{patrticles in a
spherical external potential with trapping frequeney,
= wpo/(27) reads

3 ﬁz 3 approximation cannot describe recombination processes.
E - V +2 mwhor +E V(rij) W(ry,Fp,l3) To solve Eq.(3) we expandy,(R, 3, ¢) into radial wave
=1 A functionsF ,,(R) and a set of complete, orthonormal angular
channel functions® (R;J,¢). The basis functionsb,,,
which depend parametrically dR are solutions of the par-

where V(rj;) denotes a two-body interaction potential andtial differential equation

rij=|r;—ri|. r; is the position vector of atorirelative to the
center of the trap. As was discussed in R&#], the center-
of-mass motion can be separated out exactly, which reduces
this nine-dimensional problem to a six-dimensional problem
in the relative(Jacobj coordinates of the three particles. In =U,(R)D,(R;%,¢). (4)
this paper, we specialize further tb=0 states of relative

angular momentum of the triad, which reduces the dimenWe refer to the eigenvalued (R) as adiabatic potential
sionality of the nontrivial part of the calculation down to just curves. Inserting the expansign==>F,,®, into the Schre
three dimensions. The center-of-mdssn,) and Jacobi co- dinger equation for the internal motig&g. (3)] results in an
ordinates are defined B, = (r{+r,+r3)/3, pio=r,—r, infinite set of coupled ordinary differential equations,

and py,5=r3—(rp+ry)/2 [24]. This transformation de-

=EW(ry,M,,r3), (1)

h2

e A2+
M

(R %, 0)

5 3
Z +i2j V(r”)

couples the center-of-mass motion, h? od> 1 i
P 2 . —Eﬁ+§MwﬁoR2+UV(R)JFQW(R)—E'nm Fon(R)
( M Vx+ Mwhoxz)¢k|m(x) Ef ™ dum(X),  (2) dF,, n(R)
== 2 vi R)Fv n(R)+ 2 va (R) ’
from the relative(interna) motion, vty
)
az o 1, . h* [ , 15
2u E“LE"“"MR +2M AT+ 4 whereP,,,, [Q,,'] are angular coupling matrix elements in-
volving the first[second derivative ofd , with respect toR
3 - [31]. We refer to the solution of Eq5) as the coupled-
+ 2, V(i) | (R, 9,0) =El'¢n(R,9,¢). (3  adiabatic-channel solution. The strict adiabatic approxima-
=<l tion follows immediately by neglecting coupling elements

between different channels= setting the right-hand side of
Eqg. (5) to zerd. Another variant of the strict adiabatic ap-
proximation additionally neglects the diagonal elem@ny ,

Here,M =3m is the total mass, ané,= (k+ 3/2)% w,, with
k=0,1,2 ... theenergy related to the center-of-mass mo-

tion. The corresponding eigenfunctiorg,,, are simply the . ) .
three-dimensional isotropic oscillator solutions. Equationand is typically referred to as the hyperspherical Born-

(3) represents the Hamiltonian describing the re'a“"etw%pe\,mnmérgfprt)rr]%x'glﬁg?naégggf.gogowgg]rxvaengﬁeﬂ:f.e
particle motions in terms of three hyperspherical coor- P

. . .- changeably, and denote the e|genvalue£§y.
dinates R,d,¢) rather than the Jacobi coordinates, and The outlined formalism splits the solution of the Schro

p12,3[24—28. Our definition of the hyper-radiug, and the  dinger equation for the internal motidiEq. (3)] into two
two hyperangles} and ¢ is based on the democratic coor- steps: (i) solution of Eq.(4) (here via a two-dimensional
dinate system of Whitten and Smitf29], i.e., uR®  B-spline code and (ii) solution of the one-dimensional
=mp?,/2+2mp3, 43. Owing to the identical boson charac- coupled equationgEg. (5)]. The former is numerically more
ter of the atoms, the angular range can be restricte¢ to challenging due to its higher dimensionality, and coincides
€[0,7/6] and 9 €[0,7/4]. »=m/ /3 denotes the reduced with determining the bound and continuum channel func-
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of a double minimum structure with minima Bt=0.2a,,, and
o R~2.5a,,, which are separated by a potential barrier. The
g -1000f lowest metastable state “lives” in the minimum at lardger
S —2000% BEC region The lower panel of Fig. 1 shows an enlargement of the gas-
o eous region together with the effective potential curves for a
= —3000 molecular region vgnjshing interaction pot.entizﬁdotted lines. Significant.de—
+, viations between the solid and the dotted curgremvanish-
>5 4000 Vo ing and vanishing two-body potential, respectiyedye vis-
~5000F L.l . : ible.
0.01 010 1.00 10.00 100.00 As is demonstrated in Fig. 1, to properly describe the
_ =5 E N metastable states, one must solve @gfor hyper-radiiR as
2 20fF v=2 . large as 1@,,, corresponding roughly to several“1@.u.
5 (depending somewhat on,,). In our calculation, we deter-
g 15¢ ] mine the adiabatic potential curves, and the coupling ma-
S 1ok ] trix elementsP,,,, andQ,,,» out to R~10— 1008 using a
i;‘ two-dimensional B-spline code, and then extrapolate to
g 5F . larger R. For the continuum potential curves we follow a
= 0 --------- - second independent approach suggested by Nielsen and
1 10 Macek[20]. For largeR, they recognize the dependence of
R [osc. units] U, on ag. only, and derive a nearly analytic expression for

U, . Note, Nielsen and Macek’s formula does not account for
FIG. 1. Upper panel: Adiabatic potential curvel plus trap-  those potential curves, which simply coincide with the
ping potentialVyap (vno=78 kHz, an,=731 a.u.), as a func- “unperturbed” eigenvaluesi?[\(\+4)+ 15/4]/2uR?,
tion of the hyper-radiu for Np=2 andas=228 a.u. The dashed =12 16,18... (see above The nearly analytical expres-
curves (=0,1) describe molecularlike states while the solid curvessjons [20] are in excellent agreement with our continuum

describe gaseouslike states. Lower panel: Blowup of the gasem&rvesuv calculated through numerical solutidand ex-
region. In addition, dotted lines show the potential curves for Va”‘trapolationj of Eq. (4)

ishing interaction potentia¥. Note the logarithmidR scale. In passing, we note an additional nice feature of the out-

_ _ _ o lined formalism. Suppose that we wish to study the energet-
tions @, of three particles interacting via a sum of two-body ics of three particles in an external spherical potential as a

potentialsV(r) [the trapping potential does not enter Eq. function of the trapping frequency,,. For a given interac-

@] tion potentialV(r), it is only necessary to solve the numeri-
For a vanishing interaction potential(r)=0, the  cally most demanding Eq(4) once. wy,, then enters the

symmetry-allowed =0 eigenfunctionsb,, of Eq. (4) reduce  simple one-dimensional Eq5) simply through an additive

to Gegenbauer polynomials30] with eigenvaluesU,(R)  term, which trivially determines the energy spectrum versus
=h2N(N+4)+15/4/2uR?>, A=0,4,6;--, where thex

=2 state is forbidden due to symmetry constraints, and the "o
eigenvalues witih=12 and\=16 are doubly degenerate.
Now consider a nonvanishing two-body interaction potential _
V(r). Compared to th&/=0 potential, the nonvanishing This section presents the internal energ#¥ for three
introduces three-body bound states at small hyper-Rdii bosonic particles withJ=0 in an external trap for a two-
accounting for the short-range physics %tr), and also body model potential of the for(r)=d cosh %(r/rg). This
modifies the potential curves at large reflecting the non- is convenient because the two-bodyvave eigenenergies
zeros-wave scattering lengtas.. Additionally, a nonvanish- and eigenfunctions can be determined analytigeBj. Fur-
ing V lifts the degeneracy of the ,(R) potential curves. thermore, we determined an analytical expression for the
To illustrate this behavior, Fig. 1 shows the sum of theenergy-dependerstwave scattering length,
trapping potentialvtrap=,uwﬁoR2/2 with v,,=78 kHz, and
the adiabatic potential curves, (R) for a two-body model
interaction potential(see Sec. I) with swave scattering
lengthag.=228 a.u. and two two-bodywave bound states,
N,=2 [m=m(®Rb)]. Length and energy are expressed in
oscillator units[length unitay,= VA/(mwy,), energy unit 1
fhwpol. The two lowest potential curves with=0 and 1 2F1(ik—s,1+s+ik;1+ik;§)
(upper panel, dashed linedescribe three-body bound-state p=—
physics, and approach the two-boglywave binding energies
in the absence of a trapping potential. The higher-lying po-
tential curvegsolid lineg describe metastable BEC physics,
and would correspond to continuum states, in the absence afherek=\mE/#?, ands=— 3 + 1 1+4mdrg/h?. ,F, de-
a trapping potential. The=2 curve(thick solid line shows notes the usual hypergeometric function. The zero-energy

IIl. THE QUANTAL ENERGY SPECTRUM

1(1+p ©

Asc( )Zm ip

where

, @)
ik _ o E
2",F4| —s,1+s;1 |k,2
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FIG. 2. Two-bodys-wave (solid lines andd-wave (dotted ling FIG. 3. Internal energy leveE'"! (solid line9 as a function of

energy levels as a function of the well depthof the two-body [ grctangy./ay,,) ]/ for three particles in a spherical trap with trap-
interaction potential. The inset shows the two-badyave scatter- ping frequencyv,,= 78 kHz (a,,=731 a.u). Dotted lines indicate
ing Iength as a function af (using the same range dfvalues asin e “internal” HF energyEMt (see text The “first cycle” (N,
the main figure =1, see textcorresponds tdarctan@./an,)]/7[—0.5~1.5],
and the “second cycle” ,=2, see textto [arctan@g./an,) |/ 7

swave scattering lengtla. is then simply given byag, c[-1.5-25 ([arctanfu/ayy)]/m=—05—1—1.5-2-2.5

:I|mkéoasc(.k). Whllero_ls fixed atro=55 a.u. throughout corresponds tday=o,07,05). Labels A—F indicate systems
our calculationsd is varied to change the number of two- with different scattering length for which Fig. 4 shows the corre-
body s-wave bound state, and the two-bodgwave scat-  gponding adiabatic potential curves, ag.=2138 a.u.;B, ay
tering lengthas. [m=m("'Rb) throughout the rest of the =103 a.u..C, a,,=0 a.u.;D, ag,=—31 a.u.;E, a,.=—130 a.u.;
papet. andF, ag.= —1970 a.u.

Figure 2 shows the two-bodywave energy levelgsolid
lines), and the two-bodyl-wave energy leveldotted ling as . . . .
a function of the well depttd of the two-body interaction bound states, respectively, the mte_ger part of the abms_sa is
potential. One can interpret these energy levels as those le§0Sen to be equal te N, . This scaling procedure results in
els that are shifted by a magnetic or electric field in an exbcissa values of —2.5,-0.5]. We refer to the interval
periment. A shift of the energy levels subsequently changek— 0.5~ 1.5] as the “first cycle” (N,=1), and to the inter-
the two-bodys-wave scattering lengthg., which is shown Val [-1.5-2.5] as the “second cycle” N,=2). In this
in the inset of Fig. 2 as a function of Note that the scat- representationas.=0 corresponds tgarctan@sc/an) 1/ =

tering length divergegchanges sign from negative to posi- = —2.0 and—1.0. _
tive) where an additional two-bodg-wave bound state ap- 10 interpret this complicated energy-level structure, con-
pears. centrate on six different scattering length values labeled by

In the following, we find it convenient to discuss the A-F in Fig. 3. Figure 4 shows the sum of the corresponding
properties of three interacting atoms as a function of theddiabatic potential curves and the trapping potentigl
two-body swave scattering length,.. The reader should, +Virap, WhereVyao(R) =3 uwjR? (solid lines.
however, keep in mind that the change of the two-body Figure 4, panel corresponds to a large positive scatter-
swave scattering length corresponds to a shift of the twoing length, a;,;=2138 a.u. The lowest BEC-like curver (
body energy levels. We perform three-body calculations for=2) is highlighted as a thick solid curve. The lowest energy
70 differentd values, which translates into a range of two- level lying within this potential curvel,:__'zn(}, has an energy
body scattering lengthag. from —10* a.u. to 18 a.u. To  close to Giwp,, and the excited levelEl), n>0) lie about
keep the coupled-adiabatic-channel calculations tractable Wg# w,,, higher eachsee Fig. 3. We refer to the energy levels
restrictd in this study to values such thit,=1 or 2. “located” within the same potential curvédentical v, but

Consider three particles under external confinement for &aving a different number of hyper-radial nodgsas a fam-
vanishing two-body interaction potentiad=0 (ideal gag  ily. The lowest energy of the next higher BEC-like curve is
first. For this system, the strict adiabatic approximation isEji~7%w, and again, the excited level€{', n>0) lie
exact, andE,"'=3,5,7 .. .fiwp,. Introduction of a nonvan- about Z w;,, higher each. To guide the eye, Fig. 3 displays
ishing interaction potential shifts these gaseous energy levelfotted curves that represent the effective potential curves in
according roughly to the value @, lifts the degeneracy, the absence of any two-body interaction potential.
and additionally gives rise to three-body bound states. Figure Figure 4, paneB corresponds to a much smaller scatter-
3 shows the internal energids (solid lines of the gas- ing length than in paned, as.=103 a.u. This panel shows a
eouslike states fowy,,=78 kHz calculated via the strict series of crossings at energies around &@,, indicating a
adiabatic approximation for various scattering lengths. d-wave shape resonan¢see also dotted line in Fig.)2As
To accomodate a large range of interaction parametfdrs (the scattering length decreases slightly, these crossings move
—1)agc/an, [11], Fig. 3 shows the internal energies as ato lower energies, until they finally vanish at.=97 a.u.
function of [arctan@s./an,) /7. To additionally be able to The scattering lengttas;=97 a.u. corresponds to a well
plot results for systems witiN,=1 and N,=2 two-body depthd of the two-body potentiaV/ at whichV first supports
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§ [arctan(ay/ay,)]/™
—wf .
i’g . B s FIG. 5. Internal energy leveE"! (solid lineg as a function of
> -130a.u. [arctanfs./ap,) ]/ 7 for three particles in a spherical trap with trap-
0

o o : _ a - -
s 4 6 5 10 2 4 6 6 10 2 4 6 6 10 ping fre_qu_encyvho—_780 Hz (aho_—7307 a.u.) forl\_lb—z. Dia-
R [ose. units] R [osc. units] R [osc. units) monds indicate the internal energies at large negative A dotted

line indicates the “internal” HF energf||t (see text

FIG. 4. Adiabatic potential curved , plus trapping potential
Virap, for three particles in a trap withy,,=78 kHz (ap,=731
a.u) as a function of the hyper-raditR Solid lines indicate the
numerical potential curves fok, a,.=2138 a.u.;B, a;,.=103 a.u.
(d-wave shape resonanceC, a,.=0 a.u.;D, ag.=—31 a.u.(first

=—1 and-—2, the positive energy Ievel§.iy"nt lie very close
to those of the ideal gasii) The energy level with energy
E'"'=154 wy,, is unchanged over the two cycles shown. This

signature of decayE, a..— — 130 a.u (vanishing potential barrigr ~ 1E"9Y level originates in the “unperturbed” potential curve
ar?d F, age=— 1975(; a.u.S.CThese scattering Ienggtﬁs are also indicatetéiz[)‘(x__'”4_)+ 15/,4]/2“32’ A=12 (see _Sec. ) . and there-
in Fig. 3. The thick solid line indicates the lowest gaseous levell0T€ coincides with an ideal gas levéiii) The internal en-
(panelsA-D), and the “decayed” condensate stdpnelsE and ~ €rdy levels in the first cycleN,=1) and in the second cycle
F), respectively. In addition, dotted lines show the potential curved Np=2) behave very similarly, indicating that the energies
for vanishing two-body interaction potential. are, to a good approximation, independent of the number of
two-bodys-wave bound statel,, . (iv) Notice, in particular,
ad-wave two-body bound state. To calculate energy levels irthat the energy levelg!l' change smoothly aag ] passes
the presence of a-wave shape resonance, we follow the through infinity.
potential curves that cross diabatically. Note that the poten- Note as well that families of plunging energy levels with
tial curves approach th¥(r;;)=0 curves(i.e., the dotted molecular character are present, which to simplify our pre-
lines) asag. approaches zero. Accordingly, the energy levelssentation are shown only partially in Fig. 3. Consider the
approach those of the ideal inhomogeneous gas. lowest gaseouslike energy level of the first cycle, i.e., with
Figure 4, panelC shows the effective potential curves Ny=1. As the gaseouslike state becomes unstable vaile
(solid lineg for vanishing scattering lengtta,.=0 (how-  decreases this energy level decreases through zero
ever, nonvanishiny), in which case the potential curves are (at [arctan@s./an,) ]/ m~—1.2), which reflects the transi-
almost identical to the ones for vanishiny(dotted lineg.  tion of this BEC state to one of molecular character. The
Small differences occur in the inner wall region reflecting theother energy levels of this family also change character from
existence of molecular states at smBll These molecular gaseouslike to molecularlike as the two-body potential well
states at smalR are, however, not shown in Fig. 4. depthd becomes deeper. For clarity, Fig. 3 shows these en-
Figure 4, panel®, E, andF correspond to negative scat- ergy levels only fof arctan@sc/an,) [/ 7> —1.75. For each
tering lengths. The inflection of the thick solid line Rt  additional two-body bound state, a “manifold” of plunging
~0.5a,, in panelD indicates the first signature of a decay- energy levels is present, reflecting the fact that the number of
ing condensate. The interaction parameter for this system ikree-body states with negative energy increases far more
(N—1)ag./ap,=—0.085. In panek, the barrier of the low- rapidly as a function ofi than those for the two-body sys-
est gaseouslike curve, which separates the BEC minimuriem.
from the energetically much deeper molecular minimum, has So far we have discussed results for a trap with trapping
almost vanished; here N(-1)ag./a,,=—0.356. PanelF  frequencyv,,=78 kHz. In addition, we performed calcula-
shows a large negative scattering length casg,= tions for trapping frequencies that are 10 times larger, and
—1970 a.u. The thick solid curve corresponds to a situatioralso 10 or 100 times smaller. Sineg,= VAi/(Mwy,), the
in which the gaseouslike stat@ondensateis no longer interaction parameteN— 1)as./ay, scales as/wp,. Adopt-
stable. Note the similarity of the potential curves for largeing the same two-body interaction potentials as before, a
positive and large negativ,. (panelsA andF). This simi-  trapping frequency smaller tham,,=78 kHz therefore
larity reflects the smooth dependenceHf! as|as] goes leads to a narrowdarctan@s./an,) |/ 7 interval than shown
through infinity (see above in Fig. 3. As an example, Fig. 5 shows the internal energies
In addition to the aforementioned issues, four more charg'"! for three particles in a trap withy,,=780 Hz andN,
acteristics are important to the energy-level scheme shown ie=2 (solid lineg. A few of the internal energies
Fig. 3: (i) At a;.=0, corresponding tparctan@s./ano) /7 at large negative scattering length, corresponding to
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main characteristics of the energy-level pattern as shown in
Figs. 3 and 5 with sufficient accuracy. To go beyond this
. static picture, however, the coupling between channels must
be considered.

Studies including channel couplind7,19 show that the
primary recombination mechanism is related to the behavior
of the adiabatic potential curves and the corresponding cou-
pling elements at hyper-radi~2— 3a,.. Consider paneA
of Fig. 4 with a;.=2138 a.u. andv,,=78 kHz. For this
i situation, the criterionR~2—3a,. translates into 5.8
-0.65 -0.60 —8.8a,,. At these hyper-radii, the lowest-lying gaseous

Viapt U, curve reaches=10-20hwp,, compared to the

FIG. 6. Internal adiabatic energy levelig' (dotted, solid, and lowest gaseous energy level of5.34 wy,,. Thus, we specu-
dashed linestogether with energies calculated using the coupled-ate that we have entered a regime where recombination pro-
adiabatic-channel approach including four chanriplsises as a  cesses are largely suppressed due to the strong confinement.
function of [arctan@g./an,) ]/ for three particles in a spherical It would be interesting to probe this regime experimentally.
trap with trapping frequency,,=78 kHz (a,,=731 a.u.). Dot-
ted lines indicate “plunging” molecular levels, while solid and
dashed lines indicate energy levels in the lowest and in the second V. COMPARISON WITH MEAN-FIELD TREATMENTS

lowest gaseous adiabatic potential curve, respectively.

E™ [osc. units]

[1] L S L L
-0.90 -0.85 -0.80 -0.75 -0.70
[arctan(ag/ap,)]/7

This section connects our microscopic studies with results
obtained by mean-field treatments. Consider the HF treat-
[arctan@sc/ano) [/ m~—2.08, are indicated by diamonds. ment[11], which results in an equation identical to the GP
These data points are not connected by solid lines since i@quation, except for a change frasto N—1 in the inter-
this region our grid iras. is too coarse to allow for interpo- action parameter. The HF treatment does not take advantage
lation. of the decoupling of the center-of-mass and the internal mo-

To summarize, our microscopic studies of the energetic§ion, and determines an approximate value for the total en-
of three confined particles as a functiomigf, reveal thatthe  ergyE,,- as well as the orbital energy or chemical potential.
overall behavior of the energy-level scherf@s shown in 1o compare our internal three-body enerdi@¥ (solid lines
Fig. 3 remains unchanged as,, either decreases or in- iy Figs. 3 and 5 with the HF energyEys, we subtract the
creases. As discussed in the preceding paragraph, howevekact energy associated with the lowest center-of-mass mo-

Vho determines the range of the interaction parameter. Speﬂ'on, ES™=1.5iwpo, from Eye, and refer to this quantity

cifically, the behavior of the energy levels arouag~a. as internal HF energELT,t:. The approximate HF treatment

depends ony,,. Figure 3 |ndlcates_a gradual decrease of theco#ld either lead to an error i or in ES™, or in both
condensate energy as the scattering length decreases throu

the region[ arctan@g./ay,) |/ 7~ —2.1. Asvy,, is decreased, tHese qua_nt|t|es at the same time, and the su.btracnﬁfg"Bf
the separation between the molecularlike region at sRall T0M En is therefore somewhat arnﬂu@it{;?]. Figures 3 and
and the gaseouslike region at largebecomes more pro- 5 show the resulting mterr?al HF energyr as dottted lines.
nounced, and the energy decreésieange from gaseouslike  FOr ¥ho=780 Hz, the internal HF energ,jr (dotted
to molecularlike takes place over a smaller range of scatterlines in Fig. 5 agrees favorably with the lowest gaseouslike
ing lengths. In other words, the potential barrishown in  internal three-body energigolid line). As discussed in Sec.
panelD andE of Fig. 4 for v,,=78 kHz) spatially separates Ill, Fig. 5 includes only a small range of interaction param-
the molecularlike and gaseouslike region more for smgjl ~ €ters N—1)asc/an,. Thus, the good agreement between
than for largevy,. E"' andE}jt is not surprising.

The internal energies discussed in this section have been For comparison, Fig. 3 shows the energy levels for a 100
calculated within the strict adiabatic approximation. To as-times larger trapping frequency, namely,,=78 kHz. This
sess the accuracy of this approach we additionally performefigure indicates two regions in which}; (dotted ling de-
coupled-adiabatic-channel calculations. Figure 6 shows theiates from the lowest many-body energy le&]' having
energies resulting from the coupled-adiabatic-channel calcugaseous character, the region around and the largeag,
lation including four channelgpluse$ together with those region. Forag.<a.,, the HF equation does not have a solu-
resulting from the adiabatic calculatididotted, solid, and tion. This mathematical fact is typically interpreted as “de-
dashed linesfor v,,=78 kHz. Figure 6 indicates excellent cay of the condensate,18]. The three-body treatment re-
agreement between these two sets of calculations for smaleals that the decay of the condensate is linked to the
as. (left-hand side of the figuljehowever, some differences disappearance of a potential barrisee, e.g., paneld andE
occur at largerg, (right-hand side of the figuyeTo be more  of Fig. 4), which separates the molecular region at sriall
specific, the plunging molecular leveldotted lineg and the  from the gaseouslike region at larfe When the potential
BEC levels in the lowest gaseous adiabatic potential curvéarrier has disappeared, the states associated with this poten-
(solid lineg seem to repel each other at largg. due to  tial curve have purely molecular character. Thus, the energy
channel coupling. In summary, for our time-independentievels in this potential curve change dramatically in the vi-
studies here, the strict adiabatic approximation describes thenity of a.,, whereas most of the energy levels belonging to
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other families change slowly arourad,. V. CONCLUSIONS
Our interpretation of the behavior of a BEC in the vicinity

of 3, agrees with that suggested by Baktnal. for an arbi- atoms interacting via a sum of simple two-body model po-

trary number of particle$34]. Within the K-harmonic ap- tentials under external confinement. Our study is important

proximation, Bohnet al. [34] describe the interaction be- . . . . :
. . . in light of recent experiments of atomic gases trapped in an
tween each pair of particles through a shape-independent .. . . .
ptical lattice with an occupancy of 1-3 atoms per lattice

i;uggzzcigfinsﬂél?ﬂd rgilr(ae dﬁovrcse?grt)é%)ﬂ?cﬁ)onns Oafbougite [6]. These experiments open the opportunity to system-
yp ' P atically study strongly interacting few-body systems, and

tential leads to divergences. These approximations are COferefore enter regimes discussed in the present paper from a

firmed to be well justified, b_ased on our calqulatlons Wlththeoretical microscopic point of view. The overall behavior
shape-dependent two-body interaction potentials, so that n

S the zero-temperature energy levels discussed in Secs. Il
additional approximations at sm&lineed to be made. Taken S e
together, these two studies highlight the usefulness of thand IV'is independent of the exact shape of the two-body

. . ) 2 . ) otential, though the detailed behavior of the energy levels
hyperspherical radius coordinate in interpreting dynamics Oand of the hvper-radial potential curves at small hvper-radii
a BEC (see also Ref.35)). yp P yp

. S . . - R depends on the shape of the two-body potential. The goal
inltzlgure 3 also indicates d|screpairr11tC|e§ betwédfi and of this paper is to point out the gross behavior of the energy
En at large |agd. For age—e, Eyp diverges and ap- |eyels as functions of the two-bodywave scattering length
proaches unrealistically large values, whereas the three-bodé/sm or equivalently as functions of the binding energy of the
energiesE ), behave smoothly. Recall that the sign change ofmolecular two-body state closest to the atom plus atom
the scattering length from-o to + (pole region corre-  threshold. Therefore, we consider only one class of two-body
sponds to the appearance of an additional two-b®dave  potentials. Our main results are derived for a relatively large
bound state. Coincidently, this corresponds to the existenceapping frequencyy,,,=78 kHz. As pointed out in Sec. llI,
of a hyper-radial potential curve, which approaches the cordependences omy, exist, but the gross features of the
responding(negative two-body binding energy in the ab- energy-level scheme are independent of the magnitude of
sence of the trapping potential asymptotically. Around thev,,.
pole region, this hyper-radial potential curve is energetically Our time-independent calculations, performed mostly
close to the lowest potential curve with gaseouslike characwithin the adiabatic approximation, include molecularlike
ter, and therefore, coupling between these two potentighnd gaseouslike states, whereas standard mean-field treat-
curves with molecularlike and gaseouslike character, respecnents only treat the latter states. Our study reveals a micro-
tively, can occur. scopic understanding of the decay of a BEC in agreement
For positiveag., the “standard” HF or GP treatment has with a study by Bohret al. [34]. Furthermore, the present
been improved by including an additional mean-field termmicroscopic three-body study revealsraooth nondiverging
[2,36,37. This modified treatment leads to an improved de-behavior of the three-body energy levels around the pole
scription of BECs with small and medium interaction param-region, wheréeag — (or N, changes by J1 and provides a
eters, however, exhibits divergences similar to that observedetailed picture of the corresponding physics through analy-
for the standard mean-field treatmenteas— . Therefore, sis of hyperspherical potential curves.
the modified mean-field treatment does not overcome the Section IV compares our microscopic energy levels with
limitations of the standard mean-field treatment addressethose calculated at the HF level. While mean-field theories
above. are commonly derived in the large particle limit, the HF
To improve upon the GRor equivalently, the HFtreat-  equation is valid for any number of particles and density
ment, several groug88-48 developed mean-field formal- (though it might result in a more accurate description for
isms within the shape-independent contact potential approxsystems with largé&l and low density. The energy-level pat-
mation. These approaches go beyond typically appliedern for systems with more than three particles may differ in
approximations by introducing a molecular field, and aredetail from our three-body energy levels presented here,
aimed at describing condensate physics in the presence oft@wever, the overall behavior will be similar and we expect
Feshbach resonance, or at describing photoassociation prodr main conclusions to generalize to systems with more
cesses. The formalism that describes these two distinct pradhanN=3 particles.
cesses theoretically is the same. Application of such formal- Our study raises several discussion points. Most of all, we
isms in calculating the energetics as a functioagf, i.e., in  have only briefly discussed the effect of channel coupling on
the regions whereg.~a., and|asd—> would be useful. the behavior of the energy-level schefsee Fig. 6. To ob-
The present study may then be used to benchmark such tred#in detailed information about the dynamics of the conden-
ments, and would thus provide a strong link between manysate, inclusion of channel coupling, or at least a Landau-
body and mean-field treatments. Zener-type analysis, is required. Such an analysis would
To make further contact with mean-field treatments, com-allow the following question to be address@ge Fig. 3. Is
parisons between our three-body excitation frequencies aritipossible to form a BEC with positivag. that resides in a
those calculated within the random-phase approximation cahyper-radial curve other than the lowest curve with BEC
be made. This comparison will be discussed in a future pubeharacter, and then decreasg until a;.<a., (e.g., through
lication. the use of a Feshbach resongneghout destroying the con-

This paper discusses microscopic studies for tH#Rb

013601-7



D. BLUME AND CHRIS H. GREENE

PHYSICAL REVIEW A66, 013601 (2002

densate? Answers to this question certainly require a mormolecular physics(An exception is the recent study by

detailed analysis, and will be left for future study.
A direct extension of the present work to maimyore than

Strensenet al. [51], which includes molecular states explic-
itly.)

four) particles is not computationally feasible at present. We

hope, however, that our results can eventually be compared

with modified mean-field treatments that implicitly include
molecular state$38—48. Our study may then provide an
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