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Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances
in tight harmonic traps
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We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be
larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the
van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering phase
shift for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic
potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single-channel
s-wave scattering of*Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime.
Our model works also for multichannel scattering, where the scattering length can be made large due to a
magnetically tunable Feshbach resonance.
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[. INTRODUCTION lattice can be initialized with uniform occupancy of lattice
sites.

Along with the development of laser cooling of atoms Another burgeoning area is the study of Feshbach reso-
have come techniques for trapping the cold atoms, with trenances, and weakly-bound molecular states, in the interac-
mendous advantages for experimental atomic physics. Just f®n of two ultracold atoms. This has improved the knowl-
name a few potent examples where trapping is necessary, ti§lge of interaction parameters of alkali atoms and opened up
Bose-Einstein transition has been reached in several atomiB€ field of molecular condensates and three-body processes
species[1] (for reviews, see Ref[2]), threshold scattering [17,18. By tuning Feshbach resonances one can easily reach
properties have been studi€8,4], molecules formed with 2" interesting regime where the scale length associated with
the assistance of ligHt—7], and quantum chads,9] and the scattered wave exceeds the trap w(dil.

quantum phase transitio40] observed using optical lat- We address these problems by calculating the eigenvalues
tices of two interacting atoms confined in a trapping potential. A

Atomic collisions play an essential role in most of thesepOpU|ar method for representing cold atom interactions is to

. replace the exact interatomic potential by &function
phenomena. In the past one could ignore the fact that thesgeseudopotential proportional to the scattering leragth
collisions take place in a trap, since trap sizes are very larg
in comparison with the sizes associated with atomic interac- _ Ah? J
tions. However, recent developments make it crucial to ac- V= as(r)—-r, 1)

count for the effect of trap confinement on collisions when

the atoms are held tightly in one, two, or three dimensions byyherem is the atomic mass andis the interatomic separa-
optical lattices. For example, Greinet al. [10] have ob-  tion[20—23. An analytic solution for the eigenvalues of two
served a quantum phase transition from a superfluid to atoms in an isotropic harmonic trap plus the pseudopotential
Mott insulator within a three-dimensional optical lattice. Eq. (1) has been founf23]. However, some of us have pre-
Moreover, several low-dimensional transitions of coldviously shown that the use of this solution is limited to suf-
bosonic systems have been conjectured. In two dimension§iciently weak traps such that the trap width is much larger
the Kosterlitz-Thouless transition has been propogkd, than|a| [19]. Here we reexamine this problem and propose a
while in one dimension the Tonks-Girardeau gas should bsimple method of calculating the energies in an isotropic
possiblg[12,13. Zero-temperature transitions have also beerharmonic trap, which gives good quantitative results over a
investigated theoretically for a rotating two-dimensional gaswide range of trap frequencies, even whahis larger than
[14]. All of these transitions depend on atomic collisions, andthe trap size. The essence of our model is to repéasdth
for quantitative predictions the low-dimensional interactionsan energy-dependent effective scattering length. An advan-
must be understood. tage of our model is that once the energy-dependent scatter-
Two proposals for quantum computing involve loadinging phase shift for a particular type of cold collision is
cold atoms into optical lattices, and using the interaction beknown, either from experiment or from close-coupling cal-
tween the atoms as the switching mechanjgg16. In one  culations, it can be easily applied to obtain eigenvalues for
type of quantum logic gate, two atoms are brought togethetraps of all frequencies. Conversely, if the eigenvalues are
and allowed to interact for a set time interval, resulting inmeasured, information about collisions can be obtained.
different phase shifts depending on their hyperfine sublevels. We note that the pseudopotential can be used to obtain
A recent experimenfl10] represents an important first step approximate solutions for trapped colliding atoms in one di-
towards quantum logic applications, since it shows that anension 24,12 and two dimensionf25]. It may be possible
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to adapt our effective scattering length method to accurately [#

treat scattering in “cigar-" or “pancake-" shaped traps. [=\/—
The paper is organized as follows. In Sec. Il we formulate pe

the problem of atoms colliding in a tight spherical trap, a”dTypicaI trap sized for Na in the above mentioned trap fre-

briefly review scattering theory. In Sec. lll we motivate andquency range are 30 nm to 130 nm.

explain the effective-scattering-length eigenvalue model,” The interatomic potentiaVi,(r) is characterized by a

which is our .main resul_t. Limitations of th.e model are dis- short-range region of strong chemical bonding and a long-
cussed. Section IV applies the model to single-channel ScaFange van der Waals potential

tering of 2Na atoms in a trap, and shows good agreement

with numerical calculations using the full interaction Hamil- Vim—>—C6/r6, (6)
tonian. Section V demonstrates similar good agreement for

the case of multichannel scattering. Specifically, we consideand leads to a van der Waals scale leri@®,4,27

a magnetically-induced Feshbach resonance in Wa com-

pare, for a range of magnetic fields, exact numerical results 1
from the five-channel close-coupled scattering problem with Xo=5
the model’s eigenvalues. Finally, in Sec. VI we draw conclu-

sions and consider more general traps and applications oor r <x, the scattering wave function oscillates rapidly due

®

24Ce 1/4

hZ

)

many-body theory. to the strong-interaction potential. In alkali ground-state in-
teractionsCg is the same for all hyperfine states of a given
Il. TWO ATOMS COLLIDING IN AN ISOTROPIC atomic pair; consequently, is the same for all collision
HARMONIC TRAP channels. In the case of Maonsidered below, it is about 2.4

_ _ _ _ _ nm.
We consider an isotropic harmonic trap described for Eor collisions of atoms in the absence of a trapping po-
atomj=1,2 at positiorr; by tential, the asymptotis-wave scattering wave function for
relative collision momentunik approaches

1
Vtrap(rj)zimw Iy 2 ’ sin(kr+ &)

where o is the trapping frequency. Harmonic traps can be Ve
made by a variety of means. Very tight confinement is posat large interatomic separatiar®x,. Another length scale
sible with a three-dimensional optical lattice. Typical experi-that naturally appears for cold collisions is the scattering
mental trap frequencies range from 50 kHz to 1 MHz. Thesgength, defined in terms of thewave phase shif, by
optical dipole traps are much tighter than those obtained with
magnetic fields. In a recent experim¢h@], isotropic poten- _ tandy(k)
tials at each site were produced from three optical standing a=-— 'mT' ©)
waves of equal intensity. k=0

For the isotropic harmonic trap, the two-atom Hamil- the \wigner law regime is then defined by the range of mo-
tonian is separable in the center-of-mass and relative coordiyanta for whichs,= —ka is a good approximation, i.e.,
nates. Since the center-of-mass motion is just that of the
well-known isotropic harmonic oscillator, we need only dis- T
cuss the problem in the relative coordinates. The Hamil- k< 2l (10
tonian is

()

42 L The scatt|er|ing length can take on any value betweenand
_ 2 w —o. As |a| becomes large, the range kffor which the
H=- ﬂv T peTTH Vindr), ®) Wigner law applies becomes very small.

In view of typical trap sizes and van der Waals length
wherer =|r;—r,|, u=m/2 is the reduced mass, aifg,(r) scales, we need only consider the experimentally accessible
is the interatomic potential. Iffrelative spherical coordi- regime, for which
nates, the trap states neglectiig(r) have energy eigenval-

LES Xo<l. (12)
On the other hand, the scattering length can have a larger
EO=|on+L+ E ho, (4) magnitude than the trap width This is especially likely if
" 2 the scattering length is modified by means of a Feshbach
resonance.
wheren=0,1,2 ... is theradial quantum number and Our goal is to find a simple model for calculating the new
=0,1,2 ... is thepartial-wave quantum number. We hence-energy eigenvalues of the trap when collisions are present.
forth consider onlys waves (=0). The size of the ground- An analytical solution of this problem was presented in Ref.
state trap wave function is characterized by [23] by replacingV;,; by the pseudopotential of E¢L). This
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replacement assumes that the Wigner law is valid. However, ac(E)
we previously showed that the eigenvalues thus obtained are T f(E) (16)
not always in agreement with numerical res{ilt8]! Specifi-

cally, they are least accurate whig approaches or exceeds glf-consistently for the eigenvaluesThe term “self-

|. One way to see this is that the energies of th_e unperturbe nsistent” here refers to the energy eigenvalue on both sides
trap .sta?es are already large enough that the Wigner thresho the above equation, and should not be confused with its
law is invalid. For the unperturbed trap ground stéie meaning in the context of Hartree-Fock approximatipns.
=3fw/2 and hence the root—mean-sqyare momemkjm One might ask, why does the idea of the pseudopotential
- ‘/,§/|' Therefore by Eq(10) we are outside of the Wigner || work outside the regime of the Wigner law? The answer
regime if|a|>/(2y3)l. , . , is that the collision occurs on the very short length soale

In the following section we will use the inequality Eq. 5o the interatomic interaction potential is undistorted by the
(11) to motivate an effective-scattering-length model of coldiap This in turn means that the kinetic energy at which the
collisions in the trap, that is valid at all relevant energies and:ffective scattering length needs to be evaluated is the eigen-

scattering lengths. value itself, since the trap potential is negligible forx,.
Thus we were led to the self-consistent energy &6).
. SELF-CONSISTENT ENERGIES FROM THE For sufficiently high trap levels, one can also understand
EFFECTIVE SCATTERING LENGTH Eq. (16) from a semiclassical perspective. The ratio of

The improved model we propose relies on a generalizagammal functions asymptotically approache! 2for E

. . o . >fw, and using the definition of effective scattering length
tion of the pseudopotential approximation #éy; in Eq. (1). . e
We introduce the energy-dependent pseudopotential operatgtq' (13, we can express the self-consistency condition as

20
[20] dwie(E)=m(n+1)— 6u(E), (17)

R 47h? J

Verr=— aefr(E)5(f)Er, (12 where as before=0,1,2 ... and
where theeffectivescattering length is defined as =S

97 e E)= 57—+ 7. (18
E) tansy(k) 13
a _—
e K We may interpret Eq17) as the quantization of the Wentzel-

o ) Kramers-Brillioun phase of the wave function at the classical
and the kinetic energy is related to the momentumEby qyter turning point, but the quantum defe%(E) must first
=h?Kk?/2ps. This operator gives the same asymptotic wavepe subtracted to take into account the scattering at short dis-
function Eq.(8) as the full interaction potentia¥,,. The  tance.
effective scattering length reduces to the usual ong®dn Our model can be expected to break down if the trap
the Wigner threshold regime. The phase shift in Eff)  pecomes too tight. The interatomic potentia), becomes
does not need to be small in order to use EXP). Even  comparable to the trap potential near ix,. Hence the
though the effective scattering length diverges whgis an  inner part of the wave function where the scattering occurs is
odd multiple of 7/2, the wave function remains well be- nearly the same as that without the trap wheye \ixo,
haved. , equivalent to Eq(11). A different kind of limitation is that

Reference{23] found the eigenvalues of the trapped at-his model cannot predict bound states without our knowing
oms interacting through the operator in Ef) as the solu-  {he analytical continuation of the effective scattering length
tions of the equation, to negative energies.

a
7= f(E), (14 IV. SINGLE-CHANNEL SCATTERING

The first problem we consider is that of doubly polarized
(electron and nuclear spin ugNa atoms colliding in the
trap. In this case, there is only one scattering channel, gov-

where the “intercept function” is

E 1 . . . .
IN—+-= erned by thea®s ! adiabatic Born-Oppenheimer potential.
1 E 2hw 4 - Dot :
f(E)= —tar( ™= Z) w (157  The scattering length ia=3.4 nm, and Figs. 1 and 2 show
2 "\ 2he 4 r E 3 the effective scattering length as a function of energy. It in-
2t w + 4 creases with energy and diverges neén=90 MHz where

8o= /2 (this corresponds to a local maximum of thevave
andI" is the gamma function. To account properly for the cross section and is negative immediately above this en-
scattering in tight traps, where the Wigner law may not applyergy. In this work both the single- and multichannel phase
at the trap energies, we need to replace @4) by one in  shifts are calculated by applying the Gordon propagation
which the left-hand side is energy dependent and solve thmethod[28] with the best available scattering potentials for
equation Na, [29].
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FIG. 3. Difference between eigenvalues for interacting and non-
interacting, doubly polarized Na atoms a 1 MHz trap versus

FIG. 1. Effective scattering lengtfsolid curve and intercept

guantum numben. The model and exact numerical eigenvalues are

function f (E) (dashed versus energy for doubly polarizédNa in
a 1 MHz trap. The energies at which the two curves intersect giv?ndistinguishable on the scale of this figure.
the model eigenvalues. The circles show the actual positions of the
exact numerical eigenvalues along the curve of the intercept func- . L

eigenvalues differ significantly from both the exact ones and
the effective-scattering-length model.

tion.

The radial Schrdinger equation for the Hamiltonian Eq.
(3) was solved numerically for the eigenvalues. For a de
tailed description of our numerical method using a discret
variable representation, see REB0]. We take a trap fre-
quency of w/2m=1 MHz, for which 1=29.6 nm and
hwlkg=48 wK (kg is the Boltzmann constantSuch a tight
trap should be feasible in a Na optical lattice.

We illustrate the graphical solution of the effective-

scattering-length model in Figs. 1 and 2. In each plot, th
solid curve represents the left-hand side of Ef), a/l,

while the dashed curve is the right-hand side. The absciss
of the points where the curves intersect give the eigenvalue@eff'

&

The range of energies in Fig. 2 is centered near the energy

at which a.¢/1 diverges. Even thougha.q>1, the model

igenvalues are still accurate. They agree with the exact ones
to within 0.0018:w. Clearly this validates our model. We
have also obtained eigenvalues for much higher trap frequen-
cies, at which distortion of the collision potential is expected
to cause our model to fail. At a trapping frequency 100 MHz,
wherel =2.96 nm~X,, the error between the exact eigen-
evalues and those obtained from our model has increased to
0.045h w. The crucial interaction length scale for compari-
0N to the trap sizkis xq, not the effective scattering length

The difference between the lowest seven eigenvalues and

hift due to the interactions is a significant fractionfab

according to the model. One way of comparing with the h dina h . il i I . b
exact numerical eigenvalues is to evaluate the intercept fund® corresponding harmonic oscillator eigenvalues given by
4) is plotted in Fig. 3 versus the quantum numhethe

tion f(E) at these eigenvalues; these points are plotted agq'(
d should be observable in appropriate experiments. The

circles. The closer the circles lie to the intersection of the
arfl
e

curves, the better the agreement. The exact numerical
model eigenvalues in Fig. 1 agree to better than 0.@GQ41.6
Note that the solution of Eq14) is found from the intersec-
tion of f(E) and the horizontal line/l; the corresponding

E/h [MHz]

FIG. 2. Same as Fig. 1 but at a higher-energy range. N
the effective scattering length diverges, but the model eige
still agree with the exact numerical eigenvalues.

pendence of the shift on the index for the lowest few ei-
genvalues is due mainly to the energy dependence of the

gamma functions in Eq(15), and only slightly due to the
variation of the effective scattering length with energy. The
solution for the eigenvalues in the semiclassical regime of
Eq. (17), to first order in the effective scattering length,

yields shifts

1/2
Aeff

L3
"2

how, (19

2+3ﬁ—
: 2 w_7T

E.—

explaining the approximately square-root dependence on
quantum numben in the figure. On the other hand, for the
higher eigenvalues in Fig. 2, the shifts in eigenvalues arise
mostly from the rapid variation of effective scattering length
with energy. Near the asymptote— the eigenvalues
have increased by approximateélyo compared with the un-
perturbed values.
ote that The above examples show that accurate eigenvalues can
nvalueBe obtained by using results of the single-channel scattering
problem(without the trap, and solving Eq(16). Our model
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is good even when the effective scattering length is large
compared to the trap width, provided the trap size is still
larger than the van der Waals length scale.

4500
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40005,

3500 ;
V. MULTICHANNEL SCATTERING 3000, ;
AND FESHBACH RESONANCE _ \
T 25001
In the preceding section, large ratios of effective scatter-£
ing length to trap width were only possible for very high- & 2000
lying levels. Here we want to discuss a situation where g0l !
|agq|/1 is arbitrarily large for the lowest trap levels. This can :
be experimentally realized fos-wave collisions using a 1000;

magnetically-tuned Feshbach resonance. s00l K

We consider a Feshbach resonance in the collision of y
two 2°Na atoms in their lowest hyperfine level at a magnetic
field near 90 mT18,31,32. The hyperfine states of tféNa
atom diagonalize the Zeeman and hyperfine interaction and
are labeled bya),|b), ... |h), starting from the lowest in- FIG. 4. Numerical (circles and effective-scattering-length
ternal energy. For very low collision energygwave colli- model(solid curve eigenvalues versus magnetic fi@ldor Na in a
sions of two|a) atoms are represented by five symmetrized®00 kHz trap. The dashed line shows,, where the effective
asymptotic collision channels, one of which is Olea,a}>, scattering length diverges at a fixed value of magnetic field.
and four of which are closed{ag}), |{bh}), |{fh}), and

%0 90.02 90.04 90.06 90.08 90.1 90.12 90.14 90.16 90.18 90.2
B [mT]

[{gg}). The interaction between the atoms is mediated by the E. — Er+Ae 23)
X3, and a®%; adiabatic Born-Oppenheimer potentials. div d
During the collision this interaction mixes hyperfine states 1+ §£(FFta”5bg)Eﬂ0

and is described by a Hamiltonian coupling the above five

channelg32]. A Feshbach resonance state at endfgyis  The effective scattering length is positive below and negative
located at the threshold of théaa}) channel for a magnetic aboveEy, , which is magnetically tunable according to Eq.
field Beg~90.09 mT. This resonance is a quasibound mo-20). However, instead of employing the analytic theory, at a
lecular eigenstate of the four closed channel problem. It cagiven value of magnetic field we directly obtain the effective
be formed from or decay to thgaa}) open channel, to scattering length as a function &ffrom a numerical close-
which it is coupled. As the magnetic fiellis changed near coupled scattering calculation with five channels. This en-
Bres, the resonance energy also varies vith ables us to extract the position of the divergeBgg, which

is plotted as the dashed curve in thg,B) plane in Fig. 4.

We now examine the effect of the Feshbach resonance on
trap eigenstates, assuming a trap witl27=500 kHz. We
used the numerical discrete variable method for five channels
to calculate the lowest eigenvalues of the trap states for a
range of magnetic fields near the resonance. These eigenval-
ues are plotted as circles in Fig. 4. Solutions to the model
eigenvalues were obtained by solving Ebp) graphically as
in the single-channel case; the solutions versus magnetic
field are the solid curves. The eigenvalues agree well with
the numerical ones for all values of energy and magnetic
wherel'¢ is the linewidth, A is a level shift induced by the field; the worst agreement; 0.1 w, is for eigenvalues near
coupling between the open and closed channels, &pds the resonance position. The model eigenvalues always lie
the background phase shift. It follows that the effective scatslightly above the numerical ones. Note that the model ei-
tering length Eq(13) for the {aa} channel is genvalues cross thEgy, curve nearE/fiw=1/2,5/2,92 . ..
Another particular feature of the plot, which is correctly re-
produced by the model solution, is that Bsdecreases the
lowest trap state E>0) becomes the highest bound state

JE¢
Er=—g (B=Bred. (20

The analytic theory of Feshbach resonand&s,34
shows that the phase shiffy can be written as the sum of
background and resonant scattering contributions,

r

_ _ F
Op= Opg—arcta (E—E,—Ap)’

(21)

I'e
- —(E~Er—Ap)tansy,

a.f(E)= T (22 (E<0) for a magnetic field<B,. This occurs where the
kKl E-Ep—Ap+ —Ftanéb effective scattering length is still finite and positive, since
2 9 e/l ~1.48 whenE=0 in Egs.(15) and(16).

Up to the highest energy we will considét/h~5 MHz,
bothI'r and tab,4 are proportional to/E, andAr becomes
constant. Moreover, E¢22) shows that the effective scatter-
ing length diverges near the energy

VI. CONCLUSION

We have shown how a simple model can be used to cal-
culate the eigenvalues of interacting atoms in an isotropic
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harmonic trap. Our model involves solving an equation con- One would expect to be able to use the effective scattering
taining the effective scattering length for untrapped atomslength in many-body problems, where the pseudopotential
and the trap frequency. We compared our model with exac@Ppproximation has had widespread use. One would simply
results for 2Na both for a single-channel collision and a need to replaca by the effective scattering length. This

multichannel collision with a tunable Feshbach resonance. IﬁhOUId be especially useful and necessary for situations

: ere a tunable Feshbach resonance is used to alter the in-
both cases, t_he m0d8| can accurately treat tight traps, as IOls{g:action properties. There are a number of cases where the
as the trap size is larger than the van der Waals scale Ieng_t lative collision energy for a many-body system is well-
Consequently we expect the model to apply to other atomigiefined, such as for condensates in optical latfid€ col-

species. In particular, Cs would be an interesting case fol‘iding condensatek36,37, or cold gases of mixed fermionic
which the scattering length is large in comparison with everspecies, where collisions occur at the Fermi energy. It should
modest trap sizel35]. also be possible to incorporate inelastic collision loss chan-
In the future, we want to generalize our model to morenels by using a complex effective scattering len@a].
arbitrary trap potentials. There are two technical problems to After completing this paper, we learned of a recent theo-
be overcome. First, for atomic collisions in anisotropic har-retical work [38] that has also treated the problem of two
monic traps, the relative coordinate equation does not sep&apped atoms interacting through single-chansslave
rate; this implies that different partial waves are coupled viaScattering. Itintroduces an energy-dependent pseudopotential
the anisotropy. A related point is that the scattering of highe@nd comes to similar conclusions.
partial waves can also be modeled by pseudopoterfifls
Second, for anharmonic traps, the center-of-mass and rela-
tive atomic coordinates do not separate, and even more co- E.L.B. would like to thank the National Research Council
ordinates must be treated simultaneously. Anharmonic termf&r support. E.T. and P.S.J. acknowledge support from the
become important for low intensity optical lattices or for trap Office of Naval Research. Discussions with C. Greene, F.
levels with many quanta of excitation. Mies, C. Williams, and B. Gao helped stimulate the work.
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