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Dynamical symmetries of time-periodic Hamiltonians
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The interaction of atoms, molecules, crystals, and nanotubes with time-periodic laser fields can lead to
high-order dynamical symmetri¢DS’s). Here we employ group theoretical methods to study the DS-related
propertiesquantum numbers, nonaccidental degeneraoieguantum systems possessing high-order DS's. As
explicit examples we take finite-order rotation symmetry in point and plane groups, and a circularly polarized
laser field. We find that nonaccidental degeneracies induced by spatial and time-reversal symmetries may not
be lifted inside the laser field. A general result of this work is that the time-evolution operator needs to be
computedonly up to 1N [or, even, 1/(N)] of the optical cycle, wher&l is the order of the DS. This allows
a substantial reduction of the computational effort required for studying the time-dependent dynamics of such
systems.
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Symmetry plays an important role in atomic, molecular,dynamical tunneling and localization, photoionization and
and solid-state physidsl—3]. In particular, it provides the stabilization of atoms and oriented molecules, generation and
labeling of energy levels and their correspondstgtionary ~ coherent control of photocurrents in spatially periodic mate-
eigenstates with “good” quantum numbers. Most impor-rials, and so on. It is the purpose of this work to explore the
tantly, it allows us to makea priori assertions on matrix DS-related properties of quantum systems posseshigy-
elements and thus provides a general method for determinir@fde) DS’s. To do so, we follow a similar path to that used
selection rules. For instance, the interpretation of electronigvhen group theory is applied to the study of symmetry-
and vibrational spectra strongly benefits from suchrelated properties of stationary systems. Specifically, we first
symmetry-based predictiofid]. As is well known, the states identify the DS's comprising théunitary) DS group of a
of atoms and molecules in time-periodic laser fields can b&iven time-dependent system. Secondly, we assign “good”
conveniently expanded in terms of Floqugfuasienergy duantum numbers to the QE states. Thirdly, we inquire
(QE)] states[5,6]. Within this picture, harmonic generation Whether the QE spectrum possesses nonaccidental degenera-
spectroscopy is described as the transition betwtrae-  Ci€s, first due to the structure of titenitary) DS group and
dependent (Floquel states induced by suitabldime- subsequently due to th@ossiblg existence of nonunitary
dependenbperatord7]. The effects of Hamiltonian symme- DS's. Finally, we show how DS can be employed to reduce
try on the p0|arization and order of harmonics emitted inthe computational effort associated with integrating the time-
various theoretical setups have been discussed by several glgpendent problem. As mentioned above, the utilization of
thors (see, e.g., Ref[8]). In particular, the spatiotemporal DS's to evaluate matrix element§ormulating selection
symmetries/hereafter referred to as dynamical symmetriestules has been introduced and applied befigt@], and ther-
(DS’s)] of the Floquet Hamiltonian have been shown to gov-fore it will not be presented here. Being embedded in group
ern the selection rules for the harmonic generation spectrieory, the ideas and methods employed in this work can be
[7,9]; thus they fulfill a similar role to that discussed above applied to Floquet Hamiltonians possessiugrious DS
for symmetry in “ordinary” spectroscopy. groups, such as those associated with field-free point, plane,

The DS's are basic characteristics of the time-dependeri@yer, space, and rod groups. However, to make our exposi-
quantum system under investigation, just as the spatial syniion both coherent and transparent we choose to study spe-
metries are in the stationary case. The corelation between tiéfic examples of systems with high-order DS’s, in particular
DS's and their field-free partners constitutes a groupihose associated with finite-order rotation symmetry in point
theoretical-based tool to quantify, even foonperturbative ~and plane groups, and a circularly polarized laser field. The
intensities, to what extent the time-dependent interaction regenerality or possible generalization of our results is briefly
duces the symmetry of the stationary system. A systematigliscussed.
study of DS-related properties of Floquet Hamiltonians is, Our starting point is the following field-free Hamiltonian,
therefore, not only of fundamental interest from the groupdescribing an electron’s motion in a hindered quantum ring
theoretical point of view. Rather, it should encourage rePossessing\-fold rotational symmetry:
searchers to classify and explore the fingerprintghagh-
ordep DS’s in field-induced physical phenomena, such as ~y

A= 2=+ Vy(n),  [A(D).EnI=0,
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The single-electron eigenstates of the quantum (ijgcan  tally degenerate Floquet states in this system. One would not

be classified with respect to the rotation operaiqr, expect the existence of nonaccidental degeneracies, because
the circularly polarized field breaks both the reflection sym-
ﬂ(r),J,E’p(r):E,/,E‘p(r), metry and the TRS utilized above to characterize such de-
generacies in the field-free system. Lefougvewith the help
éNl//E,p(f)=e+i(2"/N)p¢E,p(f), p=0,1,...N—1. of group theory why this is indeed the case. We first consider

(2)  the case where the field-free Hamiltonian does not possess

| I K hat th i v d the reflection symmetrﬁrq, In this case théfull) DS group
t is well known that there are nonaccidentally egenerate . system.Gy={Px B2, ... N1 BN=1} is cyclic

energy levels in the syste(@). In order to characterize them, nd unitary. Hence, no nonaccidental degeneracies can be
one distinguishes between two cases. If, in addition to th nary. 9
N-fold rotati . the Hamiltonian is i ant ound in the QE spectrum of the systdB). If, on the other

fold rotation symmetnCy, the Hamiltonian is invariant ., [H(r),o,] then one finds that the Floquet Hamiltonian

under the reflection symmetry,=(¢——¢)=(Y—=-Y), s invariant under the following generalized TRSTRS:
one obtains the familiar result reflected by the character table
of the point grougy, [4]: For p#{0N/2}, o e p andye Ra=(¢——¢t——t,*)=R-0,. (6)

are degenerate, while far={0N/2}, o g p* e . In the ] ] ) -

second caséfor [H(r),&‘p];&O), one can make use of the IF is therefore req.uwed to check whether this addltloan .

] . tiunitary DS can introduce nonaccidental degeneracies into
time-reversal symmetryTRS R= (t——t,*) (for real  {he QF spectrum. To this end, one has to resort to Wigner
Hamiltoniand H(r),R]=0). Upon applying the TRR onto theory of antiunitary symmetrieRef. [1], Chap. 26 and
Ye,p, the result now reflects the character table of the p0|ntc1pp|y it to the nonunitary DR o and the unitary DS group
groupCy [4]: For p#{0N/2}, Rye, and g, are degener- g, In practice, one has to examine the relation between the

ate, while forp={0,N/2}, Rz,/;E p*YE p irreducible representatio(irrep) Fp(ISN) and the complex
Let us add a circularly polarlzed Iaser field and enquwe BY_T*(BH-1p £ B

what happens to the energy levels of the quantum ring. In th onJAugate oner(PN)—Fp(.R P_ Ro)- I Tp(Py) and o

presence of a time-periodic field, the field-free stationaryl p(Pn) are equivalent, that is their characters are equal, it is

states become QE statf5,6]. The Floquet Hamiltonian is Possible to find a similarity transformatioB, such that

given by B II',(Py)B=T,(Py). In this case two possibilities arise,
P depending on the nature of the produBtB. If B*B
He(r,t)=H(r)+eEyp cog ¢~ wt) =i —, ©) I',(RZ)) then no additional degeneracy is introdu¢edse

(a)]. If, on the other handB*B=—T (R¢ ), there is an ad-
whereE, and w=27/T are the incident field strength and ditional doubling of the degeneracy, aﬁg(ﬁ’,\,)_always oc-

frequency, respectively. The field propagation direction in. < twice [case (b)]. Finally, i & &

. . . y, if Tp(Py) and I'o(Py) are
Eq.(3) is assumed to be parallel to thefold symmetry axis inequivalent irreps, there is an additional doubling of the
of the quantum ring. A look at the Floquet Hamiltoniés) . — .
reveals that it is invariant under the followirlgth order ~degeneracy, anti,(Py) andT',(Py) always occur together
unitary DS[10]: as a pairf[case(c)]. Now, in contrast to the field-free case

whereR™*CyR=Cy, one readily finds that

~ 2 T
Pv=| p— o+ — t—t+=]|. (4 A_ga A A_4 T A_1a A
N N Ry PuRy=PR =T p(Ph) =T (R PuR,)
The DS operator acts on Floquet states analogously to the :r*(ﬁﬁl):rp(ﬁN) (7)
action of symmetry operators on stationary states. Thus, a P
complete set of QE states can be found, such that [the last step is valid sinc&,(Py) is a one-dimensional

(1D) irrep], meaning that all the irrepsI'y(Py),p
=0,1... N—1, belong to casé€a) described above. Thus,
unlike the role played by TRS in the field-free cddg the

GTRS IAQ‘pt does not introduce nonaccidental degeneracies
p=0,1,...N—1. (5) into the QE spectrum of the Floquet Hamiltoni€g).
One may suspect that nonaccidental degeneracies, in par-

Recently, Ceccherirgt al. have utilized such an assignment ticular those that are associated with antiunitary DS’s, cannot
of quantum numbers to analyze the sidebands in higheXist in systems with high-order DS’s. Certainly, accidental
harmonic generation spectra calculated for benf8he degeneracies can occur at specific values of the field strength

Having identified theunitary DS associated with the and intensity. For instance, the appearance of accidental de-
quantum-ring—field systerf8) and assigned “good” quan- generacies when model systems are subject to linearly polar-
tum numbers to its QE states, we follow the reasoning useited fields[such systems possess the second-orderPRS
in the field-free case and ask whether there are nonaccides=(x— —x,t—t+T/2)] has been shown to play an important

Hi(r, )@, o(r,)=e®, (1,1),

Py®, p(r,t)=e" 2PN (1 1),
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role in coherent destruction of tunneling and even-harmonicularly polarized field cannot lead to a higher symmetry in
generatiorj12]. Below we analyze the more intricate case ofthe QEB’s than that of the field-free EB’s. The results of a
thin crystals in circularly polarized fields, where it is demon-similar analysis performed on the 17 plane groups and 13
strated that GTR®aninduce nonaccidental degeneracies infamilies of rod groups will be presented elsewhere.
the crystal modified energy band&B’s). We mention that Next, let us examine whether, analogously to the common
thin crystals in linearly polarized fieldsnvariant under the situation for EB’s in thin crystalg2,3], there are nonacciden-
second-order D$,) were studied by several authoisee, tally degenerate FB states specificvalues of the quasimo-
e.g., Ref[13]). In particular, the symmetry of the modified Mmentumk. We discuss first the case of thigk=0) point.
EB’s in this case was studied, e.g., in Rigf4]. For this value of the quasimomentum, the FB Hamiltonian
Let us consider a thin Cryst@_g” a 2D sheet of graph]te (8) is equiyalent to the Floquet Hamiltoniaﬂ of the hindered
possessing the rotatiofy and reflectiono, symmetries, ~9uantum ring(3). Consequently, no nonaccidental degenera-

Upon shining the thin crystal witimonochromatig circu- cies are possible fok=0 _[compare to_the fieE:I-free case
larly polarized laser field, propagating in parallel to theWhere twofold degeneracies characterize litfg=0) point

N-fold rotation axes, the single-electron Floguet-Blggig) N Plane groups witiN>2 [2,3]]. The edge of the Brillouin
Hamiltonian is given by[V.(r) stands for the lattice

zone(BZ) constitutes the second example. Below we show
spatiallv-periodic botentidl that sticking together of QEB’s can occur along the whole
P P P 4 side of the BZ. To this end, consider a field-free Hamiltonian,
A p2 eE, . the nonsymmorphic plane group of whichp2mg (see, e.g.,
He(r,t)= ﬁ+vcr(r)— m—[px sin(wt) Fig. 38 in Ref[2] for an illustration ofp2mg). Denoting the
w ~
glide reflection by g (x—x+a/l2y— —y), we learn that

- 9 the corresponding FB Hamiltonidsee Eq.(8)] is invariant
—Ppycoswt) ] —ifi—, under the GTRS operator
H (1P 1 (1,1 = £(K)D oy (1, 1). 8 . a o
Rgt=| X—Xx+ 5,y—>—y,t—>—t,* =R-g. (11

Here the EB’s of the field-free Hamiltonian have been trans-
formed into the quasienergy ban@3EB'’s) (k) of the FB

Hamiltonian. It is, therefore, natural to investigate the sym- A . - ,
metries of the QEB’s and the relation between these symmé‘-et us see WhiR,, does noillft the sticking togethall EB’s
tries and those of the EB's. For this purpose let us apply th&NiPit along the edge;=(m/a,k,) .k, e (w/b,m/b]. For

DS operators?y, and Rpt to the FB eigenstat@ , i(r,t) Fhat’ \_Ne pick up a F8 Sta@gtz)l(r't) atan edge poiri. It
—etikrg (o.x(r,t) which gives ’ is evident that the FB statBy P, ) z(r,t) possesses the

quasimomenturk, as well. Therefore, one may suppose that
ISNq)g(k),k(rat):e+i(cﬁlk)'rd)s(k),k(Cert_'—T/N) RQKCDEA(Z)VAZ(r,t):,G'tbs(z),z(r,t). Next, we calculate the FB
stateRyRy(V . (z) z(r,t) in two different ways:

=P, (9,01, 9
andloy= (e~ et m) = (ke —kd pr=arctank /)] [RyRgil P 21,0 = (X=X + )P, ) 2
IAq<,otq)8(l<),k(rvt) = e+i(_kxx+kyy)¢’:(k),k(ff r,—t) ==®,z),2(r,1),
=P (1,0 k(1) (10

ﬁgt[ IAQ«_a;t‘I%;(Z),z(f,t)] = Ie{gtﬁq)s(Z),z(f,t)

This shows that other FB states are generated, carrying the .
:18 Bq)S(Z),Z(rit)' (12)

same QHsincePy andR,, are DS’s of the FB Hamiltonian
but having transformed quasimomektaEquation(9) shows

formed to the QEB's, similarly to the known situation in contradiction. Thus, our assumption must be false and

EB’s [2,3]. On the (A)ther hand, due to the GTRS;, each ﬁgtq)s(Z),z(r,t) and @, ,(r,t) do represent twondepen-
reflection symmetryr,=(y— —y) in real space leads to the dentand degenerate FB states. In other woelsQEB’s at
orthogonal reflectiono,= (k,— —Kky) in reciprocal space. the edgeZ exhibit sticking together, as is the situation for the
For instance, consider a field-free Hamiltonian, the plan€EB’s of a p2mg lattice [2]. To systematically classify all
group of which isp3m1[x] (the[x] indicates that one of the effects of GTRS’s on the QEB’s for the 17 plane groups and
reflection planes lies along theaxis). In this case it is the 13 families of rod groups one has to employ heavier tools
Cg, symmetry of the EB’s which contains ti@;,[x] point  than the simple analysis given in Ed.2). For instance, one
group of the plane grougin real spack and the rotated has to combine the concept of magnetic groups with that of
Cs,ly] symmetry of the QEB'Yin reciprocal spade This DS groups. Such a study is beyond the scope of the present
subgroup relation “ensures” that the application of the cir- manuscript.
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We saw above that labeling of Floquet states with quan- 0(0—T)
tum numbers and classifying nonaccidental degeneracies of
QE’s depend on thealetailed structure of the unitary DS
group and the antiunitary GTRS. In comparison to these
case-sensitive properties, the following conclusion is ge-
neric. Below we show how in systems with high-order DS'S e refore, when the Floquet Hamiltonian is invariant under
the computational effort of the time-evolution operator com- ~

, , : - Py and R, the numerical effort required to integraté(0
puted to one optical cycle, writtesymbolically as U(0 —.T) can be reduced to about 1K} of that which was

—T) .='ex;{—|/ﬁf$H(t’)dt’], can be substantially reduced. griginally required. For instance, for benzene and graphite
Specifically, when the Floquet Hamiltonian is invariant under(NZG) in a circularly polarized field the computational ef-
an Nth-order DS and under a GTRS, this effort can be re<ort can be reduced to less than 10%. For the,10 arm-
duced to about 1/(18). It is instructive to mention that if the  cnair carbon nanotubeN(= 20) [16] in such a field it is less
Floquet Hamiltonian is invariant under therdinary) TRSR,  than 4%. This substantial reduction of the numerical effort
it has been shown that the computational effort can be rewould enable one to calculate more accurate time-dependent
duced to about half6]. Similarly, it can be reduced to about dynamics for such large systems.

half for a system in linearly polarized fields invariant under  Our results extend the ones relating to atoms in circularly

N

5 0 0 | .0 0
TP | VT oN | TeNE VTN

(18)

the second-order D8, [15]. polarized fields, where knowledge of the infinitesimal time-
Without loss of generality, suppose that tkEloquel  evolution operatot)(0— 6t) is sufficient to construct) (O
Hamiltonian is invariant undePy . Thus, we may write —T) [17]. This can be readily understood in the elegant

context of DS, since atoms in a circularly polarized field

possess thénfinite order DSP..=(¢— ¢+ wdt,t—t+ 5t)

Cyt. (13  [9.11. This observation suggests that whenever a time-
dependent system is invariant under @arth order DS, its
time-evolution operator can be constructed from the infini-

Consequently, tesimal time-evolution operator.

Finally, it is interesting to mention that the DS properties
of the Floquet Hamiltonia3) (see also Ref.10]) are gauge
U(IHZ_T) _A ‘10(0—> I)é (14) invariant (we refer to the “conventional” gauges in laser-
N N N N/ N atom physics: the length gauge, the momentum gauge, and
the acceleration representatigf]). This can be readily
and by induction, proved by examining the transformation from the Floquet
Hamiltonian expressed in one gauge to another one. For
_ ) instance, to transform the length-gauge Floquet Hamil-
0([_} (j +1)T) zéjo(o_> I) &l tonian (3) to its partner expressed in the momentum gauge
N N N N/ the following transformation is required:O,_ ,(r,t)
=exfd —i(eB/fhw)psin(wt—¢)]. SinceO,_,, commutes with
i=0.1,... N-1. (15) Py and withR, the Floguet Hamiltonian expressed in the
momentum gauge is also invariant under these DS’s.

In conclusion, we have demonstrated that DS analysis of
time-periodic Hamiltonians is analogous to symmetry analy-
sis of stationary Hamiltonians. As such, one can label Flo-
N quet states, determine symmetry properties of QEB’s, and

, (16 analyze nonaccidental degeneracies and, especially, the ef-
fect of GTRS on QE and QEB spectra. We have found that

. . . nonaccidental degeneracies induced by spatial and time-

meaning that the numerical effort is reduced to almobt 1/ reyersal symmetriegn the field-free cagemay not be lifted

. A T
H((p,t)=CNH<(p,t+ N

ConsequentlylJ (0—T) can be decomposed as follows:

. .. T
0(0—T)= cNU(oH N)

than that which has been originally required. When(ffile-  inside the laser field. The substantial reduction in the com-
qued Hamiltonian is invariant undePy and R, the fol-  putational effort to about 1/(8) (or only 1N) due to DS-

lowing relation holds: based considerations opens the door to tackling the time-

dependent dynamics of large systems with high-order DS’s.
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