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Formalism for multiphoton plasmon excitation in jellium clusters
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We present a formalism for the description of multiphoton plasmon excitation processes in jellium clusters.
By using our method, we demonstrate that, in addition to dipole plasmon excitations, the multipole plasmons
(quadrupole, octupole, ejacan be excited in a cluster by multiphoton absorption processes, which results in a
significant difference between plasmon resonance profiles in the cross sections for multiphoton as compared to
single-photon absorption. We calculate the cross sections for multiphoton absorption and analyze the balance
between the surface and volume plasmon contributions to multipole plasmons.
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[. INTRODUCTION their success at the expense of an increase in complexity
which introduces uncertainties of interpretation.

In the present paper we demonstrate that, in addition to Recently, a number of papers have discussed metallic
dipole plasmon excitations, multipole plasmdgsiadrupole, clusters[1,2] and fullerened3] in strong laser fields. The
octupole, etg. contribute to the multiphoton excitation pro- theoretical approach usually followed is to solve a time-
cess, which results in a significant difference of plasmordependent local-density equation numericéllipA or local-
resonance profiles between the cross sections for multiphalensity approximation and the regime most commonly
ton and single-photon absorption. We have developed a fostudied involves intense, short laser pulses, for which the
malism from which the cross sections for multiphoton exci-turn-on and turn-off properties significantly affect excitation.
tation can be worked out. The balance between multipole We report here on a different problem: our initial interest
surface and volume-plasmon contributions is analyzed. Ouies in lower laser powers, for which multiphoton excitation
results are obtained within a theoretical model for the multi-just begins to intrude, and we are interested in developing a
photon excitation of a jellium cluster. This model is appli- formalism to describe the interaction between collective
cable to metal clusters, to fullerenes, and to any type of clusmodes and a laser field in the multiphoton regime. For this
ter in which a strong delocalization of valence atomicpurpose, a semiclassical model, in which the collective flow
orbitals occurs. The theoretical formalism we have develof charge is driven by a periodic field, is established, and we
oped is not confined in its application to photons. It can alsaelate it to the multiphoton absorption cross section of the
be used to describe any kind of higher-order plasmon excieluster, which takes into account quantum mechanics. Of
tation processes, for example, those which arise by multipleourse, one can in principle extend this treatment to include
scattering of electrons within the cluster. the turn on and turn off of laser pulses, to treat the interaction

It is important to note that we use the jellium framework numerically for various power levels and initial charge dis-
for simplicity. In fact, all the conclusions regarding selectiontributions. What we wish to point out, however, is an impor-
rules and the general behavior of single versus multiphotomant feature, which arises even for an infinite wave train in-
cross section are model independent. So, the jellium calculaeracting with a cluste(the simplest and most fundamental
tions are used in our work merely as an illustration of whatproblem: multiple plasmon excitations are driven by multi-
happens when the general formulas are applied. Althougtphoton excitations. In the present paper, we explain by what
there is no real physical system which follows the jellium mechanism this arises.
calculations, just as there is no atom which really follows Our approach is based on principles different from the
pure Hartree-Fock calculations. Nevertheless, the Hartred-DA. Instead of using the Kohn-Sham formalism, we pro-
Fock method is importar(as is the jellium methadin pro-  pose a hydrodynamic approach. In the LDA, all quantities
viding an intellectual framework within which the funda- are made to depend solely on charge density, and currents are
mental physical interactions can be clearly distinguished, asubsequently made to appear by solving a time-dependent
well as a basis for more elaborate computations, for examplequation. In our approach, we start from the continuity equa-
of correlations and exchange. Physics often appeals to modion and the Euler equation, from which both the current flow
els that are not strictly applicable to real situations, but areand the density are obtained in a completely consistent way.
nevertheless fundamental. Actually, this is a prime feature oOur theory is local, and does not include exchange. In prin-
many-body systems. Very realistic models usually achieveiple, it would be possible to extend it by building in ex-

change and correlations in a way similar to the LDA. One of

the benefits of our approach is that all the momentum-
*Email address: j.connerade@ic.ac.uk transfer terms are included in the formulation, which leads to
"Email address: solovyov@rpro.ioffe.rssi.ru the presence of both volume and surface plasmon terms. If
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one wishes to simplify the theory, it is possible towards thetron density in the cluster due to the external field and
end of the calculation to assume zero momentum transfer, ipresent the formalism for the calculation of the electron-
which case the volume-plasmon terms disappear from thdensity variation in the cluster due to the external field, based
problem. on the the hydrodynamic Euler equation and on the equation
Surface-plasmon excitations are well known in atomicOf continuity. We apply the general formalism to the descrip-
cluster physics. The dipole surface plasmons are responsibl@n of fast electron-cluster scattering and multiphoton ab-
for the formation of giant resonances in photoabsorptiorfOrption. In Sec. IV, we calculate the multipole moments of
spectra of metal clustersee, e.g., Ref§4—17). They also the system induced by the external field on the basis of the
play an important role in inelastic collisions of charged par-formalism outlined in Sec. Ill. We analyze the plasmon reso-
ticles with metal clusterf13—19. The role of surface plas- Nance structure of the induced multipole moments and con-

mon excitations in inelastic electron-cluster scattering wa§!ude that it is analogous to the one arising in the multipho-
thoroughly studied if13,17—19, and it was demonstrated ton absorption cross sections calculated in Sec. Il. In Sec. V,
that collective excitations contribute significantly to the elec-W& draw conclusions from this work. In Appendix A, we

tron energy loss spectrum in the region of the surface§h°W how matrix elements for collective transitions can be

plasmon resonance. With increasing scattering angle, plag@/culated on the basis of the sum rules. In Appendix B, we

mon excitations of higher angular momenta become mor@resent details of calculations of the angular integrals arising
and more prominent. in the formalism outlined here.

Plasmons are characteristic of delocalized electrons, and
therefore the jellium model provides the most appropriate |l PLASMON RESONANCE APPROXIMATION FOR
starting point for a discussion of plasmon excitation in the =~ MULTIPHOTON ABSORPTION CROSS SECTIONS
) . ’ . : sorption in jellium clusters and demonstrate that multipole
jects, and readily explode under very strong irradiafi2@.

The inelastic scattering of fast electrons on metal clusterglasmon excitations are essential to this process. The discus-
. 9 ) .~~~ 7 5ion in this section is based on the plasmon resonance ap-
in the range of transferred energies above the ionizatio

threshold was considered in R¢R21]. It was demonstrated Brommaﬂon, which is introduced below.
that, in this energy range, volume plasmons dominate the
contribution to the differential cross section, resulting in a
resonance behavior. The volume-plasmon resonances excited Let us start by considering the simplest example and cal-
in the cluster during a collision decay via the ionization pro-culate the cross section for single-photon absorption in the
cess. The resonance frequency and the autoionization widfilasmon resonance approximation.
of the volume-plasmon excitations have both been deter- The single-photon absorption cross section in the dipole
mined in Ref.[21]. In this work the results of the plasmon approximation reads as
resonance approximation for fast electrons scattering on so- 5 5
dium clusters have been compared with those following from _4me
the ab initio quantum treatment performed within the 71T
random-phase approximation with exchange. This compari-
son demonstrated quite reasonable applicability of the plas- Here,eis the charge of electrow,is the velocity of light,
mon resonance approximation, i.e., the jellium model, to thisi is Planck’s constanty,,=¢,— &g is the electron excita-
problem. This fact leads us to the conclusion that one cation energyw is the photon frequency, ard,,, is the matrix
expect the same level of accuracy of the theory based on tredlement of thez component of the cluster dipole moment.
jellium principles in other relevant physical situations, suchThe summation oven includes all final states of the excited
as multiphoton absorption processes. electron, which belong to both the discrete and the continu-
The role of the polarization interaction and plasmon exci-ous spectra.
tations in the process of electron attachment to metal clusters In the jellium picture, which works reasonably well for
has also been examined both theoreticgll?,23 and ex- metal clusters and to some extent for fullerenes, the main
perimentally[24]. It was demonstrated that plasmon excita-contribution to the cross sectiofl) arises from a small
tions induce a resonance enhancement of the electron attadjroup of excited states or sometimes even from a single tran-
ment cross section. sition close in frequency to the classical Mie resonance—
Our paper is organized as follows. In Sec. Il, we derivealso known as the plasmon resonance. For a spherical metal
guantum-mechanical expressions for the cross sections ofuster, this frequency is given bigee, e.g., Refd.10,17
multipole (quadrupole, octupole, ejcplasmon excitations and Sec. IV of this papgr
taking place in the multiphoton absorption regime and esti-
mate the cross sections on the basis of the plasmon resonance 2 4mNe? |
approximation. We present and discuss the multiphoton ab- Y, (21+1)°
sorption profiles and demonstrate a significant change of the
profiles in the cross sections for multiphoton as compared to Here V=47R%3 is the cluster volume, whereR
single-photon absorption. In Sec. Ill, we establish certain=r,N3is the cluster radius,, is the Wigner-Seitz radiugy
connections of the cross sections with the variation of elecis the number of delocalized electrons in a cluskes the

A. Single-photon absorption

wz |Zon|25(wno_ﬁw)- (1)

2
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angular momentum of the plasmon modejs the electron 3273, 2 2

mass. Note that, by using a single photon of energy 1-4 eV, o= ———w?>, | X ————— 8wy~ 2h o).
one can, in practice, excite only=1 dipole plasmon oscil- c M o= onetid

lations in a metallic cluster. (7)

For nearly spherical fullerenes,gor Csy, the plasmon

We evaluate the cross section in the same way as for
resonance frequency isee Refs[11,17) an Y

the single-photon case. The main contribution to the sum
over the intermediate statesarises from the virtual dipole

2=|(|+—1)N plasmon excitations. Therefore, one derives
(1)| 3! (3)
(21+1)R
2 2
ZnmZ N |Zp4 |
whereN is the total number of delocalized electroffeur > |2 ﬁw_n:) miriéi ~ omho n2 7
electrons per atom times the number of carbon atoms in the " I ™ mo 10 (0= wy)™+T/4
fullerene moleculpandR is the the radius of the fullerene. ®)

The plasmon resonance approximation is based on the Here, we have also introduced a dipole plasmon reso-

fact that excitations near a plasmon resonance exhaust the o widthl'; and used the sum ruld) for the evaluation
sum rule almost completelisee Refs[4-7,10,11), which ot the matrix elements for dipole plasmon excitationy?

means that the summation in the sum r(gee, e.g., Ref. ~N#/2mw,. The remaining matrix elements, in Eq. (8)

[25) describe dipole transitions from the dipole plasmon reso-
N%2 nance state to other excited states. Matrix elements for these
; wno|zon|2=ﬁ (4)  transitions obey the dipole selection rule. This means that the

angular momentum of the final state can be driy0 or |
need only be performed over excited states near the Mie, 2, Accordmg .to Eqs.(E) an.d 3) . there is no surfacg-
plasmon excitation witH=0 either in metal clusters or in
resonance. fullerenes. Thus, only transitions to states wlita2 are of
Now, assuming a Lorentzian distribution of widih for ' - only

the plasmon resonance states and replacingstfinction, Interest. . :
Swno—fiw), in Eq. (1) by the profile(see, e.g., Ref25]) These arguments sh_ow that, by using two photons simul-
no k ' T i taneously, one can excite the quadrupole plasmon resonance

in a metal cluster or in a fullerene with a frequency given in

(5) Egs. (2) and (3), respectively. When calculating the cross
section(7) near the quadrupole plasmon resonance excita-
tion, i.e., at 2v~ w,, it is sufficient to consider only transi-
tions to the resonance final state, i.e., to Piyfz,|?

one recovers the well-known eXpI'ESSiOI'] for the Single-|221|2 (here and below we use indices 1 and 2 to designate

I'y

Swpo—hw)— F%

4

277?1( (01— w)°+

photon absorption cross sectigee, e.g., Ref44,10]) the dipole and quadrupole plasmon resonance $tates to
) replace thesd function, é(w,,— 2% w), by a Lorentzian dis-
” _7Ne? I'y _AnNé ol tribution of width ', (see, e.g., Ref25])),
1 2 .
mc I'; MC  (w?— w?)2+ w?l?
(wl_w)2+ Z ( 1 1 Fz
® N wpo—2fiw)— Tz C)
27Tﬁ( (w0~ 2w)%+ f)

The widthT'; is due to Landau damping. Its calculation
for metal clusters is performed, for example, in R&fl].

The cross sectiofb) reproduces correctly the appearance
of plasmon resonances in single-photon absorption spectra of (47TN e2> 2m| 2,92 2 T,

By substituting Eqs(8) and(9) in Eq. (7), one derives

w
metal clusters and fullerenes, although some details of theo,= 5 5.
experimentally observed profiles are naturally beyond the (0— o )2+_1 (© —2w)2+—2
. . . . 1 2
plasmon resonance approximation. The discussion of these 4 4
details is also beyond the scope of the present paper. They (10
can only be treated accurately enough on the basiabof . . )
initio many-body theories. Instead, we analyze the multipho- This result demonstrates that the photoabsorption profile

ton absorption cross section on the basis of the plasmon restt the two-photon process differs substantially from the
single-photon case. The cross sectiib@) has a resonance at

nance approximation and elucidate the role of multipole diole ol ¢ 4. in addit tains th
plasmon excitations, because our interest lies in establishin?e Ipole plasmon frequency and, in addition, contains the

the physical mechanisms of multiphoton excitation. uadrupole plasm_on resonanceust /2. -
Py P The cross sectioli10) depends orjz,,/%. The transition

matrix elemeniz,; describes the electron transition between
the dipole and quadrupole plasmon resonance states. This is

In the dipole approximation, the two-photon absorptiona single-electron transition rather than a collective one.
cross section is Therefore, calculation af,; on the basis of the sum ruld)

mc

B. Two-photon absorption

013207-3
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would lead to a significant overestimate of the value of this
matrix element. Instead, one can use Heisenberg’'s uncer
tainty principle for the evaluation of,; [26]. By estimating
the radial component of the momentum of a single electrons
in a dipole and quadrupole plasmon oscillatory modeas
~mw;AR and p,~mw,AR, respectively, one obtains

......... Single photon
—— Two photons

u.)

f
|Zp4| ~min(Az; ,Az;) ~ —~A 11

pz mwlAR

Cross Section

Here, A is a dimensionless constant, of the order of one,
Az,~#hlp, and Az,~#/p, are the uncertainties relating to
an electron in the dipole and quadrupole plasmon modes
respectively,AR is the width of the layer near the cluster
surface within which plasmon excitations take place. In Ap-
pendix A we prove the correctness of this estimate and dem-

Photon Energy (eV)

onstrate that the matrix element FIG. 1. The profiles of single-photofdotted ling and two-
14 photon(solid line) absorption calculated according to E¢8). and

7= § E) h (12) (13) and normalized per unit atom. The two-photon absorption pro-

21 35/ mwAR’ file is scaled by a factor 1/100. The scales are not identical for the

two curves for reasons of definition of the cross sections in the
By substituting Eq.(12) in Eq. (10), we obtain the final single- and two-photon cases, but both are given in atomic units.
expression for the two-photon absorption cross section,
eters can be different for different clusters, but it should al-

(477Ne2) 2 A% w? 1 ways lead to qualitatively similar single- and two-photon ab-
0= > 2 sorption profiles. An accurate determination of the
mc 2 0?2 r . . RS
2Mw;NAR® o} (w— w1)2+fl parameters is only possible on the basigbfinitio calcula-
tions.
I, i
X, (13 C. n-photon absorption
(w2—2w)2+—2 The formalism we have developed can also be used for

4 the evaluation of the multiphoton absorption cross sections

for a larger number of photons. In the dipole approximation
the n-photon absorption cross section has the following
form:

whereA= £(6/5)Y4~2.79.

We note that the cross sectioh3d) depends explicitly on
Planck’s constant, while the cross sectiof®) does not. The
independence of Eq6) from # is connected with the fact (2)"+ 1n1 22001
that plasmon oscillations are a purely classical effect, while 4 = i
the dependence of EqL3) on 7 arises from the interaction
between dipole and quadrupole plasmon modes as can be (14)
seen from estimat@l1) and the explicit expressidid2). This ) ]
indicates that it is meaningful to treat plasmon excitationsiere the amplitude/, is equal to
classically, while the coupling of various plasmon modes in

o™ [My|28( 0o~ o).
k

Cn

the multiphoton photoabsorption process must be treated be-M B E E N 2 Zkm, 4
yond purely classical theory. k_mnfl e m [(N—-Dho—on o+id]

In Fig. 1 we plot the cross section profiles per unit atom "
for single-photon(dashed ling and two-photon(solid line) Zm, m, Zm,0
absorption calculated according to E¢6) and (13). These X — — — — .
profiles do not depend on the number of atoms in the cluster. [(n=2)ho=on, ool (ho=omotid)
Note that the scales are not the same for the two curves for (15)

reasons of definition of the cross sections in the single- and

two-photon cases, but both are given in atomic units. The The plasmon resonance structure of the multiphoton ab-
peak in the single-photon plot gives the location of the dipolesorption cross sectiofl5) can be analyzed in a way similar
resonance. The other peak in the two-photon plot is the quade the previous treatments for the single- and two-photon
rupole resonance. This figure demonstrates a significant ditases. This analysis immediately leads to the important con-
ference between the nature of the profiles, arising from thelusion that plasmon resonances with larger angular mo-
presence of quadrupole plasmon excitation in the two-photomenta(octupole, etd.can be excited in the multiphoton ab-
case. In this calculation we have inpuy=4.0 andI';  sorption regime. Thus, for example, with three photons, the
=wq/4, T'y=w,l4, AR=r,. The choice of these param- octupole plasmon resonancedst w3/3 will also be excited.

013207-4
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This analysis, however, leaves undefined the matrix elements dv(r,t) e
for electronic transitions between various plasmon modes. —at EE(H)- (16)
Estimates of these can be performed either on the basis of

Heisenberg's uncertainty principle or by a calculation similarhe electric fieldE includes both the external field acting on

to the one foiZ,, [see Eqs(12) and(10)] in the two-photon  the cluster and the polarization contribution arising from the

case, but their accurate evaluation is not trivial. variation of electron density. Expressing the total derivative
Note that the plasmon resonance approximation allowgn the left-hand side of Eq16) as the sum of two contribu-

one to analyze only the plasmon resonance excitations thgbns, arising from the change in velocity of the electron

are characterized by relatively low angular momenta, bedensity in time and in space, one obtains

cause electron excitations in the cluster with large angular

momental have single-particle character. This follows, for ov(r,t)

instance, from the fact that with increasihthe wavelength — (- Vivny

of the surface plasmon modesR/l, becomes smaller than

the characteristic wavelength of the delocalized electrons at e e Sp(r',t)

the Fermi surface, 2%/\2mAe, whereAe is the character- =G Vert—- EVJ dr'——-—. (17

istic electron excitation energy in the cluster. In other words, r=r|

excitations with angular momenta comparable with the char- Here o(r,t) is the potential of the external field. The sec-

acteristic electron angular momenta of the ground state eX5.q term on the right-hand side of E€L7) describes the

hibit single-particl_e rather_tha_n collective character. There|arization force due to the variation of electron density
fore, when analyzing contributions of the plasmon resonanc (1 1).

modes to the multiphoton absorption cross section, one
should consider only the lowest angular momenta. For X5
ample, according to the jellium model, the maximum angular
momentum of the delocalized electrons in theNauster is o(r,t)=e"te(r), (18
equal to 4. Therefore, only dipole and quadrupole collective

modes can be expected in this case. With increasing clustevhere ¢(r,t) satisfies the equation

size the number of essential plasmon modes growR. as

We assume that the external potentidl,t) is the solu-
n of the wave equation. Therefore, we can put

Ag(r)=—K?q(r). (19
lll. HYDRODYNAMIC DESCRIPTION OF COLLECTIVE Herek=w/c, ¢ is the velocity of light, but in principle one
MOTION OF THE ELECTRON DENSITY IN A can postulate a more complex dispersion law. We need con-
CLUSTER sider only the positive frequency solution of the wave equa-

tion, because the formalism for the negative frequency solu-

The multipole plasmon resonances arising in the multi-.~ . .
fipn is analogous to it.

photon absorption cross sections should also appear in oth o .
physical characteristics of the cluster, which can be probed in The total electron density in the cluster is

the multiphoton absorption regime. In the situation where (r 1) =po(r)+ Sp(r 1) (20)
plasmon resonance excitations are the dominant contribution PAEH = Po PR

to the multiphoton absorption cross section, it is natural tqQynere po(r) is the electron-density distribution in a free
seek and analyze the plasmon resonance structure of e ster without an external field angh(r,t) is the variation
variation of electron density induced by the radiation field. ¢ gjectron density caused by the external field and the po-
The variation of electron density is a characteristic of thez i, ation force acting together.

system, allowing one easily to connect classical and quantum The motion of electron density in the cluster obeys the
descriptions of the excitation process, because Charg%‘quation of continuity, which reads

density variation has the same meaning in both quantum and

classical mechanics. A classical description of the electron- ap(r,t)

density variation in a cluster is appropriate in the situation pm +V-{p(r,t)v(r,t)}=0. (21)
where plasmon excitations dominate over the single-particle

spectrum, because plasmon oscillations in clusters are an es-The simultaneous solution of Eq&l7), (20), and (21)

sentially classical effect. with appropriate initial conditions and the initial distribution
po(r) allow one to determine the variation of electron den-
A. Basic equations sity ép(r,t) as well as its velocity(r,t). We solve this

. ) . . _ problem by using a perturbative approach on the external
Since our object of interest is the excitation of plasmons;g 4 o(r,1).

in metallic clusters, which have a distinctly classical nature,
we now describe the collective motion of the electron density
using Euler’s equation and the equation of continuity.
Euler’s equation couples the acceleration of the electron It is easy to estimate the relative value of the first and the
densitydv/dt with the total local electric fieldE acting on  second terms on the left-hand side of Etj7). We see that
the density at the pointr(t). It has the following form: the second term is negligible, provided the conditiBn

B. Perturbation theory

013207-5
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<mw’R/e s fulfilled. Substituting here the characteristic val-
uesw~0.1, R~10, one derive€<0.1 in atomic units or
E<5x10® V/cm. Below, we assume that this condition is
fulfilled and neglect the second term on the left-hand side of
Eqg. (17), which means physically that the external field
causes only a small spatial inhomogeneity in the electron-
density distribution within the cluster. In this limit, Euler’s

equation reduces to a Newtonian equation, which describes

electronic motion in the cluster under the action of the exter-
nal field and the polarization force.
We express the solutions of EgEl7) and (21) in the

PHYSICAL REVIEW A66, 013207 (2002

Indeed, forn=1 Eq. (26) reduces to

4me e Spq(r’
(wz— %m(r))&pl(r)mVpo(r)-VJ g 2P

following form:

6p<r,t>=n§l Spa(ryenet, (22)
v(r,t)= > v,(r)enet, (23)

By substituting these expansions into E¢k7) and (21)
and performing simple transformations, one derives

ie ie ,5Pn(r’)
vn(r)=m5n’1V(p(r)+me dr W, (24)
indpn(r)+V-{po(r)-vy(r)}
n—-1
+ > V{dp (1) Vo(N}=0. (25
k'=1

Here &, ; is the Kroneker delta. One can excludg(r)
from Eq. (25) by the substitution of Eq(24) in Eq. (25).

[r=r']|
e
=E[po(r)so(r)kz—wp(r)-Vpo(r)] (27)
and, forn=2, one derives
d7e e Opa(r’)
(2007~ "2 (1) | 8pal0)+ 2 Vo0) ¥ | o e
=iwV-[p(r)vy(r)]. (29)

Equations(27) and (28) show that the variatiop(r’)
describes the linear response of the electron subsystem to the
the external fieldp(r), while p,(r’) arises only in the sec-
ond order of perturbation theory op(r), becauseo(r’)
~¢(r) andvy(r)~e(r).

Solving the set of equation24) and (26) with ¢(r) de-
scribing the dipole electron-photon interaction up to ritle
order, one can calculate the variation of electron density in
the cluster caused by the field nfphotons.

The set of equation&4) and (26) is not confined in its
application to photons. It can also be used to describe the
dynamics of electron density under the action of any kind of
external field, for example, the electric field of a charged
projectile colliding with the cluster. Indeed, by considering
the partial spherical harmonic of the Fourier image of the
Coulomb field of the projectile particle, one can derive from

Performing this tran,sf_ogmation with thle simultaneous use ofq, (27) the same expression for the variation of the electron
Eq. (19 and A[r—r'|"*=—4ms(r—r'), one derives the densitysp,(r), as follows from the purely electrodynamical

following equation:

perturbative approach to the electron-scattering problem
[21].

, 4me e Spn(r’)
(wn)“= ——po(r) 5pn(r)+_Vpo(r)'Vf dr’—,
m m Ir—r’| C. Spherically symmetric case
e ) Equations24) and(26) are valid for an arbitrary shape of
= mﬁn,ipo(r)‘P(r)k —Vo(r)-Vpo(r)] the initial distributionp,(r). In the spherical case, the angu-
lar parts in Eqs(24) and (26) can be separated. Thus, the
n-t cross section fon-photon absorption can in principle be ex-
+iwk’21 V[ 8pir(r) -V (1)]. (26)  tracted for arbitrarily largen, although the calculations be-

come more and more tedious the highes. Let us consider

The left-hand side of Eq26) describes eigenoscillations this formalism in more detail. S
of the electron density. The electron density is almost con- [N the case of the spherically symmetric initial distribu-
stant within the cluster but varies rapidly near the clustefion, ONe can pup,(r) = po(r). This relationship allows one
surface. Therefore, the terms proportional gg(r) and ea5|l_y to e_xclude angulgr varlables.from EQG)._ Using this
Vpo(r) on the left-hand side of Eq(26) determine the relationship together with the partial expansion &y, (r)

square of the frequency of the volume and surface-plasmo@nd ¢(r),

oscillations, respectively. The right-hand side in E2f) de- o |

;gﬂges a driving force acting on the eigenplasmon oscilla- 5pn(r)=|20 m:z_l 3! ()Y m(N)), (29)
The set of nonlinear equation®4) and (26) must be

solved iteratively. It is clear from the form of the equations w

that the indexn corresponds to the order of perturbation ry= MY (N 30

theory on the external fielg(r). #(r) |:zo m:z—l (Y1), (30

013207-6
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one derives

2_4me "
(@)= ==po(1) | 8p{lm(1)

4mep,(r)
+m7(T2Ip+1)f dr'G(r,r )5pI m(r’)

e
= E 5n,][Po(r)‘Pl,m(r)k2_ ‘PI’,m(r)PZJ(r)]

_E 1211 n— J'dQ Y| m(n
Spn_i(r’
vapj(r)-v<5n_j,1¢(r)+f dr”']r_—‘r(,l))

—5Pj(r)[5nj,1¢(f)k2+4775pnj(r)]}- 31)

Here,Y, n(n;) is the spherical harmonic corresponding to
the angular momenturhand the projection of the angular

momentumm. When deriving Eq(31), we have multiplied
both sides of Eq(26) by the spherical harmoni¥},(n,)

and then integrated oveltﬂnr. We also used the well-known

expansion(see, e.g., Ref.27])

1 o
[ * ’
P 2|+12 E By(rr)Y1,m(N) Y (M),
(32)
where functionB,(r,r") is defined as follows:
| rrl
B|(r,r’)= IH@(r—r’). (33

Here ®(r’' —r) is the step function. In Eq(31) we have
introduced the functioi®,(r,r’), which is of the form

G ,2(?B|(r,r’)_| r'*l ,
(r,r)=r o o (r'=r)

r+2

—(+1) pl+2

O(r—r’). (34

When deriving Eq(31), we have also made obvious trans-
formations of the sum oved’ on the right-hand side of Eq.

(26) using Eqs(19) and(24). Note that the sum ovgrin Eq.

(31) still contains the integrals over the angular variables.

PHYSICAL REVIEW A66, 013207 (2002

)= [ 46, Y (1), ()

<Y1, (M) (35

The gradient terms in the sum contain the integration of a
spherical harmonic multiplied by the scalar product of the
two vector spherical harmonics,

ol L) =T+ Dl D) [ do,
YE ()Y (n)- Y (ny).

(36)

This type of integral arises, when one expresses the gra-
dients of the potential and the density accordingsee, e.g.,
Ref. [27)])

V8pl, m (Y1, m (M) =8pl. o (DY D(N)

1 .
L0+ D) 28], (1)

><Y<1> (), (37)

VO L (Y, m () =20 D" ()Y D (n)

PR I2.my

+la(l2+1) CI)|(n mjz)

X Yle?mz(nr). (38)

HereY( . D(n,), Y{}(n,) are, respectively, the longitudi-
nal and the transverse vector spherical harmonics, the defi-
nition of which one can find in Ref[27]. We mention
some properties of these vector harmonicst 1(n;)
=nYim(n),  Y{UN)=VaYim(n)\I(+1),  and

( 1)(n) Y(l)(n) O
The potentlakb m (r) in Eq. (38) is as follows:

DL (N)=680j1¢1, my(T)
+4—7T dr’r’ZB (r r/)5 n—j (l")
(21,+1) 1T J0P1, )\t -

(39

The integration over the angular variables in the sum is

straightforward, but somewhat cumbersome. It is also clear Since the explicit expressions fog(l,m|l;,m;,[l,,m,)
that the nongradient terms in the sum contain the integratioand I ,(I,m|l;,m,,|I,,m,) are somewhat lengthy, they are
of the product of three spherical harmonics, if one expandgresented in Appendix B.

opn-j(r) and ¢(r) according to Eqs(29) and (30), which
we denote as

Using the formulas written above, one can easily rewrite
Eq. (31 in the following form:

013207-7
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Ame 4arepl(r) .
()= 22 1) a0 1)+ ot 2 [ A G () 3plr)

n-1 I1,mq
M(po(r)qa. (K=o m<r>po<r>>—— 2 — 2 Li(hmll,mg [1,me){8pl) i (N D" (r)
= 8p! (N80 191, (K2 +4m8p] L (1) }—— 21 ﬁ Zm (L,mfl3,my,[12,mp) 8pf o (NPT L ().
I2.m;

(40)

Here and below, we assume that the summation over In this case it is natural to look for the solution of E40)
[1,m; andl,,m, is performed with the same limits as in Egs. by expressing it in the following form:
(29 and (30).
D. Surface and volume plasmons Spim(r)= 5’)5(“) O(Rs—r)+ 6p”(”)(r)®(Rv—r). (42)
We now analyze Eq(40) and demonstrate that it de-
scribes both surface- and volume-plasmon oscillations. The In Egs.(41) and(42) we have introduced the two rad,
surface and volume solutions of EGLO) can be separated andRg and assumed th&, <R;=R, butR,—Rs=R, where
from each other, if one assumes that the initial distribution ofR is the cluster radius. Such a relationship is necessary for
electron density has the form the elimination of the uncertainties, which arise in E4R)
and the subsequent formulas around the cluster radius. Physi-
cally, it means that surface and volume plasmons are defined
_ in different parts of the space. In another words, by defini-
pol)= 7®(R”_r)' (4D tion, the surface charge density should not be present inside
the volume and vice versa.
Substituting Eqs(41) and (42) in Eq. (40), performing
Here N is the total number of delocalized electrons in thestraightforward but lengthy calculations of the integrals, one

cluster volumev= 477R3/3 derives the following equation:
[(@n)?=w}]8p! P (NO(R=1)+[(wn)®~ w{]3p{y S(R—T)
47re®N(I+1)

rerl+2 o v(N)/pr Ne2 2 Nez ’
:_W R—r) df r e Sp) (1 )+m5n,1¢|,m(f)k @(R—f)+m5n,1¢|,m(R)5(R—r)

+— 5<R—r>2 —J 2 Ly(L,mlly,my [15,mp){pf ), BT (R + 5pf 0, (RID(T D'(R)
l 1
I2.my

n—-1
1 Y —i!
S aK* 0PN @1, my(R)} = —@(R—r)E —— > L(mlly,my[1,m){spt 0 (@D (r)

J l1.my

I5,my
= 3ppUh (N[8n— K21, m,(1) —4m3pt 0, (1) ]}——Rza —r>2 —J Em (1, mllg,myg,[12,my)

s
e nlog
X 8t B DR = —— O(R=1) X, —= > 1p(L,mly,my,|Ip,my) 8pt 0, (@0 D(r). (43)
272 mr =1 N—=J 1 m 1:My 2:My
I2,m;
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When deriving Eq.(43), we have used the fact that  The physical origin of three terms m| m, I (r) is clear.
0'(R—r)=—-6(R—r). Also we have introduced the func- The first term describes the potential of the external field.

tions

(I)Ir;rjr12(r):5nfj,l¢lz,m2( )+ j dr’r’ZB| (r r’)

(2| +l)

2

an
><5pv(n ')(f )+m5plzn '8 Bi(

r,R),

(n_]-)/ , 4 R , ,
D) m, (f)=5n—j,1%0|2,m2(f)+(2|2—+1) . dr'G(r,r')

x Spf T (r) + MG, (rR),

am 1)
(21,+1) “Przm
(n 0 S ” Am Rd D ’
| ,m, (r) n— j,l¢|2,m2(r)+(2|2+1) o r |2(r1r )

41
NS v(n 1) v(n J) NI
(r")—4mépy) (1) 2,51
><5p5<“ J)D| (1R = 4775,35(” ')5(R—r)
=P (r) 4775,)5(“ '>5(R—r),

I,—2
Di(r,r")=l5(l,— 1) ®(r =)+ (,+21)(l,
1ly+2

+2)—
r

— Or—r"). (44)

5

[(wn>2—wp]5p”<“’<r>—

e
nl‘PI m(r)k _E

X[ 81K @1, m, (1) = 4mdpt U (1]}~

x sppUn (@ D),

l5,m,

() Ne? ) 47e®N(1+1)
[(a)n) _w|]5P _mvaml(Pl,m(R)_

R
-~ dr/r/l+25 v(n) r')+
m(2l+1)VR +2Jo pim (F)+

The second term is the potential created by variation of the
volume charge density. The third term is the potential created
by the surface charge. The potenth{l‘zfrjnz(r) is continuous

at the cluster surface, B,Z(R,R)=1/R, G|2(R, R)

=0, D, (RR)=0, & V(R)=0.

The left-hand side of Eq43) describes volume and sur-
face eigenoscillations of the electron density characterized
by the angular momentuin The surface-plasmon resonance
frequencyw, is the same as in E@2). The volume-plasmon
resonance frequency is equal to

[4me®N
wp = mV (45)

In Eq. (43), w, appears in expressions involvirg but is
nevertheless independent Ipfas one sees in E@45). The
physical reason for this is that the volume-plasmon oscilla-
tion is degenerate with. The right-hand side of Eq43)
describes a driving force acting on the eigenplasmon oscilla-
tions.

Surface and volume terms on the right-hand side of Eq.
(43) have not been regrouped, in order to stress their corre-
spondence with terms in E¢40). It is seen from Eq(43)
that equations for the volume- and surface-plasmon oscilla-
tions can be separated and will then read as follows:

(Ll my, |1 mp){8pr O (@0 (r) = 8pPU), (1)

ly,mq I5,m,

my
my

n—-1
E - - 2 |2(| m||1,m1,||2,m2)
= J I1,my

I2,m;

e
mr?

(46)

2121

e
m 1(I,m[l,my,[15,my)

x{pi 0, BT (R)+ 3p) D, (RID(T D (R + 8, k280, 1, my(R)}

(Lm|l,my,[1,my) 8pf0) D" (R, (47)

I1.my = 15,my
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The set of nonlinear equationg6) and (47) must be These equations show that, if the external fi€3d) is
solved iteratively starting froom=1. It is clear from the characterized by a certain angular momentyrand its pro-
form of these equations that the indexcorresponds to the jection m,, i.e., ¢ n(r)=4;, ,Omm @1, .m(r), then 5p5(1)
order of perturbation theory on the external fig¢r). It is =611 dmm, 5ps(1) and 5p”(1)(r) 5| 1 Bmm, 5pv(1) (r)
also seen that the chain of equations for the volume-plasm Mo
oscillations is self-sufficient, while the solutions for the sur-
face oscillations also depend on those for volume, which |§47) for n=2 read as
physically clear, because the electric field caused by volume
oscillations of electron density must influence surface oscil-
lations. Pf)(n%)( r=

From Egs.(46) and (47), one derives the following solu-
tions forn=1:

Rssummg these dependencies, the solutlons of E@ and

l(l m||0’m0’||0’m0)

R —
m[(2w)*~ wp]

x{8p{ U (N @Dy (1) = 3p7 4 (1)

5 K2 m(r)
U(l)(r)—4w —, (48)
@ T @p X[k, my(1) —4mop{ 3, (N1}
2
wp 1
SPi = 7 [90( (R)
m 477 (1)2—(1)|2 i W 2(' m||o,m0,||0,m0)
w
4m(1+1) (R ,r"+2 e
T o 4R Opim () (49) X 5pt @ (@Y, (1), (50

47e®N(l1+1)

Spi=— f dr'r'!*25pp ) (1) F——————=11(1l,m[l,my, |5, M)

Pl,m m(2|+1)VR|+2[(2a))2— P, m[ (2 )2 ] 1 l1o,Mg,[16,mMg

X{ 83, B (R)+ 8p! O (RID[ V) (R)+ K20 o1, m (RO}
© L(L,mlly,mg, |15, m )5,;5(” c1><1> (). (51)
- mR(20)2— o] e
|
By performing similar transformations, one can find the E. Fast electron-cluster collisions
solutions 8p}{"(r) and dp{" for arbitrarily large n, al- Equations(46)—(51) can be used for the analysis of the

though the formulas become more and more tedious thpalance between the surface- and volume-plasmon oscilla-
larger n becomes. These formulas demonstrate that, in théions in the cluster. We demonstrate this for the example of
higher orders of perturbation theory, plasmon resonancefast electron scattering on a metal cluster. In this case, the
with angular momenta larger than the angular momentum oéxternal field of the projectile electron can be characterized
the external field can be excited. Indeed, the selection rulelsy the Fourier component of the Coulomb potential

for  the integrals  1,(I,ml|l,,my,|l,,m,) and
LL(1,mlly,mg,|l,,m,) (see Appendix Bshow that the angu-
lar momentum insp!{?)(r) and 5pS?) can be twice as large
asl,. Equations(46)—(51) also demonstrate that the plas-
mon resonances inspi\(r) and dpiy” arise whenw  whereq=p—p’ is the transferred momentum of the scat-
=wp/n andw=w,/n, respectively. These equations indicatetered electron.

a significant shift of the plasmon resonance profiles towards The partial expansion of this potential reads as

lower frequencies in the highest orders of perturbation

4a .
<P(r)=?e'q'r, (52

theory. ©  m=l
These results have a simple physical explanation. Absorp- go(r)=4772 2 i'g m(DYF Ny, (53
tion of several quanta of the external fidjsthotong by the =0 m=- ' '

cluster leads to the excitation of nondipole plasmon oscilla-
tions of the electron density. where the partial component of the potential
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(Pl,m(r):?JI(qr)Yl,m(nr)a (54)

andj(qgr) is the spherical Bessel functidfor definition see,
e.g., Ref[25]).

The form and properties af; ,(r), Eq. (54), are exactly
the same as assumed in E¢E9) and (30). Therefore, from
Egs.(48) and(49), one can immediately derive

5ot (1) = pJu(qr2> 55
0’ — w2
and
6 S(l): Y R
pl,m z(wz_wlg)[h(q )
_ QPoy(l+1) R prt+z
(wz—wﬁ)(2l+1)JodIr Rz (A7)
(56)

In the case of inelastic electron scattering, has the
meaning of the transferred energy in the collisiarsAe
=g—¢'. Calculating the integral in Eq56) with the use of
the well-known properties of spherical Bessel functitsese,
e.g., Ref[25]), one derives

21+1)w? j(qR) w2
S — PR,
—?

w?— w|2 qu

5pﬁ(rirl]):

(57)

Expressiong55) and (57) coincide with those calculated
in Refs.[21,2§ in the plasmon resonance approximation by

PHYSICAL REVIEW A66, 013207 (2002

d?o 1) ( R wFAst
+
de'dQ mpq’ a (Ae?— w?)?+ Ae’T?
2p'R3 wiAel'}
PR S 2+1) o
ap? T (Ae —wp) +Ae“T
X[ if(aR) = ji+1(aR)j;-1(qR)

2
__RJ'|+1(qR)J'|(qR) . (58

q

This cross section is totally determined by collective elec-
tron excitations in the cluster. The first and the second terms
in Eq. (58) describe the contributions of the surface- and the
volume-plasmon excitations, respectively. In E§8), we
have also introduced width§,’ andT}, of the surface- and
volume-plasmon resonances. They originate from the Lan-
dau damping mechanism of the plasmon excitations. For
their determination we refer to the recent pajt].

This result can be generalized to the cases, which are
beyond the simple plasmon resonance approximation, by in-
troducing the imaginary part of the cluster dynamic response
function instead of using Lorentzian plasmon resonance pro-
files. The dynamic response function of a cluster can be ei-
ther elaborated on the basis of the more advanced theoretical
schemes or taken from experiment. Such an approach or a
similar one has been utilized in a number of papers consid-
ering various aspects of electron collisions with metal clus-
ters and small metal particl¢28—30.

F. Multiphoton absorption

Next, we apply Eqs46) and(47) to the description of the
multiphoton absorption process. In this paper, we focus our
consideration on the analysis of plasmon excitations. If
surface- or volume-plasmon resonances are excited by pho-
tons, i.e.,.o~w,, then it is easy to check that the following
condition is fulfilled wR/c~wyR/c<1, wherec is the ve-
locity of light. This condition implies the validity of the di-
pole approximation.

In the dipole approximation, one can neglect the momen-

purely electrodynamic means, as the response of a dielectrium of the photon and plk=0. In this case, Eq446) and

sphere, having dielectric
—1w?lw?.

From Egs.(55) and (57), one can easily elaborate the
electron inelastic scattering cross section in the plasmo

permeability e=1— 6(R

(47) are simplified dramatically. Indeed, from E@6), one
derives

dpi(r)=0. (59

n

resonance approximation, using the method described in Ref. Th|s result also simplifies Eq(47) significantly for

[21],

5p . After some trivial transformations it reduces to

N e )
2_ s(n—__~ ’ _ - s(j) (n—j)"
[(wn) w|]5p mv5n,1<P|m(R)++m & Er;n Il(l,m||1,m1,||2,m2)5p|1ymlcl> L.m, (R)
I5,my
e n—-1
——— > = > (lmll,mg,|l,my) 8pi0, &M D(R). (60)
mR j=1 N 17, 1:My = lg.my

The partial component of the linearly polarized dipole photon field,
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4
e mr)=— ?Er5|,15m,o- (61)

HereE= {27k w/V, is the strength of the photon’s electric field avid is the normalization volume of the photon mode.

Substituting Eq(61) into Eq. (47) and using Eq(44), one derives

2 s(n) _ _ 4mNe’E
[(wn)?— wf]5p}'n 3 my on1d10moet

47 eE
3 mR, E Lo(1,mfly,my, |1, 0)5/)5(” 1)

5pS(J) 5pS(=1)

47TeE 1 2 1(1m) I ) 11.my OP15,m, 62)
!m 1m L !m
mR &1 n—j 15, P22 2,41
I2,my
This equation should be solved iteratively starting from 12 32, 2
n=1. Forn=1, the single nontrivial solutionspSs), reads 5p3e)=— am NeEw
as ’ o 3VBM?RV (02~ w})%[(20)?~ w3]’
4 NeE 647\ 1216+35
o=\ (63) o030~ ( 3 ) -y
3 mV(w?—w?) 75m°R°V
H R A3, 2 2 3 2
Then, forn=2, the solution of Eq(62) is of the form Ne'E w + 10%1
2 2\3 2_ 2_ 297
eapsm(E /_43 5ps(1)) (0°= 0})°[(20)*~ w3][(3w)* - w]]
A
S(2) — [ 1/2
Spim ="\ 73 R (20)2— o] I2(1,m[1,01,0). 55|47 12(2+5)
I P30 7 32
(64) 75m°R2V
The select'ior) rules for,(I,m|1,0 1,Q) (see Appendix B Ne*E3w2| w2+ 3 2)
show that this integral does not vanish, wHen0 andm 10 66)
=0 or =2 andm=0. Therefore, fom=3 from Eq.(62),

one derives (02— 0D)%[(20)2- w3][(3w)*— ]

IV. INDUCED MULTIPOLE MOMENTS IN THE CLUSTER

S(2) .
{| 2(1,m[0,01,0) 3pg,o Let us now calculate the multipole moments of the cluster

induced by an external radiation field on the basis of the
model developed in the preceding section, and analyze their
plasmon resonance structure.

The induced multipole moment of the cluster

_ 4m |
m= \/mf dVvrY m(n,)op(r), (67)

where the variation of electron densifp(r) is determined

In Eq. (65), only the second terms in brackets give a non-iN Eds-(29 and (42)(n5“b5itUti”9 Eqs(29) and (42) in Eq.

zero contribution, sincel(I,m|0,d41,0)=1,(I,m|1,40,0) (67 and puttingdp}{(r)=0 for anyn in the dipole ap-
=0 (see Appendix B Substltutlngéps(l) from Eq.(63) in  Proximation as follows from Eq(59), one derives

Eq. (64) and 5p3§) from Eq. (64) in Eq. (65) and using the 3
. ) ) i [ 4x
explicit expressions for the angular integrals given in Appen Ql(,nn)1= 5T 1R|+25pls(r2) _ (68)
Substituting in Eq(68) 5p5(g) from Eq.(63), one obtains

dix B, one obtains
the expression for the dlpole moment of the cluster induced
in the single-photon absorption process,

+1,(1,m[2,01,0) 5p5(2>}

AmeEspSd) (5
——f[ (1,m|1,00,0) 8p§2
MR (3w)?~ ] |6

2(' m|2,01,0) 5p5<2>’ (65)

771/2 N e3E2

3M?RV (w?— 03)?’

5p3(2)_ _
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Ne2E case and n=3 (three-photon cageare given in Eq.(66).

(69  Substituting the partial electron-density variatiahs 2’ and
sp3t3) from Eq. (66) into Eq. (68), one derives the expres-

The explicit expressions for the partial electron-densitysion for the monopole and quadrupole moment of the cluster

variations 5pﬁ(nr}) entering Eq.(68) for n=2 (two-photon induced in the two-photon regime,

D(l)(w)zQ(l): _ )
Y m(w?-wl+iely)

1 Ne3E2

2m?°R? [(0?— 0})?+ wT]]’

M (w)=Qf)=

s 2 Ne’E?w?

5 m(0?— )%+ 0T 2][(20)>— wi+i2wl,]

(70

Here, we have introduced the plasmon resonance widffendI", which take into account Landau damping of the dipole and
quadrupole surface plasmon resonances. They must be determined separately, e.gh byt@napproachsee Ref[21]).

By absorbing three photons one can induce dipole and octupole moments in the cluster. Subé‘p’ﬁﬁﬁhfgom Eq. (66)
into Eq. (68), one derives the expression for the induced dipole moment,

3
A3 2 2, 2 2
o) Q(g) 4(16+3\/§) Ne'E°w?| o+ T0%1
W)= =— .
Lo 75MPR?  [(w2— w?)?+ 0T2](0?— 0’ +iel)[(20)?— wi+i20T ;][ (30)2— w’+i3wl ;]
(71)
The expression for the octupole moment induced by three photons following from{@&gsnd (68) reads as
Ne*E3w?| w2+ i(1)2
- (3 122+5) 10"t
O™(w)=Q3= (72)

175m°  [(02— 02)%+ 0 T2)(0?— 02 +iol D[ (20)?— 03+i20],][(3w)?— w3+i3wl3]

Here, we have also introduced the octupole plasmon resdramework and to derive reliable qualitative results beyond
nance widthl 5. the level of accuracy of the jellium model.
Expression$69)—(72) demonstrate that the multipole mo-
ments induced in the cluster during multiphoton absorption
processes possess a prominent plasmon resonance structure.
The nature of these resonances is the same as occurs in the

V. CONCLUSION

mutiphoton absorption cross sections discussed in Sec. II. [N this paper, we have developed a formalism that allows
The connection betweedM(w) from Eq. (69) and the ©ON€ to calculate the cross section f_or multlphoton absorption
cross sectionr, found in Eq.(6) is straightforward, in the plasmon resonance approximation. We have demon-

strated that plasmon excitations with angular momenta larger
than 1 substantially alter the profile for multiphoton absorp-
ImDW(w). (73  fion as compared to the single-photon case.
Our model is formulated in terms of a charge-density dis-
tribution function p(r) for the cluster. This means that, in
In the multiphoton regime, the connection between theprinciple, one can study the response for different charge-
induced multipole moments of the cluster and the multipho-density profiles including deformed ones. Our model is a
ton absorption cross section becomes more complex, whickemiclassical one, which neglects the granularity of charge in
is apparent from the the classical nature of the expressiorthe system. This is consistent with the principles underlying
(70—(72) and the explicit dependence of the multiphotonthe jellium picture. It is appropriate for metallic clusters and,
absorption cross sections on Planck’s constant. The discuss a lesser extent, for fullerenes.
sion of this interesting relationship is, however, beyond the We have used the jellium framework for simplicity. In
scope of the present paper. We also note that the relationshfpct, all the conclusions regarding selection rules and the
between cross section of the photoabsorption process and theneral behavior of single versus multiphoton cross sections
cluster dynamic response function similar to E@3) pro-  are model independent. So, the jellium calculations are used
vides a good way to improve the accuracy of the theoreticain our work merely as an illustration of what happens when

4w
T1T7CE
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the general formulas are applied. Here, we have used the following definition of the multi-
In the classical formulation of our model, we have usedpole moments operator:

Euler’'s equation for hydrodynamic flow, together with the

equation of continuity. We have demonstrated that the results - b O |

following from our model are consistent with direct esti- m=\ mg‘l el icYim(Mk).- (AB)

mates of the matrix elements for the multiphoton absorption

process. The theoretical formalism we have developed is Nothe plasmon resonance frequencies in &&) are defined
confined in its application to photons. It can also be used tQ¢cording to Eq(2).

describe any kind of higher-order plasmon excitation pro- Using Eq.(A5), one can easily evaluate the matrix ele-

cesses, for example, those which arise by multiple scatteringyents of plasmon resonance transitions in the plasmon reso-

of electrons within a cluster. nance approximation. Indeed, assuming that plasmon excita-
tions dominate in the sum overin Eq. (A5), one derives
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_ Equation(A7) gives the matrix elements of plasmon reso-
APPENDIX A: MATRIX ELEMENTS OF PLASMON nance transitions for an arbitrary large angular momertum
RESONANCE TRANSITIONS The correctness of the res@7) can be independently veri-

In this appendix, we evaluate the matrix elements of plasfied by performing calculations of the multipole dynamic
mon resonance transitions in the plasmon resonance approfgolarizability of the cluster in the plasmon resonance ap-
mation by the use of the sum rule. proximation. Indeed, using E@A7), one derives

For a stationaryi.e., explicitly independent of timeop-

~ 2 21+1 2
eratorF of an observable physical quantity, characterizing a a.(w)=22 @no| Quol ~ R™ i
system of particles with the Hamiltonidt, one can formu- n i~ wi—iel  of—(he)?—ihlel
late the following sum rulésee, e.g., Ref.25)): (A8)

. 1 R which is the known expression for the dynamic multipole
> wn0|(n|F|0>|2=§<0|[F,[H,F]]|0>. (A1)  plasmon polarizability in the plasmon resonance approxima-
" tion (see, e.g., Ref§10,17).

For the dipole plasmon resonance transition, one derives

Here =g,— &g, the summation is performed over all
@no En €0 P from Eq. (A7),

excited states of the system ajid,F] denotes the commu-

tator of the operatorsi andF: [H,F]=HF—FH. N7
Applying the sum rulgA1) to operatorF defined as Quo=dip=€z0=€"\ 2may’ (A9)
,3:2 F(ry) (A2) which is consistent with the dipole sum ruié).
K K Equation(A7) allows one to evaluate the matrix elements

of electronic transitions between various plasmon resonance
whereF(r,) is a function of the coordinates of tiith elec-  states. To demonstrate this, let us rewrite B7) in the
tron and the summation in EqA2) is performed over all form
particles in the system, one derives

1
2 m= — | d |+2 ) A10
2 “’n0|<”|ﬁ|0>|2=§—mf dr|[VE(r)[?p(r).  (A3) Q 2|+1J e “pio(r) (AL0)

Here, we have introduced the radial transition density
Here p(r) is the ground-state charge-density distributionp,o(r) between the ground state and the excited plasmon
in the system. Applying the general rul&3) to the function  resonance state with angular momentuand used the rela-
tionship 11(1n,My[1,M[0,0)= 8 S m/4m, when calcu-
F(r)= / 4m Y, (), (A4) lating angu_lar interg_rals in Ec_(AlO). _ _
21+1 The radial transition density,o(r) is localized near the
) . o ) ) cluster surface. Qualitatively, this is clear becapggr) de-
and performing the integration in E¢A3) with the density  scripes the plasmon excitation. Quantitatively, this was

distribution (41), one derives proved byab initio computations of the transition densities
52 in the Nggand Na, clusters within the jellium model in Ref.
2 wn0|<n|Q|m|0>|2=—w|2R2|+l. (A5) [19]. Therefore, to a reasonable accuracy, one can approxi-
2 matepo(r) by the & function,
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r=p;d(r—R). (A11) 8(6\¥ &
pio(r)=pio (AL7)

227 7°315)  mw, AR’

Substituting Eq(A11) into Eq. (A10) and comparing the
result of the calculation with EGA7), one can determine the
value p,o entering Eq.(A11). The result of this calculation APPENDIX B: INTEGRALS I(I,m|l;,my,|l;,mz) AND
reads as Lo(l,mlly,my, [12,m;)

The angular integral,

e [31AN ALD
Plo—% 2maoy’ (A12) L (1|l ,my|l5,my)

Let us now evaluate the matrix element for the dipole :j dQnrYik,m(nr)Yll,ml(nr)le,mz(nr)’ (B1)
transition between plasmon resonance modes, which reads as
4 is well known and can be found in many textbodkse, e.g.,
2= \/?f drYyomrpy, (). (A13)  Ref.[27]). Itis equal to

Here, pi; (1) is the electron transition density between Ll mlly,myflz,m,)

the dipole and the quadrupole plasmon modes. This transi- e o] (21+1)(211+1)(21,+1)
tion density can be evaluated via the transition densities =(=DMre 4
p|1’o(l’), p|2,o(r) and the ground-state electron density of the

Z . I I I I P
clusterpgo=eN/V as follows: % 1 2 1 12 ‘ (B2)
-m m my/\0 0 O
P1,0(1)p1o(r)
pi,, ()= TYll,o(n)le,o(”)- (A14) Here, the integral is expressed vij 8ymbols(for defi-
nition see, e.g., Ref27)).
Substituting Eq.(A14) into Eq. (A13) and performing The angular integral,
simple transformations, one derives
Lo(l,m[ly,my[l5,my)
1/4
2y men oalef 1121t 1) N FEyA(PESY
‘21 3 lIy2,+1)
2t xfdQ Y)Y (n)- Y (ny),
><I1(|2,m2|1,Q|1,m1)m7T 8(0).  (AlY) b em e
“h (B3)

This equation has an uncertainty, which originates fromgg, pe expressed via the sum of products josgmbols and
the fact that we have assumed zero thickness for the Iayegj symbols(for definition see, e.g., Ref27)) after perform-
near the cluster surface in which plasmon excitations takq;qg the following transformations.
place. By introducing a finite widtAR for this domain and Using the standard relationships for spherical vector har-
using one of the standard representations ofdtfenction  yonjcs, written in Ref[27] on page 210, one derives
[25] to resolve the uncertaintyy(0)~2/7AR, one finally

derives (I, mlly,my|l5,m5)

_ 7T|1|2/|1(2|2+1) 1a — *
71,,=8e\— \|2(2|1+1)) \/I1(I1+1)I2(I2+1)fdQnrY,'m(n,)

h » I1‘H|-Y|171 Iy Yt
X'l('z,mz|1,q|1,m1)m- (A16) Vai+1 1y m, () + Vo +1 1ymy (M)
1
The explicit expression for the angular integral X \/|2+1y'2’1(n)+\/ 12 Y'2+l(n)
20,+1 lamt T 20,+1 lzmt T

[1(15,my|1,01,,m;) is given in Appendix B. In the case of

the transition between the dipole and quadrupole plasmon (B4)
resonance states this integral is equal 1162,011,011,0)

= —1/\/57. Substituting this value into EqA16) and per- The integrations arising in EqB4) can be performed and
forming simple algebraic transformations, one arrives at thexpressed via the sum of products of 8ymbols and 6
expression for the matrix element describing the transitiorsymbols, using the standard formulas given in R2¥] on
between the dipole and the quadrupole plasmon resonangages 222 and 236. The result of the calculations of these
modes, integrals reads as
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PR P )

m; m, —m
\/(|1+1)(|2+1)(2|1—1)(2|2—1)/|1—1 l,—1 |) -1 1,—1 |

” 4 o o o I, , 1

Lo(h,m|ly,my|lo,my) = (= 1)1+ 12 ML (1 + 1) 15(1,+ 1) (21 + 1)

\/|1(|2+1)(2|1+3)(2|2 )/ B N PR B I PR R P
" A | o o ol I, L, 1
\/(|1+1)|2(2| —1)(2l, +3)/|1 L+l 1\ (l;—=1 I,+1 |

o o ol 1, 1, 1

[ 0.(21,+3)(21,+3) [ 11+1 I,+1 1\ [l;+1 I,+1 |
N \/ 112(213+3)(21,+3) (11 2 1 2 ' ©5)
A7 l o 0o 0| I, L 1
For the particular cases of interest, one derives from(BE)
1,(1,00,01,00=0, 1,(0,01,01,0= ! 1,(2,01,01,0= !
2 [} 1] [} [} 2 [} 3 ] \/;l 2 ] [} 3 \/a;
6 16 18 J5
1,(1,02,01,0=——=| 1+ —=|, 153,02,01,0=— —|1+—]. (B6)
21,020 107\ 35 ? 42,0 51057 2
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