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Three particles in an external trap: Nature of the completeJÄ0 spectrum
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Three bosonic, spin-polarized atoms in a spherical oscillator potential constitutes the simplest nontrivial
Bose-Einstein condensate~BEC!. The present paper develops the tools needed to understand the nature of the
completeJ50 energy spectrum for this prototype system, assuming a sum of two-body potentials. The
resulting spectrum is calculated as a function of the two-body scattering lengthasc , which documents the
evolution of certain many-body levels that evolve from BEC-type to molecular-type as the scattering length is
decreased. Implications for the behavior of the condensate excited-state spectrum and for condensate formation
and decay are elucidated. The energy levels evolve smoothly, even through the regime where the number of
two-body bound statesNb increases by 1, andasc switches from2` to 1`. We point out the possibility of
suppressing three-body recombination by tuning the two-body scattering length to values that are larger than
the size of the condensate ground state. Comparisons with mean-field treatments are presented.
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I. INTRODUCTION

Mean-field methods are commonly used to characteriz
Bose-Einstein condensate~BEC!, i.e., an atomic vapor con
fined by an external trapping potential@1#. These approaches
which account for the interaction between particles throug
mean-field term in an effective single-particle Hamiltonia
accurately describe much of the dilute condensate energe
However, these shape-independents-wave scattering length
approximations break down for strongly interacting ga
with large interaction parameters@1–5#.

Very recent experiments by Greineret al. @6,7# have en-
tered this regime: A quantum phase transition from a sup
fluid to a Mott insulator was observed for ultracold atom
held in a three-dimensional optical lattice. Most relevant
our studies here, the atoms are held in tightisotropic lattice
sites with an occupancy of 1–3 atoms per site. The exp
ment thus realizes a strongly correlated many-body~and in a
sense, few-body! quantum system with unprecedented co
trol of parameters. In this paper, we present the quantJ
50 energy spectrum of three particles under external iso
pic confinement, and compare with results obtained us
mean-field theory.

The lowest-order mean-field approximation@Gross-
Pitaevskii~GP! or Hartree-Fock~HF! equation# @1,8–11# and
also higher-order approaches such as second-order pert
tion theory @12,13# treat the metastable BEC state of t
trapped alkali vapor as if it was the ‘‘true’’ ground state
the system. This means that these approaches canno
scribe recombination processes or atom-loss processes,
coupling to the true~solidlike/liquidlike! ground state is ne
glected completely. Attempts to include additional ‘‘empi
cal’’ terms in these mean-field equations, which account
‘‘reaction processes,’’ exist, and have been able to desc
some experimental findings successfully@14–16#. However,
the ad hocnature of some of these empirical terms is le
than satisfactory.

The nonperturbative quantal calculations permit us to
cumvent these problems. These calculations come at a p
1050-2947/2002/66~1!/013601~8!/$20.00 66 0136
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namely, our initial restriction to onlyN53 particles with
angular momentumJ50 in the trap~see Sec. II!. For this
‘‘simple’’ system, however, we are able to include a
channels in the calculation, molecular three-body bou
state channels, diatom plus atom channels, and metas
gaseouslike channels@17#.

This paper focuses on regimes wherestandardmean-field
treatments @1#, i.e., mean-field treatments that negle
molecular-field dynamics, break down. For large posit
asc→1`, the mean-field treatment results in unphysica
large diverging energies. In contrast, the three-body ener
change smoothly in the pole region, where the scatter
lengthasc changes from2` to 1` and the number of two-
body s-wave bound statesNb increases by 1. Additionally
our three-body study implies that the excitation frequenc
are well behaved arounduascu→`.

The mean-field treatment also exhibits limitations in t
parameter range around the negative critical scattering le
acr , where acr is defined through the instability criterio
(N21)acr /aho520.575 derived from the mean-field equ
tion @11,18#. The lowest gaseous energy level~i.e., the BEC
ground state! changes its character from metastable to m
lecular aroundacr , while some of the higher-lying BEC-like
states remain almost completely unaffected by criticality.
contrast, the mean-field equation simply has no solution
asc lower than the critical value.

Three-particle studies have been used previously to s
light on the many-body physics of BECs. In 1996, Esryet al.
@19# explored the role of the two-body scattering length
BECs. More recently, three research groups explained
periments regarding the three-body recombination rate
many-atom BECs via three-body calculations that inclu
channel coupling@17,20–23#. Three-body studies have als
been used to test the validity of shape-independent two-b
interaction potentials@24#.

The studies presented here are based on time-indepen
Schrödinger wave mechanics. The energy levels show s
eral avoided crossings when plotted as functions ofasc ~see
Sec. III!; nevertheless, dynamical behavior such as Land
©2002 The American Physical Society01-1
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D. BLUME AND CHRIS H. GREENE PHYSICAL REVIEW A66, 013601 ~2002!
Zener-type branching ratios or recombination rates rem
beyond the scope of this paper. Studies along these lines
be a natural continuation of the static studies presented h

Section II describes our three-body system, and outli
the formalism for its investigation. Section III presen
quantum-mechanical three-body energetics, and Sec.
compares with results derived from mean-field treatme
Finally, Sec. V summarizes our main results.

II. THE THREE-PARTICLE SYSTEM

The Schro¨dinger equation for three mass-m particles in a
spherical external potential with trapping frequencynho
5vho /(2p) reads

F(
i 51

3

2
\2

2m
¹ rW i

2
1(

i 51

3
1

2
mvho

2 r i
21(

i , j

3

V~r i j !GC~rW1 ,rW2 ,rW3!

5EC~rW1 ,rW2 ,rW3!, ~1!

where V(r i j ) denotes a two-body interaction potential a
r i j 5urW j2rW i u. rW i is the position vector of atomi relative to the
center of the trap. As was discussed in Ref.@24#, the center-
of-mass motion can be separated out exactly, which redu
this nine-dimensional problem to a six-dimensional probl
in the relative~Jacobi! coordinates of the three particles.
this paper, we specialize further toJ50 states of relative
angular momentum of the triad, which reduces the dim
sionality of the nontrivial part of the calculation down to ju
three dimensions. The center-of-mass~c.m.! and Jacobi co-
ordinates are defined byXW c.m.5(rW11rW21rW3)/3, rW 125rW22rW1

and rW 12,35rW32(rW21rW1)/2 @24#. This transformation de-
couples the center-of-mass motion,

S 2
\2

2M
¹XW

2
1

1

2
Mvho

2 X2Dfklm~XW !5Ek
c.m.fklm~XW !, ~2!

from the relative~internal! motion,

F2
\2

2m

]2

]R2
1

1

2
mvho

2 R21
\2

2mR2 S L21
15

4 D
1(

i , j

3

V~r i j !Gcn~R,q,w!5En
intcn~R,q,w!. ~3!

Here,M53m is the total mass, andEk5(k13/2)\vho with
k50,1,2, . . . the energy related to the center-of-mass m
tion. The corresponding eigenfunctionsfklm are simply the
three-dimensional isotropic oscillator solutions. Equat
~3! represents the Hamiltonian describing the relat
particle motions in terms of three hyperspherical co
dinates (R,q,w) rather than the Jacobi coordinatesrW 12 and
rW 12,3 @24–28#. Our definition of the hyper-radiusR, and the
two hyperanglesq and w is based on the democratic coo
dinate system of Whitten and Smith@29#, i.e., mR2

5mr12
2 /212mr12,3

2 /3. Owing to the identical boson chara
ter of the atoms, the angular range can be restricted tw
P@0,p/6# and qP@0,p/4#. m5m/A3 denotes the reduce
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s
ill
re.
s

IV
s.

es

-

-

n
e
-

mass of the three-body system, whileL2 denotes the
‘‘squared grand angular momentum’’ operator@30#. Here,
we introduce a rescaling of the usual wave fun
tion C(R,q,w) by R5/2, i.e., writing it as C(rW1 ,rW2 ,rW3)
5R25/2c(R,q,w)fklm(XW ), in order to eliminate first deriva-
tives from the hyper-radial kinetic-energy operator.

Equation~3! is solved here using two different, but relate
approaches: a coupled-adiabatic-channels approach a
strict adiabatic approximation. The coupled-adiabat
channel calculation can in principle be made exact. The s
adiabatic approximation can be viewed as an ‘‘incomple
coupled-adiabatic-channel calculation, truncated to o
channel only, which neglects all off-diagonal coupling e
ments. It is important to keep in mind that the strict adiaba
approximation cannot describe recombination processes

To solve Eq.~3! we expandcn(R,q,w) into radial wave
functionsFnn(R) and a set of complete, orthonormal angu
channel functionsFn(R;q,w). The basis functionsFn ,
which depend parametrically onR, are solutions of the par
tial differential equation

F \2

2mR2 S L21
15

4 D1(
i , j

3

V~r i j !GFn~R;q,w!

5Un~R!Fn~R;q,w!. ~4!

We refer to the eigenvaluesUn(R) as adiabatic potentia
curves. Inserting the expansioncn5(FnnFn into the Schro¨-
dinger equation for the internal motion@Eq. ~3!# results in an
infinite set of coupled ordinary differential equations,

S 2
\2

2m

d2

dR2
1

1

2
mvho

2 R21Un~R!1Qnn~R!2En
intD Fnn~R!

52 (
n85” n

Qnn8~R!Fn8n~R!1 (
n85” n

Pnn8~R!
dFn8n~R!

dR
,

~5!

wherePnn8 @Qnn8# are angular coupling matrix elements in
volving the first@second# derivative ofFn with respect toR
@31#. We refer to the solution of Eq.~5! as the coupled-
adiabatic-channel solution. The strict adiabatic approxim
tion follows immediately by neglecting coupling elemen
between different channels@[ setting the right-hand side o
Eq. ~5! to zero#. Another variant of the strict adiabatic ap
proximation additionally neglects the diagonal elementQnn ,
and is typically referred to as the hyperspherical Bo
Oppenheimer approximation. In the following, we use the
two variants of the strict adiabatic approximation inte
changeably, and denote the eigenvalues byEnn

int .
The outlined formalism splits the solution of the Schr¨-

dinger equation for the internal motion@Eq. ~3!# into two
steps:~i! solution of Eq. ~4! ~here via a two-dimensiona
B-spline code! and ~ii ! solution of the one-dimensiona
coupled equations@Eq. ~5!#. The former is numerically more
challenging due to its higher dimensionality, and coincid
with determining the bound and continuum channel fun
1-2
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THREE PARTICLES IN AN EXTERNAL TRAP: . . . PHYSICAL REVIEW A 66, 013601 ~2002!
tionsFn of three particles interacting via a sum of two-bo
potentialsV(r ) @the trapping potential does not enter E
~4!#.

For a vanishing interaction potential,V(r )50, the
symmetry-allowedJ50 eigenfunctionsFn of Eq. ~4! reduce
to Gegenbauer polynomials@30# with eigenvaluesUn(R)
5\2@l(l14)115/4#/2mR2, l50,4,6,•••, where thel
52 state is forbidden due to symmetry constraints, and
eigenvalues withl512 andl>16 are doubly degenerate
Now consider a nonvanishing two-body interaction poten
V(r ). Compared to theV50 potential, the nonvanishingV
introduces three-body bound states at small hyper-radiR,
accounting for the short-range physics ofV(r ), and also
modifies the potential curves at largeR, reflecting the non-
zeros-wave scattering lengthasc . Additionally, a nonvanish-
ing V lifts the degeneracy of theUn(R) potential curves.

To illustrate this behavior, Fig. 1 shows the sum of t
trapping potential,Vtrap5mvho

2 R2/2 with nho578 kHz, and
the adiabatic potential curvesUn(R) for a two-body model
interaction potential~see Sec. III! with s-wave scattering
lengthasc5228 a.u. and two two-bodys-wave bound states
Nb52 @m5m( 87Rb)#. Length and energy are expressed
oscillator units@length unit aho5A\/(mvho), energy unit
\vho#. The two lowest potential curves withn50 and 1
~upper panel, dashed lines! describe three-body bound-sta
physics, and approach the two-bodys-wave binding energies
in the absence of a trapping potential. The higher-lying
tential curves~solid lines! describe metastable BEC physic
and would correspond to continuum states, in the absenc
a trapping potential. Then52 curve~thick solid line! shows

FIG. 1. Upper panel: Adiabatic potential curvesUn plus trap-
ping potentialVtrap (nho578 kHz, aho5731 a.u.), as a func-
tion of the hyper-radiusR for Nb52 andasc5228 a.u. The dashed
curves (n50,1) describe molecularlike states while the solid curv
describe gaseouslike states. Lower panel: Blowup of the gas
region. In addition, dotted lines show the potential curves for v
ishing interaction potentialV. Note the logarithmicR scale.
01360
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a double minimum structure with minima atR'0.2aho and
R'2.5aho , which are separated by a potential barrier. T
lowest metastable state ‘‘lives’’ in the minimum at largerR.
The lower panel of Fig. 1 shows an enlargement of the g
eous region together with the effective potential curves fo
vanishing interaction potential~dotted lines!. Significant de-
viations between the solid and the dotted curves~nonvanish-
ing and vanishing two-body potential, respectively! are vis-
ible.

As is demonstrated in Fig. 1, to properly describe t
metastable states, one must solve Eq.~4! for hyper-radiiR as
large as 10aho , corresponding roughly to several 104 a.u.
~depending somewhat onnho). In our calculation, we deter
mine the adiabatic potential curvesUn and the coupling ma-
trix elementsPnn8 and Qnn8 out to R'102100asc using a
two-dimensional B-spline code, and then extrapolate
larger R. For the continuum potential curves we follow
second independent approach suggested by Nielsen
Macek @20#. For largeR, they recognize the dependence
Un on asc only, and derive a nearly analytic expression f
Un . Note, Nielsen and Macek’s formula does not account
those potential curves, which simply coincide with th
‘‘unperturbed’’ eigenvalues\2@l(l14)115/4#/2mR2, l
512,16,18, . . . ~see above!. The nearly analytical expres
sions @20# are in excellent agreement with our continuu
curves Un calculated through numerical solution~and ex-
trapolation! of Eq. ~4!.

In passing, we note an additional nice feature of the o
lined formalism. Suppose that we wish to study the energ
ics of three particles in an external spherical potential a
function of the trapping frequencynho . For a given interac-
tion potentialV(r ), it is only necessary to solve the numer
cally most demanding Eq.~4! once. vho then enters the
simple one-dimensional Eq.~5! simply through an additive
term, which trivially determines the energy spectrum vers
vho .

III. THE QUANTAL ENERGY SPECTRUM

This section presents the internal energiesEint for three
bosonic particles withJ50 in an external trap for a two
body model potential of the formV(r )5d cosh22(r/r0). This
is convenient because the two-bodys-wave eigenenergies
and eigenfunctions can be determined analytically@32#. Fur-
thermore, we determined an analytical expression for
energy-dependents-wave scattering length,

asc~k!5
1

ik S 11r

12r D , ~6!

where

r52

2F1S ik2s,11s1 ik;11 ik;
1

2D
2ik

2F1S 2s,11s;12 ik;
1

2D , ~7!

wherek5AmE/\2, ands52 1
2 1 1

2 A114mdr0
2/\2. 2F1 de-

notes the usual hypergeometric function. The zero-ene

s
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D. BLUME AND CHRIS H. GREENE PHYSICAL REVIEW A66, 013601 ~2002!
s-wave scattering lengthasc is then simply given byasc
5 limk→0asc(k). While r 0 is fixed atr 0555 a.u. throughout
our calculations,d is varied to change the number of two
bodys-wave bound statesNb and the two-bodys-wave scat-
tering lengthasc @m5m( 87Rb) throughout the rest of th
paper#.

Figure 2 shows the two-bodys-wave energy levels~solid
lines!, and the two-bodyd-wave energy level~dotted line! as
a function of the well depthd of the two-body interaction
potential. One can interpret these energy levels as those
els that are shifted by a magnetic or electric field in an
periment. A shift of the energy levels subsequently chan
the two-bodys-wave scattering lengthasc , which is shown
in the inset of Fig. 2 as a function ofd. Note that the scat-
tering length diverges~changes sign from negative to pos
tive! where an additional two-bodys-wave bound state ap
pears.

In the following, we find it convenient to discuss th
properties of three interacting atoms as a function of
two-body s-wave scattering lengthasc . The reader should
however, keep in mind that the change of the two-bo
s-wave scattering length corresponds to a shift of the tw
body energy levels. We perform three-body calculations
70 differentd values, which translates into a range of tw
body scattering lengthsasc from 2104 a.u. to 104 a.u. To
keep the coupled-adiabatic-channel calculations tractable
restrictd in this study to values such thatNb51 or 2.

Consider three particles under external confinement fo
vanishing two-body interaction potential,d50 ~ideal gas!
first. For this system, the strict adiabatic approximation
exact, andEn

int53,5,7, . . .\vho . Introduction of a nonvan-
ishing interaction potential shifts these gaseous energy le
according roughly to the value ofasc , lifts the degeneracy
and additionally gives rise to three-body bound states. Fig
3 shows the internal energiesEnn

int ~solid lines! of the gas-
eouslike states fornho578 kHz calculated via the stric
adiabatic approximation for various scattering lengthsasc .
To accomodate a large range of interaction parametersN
21)asc /aho @11#, Fig. 3 shows the internal energies as
function of @arctan(asc /aho)#/p. To additionally be able to
plot results for systems withNb51 and Nb52 two-body

FIG. 2. Two-bodys-wave~solid lines! andd-wave~dotted line!
energy levels as a function of the well depthd of the two-body
interaction potential. The inset shows the two-bodys-wave scatter-
ing length as a function ofd ~using the same range ofd values as in
the main figure!.
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bound states, respectively, the integer part of the abciss
chosen to be equal to2Nb . This scaling procedure results i
abcissa values of@22.5,20.5#. We refer to the interval
@20.5,21.5# as the ‘‘first cycle’’ (Nb51), and to the inter-
val @21.5,22.5# as the ‘‘second cycle’’ (Nb52). In this
representation,asc50 corresponds to@arctan(asc /aho)#/p
522.0 and21.0.

To interpret this complicated energy-level structure, co
centrate on six different scattering length values labeled
A-F in Fig. 3. Figure 4 shows the sum of the correspond
adiabatic potential curves and the trapping potentialUn

1Vtrap , whereVtrap(R)5 1
2 mvho

2 R2 ~solid lines!.
Figure 4, panelA corresponds to a large positive scatte

ing length, asc52138 a.u. The lowest BEC-like curve (n
52) is highlighted as a thick solid curve. The lowest ener
level lying within this potential curve,E20

int , has an energy
close to 5\vho , and the excited levels (E2n

int , n.0) lie about
2\vho higher each~see Fig. 3!. We refer to the energy level
‘‘located’’ within the same potential curve~identical n, but
having a different number of hyper-radial nodesn) as a fam-
ily. The lowest energy of the next higher BEC-like curve
E30

int'7\v, and again, the excited levels (E3n
int , n.0) lie

about 2\vho higher each. To guide the eye, Fig. 3 displa
dotted curves that represent the effective potential curve
the absence of any two-body interaction potential.

Figure 4, panelB corresponds to a much smaller scatte
ing length than in panelA, asc5103 a.u. This panel shows
series of crossings at energies around 20\vho , indicating a
d-wave shape resonance~see also dotted line in Fig. 2!. As
the scattering length decreases slightly, these crossings m
to lower energies, until they finally vanish atasc597 a.u.
The scattering lengthasc597 a.u. corresponds to a we
depthd of the two-body potentialV at whichV first supports

FIG. 3. Internal energy levelsEnn
int ~solid lines! as a function of

@arctan(asc /aho)#/p for three particles in a spherical trap with trap
ping frequencynho578 kHz (aho5731 a.u.!. Dotted lines indicate
the ‘‘internal’’ HF energyEHF

int ~see text!. The ‘‘first cycle’’ (Nb

51, see text! corresponds to@arctan(asc /aho)#/pP@20.5,21.5#,
and the ‘‘second cycle’’ (Nb52, see text! to @arctan(asc /aho)#/p
P@21.5,22.5# (@arctan(asc /aho)#/p520.5,21,21.5,22,22.5
corresponds touascu5`,0,̀ ,0,̀ ). Labels A–F indicate systems
with different scattering length for which Fig. 4 shows the corr
sponding adiabatic potential curves~A, asc52138 a.u.; B, asc

5103 a.u.;C, asc50 a.u.;D, asc5231 a.u.;E, asc52130 a.u.;
andF, asc521970 a.u.!.
1-4
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THREE PARTICLES IN AN EXTERNAL TRAP: . . . PHYSICAL REVIEW A 66, 013601 ~2002!
a d-wave two-body bound state. To calculate energy level
the presence of ad-wave shape resonance, we follow th
potential curves that cross diabatically. Note that the pot
tial curves approach theV(r i j )50 curves~i.e., the dotted
lines! asasc approaches zero. Accordingly, the energy lev
approach those of the ideal inhomogeneous gas.

Figure 4, panelC shows the effective potential curve
~solid lines! for vanishing scattering length,asc50 ~how-
ever, nonvanishingV), in which case the potential curves a
almost identical to the ones for vanishingV ~dotted lines!.
Small differences occur in the inner wall region reflecting t
existence of molecular states at smallR. These molecular
states at smallR are, however, not shown in Fig. 4.

Figure 4, panelsD, E, andF correspond to negative sca
tering lengths. The inflection of the thick solid line atR
'0.5aho in panelD indicates the first signature of a deca
ing condensate. The interaction parameter for this syste
(N21)asc /aho520.085. In panelE, the barrier of the low-
est gaseouslike curve, which separates the BEC minim
from the energetically much deeper molecular minimum,
almost vanished; here, (N21)asc /aho520.356. PanelF
shows a large negative scattering length case,asc5
21970 a.u. The thick solid curve corresponds to a situa
in which the gaseouslike state~condensate! is no longer
stable. Note the similarity of the potential curves for lar
positive and large negativeasc ~panelsA andF). This simi-
larity reflects the smooth dependence ofEnn

int as uascu goes
through infinity ~see above!.

In addition to the aforementioned issues, four more ch
acteristics are important to the energy-level scheme show
Fig. 3: ~i! At asc50, corresponding to@arctan(asc /aho)#/p

FIG. 4. Adiabatic potential curvesUn plus trapping potential
Vtrap , for three particles in a trap withnho578 kHz (aho5731
a.u.! as a function of the hyper-radiusR. Solid lines indicate the
numerical potential curves forA, asc52138 a.u.;B, asc5103 a.u.
~d-wave shape resonance!; C, asc50 a.u.;D, asc5231 a.u.~first
signature of decay!; E, asc52130 a.u.~vanishing potential barrier!;
andF, asc521970 a.u.. These scattering lengths are also indica
in Fig. 3. The thick solid line indicates the lowest gaseous le
~panelsA–D), and the ‘‘decayed’’ condensate state~panelsE and
F), respectively. In addition, dotted lines show the potential cur
for vanishing two-body interaction potential.
01360
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521 and22, the positive energy levelsEnn
int lie very close

to those of the ideal gas.~ii ! The energy level with energy
Eint515\vho is unchanged over the two cycles shown. Th
energy level originates in the ‘‘unperturbed’’ potential cur
\2@l(l14)115/4#/2mR2, l512 ~see Sec. II!, and there-
fore coincides with an ideal gas level.~iii ! The internal en-
ergy levels in the first cycle (Nb51) and in the second cycle
(Nb52) behave very similarly, indicating that the energi
are, to a good approximation, independent of the numbe
two-bodys-wave bound statesNb . ~iv! Notice, in particular,
that the energy levelsEnn

int change smoothly asuascu passes
through infinity.

Note as well that families of plunging energy levels wi
molecular character are present, which to simplify our p
sentation are shown only partially in Fig. 3. Consider t
lowest gaseouslike energy level of the first cycle, i.e., w
Nb51. As the gaseouslike state becomes unstable whileasc
decreases this energy level decreases through
~at @arctan(asc /aho)#/p'21.2), which reflects the transi
tion of this BEC state to one of molecular character. T
other energy levels of this family also change character fr
gaseouslike to molecularlike as the two-body potential w
depthd becomes deeper. For clarity, Fig. 3 shows these
ergy levels only for@arctan(asc /aho)#/p.21.75. For each
additional two-body bound state, a ‘‘manifold’’ of plungin
energy levels is present, reflecting the fact that the numbe
three-body states with negative energy increases far m
rapidly as a function ofd than those for the two-body sys
tem.

So far we have discussed results for a trap with trapp
frequencynho578 kHz. In addition, we performed calcula
tions for trapping frequencies that are 10 times larger, a
also 10 or 100 times smaller. Sinceaho5A\/(mvho), the
interaction parameter (N21)asc /aho scales asAvho. Adopt-
ing the same two-body interaction potentials as before
trapping frequency smaller thannho578 kHz therefore
leads to a narrower@arctan(asc /aho)#/p interval than shown
in Fig. 3. As an example, Fig. 5 shows the internal energ
Enn

int for three particles in a trap withnho5780 Hz andNb

52 ~solid lines!. A few of the internal energies
at large negative scattering length, corresponding

d
l

s

FIG. 5. Internal energy levelsEnn
int ~solid lines! as a function of

@arctan(asc /aho)#/p for three particles in a spherical trap with trap
ping frequencynho5780 Hz (aho57307 a.u.) forNb52. Dia-
monds indicate the internal energies at large negativeasc . A dotted
line indicates the ‘‘internal’’ HF energyEHF

int ~see text!.
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@arctan(asc /aho)#/p'22.08, are indicated by diamond
These data points are not connected by solid lines sinc
this region our grid inasc is too coarse to allow for interpo
lation.

To summarize, our microscopic studies of the energe
of three confined particles as a function ofnho reveal that the
overall behavior of the energy-level scheme~as shown in
Fig. 3! remains unchanged asnho either decreases or in
creases. As discussed in the preceding paragraph, how
nho determines the range of the interaction parameter. S
cifically, the behavior of the energy levels aroundasc'acr
depends onnho . Figure 3 indicates a gradual decrease of
condensate energy as the scattering length decreases th
the region@arctan(asc /aho)#/p'22.1. Asnho is decreased
the separation between the molecularlike region at smaR
and the gaseouslike region at largeR becomes more pro
nounced, and the energy decrease~change from gaseouslik
to molecularlike! takes place over a smaller range of scatt
ing lengths. In other words, the potential barrier~shown in
panelD andE of Fig. 4 fornho578 kHz) spatially separate
the molecularlike and gaseouslike region more for smallnho
than for largenho .

The internal energies discussed in this section have b
calculated within the strict adiabatic approximation. To a
sess the accuracy of this approach we additionally perform
coupled-adiabatic-channel calculations. Figure 6 shows
energies resulting from the coupled-adiabatic-channel ca
lation including four channels~pluses! together with those
resulting from the adiabatic calculation~dotted, solid, and
dashed lines! for nho578 kHz. Figure 6 indicates excellen
agreement between these two sets of calculations for s
asc ~left-hand side of the figure!, however, some difference
occur at largerasc ~right-hand side of the figure!. To be more
specific, the plunging molecular levels~dotted lines! and the
BEC levels in the lowest gaseous adiabatic potential cu
~solid lines! seem to repel each other at largeasc due to
channel coupling. In summary, for our time-independ
studies here, the strict adiabatic approximation describes

FIG. 6. Internal adiabatic energy levelsEnn
int ~dotted, solid, and

dashed lines! together with energies calculated using the coupl
adiabatic-channel approach including four channels~pluses! as a
function of @arctan(asc /aho)#/p for three particles in a spherica
trap with trapping frequencynho578 kHz (aho5731 a.u.). Dot-
ted lines indicate ‘‘plunging’’ molecular levels, while solid an
dashed lines indicate energy levels in the lowest and in the se
lowest gaseous adiabatic potential curve, respectively.
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main characteristics of the energy-level pattern as show
Figs. 3 and 5 with sufficient accuracy. To go beyond t
static picture, however, the coupling between channels m
be considered.

Studies including channel coupling@17,19# show that the
primary recombination mechanism is related to the beha
of the adiabatic potential curves and the corresponding c
pling elements at hyper-radiiR'223asc . Consider panelA
of Fig. 4 with asc52138 a.u. andnho578 kHz. For this
situation, the criterion R'223asc translates into 5.8
28.8aho . At these hyper-radii, the lowest-lying gaseo
Vtrap1Un curve reaches'10220\vho , compared to the
lowest gaseous energy level of'5.3\vho . Thus, we specu-
late that we have entered a regime where recombination
cesses are largely suppressed due to the strong confinem
It would be interesting to probe this regime experimental

IV. COMPARISON WITH MEAN-FIELD TREATMENTS

This section connects our microscopic studies with res
obtained by mean-field treatments. Consider the HF tre
ment @11#, which results in an equation identical to the G
equation, except for a change fromN to N21 in the inter-
action parameter. The HF treatment does not take advan
of the decoupling of the center-of-mass and the internal m
tion, and determines an approximate value for the total
ergyEHF as well as the orbital energy or chemical potenti
To compare our internal three-body energiesEnn

int ~solid lines
in Figs. 3 and 5! with the HF energyEHF , we subtract the
exact energy associated with the lowest center-of-mass
tion, E0

c.m.51.5\vho , from EHF , and refer to this quantity
as internal HF energyEHF

int . The approximate HF treatmen
could either lead to an error inEHF

int or in EHF
c.m., or in both

these quantities at the same time, and the subtraction ofE0
c.m.

from EHF is therefore somewhat artificial@33#. Figures 3 and
5 show the resulting internal HF energyEHF

int as dotted lines.
For nho5780 Hz, the internal HF energyEHF

int ~dotted
lines in Fig. 5! agrees favorably with the lowest gaseousli
internal three-body energy~solid line!. As discussed in Sec
III, Fig. 5 includes only a small range of interaction param
eters (N21)asc /aho . Thus, the good agreement betwe
Enn

int andEHF
int is not surprising.

For comparison, Fig. 3 shows the energy levels for a 1
times larger trapping frequency, namely,nho578 kHz. This
figure indicates two regions in whichEHF

int ~dotted line! de-
viates from the lowest many-body energy levelEnn

int having
gaseous character, the region aroundacr and the largeasc
region. Forasc<acr , the HF equation does not have a sol
tion. This mathematical fact is typically interpreted as ‘‘d
cay of the condensate’’@1,18#. The three-body treatment re
veals that the decay of the condensate is linked to
disappearance of a potential barrier~see, e.g., panelsD andE
of Fig. 4!, which separates the molecular region at smalR
from the gaseouslike region at largeR. When the potential
barrier has disappeared, the states associated with this p
tial curve have purely molecular character. Thus, the ene
levels in this potential curve change dramatically in the
cinity of acr , whereas most of the energy levels belonging

-
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other families change slowly aroundasc .
Our interpretation of the behavior of a BEC in the vicini

of acr agrees with that suggested by Bohnet al. for an arbi-
trary number of particles@34#. Within the K-harmonic ap-
proximation, Bohnet al. @34# describe the interaction be
tween each pair of particles through a shape-indepen
d-function potential, and make some approximations ab
the behavior at small hyper-radii, where thed-function po-
tential leads to divergences. These approximations are
firmed to be well justified, based on our calculations w
shape-dependent two-body interaction potentials, so tha
additional approximations at smallR need to be made. Take
together, these two studies highlight the usefulness of
hyperspherical radius coordinate in interpreting dynamics
a BEC ~see also Ref.@35#!.

Figure 3 also indicates discrepancies betweenEHF
int and

Enn
int at large uascu. For asc→`, EHF

int diverges and ap-
proaches unrealistically large values, whereas the three-b
energiesEnn

int behave smoothly. Recall that the sign change
the scattering length from2` to 1` ~pole region! corre-
sponds to the appearance of an additional two-bodys-wave
bound state. Coincidently, this corresponds to the existe
of a hyper-radial potential curve, which approaches the c
responding~negative! two-body binding energy in the ab
sence of the trapping potential asymptotically. Around
pole region, this hyper-radial potential curve is energetica
close to the lowest potential curve with gaseouslike cha
ter, and therefore, coupling between these two poten
curves with molecularlike and gaseouslike character, res
tively, can occur.

For positiveasc , the ‘‘standard’’ HF or GP treatment ha
been improved by including an additional mean-field te
@2,36,37#. This modified treatment leads to an improved d
scription of BECs with small and medium interaction para
eters, however, exhibits divergences similar to that obser
for the standard mean-field treatment asasc→`. Therefore,
the modified mean-field treatment does not overcome
limitations of the standard mean-field treatment addres
above.

To improve upon the GP~or equivalently, the HF! treat-
ment, several groups@38–48# developed mean-field formal
isms within the shape-independent contact potential appr
mation. These approaches go beyond typically app
approximations by introducing a molecular field, and a
aimed at describing condensate physics in the presence
Feshbach resonance, or at describing photoassociation
cesses. The formalism that describes these two distinct
cesses theoretically is the same. Application of such form
isms in calculating the energetics as a function ofasc , i.e., in
the regions whereasc'acr and uascu→` would be useful.
The present study may then be used to benchmark such t
ments, and would thus provide a strong link between ma
body and mean-field treatments.

To make further contact with mean-field treatments, co
parisons between our three-body excitation frequencies
those calculated within the random-phase approximation
be made. This comparison will be discussed in a future p
lication.
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V. CONCLUSIONS

This paper discusses microscopic studies for three87Rb
atoms interacting via a sum of simple two-body model p
tentials under external confinement. Our study is import
in light of recent experiments of atomic gases trapped in
optical lattice with an occupancy of 1–3 atoms per latt
site @6#. These experiments open the opportunity to syste
atically study strongly interacting few-body systems, a
therefore enter regimes discussed in the present paper fr
theoretical microscopic point of view. The overall behavi
of the zero-temperature energy levels discussed in Secs
and IV is independent of the exact shape of the two-bo
potential, though the detailed behavior of the energy lev
and of the hyper-radial potential curves at small hyper-ra
R depends on the shape of the two-body potential. The g
of this paper is to point out the gross behavior of the ene
levels as functions of the two-bodys-wave scattering length
asc , or equivalently as functions of the binding energy of t
molecular two-body state closest to the atom plus at
threshold. Therefore, we consider only one class of two-b
potentials. Our main results are derived for a relatively la
trapping frequency,nho578 kHz. As pointed out in Sec. III,
dependences onnho exist, but the gross features of th
energy-level scheme are independent of the magnitude
nho .

Our time-independent calculations, performed mos
within the adiabatic approximation, include molecularlik
and gaseouslike states, whereas standard mean-field
ments only treat the latter states. Our study reveals a mi
scopic understanding of the decay of a BEC in agreem
with a study by Bohnet al. @34#. Furthermore, the presen
microscopic three-body study reveals asmooth nondiverging
behavior of the three-body energy levels around the p
region, whereuascu→` ~or Nb changes by 1!, and provides a
detailed picture of the corresponding physics through an
sis of hyperspherical potential curves.

Section IV compares our microscopic energy levels w
those calculated at the HF level. While mean-field theor
are commonly derived in the large particle limit, the H
equation is valid for any number of particles and dens
~though it might result in a more accurate description
systems with largeN and low density!. The energy-level pat-
tern for systems with more than three particles may differ
detail from our three-body energy levels presented he
however, the overall behavior will be similar and we expe
our main conclusions to generalize to systems with m
thanN53 particles.

Our study raises several discussion points. Most of all,
have only briefly discussed the effect of channel coupling
the behavior of the energy-level scheme~see Fig. 6!. To ob-
tain detailed information about the dynamics of the cond
sate, inclusion of channel coupling, or at least a Land
Zener-type analysis, is required. Such an analysis wo
allow the following question to be addressed~see Fig. 3!: Is
it possible to form a BEC with positiveasc that resides in a
hyper-radial curve other than the lowest curve with BE
character, and then decreaseasc until asc,acr ~e.g., through
the use of a Feshbach resonance! without destroying the con-
1-7
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densate? Answers to this question certainly require a m
detailed analysis, and will be left for future study.

A direct extension of the present work to many~more than
four! particles is not computationally feasible at present.
hope, however, that our results can eventually be comp
with modified mean-field treatments that implicitly includ
molecular states@38–48#. Our study may then provide a
additional link between many-body and mean-field phys
Finally, our work relates to various many-body treatme
using hyperspherical coordinates@34,35,49–51# that neglect
v.

v

e

B

e

y

01360
re
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molecular physics.~An exception is the recent study b
So”rensenet al. @51#, which includes molecular states explic
itly.!
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