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Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances
in tight harmonic traps

E. L. Bolda, E. Tiesinga, and P. S. Julienne
Atomic Physics Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423,

Gaithersburg, Maryland 20899-8423
~Received 7 January 2002; published 17 July 2002!

We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be
larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the
van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering phase
shift for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic
potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single-channel
s-wave scattering of23Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime.
Our model works also for multichannel scattering, where the scattering length can be made large due to a
magnetically tunable Feshbach resonance.

DOI: 10.1103/PhysRevA.66.013403 PACS number~s!: 32.80.Pj, 32.80.Lg, 34.50.2s, 39.25.1k
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I. INTRODUCTION

Along with the development of laser cooling of atom
have come techniques for trapping the cold atoms, with
mendous advantages for experimental atomic physics. Ju
name a few potent examples where trapping is necessary
Bose-Einstein transition has been reached in several ato
species@1# ~for reviews, see Ref.@2#!, threshold scattering
properties have been studied@3,4#, molecules formed with
the assistance of light@5–7#, and quantum chaos@8,9# and
quantum phase transitions@10# observed using optical lat
tices.

Atomic collisions play an essential role in most of the
phenomena. In the past one could ignore the fact that th
collisions take place in a trap, since trap sizes are very la
in comparison with the sizes associated with atomic inter
tions. However, recent developments make it crucial to
count for the effect of trap confinement on collisions wh
the atoms are held tightly in one, two, or three dimensions
optical lattices. For example, Greineret al. @10# have ob-
served a quantum phase transition from a superfluid t
Mott insulator within a three-dimensional optical lattic
Moreover, several low-dimensional transitions of co
bosonic systems have been conjectured. In two dimensi
the Kosterlitz-Thouless transition has been proposed@11#,
while in one dimension the Tonks-Girardeau gas should
possible@12,13#. Zero-temperature transitions have also be
investigated theoretically for a rotating two-dimensional g
@14#. All of these transitions depend on atomic collisions, a
for quantitative predictions the low-dimensional interactio
must be understood.

Two proposals for quantum computing involve loadi
cold atoms into optical lattices, and using the interaction
tween the atoms as the switching mechanism@15,16#. In one
type of quantum logic gate, two atoms are brought toget
and allowed to interact for a set time interval, resulting
different phase shifts depending on their hyperfine sublev
A recent experiment@10# represents an important first ste
towards quantum logic applications, since it shows tha
1050-2947/2002/66~1!/013403~7!/$20.00 66 0134
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lattice can be initialized with uniform occupancy of lattic
sites.

Another burgeoning area is the study of Feshbach re
nances, and weakly-bound molecular states, in the inte
tion of two ultracold atoms. This has improved the know
edge of interaction parameters of alkali atoms and opene
the field of molecular condensates and three-body proce
@17,18#. By tuning Feshbach resonances one can easily re
an interesting regime where the scale length associated
the scattered wave exceeds the trap width@19#.

We address these problems by calculating the eigenva
of two interacting atoms confined in a trapping potential.
popular method for representing cold atom interactions is
replace the exact interatomic potential by ad-function
pseudopotential proportional to the scattering lengtha,

V̂5
4p\2

m
ad~r !

]

]r
r , ~1!

wherem is the atomic mass andr is the interatomic separa
tion @20–22#. An analytic solution for the eigenvalues of tw
atoms in an isotropic harmonic trap plus the pseudopoten
Eq. ~1! has been found@23#. However, some of us have pre
viously shown that the use of this solution is limited to su
ficiently weak traps such that the trap width is much larg
thanuau @19#. Here we reexamine this problem and propos
simple method of calculating the energies in an isotro
harmonic trap, which gives good quantitative results ove
wide range of trap frequencies, even whenuau is larger than
the trap size. The essence of our model is to replacea with
an energy-dependent effective scattering length. An adv
tage of our model is that once the energy-dependent sca
ing phase shift for a particular type of cold collision
known, either from experiment or from close-coupling ca
culations, it can be easily applied to obtain eigenvalues
traps of all frequencies. Conversely, if the eigenvalues
measured, information about collisions can be obtained.

We note that the pseudopotential can be used to ob
approximate solutions for trapped colliding atoms in one
mension@24,12# and two dimensions@25#. It may be possible
©2002 The American Physical Society03-1
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to adapt our effective scattering length method to accura
treat scattering in ‘‘cigar-’’ or ‘‘pancake-’’ shaped traps.

The paper is organized as follows. In Sec. II we formul
the problem of atoms colliding in a tight spherical trap, a
briefly review scattering theory. In Sec. III we motivate a
explain the effective-scattering-length eigenvalue mod
which is our main result. Limitations of the model are d
cussed. Section IV applies the model to single-channel s
tering of 23Na atoms in a trap, and shows good agreem
with numerical calculations using the full interaction Ham
tonian. Section V demonstrates similar good agreement
the case of multichannel scattering. Specifically, we cons
a magnetically-induced Feshbach resonance in Na2. We com-
pare, for a range of magnetic fields, exact numerical res
from the five-channel close-coupled scattering problem w
the model’s eigenvalues. Finally, in Sec. VI we draw conc
sions and consider more general traps and application
many-body theory.

II. TWO ATOMS COLLIDING IN AN ISOTROPIC
HARMONIC TRAP

We consider an isotropic harmonic trap described
atom j 51,2 at positionr j by

Vtrap~r j !5
1

2
mv2r j

2 , ~2!

wherev is the trapping frequency. Harmonic traps can
made by a variety of means. Very tight confinement is p
sible with a three-dimensional optical lattice. Typical expe
mental trap frequencies range from 50 kHz to 1 MHz. The
optical dipole traps are much tighter than those obtained w
magnetic fields. In a recent experiment@10#, isotropic poten-
tials at each site were produced from three optical stand
waves of equal intensity.

For the isotropic harmonic trap, the two-atom Ham
tonian is separable in the center-of-mass and relative coo
nates. Since the center-of-mass motion is just that of
well-known isotropic harmonic oscillator, we need only d
cuss the problem in the relative coordinates. The Ham
tonian is

H52
\2

2m
¹21

1

2
mv2r 21Vint~r !, ~3!

wherer 5ur12r2u, m5m/2 is the reduced mass, andVint(r )
is the interatomic potential. In~relative! spherical coordi-
nates, the trap states neglectingVint(r ) have energy eigenval
ues

En
(0)5S 2n1L1

3

2D\v, ~4!

where n50,1,2, . . . is the radial quantum number andL
50,1,2, . . . is thepartial-wave quantum number. We henc
forth consider onlys waves (L50). The size of the ground
state trap wave function is characterized by
01340
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Typical trap sizesl for Na in the above mentioned trap fre
quency range are 30 nm to 130 nm.

The interatomic potentialVint(r ) is characterized by a
short-range region of strong chemical bonding and a lo
range van der Waals potential,

Vint→2C6 /r 6, ~6!

and leads to a van der Waals scale length@26,4,27#

x05
1

2 S 2mC6

\2 D 1/4

. ~7!

For r !x0 the scattering wave function oscillates rapidly d
to the strong-interaction potential. In alkali ground-state
teractions,C6 is the same for all hyperfine states of a giv
atomic pair; consequently,x0 is the same for all collision
channels. In the case of Na2 considered below, it is about 2.
nm.

For collisions of atoms in the absence of a trapping p
tential, the asymptotics-wave scattering wave function fo
relative collision momentum\k approaches

c→ sin~kr1d0!

Akr
~8!

at large interatomic separationr @x0. Another length scale
that naturally appears for cold collisions is the scatter
length, defined in terms of thes-wave phase shiftd0 by

a52 lim
k→0

tand0~k!

k
. ~9!

The Wigner law regime is then defined by the range of m
menta for whichd052ka is a good approximation, i.e.,

k!
p

2uau
. ~10!

The scattering length can take on any value between1` and
2`. As uau becomes large, the range ofk for which the
Wigner law applies becomes very small.

In view of typical trap sizes and van der Waals leng
scales, we need only consider the experimentally access
regime, for which

x0! l . ~11!

On the other hand, the scattering length can have a la
magnitude than the trap widthl. This is especially likely if
the scattering length is modified by means of a Feshb
resonance.

Our goal is to find a simple model for calculating the ne
energy eigenvalues of the trap when collisions are pres
An analytical solution of this problem was presented in R
@23# by replacingVint by the pseudopotential of Eq.~1!. This
3-2
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EFFECTIVE-SCATTERING-LENGTH MODEL OF . . . PHYSICAL REVIEW A 66, 013403 ~2002!
replacement assumes that the Wigner law is valid. Howe
we previously showed that the eigenvalues thus obtained
not always in agreement with numerical results@19#! Specifi-
cally, they are least accurate whenuau approaches or exceed
l. One way to see this is that the energies of the unpertur
trap states are already large enough that the Wigner thres
law is invalid. For the unperturbed trap ground stateE
53\v/2 and hence the root-mean-square momentumk
5A3/l . Therefore by Eq.~10! we are outside of the Wigne
regime if uau.p/(2A3)l .

In the following section we will use the inequality Eq
~11! to motivate an effective-scattering-length model of co
collisions in the trap, that is valid at all relevant energies a
scattering lengths.

III. SELF-CONSISTENT ENERGIES FROM THE
EFFECTIVE SCATTERING LENGTH

The improved model we propose relies on a general
tion of the pseudopotential approximation forVint in Eq. ~1!.
We introduce the energy-dependent pseudopotential ope
@20#

V̂eff5
4p\2

m
aeff~E!d~r !

]

]r
r , ~12!

where theeffectivescattering length is defined as

aeff~E!52
tand0~k!

k
~13!

and the kinetic energy is related to the momentum byE
5\2k2/2m. This operator gives the same asymptotic wa
function Eq. ~8! as the full interaction potentialVint . The
effective scattering length reduces to the usual one Eq.~9! in
the Wigner threshold regime. The phase shift in Eq.~13!
does not need to be small in order to use Eq.~12!. Even
though the effective scattering length diverges whend0 is an
odd multiple of p/2, the wave function remains well be
haved.

Reference@23# found the eigenvalues of the trapped a
oms interacting through the operator in Eq.~1! as the solu-
tions of the equation,

a

l
5 f ~E!, ~14!

where the ‘‘intercept function’’ is

f ~E!5
1

2
tanS pE

2\v
1

p

4 D GS E

2\v
1

1

4D
GS E

2\v
1

3

4D ~15!

and G is the gamma function. To account properly for t
scattering in tight traps, where the Wigner law may not ap
at the trap energies, we need to replace Eq.~14! by one in
which the left-hand side is energy dependent and solve
equation
01340
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aeff~E!

l
5 f ~E! ~16!

self-consistently for the eigenvalues.~The term ‘‘self-
consistent’’ here refers to the energy eigenvalue on both s
of the above equation, and should not be confused with
meaning in the context of Hartree-Fock approximations.!

One might ask, why does the idea of the pseudopoten
still work outside the regime of the Wigner law? The answ
is that the collision occurs on the very short length scalex0,
so the interatomic interaction potential is undistorted by
trap. This in turn means that the kinetic energy at which
effective scattering length needs to be evaluated is the ei
value itself, since the trap potential is negligible forr ,x0.
Thus we were led to the self-consistent energy Eq.~16!.

For sufficiently high trap levels, one can also understa
Eq. ~16! from a semiclassical perspective. The ratio
gamma functions asymptotically approaches 2/kl for E
@\v, and using the definition of effective scattering leng
Eq. ~13!, we can express the self-consistency condition a

fWKB~E!5p~n11!2d0~E!, ~17!

where as beforen50,1,2, . . . and

fWKB~E!5
pE

2\v
1

p

4
. ~18!

We may interpret Eq.~17! as the quantization of the Wentze
Kramers-Brillioun phase of the wave function at the classi
outer turning point, but the quantum defectd0(E) must first
be subtracted to take into account the scattering at short
tance.

Our model can be expected to break down if the tr
becomes too tight. The interatomic potentialVint becomes
comparable to the trap potential nearr 5Alx0. Hence the
inner part of the wave function where the scattering occur
nearly the same as that without the trap whenx0&Alx0,
equivalent to Eq.~11!. A different kind of limitation is that
this model cannot predict bound states without our know
the analytical continuation of the effective scattering leng
to negative energies.

IV. SINGLE-CHANNEL SCATTERING

The first problem we consider is that of doubly polariz
~electron and nuclear spin up! 23Na atoms colliding in the
trap. In this case, there is only one scattering channel, g
erned by thea3Su

1 adiabatic Born-Oppenheimer potentia
The scattering length isa53.4 nm, and Figs. 1 and 2 show
the effective scattering length as a function of energy. It
creases with energy and diverges nearE/h590 MHz where
d05p/2 ~this corresponds to a local maximum of thes-wave
cross section!, and is negative immediately above this e
ergy. In this work both the single- and multichannel pha
shifts are calculated by applying the Gordon propagat
method@28# with the best available scattering potentials f
Na2 @29#.
3-3
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BOLDA, TIESINGA, AND JULIENNE PHYSICAL REVIEW A66, 013403 ~2002!
The radial Schro¨dinger equation for the Hamiltonian Eq
~3! was solved numerically for the eigenvalues. For a
tailed description of our numerical method using a discr
variable representation, see Ref.@30#. We take a trap fre-
quency of v/2p51 MHz, for which l 529.6 nm and
\v/kB548 mK (kB is the Boltzmann constant!. Such a tight
trap should be feasible in a Na optical lattice.

We illustrate the graphical solution of the effectiv
scattering-length model in Figs. 1 and 2. In each plot,
solid curve represents the left-hand side of Eq.~16!, aeff / l ,
while the dashed curve is the right-hand side. The absci
of the points where the curves intersect give the eigenva
according to the model. One way of comparing with t
exact numerical eigenvalues is to evaluate the intercept fu
tion f (E) at these eigenvalues; these points are plotted
circles. The closer the circles lie to the intersection of
curves, the better the agreement. The exact numerical
model eigenvalues in Fig. 1 agree to better than 0.0016\v.
Note that the solution of Eq.~14! is found from the intersec
tion of f (E) and the horizontal linea/ l ; the corresponding

FIG. 1. Effective scattering length~solid curve! and intercept
function f (E) ~dashed! versus energy for doubly polarized23Na in
a 1 MHz trap. The energies at which the two curves intersect g
the model eigenvalues. The circles show the actual positions o
exact numerical eigenvalues along the curve of the intercept fu
tion.

FIG. 2. Same as Fig. 1 but at a higher-energy range. Note
the effective scattering length diverges, but the model eigenva
still agree with the exact numerical eigenvalues.
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eigenvalues differ significantly from both the exact ones a
the effective-scattering-length model.

The range of energies in Fig. 2 is centered near the en
at which aeff / l diverges. Even thoughuaeffu@ l , the model
eigenvalues are still accurate. They agree with the exact o
to within 0.0018\v. Clearly this validates our model. W
have also obtained eigenvalues for much higher trap frequ
cies, at which distortion of the collision potential is expect
to cause our model to fail. At a trapping frequency 100 MH
where l 52.96 nm'x0, the error between the exact eige
values and those obtained from our model has increase
0.045\v. The crucial interaction length scale for compa
son to the trap sizel is x0, not the effective scattering lengt
aeff .

The difference between the lowest seven eigenvalues
the corresponding harmonic oscillator eigenvalues given
Eq. ~4! is plotted in Fig. 3 versus the quantum numbern. The
shift due to the interactions is a significant fraction of\v
and should be observable in appropriate experiments.
dependence of the shift on the index for the lowest few
genvalues is due mainly to the energy dependence of
gamma functions in Eq.~15!, and only slightly due to the
variation of the effective scattering length with energy. T
solution for the eigenvalues in the semiclassical regime
Eq. ~17!, to first order in the effective scattering lengt
yields shifts

En2S 2n1
3

2D\v5
4

p S n1
3

4D 1/2 aeff

l
\v, ~19!

explaining the approximately square-root dependence
quantum numbern in the figure. On the other hand, for th
higher eigenvalues in Fig. 2, the shifts in eigenvalues a
mostly from the rapid variation of effective scattering leng
with energy. Near the asymptoteaeff→` the eigenvalues
have increased by approximately\v compared with the un-
perturbed values.

The above examples show that accurate eigenvalues
be obtained by using results of the single-channel scatte
problem~without the trap!, and solving Eq.~16!. Our model

e
he
c-

at
es

FIG. 3. Difference between eigenvalues for interacting and n
interacting, doubly polarized Na atoms in a 1 MHz trap versus
quantum numbern. The model and exact numerical eigenvalues
indistinguishable on the scale of this figure.
3-4
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EFFECTIVE-SCATTERING-LENGTH MODEL OF . . . PHYSICAL REVIEW A 66, 013403 ~2002!
is good even when the effective scattering length is la
compared to the trap width, provided the trap size is s
larger than the van der Waals length scale.

V. MULTICHANNEL SCATTERING
AND FESHBACH RESONANCE

In the preceding section, large ratios of effective scat
ing length to trap width were only possible for very hig
lying levels. Here we want to discuss a situation whe
uaeffu/ l is arbitrarily large for the lowest trap levels. This ca
be experimentally realized fors-wave collisions using a
magnetically-tuned Feshbach resonance.

We consider a Feshbach resonance in the collision
two 23Na atoms in their lowest hyperfine level at a magne
field near 90 mT@18,31,32#. The hyperfine states of the23Na
atom diagonalize the Zeeman and hyperfine interaction
are labeled byua&,ub&, . . . ,uh&, starting from the lowest in-
ternal energy. For very low collision energy,s-wave colli-
sions of twoua& atoms are represented by five symmetriz
asymptotic collision channels, one of which is open,u$aa%&,
and four of which are closed,u$ag%&, u$bh%&, u$ f h%&, and
u$gg%&. The interaction between the atoms is mediated by
X1Sg

1 and a3Su
1 adiabatic Born-Oppenheimer potentia

During the collision this interaction mixes hyperfine sta
and is described by a Hamiltonian coupling the above fi
channels@32#. A Feshbach resonance state at energyEF is
located at the threshold of theu$aa%& channel for a magnetic
field Bres'90.09 mT. This resonance is a quasibound m
lecular eigenstate of the four closed channel problem. It
be formed from or decay to theu$aa%& open channel, to
which it is coupled. As the magnetic fieldB is changed nea
Bres, the resonance energy also varies withB,

EF5
]EF

]B
~B2Bres!. ~20!

The analytic theory of Feshbach resonances@33,34#
shows that the phase shiftd0 can be written as the sum o
background and resonant scattering contributions,

d05dbg2arctan
GF

2~E2EF2DF!
, ~21!

whereGF is the linewidth,DF is a level shift induced by the
coupling between the open and closed channels, anddbg is
the background phase shift. It follows that the effective sc
tering length Eq.~13! for the $aa% channel is

aeff~E!5

GF

2
2~E2EF2DF!tandbg

kS E2EF2DF1
GF

2
tandbgD . ~22!

Up to the highest energy we will consider,E/h'5 MHz,
bothGF and tandbg are proportional toAE, andDF becomes
constant. Moreover, Eq.~22! shows that the effective scatte
ing length diverges near the energy
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EF1DF
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1

2

]

]E
~GF tandbg!E→0

. ~23!

The effective scattering length is positive below and nega
aboveEdiv , which is magnetically tunable according to E
~20!. However, instead of employing the analytic theory, a
given value of magnetic field we directly obtain the effecti
scattering length as a function ofE from a numerical close-
coupled scattering calculation with five channels. This e
ables us to extract the position of the divergenceEdiv , which
is plotted as the dashed curve in the (E,B) plane in Fig. 4.

We now examine the effect of the Feshbach resonance
trap eigenstates, assuming a trap withv/2p5500 kHz. We
used the numerical discrete variable method for five chan
to calculate the lowest eigenvalues of the trap states fo
range of magnetic fields near the resonance. These eige
ues are plotted as circles in Fig. 4. Solutions to the mo
eigenvalues were obtained by solving Eq.~16! graphically as
in the single-channel case; the solutions versus magn
field are the solid curves. The eigenvalues agree well w
the numerical ones for all values of energy and magn
field; the worst agreement,,0.1\v, is for eigenvalues nea
the resonance position. The model eigenvalues always
slightly above the numerical ones. Note that the model
genvalues cross theEdiv curve nearE/\v51/2,5/2,9/2 . . .
Another particular feature of the plot, which is correctly r
produced by the model solution, is that asB decreases the
lowest trap state (E.0) becomes the highest bound sta
(E,0) for a magnetic fieldB,Bres. This occurs where the
effective scattering length is still finite and positive, sin
aeff / l'1.48 whenE50 in Eqs.~15! and ~16!.

VI. CONCLUSION

We have shown how a simple model can be used to
culate the eigenvalues of interacting atoms in an isotro

FIG. 4. Numerical ~circles! and effective-scattering-length
model~solid curve! eigenvalues versus magnetic fieldB for Na in a
500 kHz trap. The dashed line showsEdiv , where the effective
scattering length diverges at a fixed value of magnetic field.
3-5
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BOLDA, TIESINGA, AND JULIENNE PHYSICAL REVIEW A66, 013403 ~2002!
harmonic trap. Our model involves solving an equation c
taining the effective scattering length for untrapped atom
and the trap frequency. We compared our model with ex
results for 23Na both for a single-channel collision and
multichannel collision with a tunable Feshbach resonance
both cases, the model can accurately treat tight traps, as
as the trap size is larger than the van der Waals scale len
Consequently we expect the model to apply to other ato
species. In particular, Cs would be an interesting case
which the scattering length is large in comparison with ev
modest trap sizes@35#.

In the future, we want to generalize our model to mo
arbitrary trap potentials. There are two technical problem
be overcome. First, for atomic collisions in anisotropic h
monic traps, the relative coordinate equation does not s
rate; this implies that different partial waves are coupled
the anisotropy. A related point is that the scattering of hig
partial waves can also be modeled by pseudopotentials@20#.
Second, for anharmonic traps, the center-of-mass and
tive atomic coordinates do not separate, and even more
ordinates must be treated simultaneously. Anharmonic te
become important for low intensity optical lattices or for tr
levels with many quanta of excitation.
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One would expect to be able to use the effective scatte
length in many-body problems, where the pseudopoten
approximation has had widespread use. One would sim
need to replacea by the effective scattering length. Thi
should be especially useful and necessary for situati
where a tunable Feshbach resonance is used to alter th
teraction properties. There are a number of cases where
relative collision energy for a many-body system is we
defined, such as for condensates in optical lattices@10#, col-
liding condensates@36,37#, or cold gases of mixed fermionic
species, where collisions occur at the Fermi energy. It sho
also be possible to incorporate inelastic collision loss ch
nels by using a complex effective scattering length@36#.

After completing this paper, we learned of a recent the
retical work @38# that has also treated the problem of tw
trapped atoms interacting through single-channels-wave
scattering. It introduces an energy-dependent pseudopote
and comes to similar conclusions.
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