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Dynamical symmetries of time-periodic Hamiltonians

Ofir E. Alon*
Department of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 29 December 2001; published 30 July 2002!

The interaction of atoms, molecules, crystals, and nanotubes with time-periodic laser fields can lead to
high-order dynamical symmetries~DS’s!. Here we employ group theoretical methods to study the DS-related
properties~quantum numbers, nonaccidental degeneracies! of quantum systems possessing high-order DS’s. As
explicit examples we take finite-order rotation symmetry in point and plane groups, and a circularly polarized
laser field. We find that nonaccidental degeneracies induced by spatial and time-reversal symmetries may not
be lifted inside the laser field. A general result of this work is that the time-evolution operator needs to be
computedonly up to 1/N @or, even, 1/(2N)# of the optical cycle, whereN is the order of the DS. This allows
a substantial reduction of the computational effort required for studying the time-dependent dynamics of such
systems.
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Symmetry plays an important role in atomic, molecul
and solid-state physics@1–3#. In particular, it provides the
labeling of energy levels and their correspondingstationary
eigenstates with ‘‘good’’ quantum numbers. Most impo
tantly, it allows us to makea priori assertions on matrix
elements and thus provides a general method for determi
selection rules. For instance, the interpretation of electro
and vibrational spectra strongly benefits from su
symmetry-based predictions@4#. As is well known, the states
of atoms and molecules in time-periodic laser fields can
conveniently expanded in terms of Floquet@quasienergy
~QE!# states@5,6#. Within this picture, harmonic generatio
spectroscopy is described as the transition betweentime-
dependent ~Floquet! states induced by suitabletime-
dependentoperators@7#. The effects of Hamiltonian symme
try on the polarization and order of harmonics emitted
various theoretical setups have been discussed by severa
thors ~see, e.g., Ref.@8#!. In particular, the spatiotempora
symmetries@hereafter referred to as dynamical symmetr
~DS’s!# of the Floquet Hamiltonian have been shown to go
ern the selection rules for the harmonic generation spe
@7,9#; thus they fulfill a similar role to that discussed abo
for symmetry in ‘‘ordinary’’ spectroscopy.

The DS’s are basic characteristics of the time-depend
quantum system under investigation, just as the spatial s
metries are in the stationary case. The corelation between
DS’s and their field-free partners constitutes a gro
theoretical-based tool to quantify, even fornonperturbative
intensities, to what extent the time-dependent interaction
duces the symmetry of the stationary system. A system
study of DS-related properties of Floquet Hamiltonians
therefore, not only of fundamental interest from the gro
theoretical point of view. Rather, it should encourage
searchers to classify and explore the fingerprints of~high-
order! DS’s in field-induced physical phenomena, such
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dynamical tunneling and localization, photoionization a
stabilization of atoms and oriented molecules, generation
coherent control of photocurrents in spatially periodic ma
rials, and so on. It is the purpose of this work to explore
DS-related properties of quantum systems possessing~high-
order! DS’s. To do so, we follow a similar path to that use
when group theory is applied to the study of symmet
related properties of stationary systems. Specifically, we
identify the DS’s comprising the~unitary! DS group of a
given time-dependent system. Secondly, we assign ‘‘go
quantum numbers to the QE states. Thirdly, we inqu
whether the QE spectrum possesses nonaccidental dege
cies, first due to the structure of the~unitary! DS group and
subsequently due to the~possible! existence of nonunitary
DS’s. Finally, we show how DS can be employed to redu
the computational effort associated with integrating the tim
dependent problem. As mentioned above, the utilization
DS’s to evaluate matrix elements~formulating selection
rules! has been introduced and applied before@7,9#, and ther-
fore it will not be presented here. Being embedded in gro
theory, the ideas and methods employed in this work can
applied to Floquet Hamiltonians possessingvarious DS
groups, such as those associated with field-free point, pl
layer, space, and rod groups. However, to make our exp
tion both coherent and transparent we choose to study
cific examples of systems with high-order DS’s, in particu
those associated with finite-order rotation symmetry in po
and plane groups, and a circularly polarized laser field. T
generality or possible generalization of our results is brie
discussed.

Our starting point is the following field-free Hamiltonian
describing an electron’s motion in a hindered quantum r
possessingN-fold rotational symmetry:

Ĥ~r !5
p̂2

2m
1VN~r !, @Ĥ~r !,ĈN#50,

ĈN5S w→w1
2p

N D . ~1!

hes

i-
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The single-electron eigenstates of the quantum ring~1! can
be classified with respect to the rotation operatorĈN ,

Ĥ~r !cE,p~r !5EcE,p~r !,

ĈNcE,p~r !5e1 i (2p/N)pcE,p~r !, p50,1, . . . ,N21.
~2!

It is well known that there are nonaccidentally degener
energy levels in the system~1!. In order to characterize them
one distinguishes between two cases. If, in addition to
N-fold rotation symmetryĈN , the Hamiltonian is invariant
under the reflection symmetryŝw5(w→2w)5(y→2y),
one obtains the familiar result reflected by the character ta
of the point groupCNv @4#: For pÞ$0,N/2%, ŝwcE,p andcE,p

are degenerate, while forp5$0,N/2%, ŝwcE,p}cE,p . In the
second case~for @Ĥ(r ),ŝw#Þ0!, one can make use of th
time-reversal symmetry~TRS! R̂5 (t→2t,*) ~for real
Hamiltonians@Ĥ(r ),R̂#50). Upon applying the TRSR̂ onto
cE,p , the result now reflects the character table of the po
groupCN @4#: For pÞ$0,N/2%, R̂cE,p andcE,p are degener-
ate, while forp5$0,N/2%, R̂cE,p}cE,p .

Let us add a circularly polarized laser field and enqu
what happens to the energy levels of the quantum ring. In
presence of a time-periodic field, the field-free station
states become QE states@5,6#. The Floquet Hamiltonian is
given by

Ĥ f~r ,t !5Ĥ~r !1eE0r cos~w2vt !2 i\
]

]t
, ~3!

whereE0 and v52p/T are the incident field strength an
frequency, respectively. The field propagation direction
Eq. ~3! is assumed to be parallel to theN-fold symmetry axis
of the quantum ring. A look at the Floquet Hamiltonian~3!
reveals that it is invariant under the followingNth order
unitary DS@10#:

P̂N5S w→w1
2p

N
,t→t1

T

ND . ~4!

The DS operator acts on Floquet states analogously to
action of symmetry operators on stationary states. Thu
complete set of QE states can be found, such that

Ĥf~r ,t !F«,p~r ,t !5«F«,p~r ,t !,

P̂NF«,p~r ,t !5e1 i2pp/NF«,p~r ,t !,

p50,1, . . . ,N21. ~5!

Recently, Ceccheriniet al. have utilized such an assignme
of quantum numbers to analyze the sidebands in h
harmonic generation spectra calculated for benzene@9#.

Having identified theunitary DS associated with the
quantum-ring–field system~3! and assigned ‘‘good’’ quan
tum numbers to its QE states, we follow the reasoning u
in the field-free case and ask whether there are nonacci
01341
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tally degenerate Floquet states in this system. One would
expect the existence of nonaccidental degeneracies, bec
the circularly polarized field breaks both the reflection sy
metry and the TRS utilized above to characterize such
generacies in the field-free system. Let usprovewith the help
of group theory why this is indeed the case. We first consi
the case where the field-free Hamiltonian does not pos
the reflection symmetryŝw . In this case the~full ! DS group
of the system,GN[$P̂N ,P̂N

2 , . . . ,P̂N
N21 ,P̂N

N5I %, is cyclic
and unitary. Hence, no nonaccidental degeneracies can
found in the QE spectrum of the system~3!. If, on the other
hand,@Ĥ(r ),ŝw# then one finds that the Floquet Hamiltonia
is invariant under the following generalized TRS~GTRS!:

R̂wt5~w→2w,t→2t,* !5R̂•ŝw . ~6!

It is therefore required to check whether this additionalan-
tiunitary DS can introduce nonaccidental degeneracies
the QE spectrum. To this end, one has to resort to Wig
theory of antiunitary symmetries~Ref. @1#, Chap. 26! and
apply it to the nonunitary DSR̂wt and the unitary DS group
GN . In practice, one has to examine the relation between
irreducible representation~irrep! Gp( P̂N) and the complex

conjugate oneḠp( P̂N)[Gp* (R̂wt
21P̂NR̂wt). If Gp( P̂N) and

Ḡp( P̂N) are equivalent, that is their characters are equal,
possible to find a similarity transformationB, such that

B21Gp( P̂N)B5Ḡp( P̂N). In this case two possibilities arise
depending on the nature of the productB* B. If B* B

5Gp(R̂wt
2 ) then no additional degeneracy is introduced@case

~a!#. If, on the other hand,B* B52Gp(R̂wt
2 ), there is an ad-

ditional doubling of the degeneracy, andGp( P̂N) always oc-

curs twice @case~b!#. Finally, if Gp( P̂N) and Ḡp( P̂N) are
inequivalent irreps, there is an additional doubling of t

degeneracy, andGp( P̂N) and Ḡp( P̂N) always occur togethe
as a pair@case~c!#. Now, in contrast to the field-free cas
whereR̂21ĈNR̂5ĈN , one readily finds that

R̂wt
21P̂NR̂wt5 P̂N

21⇒Ḡp~ P̂N!5Gp* ~R̂wt
21P̂NR̂wt!

5Gp* ~ P̂N
21!5Gp~ P̂N! ~7!

@the last step is valid sinceGp( P̂N) is a one-dimensiona
~1D! irrep#, meaning that all the irrepsGp( P̂N),p
50,1 . . . ,N21, belong to case~a! described above. Thus
unlike the role played by TRS in the field-free case~1!, the
GTRS R̂wt does not introduce nonaccidental degenerac
into the QE spectrum of the Floquet Hamiltonian~3!.

One may suspect that nonaccidental degeneracies, in
ticular those that are associated with antiunitary DS’s, can
exist in systems with high-order DS’s. Certainly, acciden
degeneracies can occur at specific values of the field stre
and intensity. For instance, the appearance of accidenta
generacies when model systems are subject to linearly po
ized fields @such systems possess the second-order DSP̂x
5(x→2x,t→t1T/2)# has been shown to play an importa
4-2



n
o
n
in

d

he

ns

m
m
th

t

s-
in

n

ir-

in
a
13

on
-
-

an
ed
ra-
e

ow
le
n,

at

nd

e
l
nd
ols

t of
sent

DYNAMICAL SYMMETRIES OF TIME-PERIODIC . . . PHYSICAL REVIEW A66, 013414 ~2002!
role in coherent destruction of tunneling and even-harmo
generation@12#. Below we analyze the more intricate case
thin crystals in circularly polarized fields, where it is demo
strated that GTRScan induce nonaccidental degeneracies
the crystal modified energy bands~EB’s!. We mention that
thin crystals in linearly polarized fields~invariant under the
second-order DSP̂x) were studied by several authors~see,
e.g., Ref.@13#!. In particular, the symmetry of the modifie
EB’s in this case was studied, e.g., in Ref.@14#.

Let us consider a thin crystal~e.g., a 2D sheet of graphite!

possessing the rotationĈN and reflectionŝw symmetries.
Upon shining the thin crystal with~monochromatic! circu-
larly polarized laser field, propagating in parallel to t
N-fold rotation axes, the single-electron Floquet-Bloch~FB!
Hamiltonian is given by@Vcr(r ) stands for the lattice
spatially-periodic potential#

Ĥf~r ,t !5
p̂2

2m
1Vcr~r !2

eE0

mv
@ p̂x sin~vt !

2 p̂y cos~vt !#2 i\
]

]t
,

Ĥf~r ,t !F«(k),k~r ,t !5«~k!F«(k),k~r ,t !. ~8!

Here the EB’s of the field-free Hamiltonian have been tra
formed into the quasienergy bands~QEB’s! «(k) of the FB
Hamiltonian. It is, therefore, natural to investigate the sy
metries of the QEB’s and the relation between these sym
tries and those of the EB’s. For this purpose let us apply
DS operatorsP̂N and R̂wt to the FB eigenstateF«(k),k(r ,t)
5e1 ik•rf«(k),k(r ,t) which gives

P̂NF«(k),k~r ,t !5e1 i (CN
21k)•rf«(k),k~CNr ,t1T/N!

[F«(k),C
N
21k~r ,t !, ~9!

and @sw̄5(wk→2wk1p)5(kx→2kx),wk[arctan(ky /kx)#

R̂wtF«(k),k~r ,t !5e1 i (2kxx1kyy)f«(k),k* ~swr ,2t !

[F«(k),sw̄k~r ,t !. ~10!

This shows that other FB states are generated, carrying
same QE~sinceP̂N andR̂wt are DS’s of the FB Hamiltonian!
but having transformed quasimomentak. Equation~9! shows
that the N-fold rotation symmetry in real space is tran
formed to the QEB’s, similarly to the known situation
EB’s @2,3#. On the other hand, due to the GTRSR̂wt , each
reflection symmetryŝw5(y→2y) in real space leads to the
orthogonal reflectionsw̄5(kx→2kx) in reciprocal space.
For instance, consider a field-free Hamiltonian, the pla
group of which isp3m1@x# ~the @x# indicates that one of the
reflection planes lies along thex axis!. In this case it is the
C6v symmetry of the EB’s which contains theC3v@x# point
group of the plane group~in real space! and the rotated
C3v@y# symmetry of the QEB’s~in reciprocal space!. This
subgroup relation ‘‘ensures’’ that the application of the c
01341
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cularly polarized field cannot lead to a higher symmetry
the QEB’s than that of the field-free EB’s. The results of
similar analysis performed on the 17 plane groups and
families of rod groups will be presented elsewhere.

Next, let us examine whether, analogously to the comm
situation for EB’s in thin crystals@2,3#, there are nonacciden
tally degenerate FB states atspecificvalues of the quasimo
mentumk. We discuss first the case of theG(k50) point.
For this value of the quasimomentum, the FB Hamiltoni
~8! is equivalent to the Floquet Hamiltonian of the hinder
quantum ring~3!. Consequently, no nonaccidental degene
cies are possible fork50 @compare to the field-free cas
where twofold degeneracies characterize theG(k50) point
in plane groups withN.2 @2,3##. The edge of the Brillouin
zone~BZ! constitutes the second example. Below we sh
that sticking together of QEB’s can occur along the who
side of the BZ. To this end, consider a field-free Hamiltonia
the nonsymmorphic plane group of which isp2mg ~see, e.g.,
Fig. 38 in Ref.@2# for an illustration ofp2mg). Denoting the
glide reflection by gˆ5(x→x1a/2,y→2y), we learn that
the corresponding FB Hamiltonian@see Eq.~8!# is invariant
under the GTRS operator

R̂gt5S x→x1
a

2
,y→2y,t→2t,* D5R̂•ĝ. ~11!

Let us see whyR̂gt does not lift the sticking togetherall EB’s
exhibit along the edgekZ5(p/a,ky),kyP(p/b,p/b#. For
that, we pick up a FB stateF«(Z),Z(r ,t) at an edge pointZ. It
is evident that the FB stateR̂gtF«(Z),Z(r ,t) possesses the
quasimomentumkZ as well. Therefore, one may suppose th
R̂gtF«(Z),Z(r ,t)5bF«(Z),Z(r ,t). Next, we calculate the FB
stateR̂gtR̂gtC«(Z),Z(r ,t) in two different ways:

@R̂gtR̂gt#F«(Z),Z~r ,t !5~x→x1a!F«(Z),Z

52F«(Z),Z~r ,t !,

R̂gt@R̂gtF«(Z),Z~r ,t !#5R̂gtbF«(Z),Z~r ,t !

5b* bF«(Z),Z~r ,t !. ~12!

However, sinceb* b cannot be equal to21 we encounter a
contradiction. Thus, our assumption must be false a
R̂gtF«(Z),Z(r ,t) and F«(Z),Z(r ,t) do represent twoindepen-
dentand degenerate FB states. In other words,all QEB’s at
the edgeZ exhibit sticking together, as is the situation for th
EB’s of a p2mg lattice @2#. To systematically classify al
effects of GTRS’s on the QEB’s for the 17 plane groups a
13 families of rod groups one has to employ heavier to
than the simple analysis given in Eq.~12!. For instance, one
has to combine the concept of magnetic groups with tha
DS groups. Such a study is beyond the scope of the pre
manuscript.
4-3
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OFIR E. ALON PHYSICAL REVIEW A 66, 013414 ~2002!
We saw above that labeling of Floquet states with qu
tum numbers and classifying nonaccidental degeneracie
QE’s depend on thedetailed structure of the unitary DS
group and the antiunitary GTRS. In comparison to the
case-sensitive properties, the following conclusion is
neric. Below we show how in systems with high-order DS
the computational effort of the time-evolution operator co
puted to one optical cycle, writtensymbolically as Û(0
→T)5exp@2i/\*0

TH(t8)dt8#, can be substantially reduce
Specifically, when the Floquet Hamiltonian is invariant und
an Nth-order DS and under a GTRS, this effort can be
duced to about 1/(2N). It is instructive to mention that if the
Floquet Hamiltonian is invariant under the~ordinary! TRSR̂,
it has been shown that the computational effort can be
duced to about half@6#. Similarly, it can be reduced to abou
half for a system in linearly polarized fields invariant und
the second-order DSP̂x @15#.

Without loss of generality, suppose that the~Floquet!
Hamiltonian is invariant underP̂N . Thus, we may write

Ĥ~w,t !5ĈNĤS w,t1
T

ND ĈN
21 . ~13!

Consequently,

ÛS T

N
→ 2T

N D5ĈN
21ÛS 0→ T

ND ĈN , ~14!

and by induction,

ÛS jT

N
→ ~ j 11!T

N D5ĈN
2 j ÛS 0→ T

ND ĈN
j ,

j 50,1, . . . ,N21. ~15!

Consequently,Û(0→T) can be decomposed as follows:

Û~0→T!5F ĈNÛS 0→ T

ND GN

, ~16!

meaning that the numerical effort is reduced to almost 1N
than that which has been originally required. When the~Flo-
quet! Hamiltonian is invariant underP̂N and R̂wt , the fol-
lowing relation holds:

Ĥ~w,t !5ŝwĈNĤ* S w,
T

N
2t D ĈN

21ŝw . ~17!

Equation ~17! allows us to expressÛ(0→T/N) itself by
Û(0→T/2N). The final result for the time-evolution operato
@see Eq.~16!# is given by@Ut[(Û†)* #
01341
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Û~0→T!

5F ŝwÛtS 0→ T

2ND ŝwĈNÛS 0→ T

2ND GN

. ~18!

Therefore, when the Floquet Hamiltonian is invariant und
P̂N and R̂wt the numerical effort required to integrateÛ(0
→T) can be reduced to about 1/(2N) of that which was
originally required. For instance, for benzene and graph
(N56) in a circularly polarized field the computational e
fort can be reduced to less than 10%. For the~10,10! arm-
chair carbon nanotube (N520) @16# in such a field it is less
than 4%. This substantial reduction of the numerical eff
would enable one to calculate more accurate time-depen
dynamics for such large systems.

Our results extend the ones relating to atoms in circula
polarized fields, where knowledge of the infinitesimal tim
evolution operatorÛ(0→dt) is sufficient to constructÛ(0
→T) @17#. This can be readily understood in the elega
context of DS, since atoms in a circularly polarized fie
possess theinfinite order DS P̂`5(w→w1vdt,t→t1dt)
@9,11#. This observation suggests that whenever a tim
dependent system is invariant under an`-th order DS, its
time-evolution operator can be constructed from the infi
tesimal time-evolution operator.

Finally, it is interesting to mention that the DS properti
of the Floquet Hamiltonian~3! ~see also Ref.@10#! are gauge
invariant ~we refer to the ‘‘conventional’’ gauges in lase
atom physics: the length gauge, the momentum gauge,
the acceleration representation@6#!. This can be readily
proved by examining the transformation from the Floqu
Hamiltonian expressed in one gauge to another one.
instance, to transform the length-gauge Floquet Ham
tonian ~3! to its partner expressed in the momentum gau
the following transformation is required:Ôl→p(r ,t)
5exp@2i(eE0 /\v)r sin(vt2w)#. SinceÔl→p commutes with
P̂N and with R̂wt , the Floquet Hamiltonian expressed in th
momentum gauge is also invariant under these DS’s.

In conclusion, we have demonstrated that DS analysis
time-periodic Hamiltonians is analogous to symmetry ana
sis of stationary Hamiltonians. As such, one can label F
quet states, determine symmetry properties of QEB’s,
analyze nonaccidental degeneracies and, especially, th
fect of GTRS on QE and QEB spectra. We have found t
nonaccidental degeneracies induced by spatial and ti
reversal symmetries~in the field-free case! may not be lifted
inside the laser field. The substantial reduction in the co
putational effort to about 1/(2N) ~or only 1/N) due to DS-
based considerations opens the door to tackling the ti
dependent dynamics of large systems with high-order DS
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Foundation administered by the Israeli Academy of Scien
and Humanities and by the Fund for the Promotion of R
search at Technion. The author wishes to thank Dr. Vi
Averbukh, Professor N. Moiseyev, and Professor U. Pes
for many helpful discussions and comments. O.E.A. wo
like to thank the Minerva Foundation for financial suppor
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6~r ,t !5Ĥ~r !1eE1r cos~w2vt!

1eEN71r cos@w6~N71!vt#2i\
]

]t

are invariant underP̂N of Eq. ~4! @9,11#.
@11# V. Averbukh, O. E. Alon, and N. Moiseyev, Phys. Rev. A65,

063402~2002!.
@12# F. Grossmann, T. Dittrich, P. Jung, and P. Ha¨nggi, Phys. Rev.

Lett. 67, 516 ~1991!; R. Bavli, and H. Metiu,ibid. 69, 1986
~1992!.

@13# M. Holthaus, Phys. Rev. Lett.69, 351 ~1992!; J. Zak,ibid. 71,
2623 ~1993!.

@14# F.H.M. Faisal and J.Z. Kamin´ski, Phys. Rev. A56, 748~1997!.
@15# L. Schatzer and S. Weigert, Phys. Rev. A57, 68 ~1998!.
@16# R. Saito, G. Dresselhaus, and M. S. Dresselhaus,Physical

Properties of Carbon Nanotubes~Imperial College Press, Lon
don, 1998!.

@17# W.S. Salzman, Chem. Phys. Lett.25, 302 ~1974!; S.-I. Chu,
ibid. 54, 367 ~1978!.
4-5


