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Formalism for multiphoton plasmon excitation in jellium clusters
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We present a formalism for the description of multiphoton plasmon excitation processes in jellium clusters.
By using our method, we demonstrate that, in addition to dipole plasmon excitations, the multipole plasmons
~quadrupole, octupole, etc.! can be excited in a cluster by multiphoton absorption processes, which results in a
significant difference between plasmon resonance profiles in the cross sections for multiphoton as compared to
single-photon absorption. We calculate the cross sections for multiphoton absorption and analyze the balance
between the surface and volume plasmon contributions to multipole plasmons.
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I. INTRODUCTION

In the present paper we demonstrate that, in addition
dipole plasmon excitations, multipole plasmons~quadrupole,
octupole, etc.! contribute to the multiphoton excitation pro
cess, which results in a significant difference of plasm
resonance profiles between the cross sections for multip
ton and single-photon absorption. We have developed a
malism from which the cross sections for multiphoton ex
tation can be worked out. The balance between multip
surface and volume-plasmon contributions is analyzed.
results are obtained within a theoretical model for the mu
photon excitation of a jellium cluster. This model is app
cable to metal clusters, to fullerenes, and to any type of c
ter in which a strong delocalization of valence atom
orbitals occurs. The theoretical formalism we have dev
oped is not confined in its application to photons. It can a
be used to describe any kind of higher-order plasmon e
tation processes, for example, those which arise by mult
scattering of electrons within the cluster.

It is important to note that we use the jellium framewo
for simplicity. In fact, all the conclusions regarding selecti
rules and the general behavior of single versus multipho
cross section are model independent. So, the jellium calc
tions are used in our work merely as an illustration of wh
happens when the general formulas are applied. Althou
there is no real physical system which follows the jelliu
calculations, just as there is no atom which really follo
pure Hartree-Fock calculations. Nevertheless, the Hart
Fock method is important~as is the jellium method! in pro-
viding an intellectual framework within which the funda
mental physical interactions can be clearly distinguished
well as a basis for more elaborate computations, for exam
of correlations and exchange. Physics often appeals to m
els that are not strictly applicable to real situations, but
nevertheless fundamental. Actually, this is a prime feature
many-body systems. Very realistic models usually achi
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their success at the expense of an increase in comple
which introduces uncertainties of interpretation.

Recently, a number of papers have discussed met
clusters@1,2# and fullerenes@3# in strong laser fields. The
theoretical approach usually followed is to solve a tim
dependent local-density equation numerically~LDA or local-
density approximation!, and the regime most commonl
studied involves intense, short laser pulses, for which
turn-on and turn-off properties significantly affect excitatio

We report here on a different problem: our initial intere
lies in lower laser powers, for which multiphoton excitatio
just begins to intrude, and we are interested in developin
formalism to describe the interaction between collect
modes and a laser field in the multiphoton regime. For t
purpose, a semiclassical model, in which the collective fl
of charge is driven by a periodic field, is established, and
relate it to the multiphoton absorption cross section of
cluster, which takes into account quantum mechanics.
course, one can in principle extend this treatment to inclu
the turn on and turn off of laser pulses, to treat the interact
numerically for various power levels and initial charge d
tributions. What we wish to point out, however, is an impo
tant feature, which arises even for an infinite wave train
teracting with a cluster~the simplest and most fundament
problem!: multiple plasmon excitations are driven by mult
photon excitations. In the present paper, we explain by w
mechanism this arises.

Our approach is based on principles different from t
LDA. Instead of using the Kohn-Sham formalism, we pr
pose a hydrodynamic approach. In the LDA, all quantit
are made to depend solely on charge density, and current
subsequently made to appear by solving a time-depen
equation. In our approach, we start from the continuity eq
tion and the Euler equation, from which both the current flo
and the density are obtained in a completely consistent w
Our theory is local, and does not include exchange. In p
ciple, it would be possible to extend it by building in ex
change and correlations in a way similar to the LDA. One
the benefits of our approach is that all the momentu
transfer terms are included in the formulation, which leads
the presence of both volume and surface plasmon term
©2002 The American Physical Society07-1
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one wishes to simplify the theory, it is possible towards
end of the calculation to assume zero momentum transfe
which case the volume-plasmon terms disappear from
problem.

Surface-plasmon excitations are well known in atom
cluster physics. The dipole surface plasmons are respon
for the formation of giant resonances in photoabsorpt
spectra of metal clusters~see, e.g., Refs.@4–12#!. They also
play an important role in inelastic collisions of charged p
ticles with metal clusters@13–19#. The role of surface plas
mon excitations in inelastic electron-cluster scattering w
thoroughly studied in@13,17–19#, and it was demonstrate
that collective excitations contribute significantly to the ele
tron energy loss spectrum in the region of the surfa
plasmon resonance. With increasing scattering angle, p
mon excitations of higher angular momenta become m
and more prominent.

Plasmons are characteristic of delocalized electrons,
therefore the jellium model provides the most appropri
starting point for a discussion of plasmon excitation in t
multiphoton regime. This regime is particularly appropria
for the study of atomic clusters, which are rather fragile o
jects, and readily explode under very strong irradiation@20#.

The inelastic scattering of fast electrons on metal clus
in the range of transferred energies above the ioniza
threshold was considered in Ref.@21#. It was demonstrated
that, in this energy range, volume plasmons dominate
contribution to the differential cross section, resulting in
resonance behavior. The volume-plasmon resonances ex
in the cluster during a collision decay via the ionization p
cess. The resonance frequency and the autoionization w
of the volume-plasmon excitations have both been de
mined in Ref.@21#. In this work the results of the plasmo
resonance approximation for fast electrons scattering on
dium clusters have been compared with those following fr
the ab initio quantum treatment performed within th
random-phase approximation with exchange. This comp
son demonstrated quite reasonable applicability of the p
mon resonance approximation, i.e., the jellium model, to t
problem. This fact leads us to the conclusion that one
expect the same level of accuracy of the theory based on
jellium principles in other relevant physical situations, su
as multiphoton absorption processes.

The role of the polarization interaction and plasmon ex
tations in the process of electron attachment to metal clus
has also been examined both theoretically@22,23# and ex-
perimentally@24#. It was demonstrated that plasmon exci
tions induce a resonance enhancement of the electron at
ment cross section.

Our paper is organized as follows. In Sec. II, we der
quantum-mechanical expressions for the cross section
multipole ~quadrupole, octupole, etc.! plasmon excitations
taking place in the multiphoton absorption regime and e
mate the cross sections on the basis of the plasmon reson
approximation. We present and discuss the multiphoton
sorption profiles and demonstrate a significant change of
profiles in the cross sections for multiphoton as compare
single-photon absorption. In Sec. III, we establish cert
connections of the cross sections with the variation of e
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tron density in the cluster due to the external field a
present the formalism for the calculation of the electro
density variation in the cluster due to the external field, ba
on the the hydrodynamic Euler equation and on the equa
of continuity. We apply the general formalism to the descr
tion of fast electron-cluster scattering and multiphoton a
sorption. In Sec. IV, we calculate the multipole moments
the system induced by the external field on the basis of
formalism outlined in Sec. III. We analyze the plasmon re
nance structure of the induced multipole moments and c
clude that it is analogous to the one arising in the multiph
ton absorption cross sections calculated in Sec. II. In Sec
we draw conclusions from this work. In Appendix A, w
show how matrix elements for collective transitions can
calculated on the basis of the sum rules. In Appendix B,
present details of calculations of the angular integrals aris
in the formalism outlined here.

II. PLASMON RESONANCE APPROXIMATION FOR
MULTIPHOTON ABSORPTION CROSS SECTIONS

First, we consider the cross section for multiphoton a
sorption in jellium clusters and demonstrate that multip
plasmon excitations are essential to this process. The dis
sion in this section is based on the plasmon resonance
proximation, which is introduced below.

A. Single-photon absorption

Let us start by considering the simplest example and
culate the cross section for single-photon absorption in
plasmon resonance approximation.

The single-photon absorption cross section in the dip
approximation reads as

s15
4p2e2

c
v(

n
uzonu2d~vno2\v!. ~1!

Here,e is the charge of electron,c is the velocity of light,
\ is Planck’s constant,vno5«n2«0 is the electron excita-
tion energy,v is the photon frequency, andezon is the matrix
element of thez component of the cluster dipole momen
The summation overn includes all final states of the excite
electron, which belong to both the discrete and the conti
ous spectra.

In the jellium picture, which works reasonably well fo
metal clusters and to some extent for fullerenes, the m
contribution to the cross section~1! arises from a small
group of excited states or sometimes even from a single t
sition close in frequency to the classical Mie resonance
also known as the plasmon resonance. For a spherical m
cluster, this frequency is given by~see, e.g., Refs.@10,17#
and Sec. IV of this paper!

v l
25

4pNe2

mV

l

~2l 11!
. ~2!

Here V54pR3/3 is the cluster volume, whereR
5r oN1/3 is the cluster radius,r o is the Wigner-Seitz radius;N
is the number of delocalized electrons in a cluster,l is the
7-2
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angular momentum of the plasmon mode,m is the electron
mass. Note that, by using a single photon of energy 1–4
one can, in practice, excite onlyl 51 dipole plasmon oscil-
lations in a metallic cluster.

For nearly spherical fullerenes C20 or C60, the plasmon
resonance frequency is~see Refs.@11,17#!

v l
25

l ~ l 11!N

~2l 11!R3
, ~3!

whereN is the total number of delocalized electrons~four
electrons per atom times the number of carbon atoms in
fullerene molecule! andR is the the radius of the fullerene

The plasmon resonance approximation is based on
fact that excitations near a plasmon resonance exhaus
sum rule almost completely~see Refs.@4–7,10,11#!, which
means that the summation in the sum rule~see, e.g., Ref.
@25#!

(
n

vnouzonu25
N\2

2m
~4!

need only be performed over excited states near the
resonance.

Now, assuming a Lorentzian distribution of widthG1 for
the plasmon resonance states and replacing thed function,
d(vno2\v), in Eq. ~1! by the profile~see, e.g., Ref.@25#!

d~vno2\v!→ G1

2p\S ~v12v!21
G1

2

4 D , ~5!

one recovers the well-known expression for the sing
photon absorption cross section~see, e.g., Refs.@4,10#!

s15
pNe2

mc

G1

~v12v!21
G1

2

4

'
4pNe2

mc

v2G1

~v1
22v2!21v2G1

2
.

~6!

The width G1 is due to Landau damping. Its calculatio
for metal clusters is performed, for example, in Ref.@21#.

The cross section~6! reproduces correctly the appearan
of plasmon resonances in single-photon absorption spect
metal clusters and fullerenes, although some details of
experimentally observed profiles are naturally beyond
plasmon resonance approximation. The discussion of th
details is also beyond the scope of the present paper. T
can only be treated accurately enough on the basis oab
initio many-body theories. Instead, we analyze the multip
ton absorption cross section on the basis of the plasmon r
nance approximation and elucidate the role of multip
plasmon excitations, because our interest lies in establis
the physical mechanisms of multiphoton excitation.

B. Two-photon absorption

In the dipole approximation, the two-photon absorpti
cross section is
01320
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32p3e4\

c2
v2(

n
U(

m

znmzmo

\v2vmo1 idU
2

d~vno22\v!.

~7!

We evaluate the cross section~7! in the same way as fo
the single-photon case. The main contribution to the s
over the intermediate statesm arises from the virtual dipole
plasmon excitations. Therefore, one derives

(
n

U(
m

znmzmo

\v2vmo1 idU
2

'
N

2m\v1
(

n

uzn1u2

~v2v1!21G1
2/4

.

~8!

Here, we have also introduced a dipole plasmon re
nance widthG1 and used the sum rule~4! for the evaluation
of the matrix elements for dipole plasmon excitationur 10u2
'N\/2mv1. The remaining matrix elementszn1 in Eq. ~8!
describe dipole transitions from the dipole plasmon re
nance state to other excited states. Matrix elements for th
transitions obey the dipole selection rule. This means that
angular momentum of the final state can be onlyl 50 or l
52. According to Eqs.~2! and ~3!, there is no surface-
plasmon excitation withl 50 either in metal clusters or in
fullerenes. Thus, only transitions to states withl 52 are of
interest.

These arguments show that, by using two photons sim
taneously, one can excite the quadrupole plasmon reson
in a metal cluster or in a fullerene with a frequency given
Eqs. ~2! and ~3!, respectively. When calculating the cro
section ~7! near the quadrupole plasmon resonance exc
tion, i.e., at 2v;v2, it is sufficient to consider only transi
tions to the resonance final state, i.e., to put(nuzn1u2
'uz21u2 ~here and below we use indices 1 and 2 to design
the dipole and quadrupole plasmon resonance states! and to
replace thed function, d(vno22\v), by a Lorentzian dis-
tribution of width G2 ~see, e.g., Ref.@25#!,

d~vno22\v!→ G2

2p\S ~v222v!21
G2

2

4 D . ~9!

By substituting Eqs.~8! and ~9! in Eq. ~7!, one derives

s25S 4pNe2

mc D 2muz21u2

2N\v1

v2

~v2v1!21
G1

2

4

G2

~v222v!21
G2

2

4

.

~10!

This result demonstrates that the photoabsorption pro
in the two-photon process differs substantially from t
single-photon case. The cross section~10! has a resonance a
the dipole plasmon frequency and, in addition, contains
quadrupole plasmon resonance atv5v2/2.

The cross section~10! depends onuz21u2. The transition
matrix elementz21 describes the electron transition betwe
the dipole and quadrupole plasmon resonance states. Th
a single-electron transition rather than a collective o
Therefore, calculation ofz21 on the basis of the sum rule~4!
7-3
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would lead to a significant overestimate of the value of t
matrix element. Instead, one can use Heisenberg’s un
tainty principle for the evaluation ofz21 @26#. By estimating
the radial component of the momentum of a single elect
in a dipole and quadrupole plasmon oscillatory mode asp1
;mv1DR andp2;mv2DR, respectively, one obtains

uz21u;min~Dz1 ,Dz2!;
\

p2
;A

\

mv1DR
. ~11!

Here,A is a dimensionless constant, of the order of o
Dz1;\/p1 and Dz2;\/p2 are the uncertainties relating t
an electron in the dipole and quadrupole plasmon mod
respectively,DR is the width of the layer near the cluste
surface within which plasmon excitations take place. In A
pendix A we prove the correctness of this estimate and d
onstrate that the matrix element

z2152
8

3 S 6

5D 1/4 \

mv1DR
. ~12!

By substituting Eq.~12! in Eq. ~10!, we obtain the final
expression for the two-photon absorption cross section,

s25S 4pNe2

mc D 2 A2\

2mv1NDR2

v2

v1
2

1

~v2v1!21
G1

2

4

3
G2

~v222v!21
G2

2

4

, ~13!

whereA5 8
3 (6/5)1/4'2.79.

We note that the cross section~13! depends explicitly on
Planck’s constant\, while the cross section~6! does not. The
independence of Eq.~6! from \ is connected with the fac
that plasmon oscillations are a purely classical effect, wh
the dependence of Eq.~13! on \ arises from the interaction
between dipole and quadrupole plasmon modes as ca
seen from estimate~11! and the explicit expression~12!. This
indicates that it is meaningful to treat plasmon excitatio
classically, while the coupling of various plasmon modes
the multiphoton photoabsorption process must be treated
yond purely classical theory.

In Fig. 1 we plot the cross section profiles per unit ato
for single-photon~dashed line! and two-photon~solid line!
absorption calculated according to Eqs.~6! and ~13!. These
profiles do not depend on the number of atoms in the clus
Note that the scales are not the same for the two curves
reasons of definition of the cross sections in the single-
two-photon cases, but both are given in atomic units. T
peak in the single-photon plot gives the location of the dip
resonance. The other peak in the two-photon plot is the qu
rupole resonance. This figure demonstrates a significant
ference between the nature of the profiles, arising from
presence of quadrupole plasmon excitation in the two-pho
case. In this calculation we have inputr 054.0 and G1
5v1/4, G25v2/4, DR5r 0. The choice of these param
01320
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eters can be different for different clusters, but it should
ways lead to qualitatively similar single- and two-photon a
sorption profiles. An accurate determination of t
parameters is only possible on the basis ofab initio calcula-
tions.

C. n-photon absorption

The formalism we have developed can also be used
the evaluation of the multiphoton absorption cross secti
for a larger number of photons. In the dipole approximati
the n-photon absorption cross section has the followi
form:

sn5
~2p!n11n! 2e2n\n21

cn
vn(

k
uMku2d~vko2n\v!.

~14!

Here the amplitudeMn is equal to

Mk5 (
mn21

(
mn22

•••(
m1

zkmn21

@~n21!\v2vmn2101 id#

3
zmn21mn22

@~n22!\v2vmn2201 id#
•••

zm10

~\v2vm101 id!
.

~15!

The plasmon resonance structure of the multiphoton
sorption cross section~15! can be analyzed in a way simila
to the previous treatments for the single- and two-pho
cases. This analysis immediately leads to the important c
clusion that plasmon resonances with larger angular m
menta~octupole, etc.! can be excited in the multiphoton ab
sorption regime. Thus, for example, with three photons,
octupole plasmon resonance atv5v3/3 will also be excited.

FIG. 1. The profiles of single-photon~dotted line! and two-
photon~solid line! absorption calculated according to Eqs.~6! and
~13! and normalized per unit atom. The two-photon absorption p
file is scaled by a factor 1/100. The scales are not identical for
two curves for reasons of definition of the cross sections in
single- and two-photon cases, but both are given in atomic uni
7-4
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This analysis, however, leaves undefined the matrix elem
for electronic transitions between various plasmon mod
Estimates of these can be performed either on the bas
Heisenberg’s uncertainty principle or by a calculation simi
to the one forZ12 @see Eqs.~12! and~10!# in the two-photon
case, but their accurate evaluation is not trivial.

Note that the plasmon resonance approximation allo
one to analyze only the plasmon resonance excitations
are characterized by relatively low angular momenta,
cause electron excitations in the cluster with large ang
momental have single-particle character. This follows, f
instance, from the fact that with increasingl the wavelength
of the surface plasmon mode, 2pR/ l , becomes smaller tha
the characteristic wavelength of the delocalized electron
the Fermi surface, 2p\/A2mD«, whereD« is the character-
istic electron excitation energy in the cluster. In other wor
excitations with angular momenta comparable with the ch
acteristic electron angular momenta of the ground state
hibit single-particle rather than collective character. The
fore, when analyzing contributions of the plasmon resona
modes to the multiphoton absorption cross section,
should consider only the lowest angular momenta. For
ample, according to the jellium model, the maximum angu
momentum of the delocalized electrons in the Na40 cluster is
equal to 4. Therefore, only dipole and quadrupole collect
modes can be expected in this case. With increasing clu
size the number of essential plasmon modes grows asR.

III. HYDRODYNAMIC DESCRIPTION OF COLLECTIVE
MOTION OF THE ELECTRON DENSITY IN A

CLUSTER

The multipole plasmon resonances arising in the mu
photon absorption cross sections should also appear in o
physical characteristics of the cluster, which can be probe
the multiphoton absorption regime. In the situation whe
plasmon resonance excitations are the dominant contribu
to the multiphoton absorption cross section, it is natura
seek and analyze the plasmon resonance structure o
variation of electron density induced by the radiation fie
The variation of electron density is a characteristic of
system, allowing one easily to connect classical and quan
descriptions of the excitation process, because cha
density variation has the same meaning in both quantum
classical mechanics. A classical description of the electr
density variation in a cluster is appropriate in the situat
where plasmon excitations dominate over the single-part
spectrum, because plasmon oscillations in clusters are a
sentially classical effect.

A. Basic equations

Since our object of interest is the excitation of plasmo
in metallic clusters, which have a distinctly classical natu
we now describe the collective motion of the electron den
using Euler’s equation and the equation of continuity.

Euler’s equation couples the acceleration of the elect
densitydv/dt with the total local electric fieldE acting on
the density at the point (r ,t). It has the following form:
01320
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n

dv~r ,t !

dt
5

e

m
E~r ,t !. ~16!

The electric fieldE includes both the external field acting o
the cluster and the polarization contribution arising from t
variation of electron density. Expressing the total derivat
on the left-hand side of Eq.~16! as the sum of two contribu
tions, arising from the change in velocity of the electr
density in time and in space, one obtains

]v~r ,t !

]t
1$v~r ,t !•“%•v~r ,t !

52
e

m
“w~r ,t !2

e

m
“E dr 8

dr~r 8,t !

ur2r 8u
. ~17!

Herew(r ,t) is the potential of the external field. The se
ond term on the right-hand side of Eq.~17! describes the
polarization force due to the variation of electron dens
dr(r ,t).

We assume that the external potentialw(r ,t) is the solu-
tion of the wave equation. Therefore, we can put

w~r ,t !5eivtw~r !, ~18!

wherew(r ,t) satisfies the equation

Dw~r !52k2w~r !. ~19!

Herek5v/c, c is the velocity of light, but in principle one
can postulate a more complex dispersion law. We need c
sider only the positive frequency solution of the wave eq
tion, because the formalism for the negative frequency so
tion is analogous to it.

The total electron density in the cluster is

r~r ,t !5ro~r !1dr~r ,t !, ~20!

where ro(r ) is the electron-density distribution in a fre
cluster without an external field anddr(r ,t) is the variation
of electron density caused by the external field and the
larization force acting together.

The motion of electron density in the cluster obeys t
equation of continuity, which reads

]r~r ,t !

]t
1“•$r~r ,t !v~r ,t !%50. ~21!

The simultaneous solution of Eqs.~17!, ~20!, and ~21!
with appropriate initial conditions and the initial distributio
ro(r ) allow one to determine the variation of electron de
sity dr(r ,t) as well as its velocityv(r ,t). We solve this
problem by using a perturbative approach on the exte
field w(r ,t).

B. Perturbation theory

It is easy to estimate the relative value of the first and
second terms on the left-hand side of Eq.~17!. We see that
the second term is negligible, provided the conditionE
7-5
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!mv2R/e is fulfilled. Substituting here the characteristic va
uesv;0.1, R;10, one derivesE!0.1 in atomic units or
E!53108 V/cm. Below, we assume that this condition
fulfilled and neglect the second term on the left-hand side
Eq. ~17!, which means physically that the external fie
causes only a small spatial inhomogeneity in the electr
density distribution within the cluster. In this limit, Euler
equation reduces to a Newtonian equation, which descr
electronic motion in the cluster under the action of the ex
nal field and the polarization force.

We express the solutions of Eqs.~17! and ~21! in the
following form:

dr~r ,t !5 (
n51

`

drn~r !einvt, ~22!

v~r ,t !5 (
n51

`

vn~r !einvt. ~23!

By substituting these expansions into Eqs.~17! and ~21!
and performing simple transformations, one derives

vn~r !5
ie

mnv
dn,1“w~r !1

ie

mnv
“E dr 8

drn~r 8!

ur2r 8u
, ~24!

ivndrn~r !1“•$r0~r !•vn~r !%

1 (
k851

n21

“•$drk8~r !•vn2k8~r !%50. ~25!

Here dn,1 is the Kroneker delta. One can excludevn(r )
from Eq. ~25! by the substitution of Eq.~24! in Eq. ~25!.
Performing this transformation with the simultaneous use
Eq. ~19! and Dur2r 8u21524pd(r2r 8), one derives the
following equation:

S ~vn!22
4pe

m
ro~r ! D drn~r !1

e

m
“ro~r !•“E dr 8

drn~r 8!

ur2r 8u

5
e

m
dn,1@ro~r !w~r !k22“w~r !•“ro~r !#

1 iv (
k851

n21

“•@drk8~r !•vn2k8~r !#. ~26!

The left-hand side of Eq.~26! describes eigenoscillation
of the electron density. The electron density is almost c
stant within the cluster but varies rapidly near the clus
surface. Therefore, the terms proportional toro(r ) and
“ro(r ) on the left-hand side of Eq.~26! determine the
square of the frequency of the volume and surface-plasm
oscillations, respectively. The right-hand side in Eq.~26! de-
scribes a driving force acting on the eigenplasmon osc
tions.

The set of nonlinear equations~24! and ~26! must be
solved iteratively. It is clear from the form of the equatio
that the indexn corresponds to the order of perturbatio
theory on the external fieldw(r ).
01320
f
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Indeed, forn51 Eq. ~26! reduces to

S v22
4pe

m
ro~r ! D dr1~r !1

e

m
“ro~r !•“E dr 8

dr1~r 8!

ur2r 8u

5
e

m
@ro~r !w~r !k22“w~r !•“ro~r !# ~27!

and, forn52, one derives

S ~2v!22
4pe

m
ro~r ! D dr2~r !1

e

m
“ro~r !•“E dr 8

dr2~r 8!

ur2r 8u

5 iv“•@dr1~r !v1~r !#. ~28!

Equations~27! and ~28! show that the variationr1(r 8)
describes the linear response of the electron subsystem t
the external fieldw(r ), while r2(r 8) arises only in the sec
ond order of perturbation theory onw(r ), becauser1(r 8)
;w(r ) andv1(r );w(r ).

Solving the set of equations~24! and ~26! with w(r ) de-
scribing the dipole electron-photon interaction up to thenth
order, one can calculate the variation of electron density
the cluster caused by the field ofn photons.

The set of equations~24! and ~26! is not confined in its
application to photons. It can also be used to describe
dynamics of electron density under the action of any kind
external field, for example, the electric field of a charg
projectile colliding with the cluster. Indeed, by considerin
the partial spherical harmonic of the Fourier image of t
Coulomb field of the projectile particle, one can derive fro
Eq. ~27! the same expression for the variation of the elect
densitydr1(r ), as follows from the purely electrodynamica
perturbative approach to the electron-scattering prob
@21#.

C. Spherically symmetric case

Equations~24! and~26! are valid for an arbitrary shape o
the initial distributionro(r ). In the spherical case, the ang
lar parts in Eqs.~24! and ~26! can be separated. Thus, th
cross section forn-photon absorption can in principle be e
tracted for arbitrarily largen, although the calculations be
come more and more tedious the highern is. Let us consider
this formalism in more detail.

In the case of the spherically symmetric initial distrib
tion, one can putro(r )5r0(r ). This relationship allows one
easily to exclude angular variables from Eq.~26!. Using this
relationship together with the partial expansion fordrn(r )
andw(r ),

drn~r !5(
l 50

`

(
m52 l

l

dr l ,m
n ~r !Yl ,m~nr !, ~29!

w~r !5(
l 50

`

(
m52 l

l

w l ,m~r !Yl ,m~nr !, ~30!
7-6
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one derives

S ~vn!22
4pe

m
ro~r ! D dr l ,m

n ~r !

1
4pero8~r !

m~2l 11!
E dr8Gl~r ,r 8!dr l ,m

n ~r 8!

5
e

m
dn,1@ro~r !w l ,m~r !k22w l ,m8 ~r !ro8~r !#

2
e

m (
j 51

n21
1

n2 j E dVnr
Yl ,m* ~nr !

3H“dr j~r !•“S dn2 j ,1w~r !1E dr 8
drn2 j~r 8!

ur2r 8u
D

2dr j~r !@dn2 j ,1w~r !k214pdrn2 j~r !#J . ~31!

Here,Yl ,m(nr) is the spherical harmonic corresponding
the angular momentuml and the projection of the angula
momentumm. When deriving Eq.~31!, we have multiplied
both sides of Eq.~26! by the spherical harmonicYl ,m* (nr)
and then integrated overdVnr

. We also used the well-known
expansion~see, e.g., Ref.@27#!

1

ur2r 8u
5

4p

2l 11 (
l 50

`

(
m52 l

l

Bl~r ,r 8!Yl ,m~nr !Yl ,m* ~nr8!,

~32!

where functionBl(r ,r 8) is defined as follows:

Bl~r ,r 8!5
r l

r 8 l 11
Q~r 82r !1

r 8 l

r l 11
Q~r 2r 8!. ~33!

Here Q(r 82r ) is the step function. In Eq.~31! we have
introduced the functionGl(r ,r 8), which is of the form

Gl~r ,r 8!5r 82
]Bl~r ,r 8!

]r
5 l

r l 21

r 8 l 21
Q~r 82r !

2~ l 11!
r 8 l 12

r l 12
Q~r 2r 8!. ~34!

When deriving Eq.~31!, we have also made obvious tran
formations of the sum overk8 on the right-hand side of Eq
~26! using Eqs.~19! and~24!. Note that the sum overj in Eq.
~31! still contains the integrals over the angular variabl
The integration over the angular variables in the sum
straightforward, but somewhat cumbersome. It is also c
that the nongradient terms in the sum contain the integra
of the product of three spherical harmonics, if one expa
drn2 j (r ) and w(r ) according to Eqs.~29! and ~30!, which
we denote as
01320
.
s
ar
n
s

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!5E dVnr
Yl ,m* ~nr !Yl 1 ,m1

~nr !

3Yl 2 ,m2
~nr !. ~35!

The gradient terms in the sum contain the integration o
spherical harmonic multiplied by the scalar product of t
two vector spherical harmonics,

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!5Al 1~ l 111!l 2~ l 211!E dVnr

3Yl ,m* ~nr !Y l 1 ,m1

(1) ~nr !•Y l 2 ,m2

(1)
•~nr !.

~36!

This type of integral arises, when one expresses the
dients of the potential and the density according to~see, e.g.,
Ref. @27#!

“dr l 1 ,m1

j ~r !Yl 1 ,m1
~nr !5dr l 1,m1

j 8 ~r !Y l 1,m1

(21) ~nr !

1Al 1~ l 111!
1

r
dr l 1,m1

j ~r !

3Y l 1,m1

(1) ~nr !, ~37!

“F l 2 ,m2

n2 j ~r !Yl 2 ,m2
~nr !5F l 2 ,m2

(n2 j )8~r !Y l 2 ,m2

(21) ~nr !

1Al 2~ l 211!
1

r
F l 2 ,m2

(n2 j )~r !

3Y l 2 ,m2

(1) ~nr !. ~38!

HereY l ,m
(21)(nr), Y l ,m

(1)(nr) are, respectively, the longitudi
nal and the transverse vector spherical harmonics, the d
nition of which one can find in Ref.@27#. We mention
some properties of these vector harmonics:Y l ,m

(21)(nr)
5nrYl ,m(nr), Y l ,m

(1)(nr)5“VYl ,m(nr)/Al ( l 11), and
Y l ,m

(21)(nr)•Y l ,m
(1)(nr)50.

The potentialF l 2 ,m2

n2 j (r ) in Eq. ~38! is as follows:

F l 2 ,m2

n2 j ~r !5dn2 j ,1w l 2 ,m2
~r !

1
4p

~2l 211!
E dr8r 82Bl~r ,r 8!dr l 2 ,m2

n2 j ~r 8!.

~39!

Since the explicit expressions forI 1( l ,mu l 1 ,m1 ,u l 2 ,m2)
and I 2( l ,mu l 1 ,m1 ,u l 2 ,m2) are somewhat lengthy, they ar
presented in Appendix B.

Using the formulas written above, one can easily rewr
Eq. ~31! in the following form:
7-7
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S ~vn!22
4pe

m
ro~r ! D dr l ,m

n ~r !1
4pero8~r !

m~2l 11!
E dr8Gl~r ,r 8!dr l ,m

n ~r 8!

5
e

m
dn,1~ro~r !w l ,m~r !k22w l ,m8 ~r !ro8~r !!2

e

m (
j 51

n21
1

n2 j (
l 2 ,m2

l 1 ,m1

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!$dr l 1 ,m1

j 8 ~r !F l 2 ,m2

(n2 j )8~r !

2dr l 1 ,m1

j ~r !@dn2 j ,1w l 2 ,m2
~r !k214pdr l 2 ,m2

n2 j ~r !#%2
e

mr2 (
j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!dr l 1 ,m1

j ~r !F l 2 ,m2

n2 j ~r !.

~40!
v
s.
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Here and below, we assume that the summation o
l 1 ,m1 andl 2 ,m2 is performed with the same limits as in Eq
~29! and ~30!.

D. Surface and volume plasmons

We now analyze Eq.~40! and demonstrate that it de
scribes both surface- and volume-plasmon oscillations.
surface and volume solutions of Eq.~40! can be separate
from each other, if one assumes that the initial distribution
electron density has the form

ro~r !5
Ne

V
Q~Rv2r !. ~41!

Here N is the total number of delocalized electrons in t
cluster volumeV54pRv

3/3.
01320
er

e

f

In this case it is natural to look for the solution of Eq.~40!
by expressing it in the following form:

dr l ,m
n ~r !5dr l ,m

s(n)d~Rs2r !1dr l ,m
v(n)~r !Q~Rv2r !. ~42!

In Eqs.~41! and~42! we have introduced the two radiiRv
andRs and assumed thatRv,Rs5R, butRv→Rs5R, where
R is the cluster radius. Such a relationship is necessary
the elimination of the uncertainties, which arise in Eq.~42!
and the subsequent formulas around the cluster radius. P
cally, it means that surface and volume plasmons are defi
in different parts of the space. In another words, by defi
tion, the surface charge density should not be present in
the volume and vice versa.

Substituting Eqs.~41! and ~42! in Eq. ~40!, performing
straightforward but lengthy calculations of the integrals, o
derives the following equation:
@~vn!22vp
2#dr l ,m

v(n)~r !Q~R2r !1@~vn!22v l
2#dr l ,m

s(n)d~R2r !

52
4pe2N~ l 11!

m~2l 11!VRl 12
d~R2r !E

0

R

dr8r 8 l 12dr l ,m
v(n)~r 8!1

Ne2

mV
dn,1w l ,m~r !k2Q~R2r !1

Ne2

mV
dn,1w l ,m8 ~R!d~R2r !

1
e

m
d~R2r ! (

j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!$dr l 1 ,m1

s( j ) F̃ l 2 ,m2

(n2 j )9~R!1dr l 1 ,m1

v( j ) ~R!F l 2 ,m2

(n2 j )8~R!

1dn2 j ,1k
2dr l 1 ,m1

s( j ) w l 2 ,m2
~R!%2

e

m
Q~R2r ! (

j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!$dr l 1 ,m1

v( j )8 ~r !F l 2 ,m2

(n2 j )8~r !

2dr l 1 ,m1

v( j ) ~r !@dn2 j ,1k
2w l 2 ,m2

~r !24pdr l 2 ,m2

v( j ) ~r !#%2
e

mR2
d~R2r ! (

j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!

3dr l 1 ,m1

s( j ) F l 2 ,m2

(n2 j )~R!2
e

mr2
Q~R2r ! (

j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!dr l 1 ,m1

v( j ) ~r !F l 2 ,m2

(n2 j )~r !. ~43!
7-8
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When deriving Eq.~43!, we have used the fact tha
Q8(R2r )52d(R2r ). Also we have introduced the func
tions

F l 2 ,m2

n2 j ~r !5dn2 j ,1w l 2 ,m2
~r !1

4p

~2l 211!
E

0

R

dr8r 82Bl 2
~r ,r 8!

3dr l 2 ,m2

v(n2 j )~r 8!1
4pR2

~2l 211!
dr l 2 ,m2

s(n2 j )Bl 2
~r ,R!,

F l 2 ,m2

(n2 j )8~r !5dn2 j ,1w l 2 ,m2
8 ~r !1

4p

~2l 211!
E

0

R

dr8Gl 2
~r ,r 8!

3dr l 2 ,m2

v(n2 j )~r 8!1
4p

~2l 211!
dr l 2 ,m2

s(n2 j )Gl 2
~r ,R!,

F l 2 ,m2

(n2 j )9~r !5dn2 j ,1w l 2 ,m2
9 ~r !1

4p

~2l 211!
E

0

R

dr8Dl 2
~r ,r 8!

3dr l 2 ,m2

v(n2 j )~r 8!24pdr l 2 ,m2

v(n2 j )~r !1
4p

~2l 211!

3dr l 2 ,m2

s(n2 j )Dl 2
~r ,R!24pdr l 2 ,m2

s(n2 j )d~R2r !

5F̃ l 2 ,m2

(n2 j )9~r !24pdr l 2 ,m2

s(n2 j )d~R2r !,

Dl~r ,r 8!5 l 2~ l 221!
r l 222

r 8 l 221
Q~r 82r !1~ l 211!~ l 2

12!
r 8 l 212

r l 13
Q~r 2r 8!. ~44!
01320
The physical origin of three terms inF l 2 ,m2

n2 j (r ) is clear.

The first term describes the potential of the external fie
The second term is the potential created by variation of
volume charge density. The third term is the potential crea
by the surface charge. The potentialF l 2 ,m2

n2 j (r ) is continuous

at the cluster surface, Bl 2
(R,R)51/R, Gl 2

(R,R)

50, Dl 2
(R,R)50, dr l 2 ,m2

v(n2 j )(R)50.

The left-hand side of Eq.~43! describes volume and sur
face eigenoscillations of the electron density characteri
by the angular momentuml. The surface-plasmon resonan
frequencyv l is the same as in Eq.~2!. The volume-plasmon
resonance frequency is equal to

vp5A4pe2N

mV
. ~45!

In Eq. ~43!, vp appears in expressions involvingl, but is
nevertheless independent ofl, as one sees in Eq.~45!. The
physical reason for this is that the volume-plasmon osci
tion is degenerate withl. The right-hand side of Eq.~43!
describes a driving force acting on the eigenplasmon osc
tions.

Surface and volume terms on the right-hand side of
~43! have not been regrouped, in order to stress their co
spondence with terms in Eq.~40!. It is seen from Eq.~43!
that equations for the volume- and surface-plasmon osc
tions can be separated and will then read as follows:
@~vn!22vp
2#dr l ,m

v(n)~r !5
Ne2

mV
dn,1w l ,m~r !k22

e

m (
j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!$dr l 1 ,m1

v( j )8 ~r !F l 2 ,m2

(n2 j )8~r !2dr l 1 ,m1

v( j ) ~r !

3@dn2 j ,1k
2w l 2,m2

~r !24pdr l 2,m2

v( j ) ~r !#%2
e

mr2 (
j 51

n21
1

n2 j (
l 1,m1
l 2,m2

I 2~ l ,mu l 1,m1,u l 2 ,m2!

3dr l 1,m1

v( j ) ~r !F l 2,m2

(n2 j )~r !, ~46!

@~vn!22v l
2#dr l ,m

s(n)5
Ne2

mV
dn,1w l ,m8 ~R!2

4pe2N~ l 11!

m~2l 11!VRl 12E0

R

dr8r 8 l 12dr l ,m
v(n)~r 8!1

e

m (
j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!

3$dr l 1 ,m1

s( j ) F̃ l 2 ,m2

(n2 j )9~R!1dr l 1 ,m1

v( j ) ~R!F l 2 ,m2

(n2 j )8~R!1dn2 j ,1k
2dr l 1 ,m1

s( j ) w l 2 ,m2
~R!%

2
e

mR2 (
j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!dr l 1 ,m1

s( j ) F l 2 ,m2

(n2 j )~R!. ~47!
7-9
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The set of nonlinear equations~46! and ~47! must be
solved iteratively starting fromn51. It is clear from the
form of these equations that the indexn corresponds to the
order of perturbation theory on the external fieldw(r ). It is
also seen that the chain of equations for the volume-plas
oscillations is self-sufficient, while the solutions for the su
face oscillations also depend on those for volume, which
physically clear, because the electric field caused by volu
oscillations of electron density must influence surface os
lations.

From Eqs.~46! and ~47!, one derives the following solu
tions for n51:

dr l ,m
v(1)~r !5

vp
2

4p

k2w l ,m~r !

v22vp
2

, ~48!

dr l ,m
s(1)5

vp
2

4p

1

v22v l
2 H w l ,m8 ~R!

2
4p~ l 11!

~2l 11!
E

0

R

dr8
r 8 l 12

Rl 12
dr lm

v(1)~r 8!J . ~49!
he
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These equations show that, if the external field~30! is
characterized by a certain angular momentuml o and its pro-
jection mo , i.e., w l ,m(r )5d l ,l o

dm,mo
w l o ,mo

(r ), then dr l ,m
s(1)

5d l ,l o
dm,mo

dr l o ,mo

s(1) and dr lm
v(1)(r )5d l ,l o

dm,mo
dr l o ,mo

v(1) (r ).

Assuming these dependencies, the solutions of Eqs.~46! and
~47! for n52 read as

dr l ,m
v(2)~r !52

e

m@~2v!22vp
2#

I 1~ l ,mu l o ,mo ,u l o ,mo!

3$dr l o ,mo

v(1)8 ~r !F l o ,mo

(1)8 ~r !2dr l o ,mo

v(1) ~r !

3@k2w l o ,m0
~r !24pdr l o ,mo

v(1) ~r !#%

2
e

mr2@~2v!22vp
2#

I 2~ l ,mu l o ,mo ,u l o ,mo!

3dr l o ,mo

v(1) ~r !F l o ,mo

(1) ~r !, ~50!
dr l ,m
s(2)52

4pe2N~ l 11!

m~2l 11!VRl 12@~2v!22v l
2#
E

0

R

dr8r 8 l 12dr l o ,mo

v(1) ~r 8!1
e

m@~2v!22v l
2#

I 1~ l ,mu l o ,mo ,u l o ,mo!

3$dr l o ,mo

s(1) F̃ l o ,mo

(1)9 ~R!1dr l o ,mo

v(1) ~R!F l o ,mo

(1)8 ~R!1k2dr l o ,mo

s(1) w l o ,mo
~R!%

2
e

mR2@~2v!22v l
2#

I 2~ l ,mu l o ,mo ,u l o ,mo!dr l o ,mo

s(1) F l o ,mo

(1) ~r !. ~51!
e
illa-
of
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By performing similar transformations, one can find t
solutions dr lm

v(n)(r ) and dr lm
s(n) for arbitrarily large n, al-

though the formulas become more and more tedious
larger n becomes. These formulas demonstrate that, in
higher orders of perturbation theory, plasmon resonan
with angular momenta larger than the angular momentum
the external field can be excited. Indeed, the selection r
for the integrals I 1( l ,mu l o ,mo ,u l o ,mo) and
I 2( l ,mu l o ,mo ,u l o ,mo) ~see Appendix B! show that the angu
lar momentum indr lm

v(2)(r ) anddr lm
s(2) can be twice as large

as l o . Equations~46!–~51! also demonstrate that the pla
mon resonances indr lm

v(n)(r ) and dr lm
s(n) arise whenv

5vp /n andv5v l /n, respectively. These equations indica
a significant shift of the plasmon resonance profiles towa
lower frequencies in the highest orders of perturbat
theory.

These results have a simple physical explanation. Abs
tion of several quanta of the external field~photons! by the
cluster leads to the excitation of nondipole plasmon osci
tions of the electron density.
e
e

es
of
es

s
n

p-

-

E. Fast electron-cluster collisions

Equations~46!–~51! can be used for the analysis of th
balance between the surface- and volume-plasmon osc
tions in the cluster. We demonstrate this for the example
fast electron scattering on a metal cluster. In this case,
external field of the projectile electron can be characteri
by the Fourier component of the Coulomb potential

w~r !5
4p

q2
eiq•r, ~52!

where q5p2p8 is the transferred momentum of the sca
tered electron.

The partial expansion of this potential reads as

w~r !54p(
l 50

`

(
m52

m5 l

i lw l ,m~r !Yl ,m* ~nq!, ~53!

where the partial component of the potential
7-10
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w l ,m~r !5
4p

q2
j l~qr !Yl ,m~nr !, ~54!

and j l(qr) is the spherical Bessel function~for definition see,
e.g., Ref.@25#!.

The form and properties ofw l ,m(r ), Eq. ~54!, are exactly
the same as assumed in Eqs.~19! and ~30!. Therefore, from
Eqs.~48! and ~49!, one can immediately derive

dr l ,m
v(1)~r !5

vpj l~qr !

v22vp
2

~55!

and

dr l ,m
s(1)5

vp

q2~v22v l
2!

H j l8~qR!

2
q2vp~ l 11!

~v22vp
2!~2l 11!

E
0

R

dr8
r 8 l 12

Rl 12
j l~qr8!J .

~56!

In the case of inelastic electron scattering,v has the
meaning of the transferred energy in the collision,v5D«
5«2«8. Calculating the integral in Eq.~56! with the use of
the well-known properties of spherical Bessel functions~see,
e.g., Ref.@25#!, one derives

dr l ,m
s(1)5

~2l 11!v l
2

v22v l
2

j l~qR!

q2R
2

vp
2

v22vp
2

j l 11~qR!. ~57!

Expressions~55! and ~57! coincide with those calculate
in Refs.@21,28# in the plasmon resonance approximation
purely electrodynamic means, as the response of a diele
sphere, having dielectric permeability e512u(R
2r )v2/vp

2 .
From Eqs.~55! and ~57!, one can easily elaborate th

electron inelastic scattering cross section in the plasm
resonance approximation, using the method described in
@21#,
01320
ric

n
ef.

d2s

d«8dV
5

4p8R

ppq4 (
l

~2l 11!2 j l
2~qR!

v l
2D«G l

s

~D«22v l
2!21D«2G l

s2

1
2p8R3

ppq2 (
l

~2l 11!
vp

2D«G l
v

~D«22vp
2!21D«2G l

v2

3F j l
2~qR!2 j l 11~qR! j l 21~qR!

2
2

qR
j l 11~qR! j l~qR!G . ~58!

This cross section is totally determined by collective ele
tron excitations in the cluster. The first and the second te
in Eq. ~58! describe the contributions of the surface- and
volume-plasmon excitations, respectively. In Eq.~58!, we
have also introduced widths,G l

s andG l
v , of the surface- and

volume-plasmon resonances. They originate from the L
dau damping mechanism of the plasmon excitations.
their determination we refer to the recent paper@21#.

This result can be generalized to the cases, which
beyond the simple plasmon resonance approximation, by
troducing the imaginary part of the cluster dynamic respo
function instead of using Lorentzian plasmon resonance p
files. The dynamic response function of a cluster can be
ther elaborated on the basis of the more advanced theore
schemes or taken from experiment. Such an approach
similar one has been utilized in a number of papers con
ering various aspects of electron collisions with metal cl
ters and small metal particles@28–30#.

F. Multiphoton absorption

Next, we apply Eqs.~46! and~47! to the description of the
multiphoton absorption process. In this paper, we focus
consideration on the analysis of plasmon excitations.
surface- or volume-plasmon resonances are excited by
tons, i.e.,v;vp , then it is easy to check that the followin
condition is fulfilled vR/c;vpR/c!1, wherec is the ve-
locity of light. This condition implies the validity of the di-
pole approximation.

In the dipole approximation, one can neglect the mom
tum of the photon and putk50. In this case, Eqs.~46! and
~47! are simplified dramatically. Indeed, from Eq.~46!, one
derives

dr l ,m
v(n)~r !50. ~59!

This result also simplifies Eq.~47! significantly for
dr lm

s(n) . After some trivial transformations it reduces to
@~vn!22v l
2#dr l ,m

s(n)5
Ne2

mV
dn,1w lm8 ~R!11

e

m (
j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 1~ l ,mu l 1 ,m1 ,u l 2 ,m2!dr l 1 ,m1

s( j ) F̃ l 2 ,m2

(n2 j )9~R!

2
e

mR2 (
j 51

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!dr l 1 ,m1

s( j ) F l 2 ,m2

(n2 j )~R!. ~60!

The partial component of the linearly polarized dipole photon field,
7-11
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w l ,m~r !52A4p

3
Erd l ,1dm,0 . ~61!

Here E5A2p\v/Vo is the strength of the photon’s electric field andVo is the normalization volume of the photon mod
Substituting Eq.~61! into Eq. ~47! and using Eq.~44!, one derives

@~vn!22v l
2#dr l ,m

s(n)52A4p

3

Ne2E

mV
dn,1d l ,1dm,01A4p

3

eE

mR (
l 1 ,m1

I 2~ l ,mu l 1 ,m1 ,u1,0!dr l 1 ,m1

s(n21)

2
4peE

mR (
j 151

n21
1

n2 j (
l 1 ,m1
l 2 ,m2

I 2~ l ,mu l 1 ,m1 ,u l 2 ,m2!
dr l 1 ,m1

s( j ) dr l 2 ,m2

s(n2 j )

2l 211
. ~62!
m

n

en
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the
heir

ced
This equation should be solved iteratively starting fro
n51. Forn51, the single nontrivial solution,dr1,0

s(1) , reads
as

dr1,0
s(1)52A4p

3

Ne2E

mV~v22v1
2!

. ~63!

Then, forn52, the solution of Eq.~62! is of the form

dr l ,m
s(2)5A4p

3

edr1,0
s(1)S E2A4p

3
dr1,0

s(1)D
mR@~2v!22v l

2#
I 2~ l ,mu1,0u1,0!.

~64!

The selection rules forI 2( l ,mu1,0u1,0) ~see Appendix B!
show that this integral does not vanish, whenl 50 and m
50 or l 52 andm50. Therefore, forn53 from Eq. ~62!,
one derives

dr l ,m
s(3)5A4p

3

eE

mR@~3v!22v l
2#

$I 2~ l ,mu0,0u1,0!dr0,0
s(2)

1I 2~ l ,mu2,0u1,0!dr2,0
s(2)%

2
4peEdr1,0

s(1)

mR@~3v!22v l
2#

H 5

6
I 2~ l ,mu1,0u0,0!dr0,0

s(2)

1
13

30
I 2~ l ,mu2,0u1,0!dr2,0

s(2)J . ~65!

In Eq. ~65!, only the second terms in brackets give a no
zero contribution, sinceI 2( l ,mu0,0u1,0)5I 2( l ,mu1,0u0,0)
50 ~see Appendix B!. Substitutingdr1,0

s(1) from Eq. ~63! in
Eq. ~64! anddr2,0

s(2) from Eq. ~64! in Eq. ~65! and using the
explicit expressions for the angular integrals given in App
dix B, one obtains

dr0,0
s(2)52

p1/2

3m2RV

Ne3E2

~v22v1
2!2

,

01320
-

-

dr2,0
s(2)52

4p1/2

3A5m2RV

Ne3E2v2

~v22v1
2!2@~2v!22v2

2#
,

dr1,0
s(3)52S 64p

3 D 1/2 1613A5

75m3R2V

3

Ne4E3v2S v21
3

10
v1

2D
~v22v1

2!3@~2v!22v2
2#@~3v!22v1

2#
,

dr3,0
s(3)5S 4p

7 D 1/212~21A5!

75m3R2V

3

Ne4E3v2S v21
3

10
v1

2D
~v22v1

2!3@~2v!22v2
2#@~3v!22v3

2#
. ~66!

IV. INDUCED MULTIPOLE MOMENTS IN THE CLUSTER

Let us now calculate the multipole moments of the clus
induced by an external radiation field on the basis of
model developed in the preceding section, and analyze t
plasmon resonance structure.

The induced multipole moment of the cluster

Ql ,m5A 4p

2l 11E dVrlYl ,m~nr !dr~r !, ~67!

where the variation of electron densitydr(r ) is determined
in Eqs.~29! and ~42!. Subsituting Eqs.~29! and ~42! in Eq.
~67! and puttingdr l ,m

v(n)(r )50 for any n in the dipole ap-
proximation as follows from Eq.~59!, one derives

Ql ,m
(n) 5A 4p

2l 11
Rl 12dr l ,m

s(n) . ~68!

Substituting in Eq.~68! dr1,0
s(n) from Eq. ~63!, one obtains

the expression for the dipole moment of the cluster indu
in the single-photon absorption process,
7-12
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D (1)~v!5Q1,0
(1)52

Ne2E

m~v22v1
21 ivG1!

. ~69!

The explicit expressions for the partial electron-dens
variations dr l ,m

s(n) entering Eq.~68! for n52 ~two-photon
s

-
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n
II.
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cu
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01320
y

case! and n53 ~three-photon case! are given in Eq.~66!.
Substituting the partial electron-density variationsdr0,0

s(2) and
dr2,0

s(2) from Eq. ~66! into Eq. ~68!, one derives the expres
sion for the monopole and quadrupole moment of the clu
induced in the two-photon regime,
nd
M (2)~v!5Q0,0
(2)52

1

2m2R2

Ne3E2

@~v22v1
2!21v2G1

2#
,

Q(2)~v!5Q2,0
(2)52

2

5

Ne3E2v2

m2@~v22v1
2!21v2G1

2#@~2v!22v2
21 i2vG2#

. ~70!

Here, we have introduced the plasmon resonance widthsG1 andG2 which take into account Landau damping of the dipole a
quadrupole surface plasmon resonances. They must be determined separately, e.g., by anab initio approach~see Ref.@21#!.

By absorbing three photons one can induce dipole and octupole moments in the cluster. Substitutingdr1,0
s(3) from Eq. ~66!

into Eq. ~68!, one derives the expression for the induced dipole moment,

D (3)~v!5Q1,0
(3)52

4~1613A5!

75m3R2

Ne4E3v2S v21
3

10
v1

2D
@~v22v1

2!21v2G1
2#~v22v1

21 ivG1!@~2v!22v2
21 i2vG2#@~3v!22v1

21 i3vG1#
.

~71!

The expression for the octupole moment induced by three photons following from Eqs.~66! and ~68! reads as

O(3)~v!5Q3,0
(3)5

12~21A5!

175m3

Ne4E3v2S v21
3

10
v1

2D
@~v22v1

2!21v2G1
2#~v22v1

21 ivG1!@~2v!22v2
21 i2vG2#@~3v!22v3

21 i3vG3#
. ~72!
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Here, we have also introduced the octupole plasmon re
nance widthG3.

Expressions~69!–~72! demonstrate that the multipole mo
ments induced in the cluster during multiphoton absorpt
processes possess a prominent plasmon resonance stru
The nature of these resonances is the same as occurs i
mutiphoton absorption cross sections discussed in Sec.

The connection betweenD (1)(v) from Eq. ~69! and the
cross sections1 found in Eq.~6! is straightforward,

s15
4pv

cE
Im D (1)~v!. ~73!

In the multiphoton regime, the connection between
induced multipole moments of the cluster and the multip
ton absorption cross section becomes more complex, w
is apparent from the the classical nature of the express
~70!–~72! and the explicit dependence of the multiphot
absorption cross sections on Planck’s constant. The dis
sion of this interesting relationship is, however, beyond
scope of the present paper. We also note that the relation
between cross section of the photoabsorption process an
cluster dynamic response function similar to Eq.~73! pro-
vides a good way to improve the accuracy of the theoret
o-

n
ture.
the

e
-
ch
ns

s-
e
hip
the

al

framework and to derive reliable qualitative results beyo
the level of accuracy of the jellium model.

V. CONCLUSION

In this paper, we have developed a formalism that allo
one to calculate the cross section for multiphoton absorp
in the plasmon resonance approximation. We have dem
strated that plasmon excitations with angular momenta la
than 1 substantially alter the profile for multiphoton abso
tion as compared to the single-photon case.

Our model is formulated in terms of a charge-density d
tribution function r(r ) for the cluster. This means that, i
principle, one can study the response for different char
density profiles including deformed ones. Our model is
semiclassical one, which neglects the granularity of charg
the system. This is consistent with the principles underly
the jellium picture. It is appropriate for metallic clusters an
to a lesser extent, for fullerenes.

We have used the jellium framework for simplicity. I
fact, all the conclusions regarding selection rules and
general behavior of single versus multiphoton cross sect
are model independent. So, the jellium calculations are u
in our work merely as an illustration of what happens wh
7-13
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the general formulas are applied.
In the classical formulation of our model, we have us

Euler’s equation for hydrodynamic flow, together with th
equation of continuity. We have demonstrated that the res
following from our model are consistent with direct es
mates of the matrix elements for the multiphoton absorpt
process. The theoretical formalism we have developed is
confined in its application to photons. It can also be used
describe any kind of higher-order plasmon excitation p
cesses, for example, those which arise by multiple scatte
of electrons within a cluster.
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APPENDIX A: MATRIX ELEMENTS OF PLASMON
RESONANCE TRANSITIONS

In this appendix, we evaluate the matrix elements of pl
mon resonance transitions in the plasmon resonance app
mation by the use of the sum rule.

For a stationary~i.e., explicitly independent of time! op-
eratorF̂ of an observable physical quantity, characterizin
system of particles with the HamiltonianĤ, one can formu-
late the following sum rule~see, e.g., Ref.@25#!:

(
n

vn0u^nuF̂u0&u25
1

2
^0u†F̂,@Ĥ,F̂#‡u0&. ~A1!

Here vn05«n2«0, the summation is performed over a
excited states of the system and@Ĥ,F̂# denotes the commu
tator of the operatorsĤ and F̂: @Ĥ,F̂#5ĤF̂2F̂Ĥ.

Applying the sum rule~A1! to operatorF̂ defined as

F̂5(
k

F~r k!, ~A2!

whereF(r k) is a function of the coordinates of thekth elec-
tron and the summation in Eq.~A2! is performed over all
particles in the system, one derives

(
n

vn0u^nuF̂u0&u25
\2

2mE dr u“F~r !u2r~r !. ~A3!

Here r(r ) is the ground-state charge-density distributi
in the system. Applying the general rule~A3! to the function

F~r !5A 4p

2l 11
r lYlm~n!, ~A4!

and performing the integration in Eq.~A3! with the density
distribution ~41!, one derives

(
n

vn0u^nuQ̂lmu0&u25
\2

2
v l

2R2l 11. ~A5!
01320
d

lts

n
ot
to
-
g

ty

-
xi-

a

Here, we have used the following definition of the mul
pole moments operator:

Q̂lm5A 4p

2l 11(
k51

N

ekr k
l Ylm~nk!. ~A6!

The plasmon resonance frequencies in Eq.~A5! are defined
according to Eq.~2!.

Using Eq. ~A5!, one can easily evaluate the matrix el
ments of plasmon resonance transitions in the plasmon r
nance approximation. Indeed, assuming that plasmon ex
tions dominate in the sum overn in Eq. ~A5!, one derives

Qlm5^nuQ̂lmu0&5A\v lR
2l 11

2
5eRl 21A N\

2mv l
A 3l

2l 11
.

~A7!

Equation~A7! gives the matrix elements of plasmon res
nance transitions for an arbitrary large angular momentuml.
The correctness of the result~A7! can be independently veri
fied by performing calculations of the multipole dynam
polarizability of the cluster in the plasmon resonance
proximation. Indeed, using Eq.~A7!, one derives

a l~v!52(
n

vn0uQl0u2

vn0
2 2v22 ivG l

'
R2l 11v l

2

v l
22~\v!22 i\2vG l

,

~A8!

which is the known expression for the dynamic multipo
plasmon polarizability in the plasmon resonance approxim
tion ~see, e.g., Refs.@10,17#!.

For the dipole plasmon resonance transition, one der
from Eq. ~A7!,

Q105d105ez105eA N\

2mv1
, ~A9!

which is consistent with the dipole sum rule~4!.
Equation~A7! allows one to evaluate the matrix elemen

of electronic transitions between various plasmon resona
states. To demonstrate this, let us rewrite Eq.~A7! in the
form

Qlm5A 1

2l 11E drr l 12r l0~r !. ~A10!

Here, we have introduced the radial transition dens
r l0(r ) between the ground state and the excited plasm
resonance state with angular momentuml and used the rela
tionship I 1( l n ,mnu l ,mu0,0)5d l n ,ldmn ,m /A4p, when calcu-
lating angular intergrals in Eq.~A10!.

The radial transition densityr l0(r ) is localized near the
cluster surface. Qualitatively, this is clear becauser l0(r ) de-
scribes the plasmon excitation. Quantitatively, this w
proved byab initio computations of the transition densitie
in the Na40 and Na92 clusters within the jellium model in Ref
@19#. Therefore, to a reasonable accuracy, one can appr
mater l0(r ) by thed function,
7-14
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r l0~r !5r l0d~r 2R!. ~A11!

Substituting Eq.~A11! into Eq. ~A10! and comparing the
result of the calculation with Eq.~A7!, one can determine th
value r l0 entering Eq.~A11!. The result of this calculation
reads as

r l05
e

R3
A3l\N

2mv l
. ~A12!

Let us now evaluate the matrix element for the dipo
transition between plasmon resonance modes, which rea

zl 2l 1
5A4p

3 E drY1,0~n!rr l 2l 1
~r !. ~A13!

Here, r l 2l 1
(r ) is the electron transition density betwee

the dipole and the quadrupole plasmon modes. This tra
tion density can be evaluated via the transition densi
r l 1 ,0(r ), r l 2 ,0(r ) and the ground-state electron density of t

clusterr005eN/V as follows:

r l 2l 1
~r !5

r l 20~r !r l 10~r !

r00
Yl 1,0~n!Yl 2,0~n!. ~A14!

Substituting Eq.~A14! into Eq. ~A13! and performing
simple transformations, one derives

zl 2l 1
5eA4p l 1l 2

3 S l 1~2l 211!

l 2~2l 111! D
1/4

3I 1~ l 2 ,m2u1,0u l 1 ,m1!
2p\

mv l 1

d~0!. ~A15!

This equation has an uncertainty, which originates fr
the fact that we have assumed zero thickness for the l
near the cluster surface in which plasmon excitations t
place. By introducing a finite widthDR for this domain and
using one of the standard representations of thed function
@25# to resolve the uncertainty,d(0)'2/pDR, one finally
derives

zl 2l 1
58eAp l 1l 2

3 S l 1~2l 211!

l 2~2l 111! D
1/4

3I 1~ l 2 ,m2u1,0u l 1 ,m1!
\

mv l 1
DR

. ~A16!

The explicit expression for the angular integr
I 1( l 2 ,m2u1,0u l 1 ,m1) is given in Appendix B. In the case o
the transition between the dipole and quadrupole plasm
resonance states this integral is equal toI 1(2,0u1,0u1,0)
521/A5p. Substituting this value into Eq.~A16! and per-
forming simple algebraic transformations, one arrives at
expression for the matrix element describing the transit
between the dipole and the quadrupole plasmon reson
modes,
01320
as

si-
s

er
e

n

e
n
ce

z1252e
8

3 S 6

5D 1/4 \

mv1DR
. ~A17!

APPENDIX B: INTEGRALS I 1„ l ,mz l 1 ,m1 ,z l 2 ,m2… AND
I 2„ l ,mz l 1 ,m1 ,z l 2 ,m2…

The angular integral,

I 1~ l ,mu l 1 ,m1u l 2 ,m2!

5E dVnr
Yl ,m* ~nr !Yl 1 ,m1

~nr !Yl 2 ,m2
~nr !, ~B1!

is well known and can be found in many textbooks~see, e.g.,
Ref. @27#!. It is equal to

I 1~ l ,mu l 1 ,m1u l 2 ,m2!

5~21!mi l 11 l 22 lA~2l 11!~2l 111!~2l 211!

4p

3S l l 1 l 2

2m m1 m2
D S l l 1 l 2

0 0 0D . ~B2!

Here, the integral is expressed via 3j symbols~for defi-
nition see, e.g., Ref.@27#!.

The angular integral,

I 2~ l ,mu l 1 ,m1u l 2 ,m2!

5Al 1~ l 111!l 2~ l 211!

3E dVnr
Yl ,m* ~nr !Y l 1 ,m1

(1) ~nr !•Y l 2 ,m2

(1) ~nr !,

~B3!

can be expressed via the sum of products of 3j symbols and
6 j symbols~for definition see, e.g., Ref.@27#! after perform-
ing the following transformations.

Using the standard relationships for spherical vector h
monics, written in Ref.@27# on page 210, one derives

I 2~ l ,mu l 1 ,m1u l 2 ,m2!

5Al 1~ l 111!l 2~ l 211!E dVnr
Yl ,m* ~nr !

3SA l 111

2l 111
Y l 1 ,m1

l 121
~nr !1A l 1

2l 111
Y l 1 ,m1

l 111
~nr ! D

3SA l 211

2l 211
Y l 2 ,m2

l 221
~nr !1A l 2

2l 211
Y l 2 ,m1

l 211
~nr ! D .

~B4!

The integrations arising in Eq.~B4! can be performed and
expressed via the sum of products of 3j symbols and 6j
symbols, using the standard formulas given in Ref.@27# on
pages 222 and 236. The result of the calculations of th
integrals reads as
7-15
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I 2~ l ,mu l 1 ,m1u l 2 ,m2!5~21! l 11 l 21 l 1m11Al 1~ l 111!l 2~ l 211!~2l 11!S l 1 l 2 l

m1 m2 2mD
3HA~ l 111!~ l 211!~2l 121!~2l 221!

4p S l 121 l 221 l

0 0 0D H l 121 l 221 l

l 2 l 1 1J
1Al 1~ l 211!~2l 113!~2l 221!

4p S l 111 l 221 l

0 0 0D H l 111 l 221 l

l 2 l 1 1J
1A~ l 111!l 2~2l 121!~2l 213!

4p S l 121 l 211 l

0 0 0D H l 121 l 211 l

l 1 l 2 1J
1Al 1l 2~2l 113!~2l 213!

4p S l 111 l 211 l

0 0 0D H l 111 l 211 l

l 2 l 1 1J J . ~B5!

For the particular cases of interest, one derives from Eq.~B5!

I 2~1,0u0,0u1,0!50, I 2~0,0u1,0u1,0!5
1

Ap
, I 2~2,0u1,0u1,0!5

1

A5p
,

I 2~1,0u2,0u1,0!5
6

10Ap
S 11

16

3A5
D , I 2~3,0u2,0u1,0!52

18

5A105p
S 11

A5

2 D . ~B6!
-
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bäumker, and K. H. Meiwes-Broer, Phys. Rev. Lett.82, 3783
~1999!.

@2# C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B30,
5043 ~1997!.

@3# S. Hunsche, T. Starczewski, A. l’Huillier, A. Persson, C-
Wahlström, B. van Linden van der Heuvell, and S. Svanbe
Phys. Rev. Lett.77, 1966~1996!.

@4# W. A. de Heer, Rev. Mod. Phys.65, 611 ~1993!.
@5# M. Brack, Rev. Mod. Phys.65, 677 ~1993!.
@6# C. Brechignac and J. P. Connerade, J. Phys. B27, 3795~1994!.
@7# Clusters of Atoms and Molecules, Theory, Experiment

Clusters of Atoms, edited by H. Haberland, Springer Series
Chemical Physics Vol. 52~Springer, New York, 1994!.

@8# F. Alasia, R. A. Broglia, H. E. Roman, L. I. Serra, G. Colo, a
J. M. Pacheco, J. Phys. B27, L663 ~1994!.

@9# M. Madjet, C. Guet, and W. R. Johnson, Phys. Rev. A51, 1327
~1995!.

@10# U. Kreibig and M. Vollmer,Optical Properties of Metal Clus-
ters ~Springer-Verlag, Berlin, 1995!.

@11# V. K. Ivanov, G. Yu. Kashenock, R. G. Polozkov, and A.
Solov’yov, J. Phys. B34, L669 ~2001!.

@12# Metal Clusters, edited by W. Ekardt~Wiley, New York, 1999!.
@13# A. V. Solov’yov, in Electron Scattering on Metal Clusters an

Fullerenes, in NATO Advanced Study Institute, Proceedings
Les Houches Summer School Session LXXIII, edited by
Guet, P. Holza, F. Spiegelman, and F. David~EDP Sciences
and Springer-Verlag, Berlin, 2001!.

@14# A. V. Korol and A. V. Solov’yov, J. Phys. B30, 1105~1996!.
01320
,

d

.

@15# W. Ekardt, Phys. Rev. B33, 8803~1986!.
@16# W. Ekardt, Phys. Rev. B36, 4483~1987!.
@17# L. G. Gerchikov, A. V. Solov’yov, J. P. Connerade, and W

Greiner, J. Phys. B30, 4133~1997!.
@18# L. G. Gerchikov, A. N. Ipatov, and A. V. Solov’yov, J. Phys.

30, 5939~1997!.
@19# L. G. Gerchikov, A. N. Ipatov, A. V. Solov’yov, and W

Greiner, J. Phys. B31, 3065~1998!.
@20# T. Ditmire, Contemp. Phys.38, 315 ~1997!.
@21# L. G. Gerchikov, A. N. Ipatov, R. G. Polozkov, and A. V

Solov’yov, Phys. Rev. A62, 043201~2000!.
@22# J. P. Connerate, L. G. Gerchikov, A. N. Ipatov, and A.

Solov’yov, J. Phys. B31, L27 ~1998!.
@23# J. P. Connerate, L. G. Gerchikov, A. N. Ipatov, and A.

Solov’yov, J. Phys. B32, 877 ~1999!.
@24# S. Sentu¨rk, J. P. Connerade, D. D. Burgess, and N. J. Mason

Phys. B33, 2763~2000!.
@25# L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-

mon, London, 1965!.
@26# A. B. Migdal, Qualitative Methods in Quantum Mechanic

~Nauka, Moscow, 1983!.
@27# D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonski

Quantum Theory of Angular Momentum~World Scientific,
Singapore, 1988!.

@28# A. A. Lushnikov and A. J. Simonov, Z. Phys.270, 17 ~1974!.
@29# T. L. Ferrell and P. M. Echenique, Phys. Rev. Lett.55, 1526

~1985!.
@30# T. L. Ferrell, R. J. Warmack, V. E. Anderson, and P. M. Ec

enique, Phys. Rev. B35, 7365~1987!.
7-16


