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Two-center convergent close-coupling approach to positron-hydrogen collisions
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The question of convergence in two-center close-coupling expansions is addressed via the study of positron-
hydrogen scattering. It is found that the major cross sections do converge if sufficient number of states from a
complete basis, centered separately on the hydrogen atom and positronium, are used to expand the total
scattering wave function. The underlying equations are computationally highly ill conditioned, and a simple,
numerically efficient technique is given that alleviates the problem. Generally, we find good agreement with
available experiment and some previous theory. However, calculations that only used eigenstates for the
positronium center yielded cross sections for positronium formation insren@ 2p states that are higher than
the convergent ones obtained in this work.
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[. INTRODUCTION double counting of the continuum. It is this problem that has
attracted our interest in recent times, and we address it here.
The problems of electron- and positron-hydrogen scatterThus we are particularly interested in obtaining convergence

ing, on the surface, may seem to be very similar. The formefn calculations of the CG{,N’) type, with a basis consisting

has the complexity of exchange arising from the indistin-of N atomic andN’ positronium negative- and positive-
guishability of electrons, while the latter has the complexityenergy eigenstates and pseudostates. We use a bar on the
of rearrangement due to the formation of positroni(®9. s size to indicate the usage of pseudostates, no bar indi-
Formal theory tells us that exchange may be treated as @iaq the usage of only true eigenstates.

rearrangement process, yet it turns out Fhat the numerical Two-center close-coupling calculations have been exten-
treatment of electron exchange is much simpler than that Oéively applied in the 199086-9]. Higgins and Burke7]

Ps formation. The two problems share similar complexity in ;
the treatment of the target excitation and the three-body cor]ltJ sed the CCL,1) model across a broad range of energies and

tinuum. However, the positron scattering problem also has P qud a large %Td ur;]expecLe(: ret_solnancebaroufnd 40 th|nC|-
formation and excitation away from the system’s center o ent energy. Though a substantial number of papers have

mass. Thus, the positron scattering system hasatem and been devoted to the study of this resonance, and those found

P$ natural centers whereas the electron scattering system hif CC(3,3) calculations[10], these resonances are not real.
only one. The first indication of this was shown by Kernoghanal.
The close-coupling method has been very successful inll], who suggested that CR(N’)-type calculations re-
treating electron-atom scattering problems. It has many numove these spurious resonances. However, utili8ngave
merical implementations such & matrix [1,2], integro- model we found that this was not the c4%&]. Instead, only
differential close coupling3], hyperspherical close coupllng_ calculations of the type C(B_(N’) showed that this reso-
[4], and momentum-space based convergent close couplinggnce disappears, for relatively smalllandN’.
(CCO [5]. These techniques rely on a sufficiently large Calculations of the type CBUN'), where a large number

single-center expansion of the total wave function in order to : X
correctly take into account the possible atomic excitation an f atomic states were supplemented by a few Ps eigenstates
A . o ave dominated the literature. An exception to this was the
ionization processes. In particular, the CCC method utilizes a —
complete Laguerre basis for this purpose. The target Hamilork of Kernogharet al. [13] who used a CC(®) calcula-
tonian is diagonalized in this basis resulting in negative- andion utilizing s-, p-, andd-pseudostates on both centers. Un-
positive-energy states. With increasing basis size théc_)rtunate_ly, this calculat|on.y|elded pseudoresonances asso-
negative-energy states converge to true discrete eigenstat§§ited with a small expansion, and was later superseded by
while the positive-energy states provide a more dense dighe CC@0,3) calculations which showed smoother results
cretization of the continuum. Convergence, in the transitiorl 14]. A similar conclusion was found by Mitrojd5]. Mitroy
of interest, is obtained by simply increasing the basis size. and Ratnavel(i16] have performed convergence studies us-
The same idea can be applied to positron scattering excepig CC(13,8) calculations for the full positron-hydrogen
that now two-center expansions are required. Such expamroblem at low energies. Below the ionization threshold they
sions readily incorporate the required boundary conditionshowed good agreement between sufficiently large pseu-
having bound atomic and Ps channels, but appear to hawbstate close-coupling calculations and the accurate varia-
tional calculations of Humberstdi 7]. However, at energies
above the breakup threshold the situation is less clear, and
*Electronic address: A.Kadyrov@murdoch.edu.au this is of primary interest to us.
TElectronic address: I.Bray@murdoch.edu.au The first extension of the CCC methdd8] to the
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positron-hydrogen system was without allowance for posi- €
tronium (P9 formation [19,20. It was shown that single-
center expansions may Yyield correct results in certain re-
stricted kinematical regimes, but are generally inadequate.
The CCC method has been generalized to incorporate Ps
formation channels and be applicable to 8x@ave model of
the positron-hydrogen scatteririd2]. For this model we
were able to explicitly demonstrate the convergence of the
(nonorthogonal two-center expansions. Moreover, it turns
out that the convergence is only possible when two indepen-
dent large enough Laguerre bases are employed to both of
the centers. Most noteworthy is that the cross section for the
total breakup of the system into three free particles has two
independently converged contributions: ionization of the hy- o
drogen atom and electron capture _to th_e Ps CO”“”‘_J“”‘- Th_us, FIG. 1. Jacobi coordinates for a system of three particles: posi-
no overcompleteness problems, _mtumvely associated withy - (@), proton (8), and electron €).
nonorthogonal two-center expansions, have been found, even
in the three-body breakup channel. However, extreme ill
conditioning of the underlying linear equations was encoun- WD F(pa)a(r)+ D Fa(pg)s(rp)
tered as the basis sizes increased. @ B

The purpose of the present work is to investigate the ques-
tion of convergence in nonorthogonal two-center expansions + f deF.(pe) Yo(Te), (3)
in the case of the full positron-hydrogen scattering problem.
This time, convergence for all physical channels of interest
needs to be demonstrated not only as a function of the baswherey, (i) is a bound-state wave function of atdfs
size, but also as a function of the angular momentum of théh channela (B), . is the regular Coulomb function de-
included states. scribing the continuum state of the proton and positron pair,

The plan of the paper is as follows. The CCC formalismWwith F;(p;) being the associated weight function. The Jacobi
for two-center expansions is given in Sec. . Details of thevariabler; is the relative position of particles in padiandp;
calculations are given in Sec. lll. The results of the calculais the position of particleé relative to the center of mass
tions will be presented in Sec. IV. Finally, in Sec. V we (c.m,) of pairi(i=a,8,€). See Fig. 1.
highlight the main results, draw conclusions, and discuss fu- In this work we investigate the possibility of expanding
ture directions for the present work. using the full sets of function$.e., both bound and con-

tinuum) of pairsa and g, thereby representing the effect of

states in channet by continuum states of pairg and .
Il. FORMALISM Namely,

A. Basic equations

Consider a system of three particles: positron, proton, and P~
electron. Indexa (B) will denote a quantum state in the
channel where positrofproton is free and the other two
form a bound state, while indexwill be used for the chan- +
nel where all three particles are free. With this notation the

total three-body scattering wave function at a total en&gy o ] ] ]
may be written as In principle, at this stage we might wish to keep the con-

tinuum part only for one of the pairs. However, we found, in
(H-E)¥=0, (1) practice, that only an expansion of typ#), with the con-
tinuum parts for both centers, is capable of giving convergent
results in computationil2,21].
The use of true continuum functions is computationally
too difficult, and we replace them with Laguerre-based pseu-

a

S f da}wawa(ra)

% + f dﬁ} Fa(pp)¥s(rp). (4)

where

H=Ho+v,tvg+ve=Ho+v, 2) dostates, as in electron scatterii@]. Accordingly, Eq.(4)
becomes
and whereH,, is the three-free-particle Hamiltonian, angd N, Ng
is the Coulomb interaction between particles of paifi V= F (p) N0 )+ Fﬁ(pﬁ)¢(ﬁNﬂ)(rB)
=a,p,e). a “ B
The most natural way of building the functio#t with Ng+Ng
proper boundary conditions would be expanding it in terms — E F.(p,) () (5)
of functions of all asymptotic channels, i.e., > [ARA AN

012710-2



TWO-CENTER CONVERGENT CLOSE-COUPLING . .. PHYSICAL REVIEW @6, 012710(2002

where the indexy ranges over alkv and 8. N, +Ng dq ”qZH
There are a number of ways to find functidn in the ;74- Ay ,0,)= Vy y(qy q,)+ s Y ;
form (5) to best satisfy Eq(1). The simplest way consists in Yy L (2m)
using the Bubnov-GalerkitBG) principle[22] (a scattering L
analog of the Ritz method widely used in bound state prob- XV oAy vqy”)Gy”(q " TLH J0y,0
lems in quantum mechanicdVe substitute the expansig@b) (12)
into Eqg. (1) and, according to the BG principle, require that
the result be orthogonal to alby(=1,... N,+Npg) basis \yhereL, L' andL"” are the angular momenta of the free
states particles in channely, ', andy”, respectively. The effec-
Ng+Ng tive potentials in the representation of total angular momen-
< | (H—E) > Fy¢y> =0 (6) tum are given by
Y Py , I
. . . . . . VLVL Iy f f d ’d AV L J
In this equation indexp,, denotes integration over all vari- =7 Ay 0y)= mom M M Gy 0, (0,)C
ables excepp, , i.e., the result of the integration is a func- s .
tion of p.y/ . Xv‘y’y(qy’ 1q‘y)CMmKYLM(qy)1 (13)
The condition imposed above is a system of integro-
differential equations for unknown weight functiorts, . where CSE? are the Clebsch-Gordan coefficients of vector

Following [23] we transform these equations for the weightaddition, Y (q,) are the spherical harmonics of unit vector
functions to a set of coupl

pled effective two-body Lippmann-g g,. The angular momenta of paiy (y') arel(l’), and
Schwinger-type integral equations for transition amplltudeﬁvl m, K are the projections df, |, J, respectively. Ac-

Tyry cordlngly,K M+m=M'+m'.
NotNs - L,
T, /(d,.d,)=V, (4, ,d,)+ EH (2?:)3 B. Effective potentials: Direct transitions
Y

Calculation of the effective potentials is straightforward.
Vo yr(Cyr 8y G (G50 Ty (Gyr 1), Consider first the effective potentials for direct transitions

(atom-atom or Ps-Ps transitiond-or transitions between
(7)  atomic states we have

whereq,, is the momentum of free particte relative to c.m. V =(a., U
of the bound pair in channel. The effective two-body free 'a(Gar 80 = (e (Y| U el 01 0)
Green’s function is defined as

:j jdpadrae_iq“"’“%(ra)

G.(g%)=(E+i0—q>/2M . —€,,) "L, (8) _
T o XU gotlol 1) €%Ps, (14
and describes the free relative motion of partiglé and
bound pairy” with binding energye,». M ,» is the reduced Substituting Eq(14) into Eq. (13) and expanding the plane
mass of the two fragments in channg! with M =1 and waves of relative motion yields
M;=2.
B
The effective potentials are given b ' oy "
P Juen By Vi g)=@matt X cpl ci

Vy’y(qy’ lqy):<q7’|<¢y’|uy’y| ¢y>|qy>l (9) m,mM=M
where Xf fdpadrawz/(ra)uaawa(ra)
Uye=v—v,, Ugg=v—vyz, U,z=Uz,=Ho+v—E . ~ ~
e U fer TppTOT R Rapm a0 ) X i1 (8P ) Y (Pa)iL(Gapa) Yim(Pa),
1
are the potential operators. 9
Upon partial-wave expansion in total orbital angular mo-yhere thej, are the spherical Bessel functions.
mentumJ, Using the approximation,~ p,, (atomic c.m. assumed to
be at the protonand expandingU,,=ve+vz in partial
Vy’y(Qy’ lQ)/)Z E YL’M’(Qy’) waves we get
L’',M’,L,M,J,K
n A — —17/\ - -
XCII;/I’In:l] 7 y(qV ,qy)CLU M(qy)’ Uaa_4ﬂ->\2’u (2)\—’_1) uaa(pavra)Y:p,(pa)Y}\/L(ra)v
(12) (16)
Eq. (7) transforms tofor eachJ) where
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A
8)\0_ Pa if <r
P
UnaPaiTa)= s (17)
0 - otherwise.
Pa Pa

It then follows that

Velle d)=(4m%a 3 il Ol

m’ ,mM’,M
Xf dpapif dra‘rl/Z'(ra)l;ba(ra)
0

L’
XjL’(qa’pa)jL(qapa)E(Z) %

L'\L AL’AL ~
X Cy €00 UnalPa st o) Yau(Ta),

(18

where [I]=y2I+1 and w=M-M'. We take the

PHYSICAL REVIEW A66, 012710 (2002

Effective potentials fo3— B’ transitions(Ps-P$ are de-
fined as

Vg 5(dgr ,9g) = (A [{¥p|U gglths) | ap)
:f f dpjdrge™" % ey, (1)
XU gthp(r g)€'%Ps, (22

Repeating the above procedure we get 1502;2(%, .0)
exactly the same expression as E1) but with
Up(pg.T ) in EQ. (20) for Iy, ,(dlr ,0p) defined as

configuration-space bound-state wave function in formsince

z//a(ra)=i'Rn|(ra)Y|m(Fa), with R, (r,) being the square-

integrable radial part. Then

Vioralla )= @mAH 0 X el Cil

m’,mM’,M

@ L] oo~ [
X; m M’ uM Eo}ﬁLm

XCI  CotolY (G 1 0a)s (19)

mum’ @

where all radial information is contained in the integral
IZ'a(qa’ !qa): fo dpapijL’(qa’pa)jL(qapa)

X f drariRn’l’(ra)ui\ya(pa !ra)Rnl(ra)-
0

(20

2)\+1p)\
B .
Y if pg<<rgl2,
A —F1_ A\ B
Upglpp,rp)=[1—=(=1)"]X A
ﬁ otherwise,
2%py
(23
U 1! ! (29

We note that, in general, further reductionl dffor eigen-
states or Laguerre-based pseudostates is possible. However,
caution must be exercised as this may lead to an analytical
expression more difficult to calculate than a direct numerical
integration of Eq.(20). At the same time a numerical calcu-
lation of I is quite simple since it can effectively be repre-
sented as a product of two one-dimensional integrals.

C. Effective potentials: Rearrangement

Calculation of the effective potentials for the rearrange-
ment (atom-P$ transitions is relatively more involved. The
history of such calculations goes back to Massey and Mohr
[24]. However, until early 1990s the matrix elements for the
general case were not available. Hewittal. [6] for the first
time communicated their results for transition amplitudes be-
tween arbitrary hydrogen and positronium states. They cal-

Summing over the angular-momenta projections one finally,jated the positronium formation matrix elements using the

arrives at

V'(—y:';(qa, 'qa):(4ﬂ_)2(_1)J+(L/+L+I/+I)/2[L/|]

L N L
(2) AL'ALAINI’
X; Cob C&oo‘ |3 |,]

Xlz/a(qa’ vqa)v (21)

where the braces denote § 6ymbol. Step 2 of the sum

points to the fact that only the terms corresponding tof
the same parity as the one bf+1 (or, identically, of L’
+L) survive.

Gaussian representation for the wave functions and the inter-
action potentials. This work enabled a major breakthrough,
when Mitroy[8] calculated the amplitudes in a more general
form and in a straightforward manner without the use of
additional expansions. Here we follow Mitr¢§]. However,
we further reduce the matrix elements analytically calculat-
ing pseudostates and form factors in momentum space.
For the purpose of calculation it is convenient to do the
following transformation:ps;— —pg and qz— —qgz. Thus
now in channelB vector pg is the position, andj; is the
momentum, of positronium relative to proton. With this
transformation the effective potentials for rearrangement
— B transitions are defined as
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V,Ba'(qﬁ lqa)E<QB| < ¢ﬁ| Uﬁa| wa>|qa>

VED(ag.0.) = f ——— U (pp)——— (P, (30)

(2m)* (- )2

ZJ jdpﬁdrﬁe*iqﬂl’ﬁdﬂé(rﬂ)(H0+Ua+v3

v )y (r,)eibe, (25) where /(p) are pseudostate wave functions in momentum

spaceg(p) are pseudo-bound-state form factose will call
HamiltonianH, can be taken in variables of either chanael them simply pseudo-form-factgrsHere p;, and p, are the
or B, momenta of relative motion of the particles of the corre-
sponding pairs immediately before and after the actual rear-
q2/2+ p?/2= qz/4+ pz, (26)  rangement via the Coulomb potentiatrq—q,)?,

wherep,, is the momentum of the internal relative motion of
the particles of pairy, a canonical conjugate of the Jacobi
variabler,,

p[’;:qBIZ—q and p,=0z—q, (31

where q is the momentum of the relative motion of frag-
0/ dp —d.— @27 ments in virtual channes.
Pp=dp/e™ 0o ANG Po=0p~ o - First, we transfornvgl(qﬂ,qa) into the representation of
Split Eq. (25) into two parts, total angular momentund, then separate the radial parts of
the momentum-space pseudostates and pseudo-form-factors

according 0 %u(P)=Rui(p)Yim(P)  and  Gu(p)
=U,(p)Ym(p). Radial partR,,|(p) andu,(p) will be cal-
culated in the following section. Then

Vﬁa(qB'qa):f jdpﬁdrﬂe_iqﬁpﬁ¢2(rﬁ)

X[E(Ug,Ga) 00V gl1h,(1,) € %P
+f fdp‘BdrBe_iQBpﬁlﬂz(rﬁ)era(ra)eiqapa VIZ?:XL(l)(QBlQa): E CL'I N Ck/ll;“]an fdQBdQQ
m’,mM’ M
=y (1) ~ ~ ~ ~
=V5a(0g.0) + Vo (Gg . 0a), (28) XY:'Mf(qﬁ)YLM(qa)erm/(pﬁ)YIm(pa)

with &(0g,0,) = 05/2+ p2/2— E=q3/4+p5—E. Then the

X[&(q5,9.) RS, (pg)R
parts can be written as [€(0g.8e)Re 1/ (Pp)Rui(Pe)

0 — - - + R (P Uni(Po) + U (P Ry(PL)]-
Via(ds, ) = E(dg ,Ua) Y5 (Pp) ¥a(Pa) + 5 (Pa) alPa)

(32)
+ 05 (Pp) Yl Pa) (29)
pre Decomposing the spherical harmonics of the direction of the
and relative motion in pairsx and 8 one gets
Pggan=an S ey, s ot g g s e L
R R e LTI R e (IR

%0300 | | G EO .00 Y 0B Y B Ys, ) Yy (V1 80 Vi ()

(33
Here
R (PpR(PL) Ry (P Un(Pa)  Uny (Pa)R(P)
FO (0. 00) = (O o)+ — e (34
pﬁpa pﬂpa p'Bpa
[I1]=V(2l+1)!, I;+1,=I1", andl,+I,=1. Composing two spherical harmonics of the same relative motion in chaanels
and B we get
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! nhe [I"] 14151 [ll]
YLt (g, = CLJ J, cLi Cl 1l2! 1 . 1591 c'il2
Ba (dg.94) m’,nr%/l’,M M’m’ K MmKIi,mi,mé m[| I\ l]qﬁ( da) |1 %’mz —my=mym| 1,1
rn | I " I I '
quﬁl(_qa)lz E ® Cln:l:::llm!r 000I [ : 1] 2 @ 2I2|2 m’mHCOZ(l)éI [ : 2]( 1)m2_ml
Fo Tl ; (13
X J f d05d0.F (0,0 Y11 (80) Yim(0) Y (G) Vi () (35
Now we expand=((q,q,),
FO(g.0) =22 71 (g8 Y3l B) Yl G, (36)
where the expansion coefficients are given by
| ! |
F0(05.0.0- | d2F(5,0P,2 @
andz=qg-q, . Using the latter we arrive at
(1] qiq [1411] ALPPY
LL(I) -1-1 142 % (2) 1'1'1 PP
Vo (Ap.0a)= 2 TR l] 5 ol E [1.1,1] 369 az Cooo (7 2 Cooo [
x3? Jf§'><%,qﬂ>[[L|~x : SAE'Z[[L.? leo > (-1 tetmm e
A 1 2

! 1’ 1’
m’,mM’,M,mg,mg,my,my,p

XCUJ cLi C|l|2| C|1|2| Clllil’l/ C|2|§|’2’ CL')\I" LAY
M’m’K~MmK mimom’ = =My = Mom = mymimy T —my—miml M/ p—mi T M —m)

(39

Summing over all the projections of the angular momenta, which is technically rather involved but straightforward, we finally
get

' S ' a2l o [lal2] e 3+1,5 () ~l111]
Vi Qg0 =[VIL LI 173 S 227 e qjf al *22 Coob’
I [12t2!]
I I J I’
(2) AT (2) L'NY L)\I" / /
E ozo?)22 [A]zcooo Cooo l2 L L g fg\l)(%'qa), (39
P A N

where the braces denote thej 18/mbol of the first kind 25].
Next we transformv.)(ds.d,),

VZ;L(II)(quqa): 2 Ck/l’l J/KCIR/:anj quﬁ'dqa L/M/(QB)YLM(Qa)f

m’ ,mM’ M

'//,3 ,3) U, (pe)- (40

(2m)® (- )2

Expand the Coulomb potential to get

! q2+qi ~ vk “ N '\ ’
Vi (gg.0,) = f qu( ) > ChaChily f f dagdaYy y (Ap) Yim(D U5 (PR Pa(pL), (42)

an qua m"m'M”M

whereQ, (x) is the Legendre function of the second kind. This shows that remaining is the same\/éé,"l‘&(qﬁ q.). The
only difference is thafF")(q,q,) is now given by
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R (Pp)R(PL)
FD(qy,q)=—"—F " (42)
Ps Pao

Finally, combining all results for the effective potentials in the rearrangement transitions we get

' ’ ['i'é] ’ (2] 74 (2) IO (2) ALLILISO (2)
VL Hag,q.)=[1"IL"LI"1IT](=1)7Ft =4 91 1t Ct1'1 Ccl2'2'2 A2
ga (Ug.0a) =] 1(=1) % THIEY % [I1!I2!]q3 |2’1’: 000 '2'2; 000 2}\: [A]

I I J |’
XCoop'Coog 12 L U 110 154(0p.00), 43)
l5 15 A 17
|
where ~ R
Rnl(p):JO arrj(pr)Ry(r) (48)
’ 1 o
15+1 ’
Iza(qﬂ'qa):qaﬁ *F{(dp,00)+ wano dadz""" and
q2+Qi () ~ z
XQul Zqq. |7 G5 (44 Uni(p) = fo drji(pr)Ru(r), (49
D. Pseudostates and pseudoformfactors respectively. Though these transforms resemble known inte-

. . . ) rals widely used in guantum mechanics, they are not readily
_In this section we define our pseudostates used in thg,4iaple in standard tables. We calculate them solving a
direct-transition amplitudes and calculate the corresponding|sssical momentum distribution problei26] reformulated

momentum-space pseudostates and pseudo-form-factqi§ nseudoatoms. Skipping the details we give the final result
used in the rearrangement amplitudes. We use the pseu-

dostate expansion for the atom and Ps wave functions [
B 21+2,2 (ap)
Rai(p)=27""a“l!

Rui(1) =2 Bpia(r), (45) | .
= (ap)?—1
X 2 BNy 2, (m+1+1)Cit| ———
where the basig,(r) is made of the orthogonal Laguerre k=1 m=0 (ap)°+1
functions (50)
&a(r)=Ny(2r/a) "t "*Li"*(2r/a),  (46) and
with U (p)=22'+1al'&% B''N
2(k—1)! ]¥2 " Tap2+1] L& M
Nu=| et (47) 1 ap)?—1
a(2l+1+k)! > C'm“( |0)2 , 51
m=0 (ap)°+1

HereL?'"%(2r/a) are the associated Laguerre polynomials.

Expansion coefficientB'nk are found by, reformulating the where C'm“[x] are the Gegenbauer polynomials. Integrals
general BG principle for this particular case, diagonalizingcontained in the above transformations are given in the Ap-
the two-particle Hamiltonian of the relevant pair. The resultpendix.

formally does not depend on characteristic falloff radas

however the rate of convergence c_ioes. For thl_s reason it WI|| Ill. DETAILS OF CALCULATIONS

be chosen on the basis of practical convenience. We will

return to the specific choice of parametein the following In order to calculate the transition matrix elements we
section. have to solve a system of coupled momentum-space integral

The momentum-space pseudostate wave-functions argfuations(12) with the effective potentials given by Egs.
pseudo-form-factors can be written as Hankel transforms of21) and (43). To avoid complex-number arithmetic we in-
the relevant configuration-space functions troduce theK-matrix as for electron scatterind8]. This
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transforms Eq(12) to the following system of equations for 10 T T
the K-matrix amplitudes 105
N,+N 2 o 10°
@ B dq Hq 1 £ -7
L'L L'L Yoy 10
’ ’ = ’ 1y + P E——— E
K55a,.a,)=V5 a,.q,) ; LE 2 S o0
2 10°F .
VLVLH( ) :g -10 i i
oy Ay ) o 8
2 oy A\ My My ) 10" |+ .
E_ qy,,/ZM ,yrr_ E,yrr 42
10712 | .
(v.7'=1,... Ny+Np). (52) 102 E— '
0.22 1T —
For numerical solution of these equations we use standard 0.20 HHts) :
quadrature rules. The kernel of the equations containing prin- 0.4 |neorected = !
cipal value integrals is discretized using a Gauss-Legendre 3 016 L corected - | i i
quadrature. The problem of channel-dependent singularities 2 - B
is overcome by using a unique quadrature in each channel g 04 i ;
containing the singularity. Accuracy of the integral in the 5 0.12 -
sense of the principal value was ensured by using a sub- 0.10 i
guadrature consisting of an even number of Gauss-Legendre 0.08 i
points, symmetrically distributed in the immediate vicinity of '
the singular point. This procedure is similar to the widely 0.06 : :
used subtraction method with the subtraction being numeri- 0.09 P LI
cally zero. 0.08 H—redS) i
Fundamentally, the system is highly ill conditioned which uncorrected —— i
makes it impossible to use arbitrarily high basis sizes and g O07[|oomected - | ;
quadratures. To alleviate this problem in a numerically effi- % 0.06 | B
cient fashion we rewrite Eq52) in operator form as 5 ook i $
E : o ¢
]
[1-(1+ 8)VGIK(8)=V (53 Y S — K .
with the required result obtained fé=0. Then all deriva- 0.03 - i
tives of K with respect tos have the same form as EG3). 0.02 L .
001  -0.005 0 0.005 0.01

In particular, the kernel of the resulting linear equatidns
—(1+ 8)VG remains the same, only the driving tefnight-

hand sidg changes. This is computationally very important  FIG. 2. Reciprocal condition numbétop) and K-matrix ele-
as the majority of the time, required to solve the linear equaments as a function of, see Eq(53). The dots indicate the values
tions, goes on factoring the kernel. Consequently, the assoavf & at which the calculations were performed. The “uncorrected”
ated computer code allows for an arbitrary number of derivaresults are direct solutions ¢63). The “corrected” results have
tives to be evaluated with almost no extra CPU time orused the first derivativi&K’(5), obtained together with<(5), to
memory being required in practical calculations. Assumingestimate the result a&(5=0).
thatK () is analytic in the neighborhood of smal] we can
reconstrucK (6=0) from nonzerod using a Taylor series.  (52) along the real axis, these poles should correspond to
We give an example in Fig. 2 of the behavior of the sys-boundstates and/or resonances. Thus a slight increase in the
tem for 30 eV incident energy. For speed of calculation at thenagnitude of the kernel makes the latter support bound- or
many values ob we only includeds states of both H and Ps. weakly bound states above the three-body breakup threshold,
Ten each of H and Ps Laguerre-based states were used witthich is unphysical. This makes reconstructionKdgfs=0)
around 100 quadrature pointdq integration in Eq.(52)]. using 6>0 impossible. However, decreasing the magnitude
Looking at the reciprocal condition numbe7] first, we see  of the kernel is harmless. We see that &0 the corrected
that the system of linear equations is ill conditioned, particuresults are almost perfectly flat, i.e., independen#pfind
larly for |5|~0. To be more specific, whed=0 we have hence demonstrate the utility of the present approach. We
difficulty in obtaining stable<-matrix elements. However, ill  usedé= —0.01 with one derivative correction for all subse-
conditioning improves rapidly ags| increases away from quent calculations.
zero and the results become stable. Examining the analytical Calculation of the effective potentials for direct transi-
behavior of the resultind< (6)-matrix elements we see an tions, Eq.(21), requires evaluation of the integrals in Eg.
interesting situation. For negativ@ the behavior is mostly (20). The latter can be calculated to a desired accuracy, typi-
linear with 8, and consequently an accurate estimateS at cally five significant figures in the present work. This is ac-
=0 may be obtained using just one derivative. However, focomplished by integrating out to 400 a.u. on a sufficiently
6>0 there appear to be singularities. Since we solve Edfine radial mesh. The direct-transition potential matrix ele-
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ments are calculated particularly quickly. [ ' ' ' sbasls - |
As shown in the preceding section the positronium forma- > g:z:g -----
tion matrix elements have been written as a coupling of 12 5T sppdf basis o ||

actual and virtual angular momenta, leading to finite angular
momentum sums and two-dimensiorial the worst case
integrals. Our formulation allows the momentum-space pseu-
dostates and corresponding form factors to be reduced to
compact analytical expressions as opposed to highly oscilla-
tory integrals used earlid8]. To evaluate the integral over
the momentum of the virtual electron involving the Coulomb . . X S
singularity consider a transformation of the integral in Eq. 0 20 40 60 80 100

Jry
1

cross section (units of na%)
N
T

(44) to positron incident energy (eV)
® (q2+ qz) FIG. 4. Total Ps-formation cross section fet + H scatter-
dqf — ing.
fo A Zog ing
1dt Ay [ 9a t24+1 and for each point of the integral equation mesh, which be-
=J T qatf(qat)+Tf(T) QL( ot ) (54  comes computationally expensive with increadingVe took
0 82 Gauss-Chebyshev quadrature points, sufficient to provide
The idea behind this transformation becomes clear if we notgOUbIe precision accuracy for the integ(a).

Calculations are performed for a limited number of partial

that wavesJ. Extrapolation to infinitel is done using the Born

241 t+1 subtraction method for the direct scattering cross sections
Qol —=—1|=2Q(t)=In——, (550  and a geometric series method for the positronium formation
2t t-1 cross sections. A number of test runs at intermediate energies

dh th d-point | ithmic sinaularit b howed that the first ten partial waves were sufficient for
and hence the end-point logarithmic singularity can be Usegy iy, o extrapolation in the Ps formation channels, while for

as a weight function to evaluate the integral we need. FOlhe same in the direct scattering channels we had to include

this weight function we produce orthonormal ChebySheVexplicitly 10 more partial waves. The total cross sections are

polynomials which 'yield "an opt|m'al Ga.u.SS'ChepyShevobtained as a sum of all cross sections. The breakup cross
quadrature. FolL>0 there are no singularities. This ap-

) . ) section is defined as a sum over the open positive-energy H
proach leads to immense compu;atlonal savings. Qha&lo and Ps pseudostates.
not .depend.on channel mformaﬂon nor the mESh used for Finally, the generalized CCC computer code has been
solving the integral equations. Thus, the nonsingular part O{ested against the QG3 [10], CC(ZS,3) [15], and
Q. (apart fromQg) can be calculated once, and stored for — . .
general use together with the quadrature points and weighfsC(30.3) calculationg14]. All were reproduced to a safis-
corresponding t@,. This procedure dramatically speeds up actory accuracy.
the evaluation of the most time-consuming part of the
present calculations. For testing purposes we implemented IV. RESULTS
also the singularity subtraction method which was used by . .
Mitroy [8]. The latter proved to be equally efficient for rela-  One of the main results of our previous wdrk?] was
tively small calculations and small However, its efficiency that widely used CQ{,N’) calculations, with atomically
rapidly diminishes in the case of bigger calculations, involv-based pseudostates and few eigenstates of Ps, were unable to
ing larger number of channels and partial waves. This fact i¢liminate unphysical resonances. At the same time it was
a result of the necessity of recalculatiQg in each channel demonstrated that in the case ®f,N) bases, i.e., with the

5] T T T

| Is ll;&lsis T ]

3 sp basis ----—- 3

Ng’ S spd basis —— [] N§

w F spdf basis e pad r

o o]

24 2

| €

2 2

c 3 c

s | S

B o 05}

o 2 — @

(2] === (7] o
2 F 2 s basis ------ 4
A e e sp basis ----- ]
° 3 ° spd basis —e—

0 . 1 " 1 " 1 " 1 2 1 M 0 1 1 1 S df baS|S |e
0 20 40 60 80 100 0 20 40 60 80 100
positron incident energy (eV) positron incident energy (eV)
FIG. 3. Total cross section f&@" + H scattering. FIG. 5. Total breakup cross section fef + H scattering.
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6 T T T - .
[ \ Kernogh |C[$4% ]
= ernoghan et al. [14] --—-- 3
N§ 5t Kernoghan et al. [13] - y 5’ L
ke ] Mitroy [16] - |1 b
o 4 Zhou et al. [29] +—e—i || °
'§ 5
el 5 .. ,
3 8 O
- o K/ CCC: direct ioniz, - J
2 2 ¥ Kernoghan et al. [14] ------- ]
: g / Kernoghan et al. [13] -~ | ]
5 © Mitroy [15] —---
&ﬁ Jones et al. [30] —e— |]
0 . I I I L L 0 1 I T T

100 O 2 4 60 8 100
positron incident energy (eV)

0 20 40 60 80
positron incident energy (eV)

dostat round both center . resonan di inally. Having established convergence we next make some
pseudostates arou oth centers, Spurious resonances dis mparison of the converged results, which we denote by

peared ql_chkIy fpr relgtlvely smaMl. Since the model prob- CCC, with the available experiment and some other calcula-
lem considered ifi12] is an important constituent of the full tions

problem, we expect the earlier conclusions to also hold for In.Figs. 68 we compare CCC results with other calcula-
the full ;?roblem. . he full . h | tions and experimental data of Zhat al. [29] and Jones

Now _et us c_on5|der t em positron-hydrogen prob M- et al. [30]. Since we are not trying to review the latest cal-

Calculations with bases sizeN=2N, now need to be culations we compare our results only with the most relevant
pheckgq for convergence W'th. orbital gngular momgntgm close-coupling calculations available on the full energy
In addition toN, . Our primary lnteres_t is above the ioniza- range. For the status of low-energy variational calculations
tion threshold, where the cross sections are expected o hg,, Refs[31] and[32], and references therein. Progress us-
smooth as a function of incident energy. For brevity of pre-; . "o Faqdeey approach is discussed in Fag]. Results
sentation. we take the same numb(_ar .Of Laguerre-based staigs,, a coupled-channel optical method may be found in Ref.
at each |_nC|_dent energy. Any deviation from _smooth Cr0S¥34]. As seen from the figures CCC results agree with experi-
sections indicates the level of convergence vith We set lénent reasonably well. So do the C_C§9 calculations of

N/ =N;,. This is not necessary, but demonstrates that we ar
able to treat either center equivalently. We take=10—1  <ernoghanetal.[13], CC(30,3) results of Kernoghaet al.

with Laguerre exponential falloff parameter being varied[14], and the CCZ8,3) data of Mitroy[15]. Note that the

slightly around the optimal value for the ground state. TheCC(9,9) used an energy averaging procedure to obtain

variation is used above the ionization threshold to ensure thatmooth results, whereas the latter two usedrth& scaling

the total energy bisects two pseudothreshd®f. To show rule to estimate the total Ps formation. Such procedures are

convergence withwe give some results froi=1, 2,and 3 not necessary in the present work.

calculations. The largest calculations performed had a total What is particularly interesting is that for the case of the

of 68 states, 34 each of H and Ps. break-up cross section the CCC results have two comparable
We begin with a study of convergence for the total, totalcontributions, one from the excitation of the positive-energy

Ps formation, and total breakup cross sections, given in Figdl pseudostateéplotted as direct ionization and the other

3-5, respectively. Reasonably smooth cross sections are ofsom excitation of positive-energy Ps pseudostates. A similar

tained for all bases with convergence being rather rapid. result was noted by Kernogha al.[13] using the CC(99)

For the three cases considerestates contribute only mar-

1.5 T T I

—cc — |/
Kernoghan et al. [14] ----- 1
Kernoghan et al. [18] ------ ]

CcCC — |4

Kernoghan et al. [14] -----
Kernoghan et al. [13] -------
Mitroy [15] -~
Zhou et al. [29] e |]

[5)
T
iy

e
4

cross section (units of na%)

e
T

cross section (units of nag)
N
T

wFe 0 20 40 60 80 100
0 20 40 60 80 100 positron incident energy (eV)
positron incident energy (eV)

FIG. 9. Elastic cross sections fei + H scattering. The CCC
FIG. 7. Total Ps-formation cross section fef + H scatter- and the calculations of Kernoghaat al. [14] are almost indistin-
ing. guishable.

012710-10



TWO-CENTER CONVERGENT CLOSE-COUPLING . .. PHYSICAL REVIEW @6, 012710(2002

000 —— |1 —CCC ——

«a 03 Kernoghan et al. [14] --——-- N a3 F Kernoghan et al. [14] --——-- ]
§ Kernoghan et al. [13] ------ 1 § Kernoghan et al. [13] ------
ks 1 ks

2 2

\5, 0.2 \g’ 2} 4
[ = [ =

o o

k] k]

b b

o 91r o1 _
0 0

o o

53 3 53

1 1 1 1 1 -y A
0 l 0
0 20 40 60 80 100 0 20 40 60 80 100
positron incident energy (eV) positron incident energy (eV)
FIG. 10. X excitation cross sections f&" + H scattering. FIG. 12. Cross sections Ps for formation ia dtate ine* + H
scattering.

calculations. However, for the CE(N')-type bases onl . .
contribution from direct ionization isf po)ss)i/gle. At the ma):(i- >2) states and hence such flux is forced into thenRsf)

mum of the cross section, around 50 d¥ame as for States. The CC(®) calculation is simply too small to yield
electron-impact ionization of Hhe separately converged in- convergence.

direct contribution to the break-up cross section is around a

third of the total. Yet the CQ0,3) calculations of Ker- V. CONCLUSIONS AND FUTURE DIRECTIONS

noghanet al. [14] yield only a marginally smaller result.

Clearly, absence of Ps positive-energy states is being ab- Positron-hydrogen scattering problem has been ap-
sorbed by the positive-energy H states. More detailed, differproached according to the full CCC formalism. It has been
ential ionization measurements would be very helpful to tesglemonstrated that two-center pseudostate close-coupling ap-
the present formalism. proach to the problem may lead to practical convergence.

We next turn to the individual integrated cross sections forThis is possible when large-enough pseudostate expansions
scattering oln=<2 states. Beginning with the atomic states, are used on both the H and Ps centers. No overcompleteness
elastic scattering, € and 2 excitation are given in Figs. Problems, intuitively associated with nonorthogonal two-
9-11, respectively. We see good agreement between tt€nter expansions, have been found, even in the three-body
present CCC and the C8(,3) calculations of Kernoghan Preakup channel. However, the underlying equations are
et al. [14] for the three cases. This indicates that the nellighly ill conditioned and numerical techniques are neces-
glected Ps states have almost no effect on the H cross se?@ to deal with this issue. The one detailed shows consid-
tions. In Figs. 12—14 the corresponding Ps excitation cros§rable promise not only for positron scattering, but is equally
sections are considered. While there is excellent agreeme@PPlicable to electron scattering also.
for the excitation of the Ps@) state the situation for the  Since in the present CCC approach both centers have
Ps(x) and Ps(D) states is markedly different. Only the been modeled on an equal footing, the principle of detailed

CCC calculation yields relatively smooth results. ThePalance may be readily applied. Therefore accurate proton-
positronium scattering data should be simultaneously calcu-

Sated and will be a subject of subsequent work. For now we
only note that CC{I,M) calculations are clearly unable to

Syield generally accurate results for this problem.
" We intend to extend the CCC approach to positron colli-

CC(30,3) calculation generally substantially overestimate

both the 2 and 2p cross sections. The CC(®) calculation
of Kernoghanet al. [13] shows most oscillation, but is gen-
erally closest to the present CCC results. This is not surpri
ing. The CCRO0,3) has no allowance for excitation of Rs(

e —— ||
Kemoghan et al. [14] -----
Kemoghan etal. [13] ------

iy
1

01 F A

cross section (units of na%)

g

kS

2 Y

5 L

< 005 F ! E
& 05 | i

k]

[

w

2 CCC —— | I s

° Kernoghan et al. [14] --—-- ] 0 !

0 I . Kernqqhan etal. [13] b 0 20 40 80 80 100
0 20 40 60 80 100 positron incident energy (eV)
positron incident energy (eV) . ) . )
FIG. 13. Cross sections Ps for formation ia &ate ine™ + H
FIG. 11. 2 excitation cross sections fe + H scattering. scattering.
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’% o1r , ' ] APPENDIX: USEFUL INTEGRALS
S ! ] Here we give the Hankel transform integrals calculated in
8 005 ] this work, namely,
0 4
0
o 0
o f drjy(pr)r'*2e "2 2" 2(2r/a)

N 0
0

0 20 40 60 80 100

|
positron incident energy (eV) _ 2| + 1a| +3)) (ap)
- - - [(ap)?+1]'"2
FIG. 14. Cross sections Ps for formation ip 8tate ine™ + H
scattering. n ap)2—1
X > (m+l+1)Cli? % (A1)
sions with alkali-metal atoms and helium. So far, theories m-0 (@p)“+1
used either solely eigensta{&$,36| or (above the ionization and
threshold an atomically centreti? basis, supplemented by a
few Ps eigenstatd€]. Results of both approaches systemati- °°d ; I+1g-r/a 2420
cally underestimate Ps formation cross-section data at low 0 fiprr-e n “(2rfa)
(for alkali-metal atomsand high(in case of helium ener- .
gies. We believe the CCC approach to these problems may o2y (ap)! l+1 (ap)®—1
cast more light upon the discrepancies between the presently =2a I'[(ap)2+ 1]+t o m _(ap)2+ 1|’
available calculations and measurements.
(A2)

where j(x), L2*2(x), and C/7![x] are the spherical
Bessel functions, the associated Laguerre polynomials, and
This work was supported by the Australian Partnership fothe Gegenbauer polynomials, respectively. The integrals
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