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Two-center convergent close-coupling approach to positron-hydrogen collisions
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The question of convergence in two-center close-coupling expansions is addressed via the study of positron-
hydrogen scattering. It is found that the major cross sections do converge if sufficient number of states from a
complete basis, centered separately on the hydrogen atom and positronium, are used to expand the total
scattering wave function. The underlying equations are computationally highly ill conditioned, and a simple,
numerically efficient technique is given that alleviates the problem. Generally, we find good agreement with
available experiment and some previous theory. However, calculations that only used eigenstates for the
positronium center yielded cross sections for positronium formation in the 2s and 2p states that are higher than
the convergent ones obtained in this work.
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I. INTRODUCTION

The problems of electron- and positron-hydrogen scat
ing, on the surface, may seem to be very similar. The form
has the complexity of exchange arising from the indist
guishability of electrons, while the latter has the complex
of rearrangement due to the formation of positronium~Ps!.
Formal theory tells us that exchange may be treated a
rearrangement process, yet it turns out that the nume
treatment of electron exchange is much simpler than tha
Ps formation. The two problems share similar complexity
the treatment of the target excitation and the three-body c
tinuum. However, the positron scattering problem also has
formation and excitation away from the system’s center
mass. Thus, the positron scattering system has two~atom and
Ps! natural centers whereas the electron scattering system
only one.

The close-coupling method has been very successfu
treating electron-atom scattering problems. It has many
merical implementations such asR matrix @1,2#, integro-
differential close coupling@3#, hyperspherical close couplin
@4#, and momentum-space based convergent close coup
~CCC! @5#. These techniques rely on a sufficiently lar
single-center expansion of the total wave function in orde
correctly take into account the possible atomic excitation
ionization processes. In particular, the CCC method utilize
complete Laguerre basis for this purpose. The target Ha
tonian is diagonalized in this basis resulting in negative- a
positive-energy states. With increasing basis size
negative-energy states converge to true discrete eigens
while the positive-energy states provide a more dense
cretization of the continuum. Convergence, in the transit
of interest, is obtained by simply increasing the basis siz

The same idea can be applied to positron scattering ex
that now two-center expansions are required. Such exp
sions readily incorporate the required boundary conditi
having bound atomic and Ps channels, but appear to h
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double counting of the continuum. It is this problem that h
attracted our interest in recent times, and we address it h
Thus we are particularly interested in obtaining converge

in calculations of the CC(N̄,N̄8) type, with a basis consisting
of N atomic andN8 positronium negative- and positive
energy eigenstates and pseudostates. We use a bar o
basis size to indicate the usage of pseudostates, no bar
cates the usage of only true eigenstates.

Two-center close-coupling calculations have been ext
sively applied in the 1990s@6–9#. Higgins and Burke@7#
used the CC~1,1! model across a broad range of energies a
found a large and unexpected resonance around 40 eV
dent energy. Though a substantial number of papers h
been devoted to the study of this resonance, and those fo
in CC~3,3! calculations@10#, these resonances are not re
The first indication of this was shown by Kernoghanet al.

@11#, who suggested that CC(N̄,N8)-type calculations re-
move these spurious resonances. However, utilizingS-wave
model we found that this was not the case@12#. Instead, only

calculations of the type CC(N̄,N̄8) showed that this reso
nance disappears, for relatively smallN andN8.

Calculations of the type CC(N̄,N8), where a large numbe
of atomic states were supplemented by a few Ps eigens
have dominated the literature. An exception to this was
work of Kernoghanet al. @13# who used a CC(9̄,9̄) calcula-
tion utilizing s-, p-, andd-pseudostates on both centers. U
fortunately, this calculation yielded pseudoresonances a
ciated with a small expansion, and was later supersede
the CC(30,3) calculations which showed smoother resu
@14#. A similar conclusion was found by Mitroy@15#. Mitroy
and Ratnavelu@16# have performed convergence studies u
ing CC(13,8̄) calculations for the full positron-hydroge
problem at low energies. Below the ionization threshold th
showed good agreement between sufficiently large ps
dostate close-coupling calculations and the accurate va
tional calculations of Humberston@17#. However, at energies
above the breakup threshold the situation is less clear,
this is of primary interest to us.

The first extension of the CCC method@18# to the
©2002 The American Physical Society10-1



s
-
re
at

th
s
e

th
th
tw
hy
hu
i

ev
i

un

e
on
m
es
a
th

m
he
la
e
fu

an
e

th
y

m

-
air,
obi

s

g
-
f

n-
in

ent

lly
eu-

osi-

ALISHER S. KADYROV AND IGOR BRAY PHYSICAL REVIEW A66, 012710 ~2002!
positron-hydrogen system was without allowance for po
tronium ~Ps! formation @19,20#. It was shown that single
center expansions may yield correct results in certain
stricted kinematical regimes, but are generally inadequ
The CCC method has been generalized to incorporate
formation channels and be applicable to theS-wave model of
the positron-hydrogen scattering@12#. For this model we
were able to explicitly demonstrate the convergence of
~nonorthogonal! two-center expansions. Moreover, it turn
out that the convergence is only possible when two indep
dent large enough Laguerre bases are employed to bo
the centers. Most noteworthy is that the cross section for
total breakup of the system into three free particles has
independently converged contributions: ionization of the
drogen atom and electron capture to the Ps continuum. T
no overcompleteness problems, intuitively associated w
nonorthogonal two-center expansions, have been found,
in the three-body breakup channel. However, extreme
conditioning of the underlying linear equations was enco
tered as the basis sizes increased.

The purpose of the present work is to investigate the qu
tion of convergence in nonorthogonal two-center expansi
in the case of the full positron-hydrogen scattering proble
This time, convergence for all physical channels of inter
needs to be demonstrated not only as a function of the b
size, but also as a function of the angular momentum of
included states.

The plan of the paper is as follows. The CCC formalis
for two-center expansions is given in Sec. II. Details of t
calculations are given in Sec. III. The results of the calcu
tions will be presented in Sec. IV. Finally, in Sec. V w
highlight the main results, draw conclusions, and discuss
ture directions for the present work.

II. FORMALISM

A. Basic equations

Consider a system of three particles: positron, proton,
electron. Indexa (b) will denote a quantum state in th
channel where positron~proton! is free and the other two
form a bound state, while indexe will be used for the chan-
nel where all three particles are free. With this notation
total three-body scattering wave function at a total energE
may be written as

~H2E!C50, ~1!

where

H5H01va1vb1ve[H01v, ~2!

and whereH0 is the three-free-particle Hamiltonian, andv i
is the Coulomb interaction between particles of pairi ( i
5a,b,e).

The most natural way of building the functionC with
proper boundary conditions would be expanding it in ter
of functions of all asymptotic channels, i.e.,
01271
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C'(
a

Fa~ra!ca~ra!1(
b

Fb~rb!cb~rb!

1E deFe~re!ce~re!, ~3!

whereca (cb) is a bound-state wave function of atom~Ps!
in channela (b), ce is the regular Coulomb function de
scribing the continuum state of the proton and positron p
with Fi(ri) being the associated weight function. The Jac
variabler i is the relative position of particles in pairi andri
is the position of particlei relative to the center of mas
~c.m.! of pair i ( i 5a,b,e). See Fig. 1.

In this work we investigate the possibility of expandin
using the full sets of functions~i.e., both bound and con
tinuum! of pairsa andb, thereby representing the effect o
states in channele by continuum states of pairsa and b.
Namely,

C'H(
a

1E daJ Fa~ra!ca~ra!

1H(
b

1E dbJ Fb~rb!cb~rb!. ~4!

In principle, at this stage we might wish to keep the co
tinuum part only for one of the pairs. However, we found,
practice, that only an expansion of type~4!, with the con-
tinuum parts for both centers, is capable of giving converg
results in computations@12,21#.

The use of true continuum functions is computationa
too difficult, and we replace them with Laguerre-based ps
dostates, as in electron scattering@18#. Accordingly, Eq.~4!
becomes

C'(
a

Na

Fa~ra!ca
(Na)

~ra!1(
b

Nb

Fb~rb!cb
(Nb)

~rb!

[ (
g

Na1Nb

Fg~rg!cg~rg!, ~5!

FIG. 1. Jacobi coordinates for a system of three particles: p
tron (a), proton (b), and electron (e).
0-2
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where the indexg ranges over alla andb.
There are a number of ways to find functionC in the

form ~5! to best satisfy Eq.~1!. The simplest way consists i
using the Bubnov-Galerkin~BG! principle @22# ~a scattering
analog of the Ritz method widely used in bound state pr
lems in quantum mechanics!. We substitute the expansion~5!
into Eq. ~1! and, according to the BG principle, require th
the result be orthogonal to all (g851, . . . ,Na1Nb) basis
states

K cg8U~H2E! (
g

Na1Nb

FgcgL
rg8

50. ~6!

In this equation indexrg8 denotes integration over all var
ables exceptrg8 , i.e., the result of the integration is a fun
tion of rg8 .

The condition imposed above is a system of integ
differential equations for unknown weight functionsFg .
Following @23# we transform these equations for the weig
functions to a set of coupled effective two-body Lippman
Schwinger-type integral equations for transition amplitud
Tg8g ,

Tg8g~qg8 ,qg!5Vg8g~qg8 ,qg!1 (
g9

Na1Nb E dqg9

~2p!3

3Vg8g9~qg8 ,qg9!Gg9~qg9
2

!Tg9g~qg9 ,qg!,

~7!

whereqg is the momentum of free particleg relative to c.m.
of the bound pair in channelg. The effective two-body free
Green’s function is defined as

Gg9~qg9
2

!5~E1 i02qg9
2 /2Mg92eg9!

21, ~8!

and describes the free relative motion of particleg9 and
bound pairg9 with binding energyeg9 . Mg9 is the reduced
mass of the two fragments in channelg9 with Ma51 and
Mb52.

The effective potentials are given by

Vg8g~qg8 ,qg!5^qg8u^cg8uUg8gucg&uqg&, ~9!

where

Ua,a5v2va , Ub,b5v2vb , Ua,b5Ub,a5H01v2E
~10!

are the potential operators.
Upon partial-wave expansion in total orbital angular m

mentumJ,

Vg8g~qg8 ,qg!5 (
L8,M8,L,M ,J,K

YL8M8~ q̂g8!

3CM8m8K
L8 l 8J V g8g

L8L
~qg8 ,qg!CMmK

LlJ YLM* ~ q̂g!,

~11!

Eq. ~7! transforms to~for eachJ)
01271
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T g8g
L8L

~qg8 ,qg!5V g8g
L8L

~qg8 ,qg!1 (
g9

Na1Nb

(
L9

E dqg9qg9
2

~2p!3

3V g8g9
L8L9~qg8 ,qg9!Gg9~qg9

2
!T g9g

L9L
~qg9 ,qg!,

~12!

where L, L8 and L9 are the angular momenta of the fre
particles in channelsg, g8, andg9, respectively. The effec-
tive potentials in the representation of total angular mom
tum are given by

V g8g
L8L

~qg8 ,qg!5 (
m8,m,M8,M

E E dq̂g8dq̂gYL8M8
* ~ q̂g8!CM8m8K

L8 l 8J

3Vg8g~qg8 ,qg!CMmK
LlJ YLM~ q̂g!, ~13!

where Cde f
abc are the Clebsch-Gordan coefficients of vec

addition,YLM(q̂g) are the spherical harmonics of unit vect
q̂g . The angular momenta of pairg (g8) are l ( l 8), and
M , m, K are the projections ofL, l , J, respectively. Ac-
cordingly,K5M1m5M 81m8.

B. Effective potentials: Direct transitions

Calculation of the effective potentials is straightforwar
Consider first the effective potentials for direct transitio
~atom-atom or Ps-Ps transitions!. For transitions between
atomic states we have

Va8a~qa8 ,qa![^qa8u^ca8uUaauca&uqa&

5E E dradrae2 iqa8raca8
* ~ra!

3Uaaca~ra!eiqara. ~14!

Substituting Eq.~14! into Eq. ~13! and expanding the plan
waves of relative motion yields

V a8a
L8L

~qa8 ,qa!5~4p!2i L2L8 (
m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ

3E E dradraca8
* ~ra!Uaaca~ra!

3 j L8~qa8ra!YL8M8
* ~ r̂a! j L~qara!YLM~ r̂a!,

~15!

where thej L are the spherical Bessel functions.
Using the approximationre'ra ~atomic c.m. assumed to

be at the proton! and expandingUaa5ve1vb in partial
waves we get

Uaa54p(
lm

~2l11!21U aa
l ~ra ,r a!Ylm* ~ r̂a!Ylm~ r̂a!,

~16!

where
0-3
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U aa
l ~ra ,r a!55

dl0

ra
2

ra
l

r a
l11

if ra,r a ,

dl0

ra
2

r a
l

ra
l11

otherwise.

~17!

It then follows that

V a8a
L8L

~qa8 ,qa!5~4p!5/2i L2L8 (
m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ

3E
0

`

drara
2E draca8

* ~ra!ca~ra!

3 j L8~qa8ra! j L~qara!(
l

~2! @L8#

@Ll#

3CM8mM
L8lL C000

L8lLU aa
l ~ra ,r a!Ylm~ r̂a!,

~18!

where @ l #5A2l 11 and m5M2M 8. We take the
configuration-space bound-state wave function in fo
ca(ra)5 i lRnl(r a)Ylm( r̂a), with Rnl(r a) being the square
integrable radial part. Then

V a8a
L8L

~qa8 ,qa!5~4p!2i L2L81 l 2 l 8 (
m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ

3(
l

~2! @L8#

@L#
CM8mM

L8lL C000
L8lL @ l #

@ l 8#

3Cmmm8
ll l 8 C000

ll l 8I a8a
l

~qa8 ,qa!, ~19!

where all radial information is contained in the integral

I a8a
l

~qa8 ,qa!5E
0

`

drara
2 j L8~qa8ra! j L~qara!

3E
0

`

drar a
2Rn8 l 8~r a!U aa

l ~ra ,r a!Rnl~r a!.

~20!

Summing over the angular-momenta projections one fin
arrives at

V a8a
L8L

~qa8 ,qa!5~4p!2~21!J1(L81L1 l 81 l )/2@L8l #

3(
l

~2!
C000

L8lLC000
ll l 8H L8 l L

l J l 8J
3I a8a

l
~qa8 ,qa!, ~21!

where the braces denote a 6j symbol. Step 2 of the sum
points to the fact that only the terms corresponding tol of
the same parity as the one ofl 81 l ~or, identically, of L8
1L) survive.
01271
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Effective potentials forb→b8 transitions~Ps-Ps! are de-
fined as

Vb8b~qb8 ,qb![^qb8u^cb8uUbbucb&uqb&

5E E drbdrbe2 iqb8rbcb8
* ~rb!

3Ubbcb~rb!eiqbrb. ~22!

Repeating the above procedure we get forV b8b
L8L (qb8 ,qb)

exactly the same expression as Eq.~21! but with
U bb

l (rb ,r b) in Eq. ~20! for I b8b
l (qb8 ,qb) defined as

U bb
l ~rb ,r b!5@12~21!l#35

2l11rb
l

r b
l11

if rb,r b/2,

r b
l

2lrb
l11

otherwise,

~23!

since

Ubb[
1

r e
2

1

r a
5

1

urb1rb/2u
2

1

urb2rb/2u
. ~24!

We note that, in general, further reduction ofI l for eigen-
states or Laguerre-based pseudostates is possible. How
caution must be exercised as this may lead to an analy
expression more difficult to calculate than a direct numeri
integration of Eq.~20!. At the same time a numerical calcu
lation of I l is quite simple since it can effectively be repr
sented as a product of two one-dimensional integrals.

C. Effective potentials: Rearrangement

Calculation of the effective potentials for the rearrang
ment ~atom-Ps! transitions is relatively more involved. Th
history of such calculations goes back to Massey and M
@24#. However, until early 1990s the matrix elements for t
general case were not available. Hewittet al. @6# for the first
time communicated their results for transition amplitudes
tween arbitrary hydrogen and positronium states. They
culated the positronium formation matrix elements using
Gaussian representation for the wave functions and the in
action potentials. This work enabled a major breakthrou
when Mitroy @8# calculated the amplitudes in a more gene
form and in a straightforward manner without the use
additional expansions. Here we follow Mitroy@8#. However,
we further reduce the matrix elements analytically calcu
ing pseudostates and form factors in momentum space.

For the purpose of calculation it is convenient to do t
following transformation:rb→2rb and qb→2qb . Thus
now in channelb vector rb is the position, andqb is the
momentum, of positronium relative to proton. With th
transformation the effective potentials for rearrangemena
→b transitions are defined as
0-4
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Vba~qb ,qa![^qbu^cbuUbauca&uqa&

5E E drbdrbe2 iqbrbcb* ~rb!~H01va1vb

1ve2E!ca~ra!eiqara. ~25!

HamiltonianH0 can be taken in variables of either channea
or b,

qa
2/21pa

2/2[qb
2/41pb

2 , ~26!

wherepg is the momentum of the internal relative motion
the particles of pairg, a canonical conjugate of the Jaco
variablerg ,

pb5qb/22qa and pa5qb2qa . ~27!

Split Eq. ~25! into two parts,

Vba~qb ,qa!5E E drbdrbe2 iqbrbcb* ~rb!

3@E~qb ,qa!1va1vb#ca~ra!eiqara

1E E drbdrbe2 iqbrbcb* ~rb!veca~ra!eiqara

[Vba
(I ) ~qb ,qa!1Vba

(II )~qb ,qa!, ~28!

with E(qb ,qa)5qa
2/21pa

2/22E[qb
2/41pb

22E. Then the
parts can be written as

Vba
(I ) ~qb ,qa!5E~qb ,qa!c̃b* ~pb!c̃a~pa!1c̃b* ~pb!g̃a~pa!

1g̃b* ~pb!c̃a~pa! ~29!

and
01271
Vba
(II )~qb ,qa!5E dq

~2p!3
c̃b* ~pb8 !

4p

~q2qa!2
c̃a~pa8 !, ~30!

where c̃(p) are pseudostate wave functions in moment
space,g̃(p) are pseudo-bound-state form factors~we will call
them simply pseudo-form-factors!. Here pa8 and pb8 are the
momenta of relative motion of the particles of the corr
sponding pairs immediately before and after the actual re
rangement via the Coulomb potential 4p/(q2qa)2,

pb85qb/22q and pa85qb2q, ~31!

where q is the momentum of the relative motion of frag
ments in virtual channele.

First, we transformVba
(I ) (qb ,qa) into the representation o

total angular momentumJ, then separate the radial parts
the momentum-space pseudostates and pseudo-form-fa
according to c̃a(p)5R̃nl(p)Ylm(p̂) and g̃a(p)
5ũnl(p)Ylm(p̂). Radial partsR̃nl(p) and ũnl(p) will be cal-
culated in the following section. Then

V ba
L8L(I )~qb ,qa!5 (

m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ E E dq̂bdq̂a

3YL8M8
* ~ q̂b!YLM~ q̂a!Yl 8m8

* ~ p̂b!Ylm~ p̂a!

3@E~qb ,qa!R̃n8 l 8
* ~pb!R̃nl~pa!

1R̃n8 l 8
* ~pb!ũnl~pa!1ũn8 l 8

* ~pb!R̃nl~pa!#.

~32!

Decomposing the spherical harmonics of the direction of
relative motion in pairsa andb one gets
ls
V ba
L8L(I )~qb ,qa!54p (

m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ (
l 18 ,m18 ,m28

C
m

18m
28m8

l 18 l 28 l 8 @ l 8! #

@ l 18! l 28! #
q

b

l 18~2qa! l 2822 l 18 (
l 1 ,m1 ,m2

C
2m12m2m
l 1l 2l @ l ! #

@ l 1! l 2! #

3qb
l 1~2qa! l 2E E dq̂bdq̂aF (I )~qb ,qa!YL8M8

* ~ q̂b!YLM~ q̂a!Yl 12m1
~ q̂b!Yl

18m
18

* ~ q̂b!Yl 22m2
~ q̂a!Yl

28m
28

* ~ q̂a!.

~33!

Here

F (I )~qb ,qa!5E~qb ,qa!
R̃n8 l 8

* ~pb!R̃nl~pa!

pb
l 8pa

l
1

R̃n8 l 8
* ~pb!ũnl~pa!

pb
l 8pa

l
1

ũn8 l 8
* ~pb!R̃nl~pa!

pb
l 8pa

l
, ~34!

@ l ! #5A(2l 11)!, l 181 l 285 l 8, and l 11 l 25 l . Composing two spherical harmonics of the same relative motion in channea
andb we get
0-5
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V ba
L8L(I )~qb ,qa!5 (

m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ (
l 18 ,m18 ,m28

C
m

18m
28m8

l 18 l 28 l 8 @ l 8! #

@ l 18! l 28! #
q

b

l 18~2qa! l 2822 l 18 (
l 1 ,m1 ,m2

C
2m12m2m
l 1l 2l @ l ! #

@ l 1! l 2! #

3qb
l 1~2qa! l 2 (

l 19 ,m19

~2!
C

m1m
18m

19

l 1l 18 l 19 C
000
l 1l 18 l 19

@ l 1l 18#

@ l 19#
(

l 29 ,m29

~2!
C

2m22m
28m

29

l 2l 28 l 29 C
000
l 2l 28 l 29

@ l 2l 28#

@ l 29#
~21!m282m1

3E E dq̂bdq̂aF (I )~qb ,qa!YL8M8
* ~ q̂b!YLM~ q̂a!Yl

19m
19

* ~ q̂b!Yl
29m

29
~ q̂a!. ~35!

Now we expandF (I )(qb ,qa),

F (I )~qb ,qa!52p(
l,m

F l
(I )~qb ,qa!Ylm* ~ q̂b!Ylm~ q̂a!, ~36!

where the expansion coefficients are given by

F l
(I )~qb ,qa!5E

21

1

dzF(I )~qb ,qa!Pl~z! ~37!

andz5q̂b•q̂a . Using the latter we arrive at

V ba
L8L(I )~qb ,qa!5(

l 18

@ l 8! #

@ l 18! l 28! #
q

b

l 18q
a

l 2822 l 1821(
l 1

@ l ! #

@ l 1! l 2! #
qb

l 1qa
l 2(

l 19

~2!
C

000
l 1l 18 l 19

@ l 1l 18#

@ l 19#
(
l 29

~2!
C

000
l 2l 28 l 29

@ l 2l 28#

@ l 29#

3(
l

~2! F l
(I )~qb ,qa!

@L8l#

@ l 19#
C

000
L8l l 19

@Ll#

@ l 29#
C

000
Ll l 29 (

m8,m,M8,M ,m18 ,m1 ,m19 ,m29 ,m

~21! l 281 l 21m282m11m191m29

3CM8m8K
L8 l 8J CMmK

LlJ C
m

18m
28m8

l 18 l 28 l 8
C

2m12m2m
l 1l 2l C

m1m
18m

19

l 1l 18 l 19 C
2m22m

28m
29

l 2l 28 l 29 C
M8m2m

19

L8l l 19 C
Mm2m

29

Ll l 29 . ~38!

Summing over all the projections of the angular momenta, which is technically rather involved but straightforward, we
get

V ba
L8L(I )~qb ,qa!5@ l 8lL 8Ll 8! l ! #~21!J1L8(

l 18

@ l 18l 28#

@ l 18! l 28! #
22 l 1821(

l 1

@ l 1l 2#

@ l 1! l 2! #
q

b

l 181 l 1q
a

l 281 l 2(
l 19

~2!
C

000
l 1l 18 l 19

3(
l 29

~2!
C

000
l 2l 28 l 29(

l

~2!
@l#2C

000
L8l l 19C

000
Ll l 29H l 1 l J l 8

l 2 L L8 l 18

l 28 l 29 l l 19
J F l

(I )~qb ,qa!, ~39!

where the braces denote the 12j symbol of the first kind@25#.
Next we transformVba

(II )(qb ,qa),

V ba
L8L(II )~qb ,qa!5 (

m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ E E dq̂bdq̂aYL8M8
* ~ q̂b!YLM~ q̂a!E dq

~2p!3
c̃b* ~pb8 !

4p

~q2qa!2
c̃a~pa8 !. ~40!

Expand the Coulomb potential to get

V ba
L8L(II )~qb ,qa!5

1

pqa
E

0

`

dqqQLS q21qa
2

2qqa
D (

m8,m,M8,M

CM8m8K
L8 l 8J CMmK

LlJ E E dq̂bdq̂YL8M8
* ~ q̂b!YLM~ q̂!c̃b* ~pb8 !c̃a~pa8 !, ~41!

whereQL(x) is the Legendre function of the second kind. This shows that remaining is the same as forV ba
L8L(I )(qb ,qa). The

only difference is thatF (II )(qb ,qa) is now given by
012710-6
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F (II )~qb ,q!5
R̃n8 l 8

* ~pb8 !R̃nl~pa8 !

pb8
l 8pa8

l
. ~42!

Finally, combining all results for the effective potentials in the rearrangement transitions we get

V ba
L8L~qb ,qa!5@ l 8lL 8Ll 8! l ! #~21!J1L8(

l 18

@ l 18l 28#

@ l 18! l 28! #
22 l 1821(

l 1

@ l 1l 2#

@ l 1! l 2! #
q

b

l 181 l 1(
l 19

~2!
C

000
l 1l 18 l 19(

l 29

~2!
C

000
l 2l 28 l 29(

l

~2!
@l#2

3C
000
L8l l 19C

000
Ll l 29H l 1 l J l 8

l 2 L L8 l 18

l 28 l 29 l l 19
J I ba

l ~qb ,qa!, ~43!
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where

I ba
l ~qb ,qa!5q

a

l 281 l 2F l
(I )~qb ,qa!1

1

pqa
E

0

`

dqql 281 l 211

3QLS q21qa
2

2qqa
DF l

(II )~qb ,q!. ~44!

D. Pseudostates and pseudoformfactors

In this section we define our pseudostates used in
direct-transition amplitudes and calculate the correspond
momentum-space pseudostates and pseudo-form-fa
used in the rearrangement amplitudes. We use the p
dostate expansion for the atom and Ps wave functions

Rnl~r !5 (
k51

N

Bnk
l jkl~r !, ~45!

where the basisjkl(r ) is made of the orthogonal Laguerr
functions

jkl~r !5Nkl~2r /a! l 11e2r /aLk21
2l 12~2r /a!, ~46!

with

Nkl5F 2~k21!!

a~2l 111k!! G
1/2

. ~47!

HereLk21
2l 12(2r /a) are the associated Laguerre polynomia

Expansion coefficientsBnk
l are found by, reformulating the

general BG principle for this particular case, diagonalizi
the two-particle Hamiltonian of the relevant pair. The res
formally does not depend on characteristic falloff radiusa,
however the rate of convergence does. For this reason it
be chosen on the basis of practical convenience. We
return to the specific choice of parametera in the following
section.

The momentum-space pseudostate wave-functions
pseudo-form-factors can be written as Hankel transform
the relevant configuration-space functions
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R̃nl~p!5E
0

`

drr j l~pr !Rnl~r ! ~48!

and

ũnl~p!5E
0

`

dr j l~pr !Rnl~r !, ~49!

respectively. Though these transforms resemble known i
grals widely used in quantum mechanics, they are not rea
available in standard tables. We calculate them solvin
classical momentum distribution problem@26# reformulated
for pseudoatoms. Skipping the details we give the final re

R̃nl~p!522l 12a2l !
~ap! l

@~ap!211# l 12

3 (
k51

N

Bnk
l Nkl (

m50

k21

~m1 l 11!Cm
l 11F ~ap!221

~ap!211
G
~50!

and

ũnl~p!522l 11al!
~ap! l

@~ap!211# l 11 (
k51

N

Bnk
l Nkl

3 (
m50

k21

Cm
l 11F ~ap!221

~ap!211
G , ~51!

where Cm
l 11@x# are the Gegenbauer polynomials. Integra

contained in the above transformations are given in the
pendix.

III. DETAILS OF CALCULATIONS

In order to calculate the transition matrix elements
have to solve a system of coupled momentum-space inte
equations~12! with the effective potentials given by Eqs
~21! and ~43!. To avoid complex-number arithmetic we in
troduce theK-matrix as for electron scattering@18#. This
0-7
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transforms Eq.~12! to the following system of equations fo
the K-matrix amplitudes

Kg8g
L8L

~qg8 ,qg!5V g8g
L8L

~qg8 ,qg!1 (
g9

Na1Nb

(
L9

PE dqg9qg9
2

~2p!3

3
V g8g9

L8L9~qg8 ,qg9!

E2qg9
2 /2Mg92eg9

Kg9g
L9L

~qg9 ,qg!,

~g,g851, . . . ,Na1Nb!. ~52!

For numerical solution of these equations we use stand
quadrature rules. The kernel of the equations containing p
cipal value integrals is discretized using a Gauss-Legen
quadrature. The problem of channel-dependent singular
is overcome by using a unique quadrature in each cha
containing the singularity. Accuracy of the integral in th
sense of the principal value was ensured by using a s
quadrature consisting of an even number of Gauss-Lege
points, symmetrically distributed in the immediate vicinity
the singular point. This procedure is similar to the wide
used subtraction method with the subtraction being num
cally zero.

Fundamentally, the system is highly ill conditioned whi
makes it impossible to use arbitrarily high basis sizes
quadratures. To alleviate this problem in a numerically e
cient fashion we rewrite Eq.~52! in operator form as

@ I 2~11d!VG#K~d!5V ~53!

with the required result obtained ford50. Then all deriva-
tives of K with respect tod have the same form as Eq.~53!.
In particular, the kernel of the resulting linear equationsI
2(11d)VG remains the same, only the driving term~right-
hand side! changes. This is computationally very importa
as the majority of the time, required to solve the linear eq
tions, goes on factoring the kernel. Consequently, the ass
ated computer code allows for an arbitrary number of deri
tives to be evaluated with almost no extra CPU time
memory being required in practical calculations. Assum
thatK(d) is analytic in the neighborhood of smalld, we can
reconstructK(d50) from nonzerod using a Taylor series.

We give an example in Fig. 2 of the behavior of the sy
tem for 30 eV incident energy. For speed of calculation at
many values ofd we only includeds states of both H and Ps
Ten each of H and Ps Laguerre-based states were used
around 100 quadrature points@dq integration in Eq.~52!#.
Looking at the reciprocal condition number@27# first, we see
that the system of linear equations is ill conditioned, parti
larly for udu'0. To be more specific, whend50 we have
difficulty in obtaining stableK-matrix elements. However, il
conditioning improves rapidly asudu increases away from
zero and the results become stable. Examining the analy
behavior of the resultingK(d)-matrix elements we see a
interesting situation. For negatived the behavior is mostly
linear with d, and consequently an accurate estimate ad
50 may be obtained using just one derivative. However,
d.0 there appear to be singularities. Since we solve
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~52! along the real axis, these poles should correspond
boundstates and/or resonances. Thus a slight increase i
magnitude of the kernel makes the latter support bound
weakly bound states above the three-body breakup thresh
which is unphysical. This makes reconstruction ofK(d50)
using d.0 impossible. However, decreasing the magnitu
of the kernel is harmless. We see that ford,0 the corrected
results are almost perfectly flat, i.e., independent ofd, and
hence demonstrate the utility of the present approach.
usedd520.01 with one derivative correction for all subs
quent calculations.

Calculation of the effective potentials for direct trans
tions, Eq. ~21!, requires evaluation of the integrals in E
~20!. The latter can be calculated to a desired accuracy, t
cally five significant figures in the present work. This is a
complished by integrating out to 400 a.u. on a sufficien
fine radial mesh. The direct-transition potential matrix e

FIG. 2. Reciprocal condition number~top! and K-matrix ele-
ments as a function ofd, see Eq.~53!. The dots indicate the value
of d at which the calculations were performed. The ‘‘uncorrecte
results are direct solutions of~53!. The ‘‘corrected’’ results have
used the first derivativeK8(d), obtained together withK(d), to
estimate the result atK(d50).
0-8
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TWO-CENTER CONVERGENT CLOSE-COUPLING . . . PHYSICAL REVIEW A66, 012710 ~2002!
ments are calculated particularly quickly.
As shown in the preceding section the positronium form

tion matrix elements have been written as a coupling of
actual and virtual angular momenta, leading to finite angu
momentum sums and two-dimensional~in the worst case!
integrals. Our formulation allows the momentum-space ps
dostates and corresponding form factors to be reduce
compact analytical expressions as opposed to highly osc
tory integrals used earlier@8#. To evaluate the integral ove
the momentum of the virtual electron involving the Coulom
singularity consider a transformation of the integral in E
~44! to

E
0

`

dq f~q!QLS q21qa
2

2qqa
D

5E
0

1dt

t Fqat f ~qat !1
qa

t
f S qa

t D GQLS t211

2t D . ~54!

The idea behind this transformation becomes clear if we n
that

Q0S t211

2t D52Q0~ t !5 ln
t11

t21
, ~55!

and hence the end-point logarithmic singularity can be u
as a weight function to evaluate the integral we need.
this weight function we produce orthonormal Chebysh
polynomials which yield an optimal Gauss-Chebysh
quadrature. ForL.0 there are no singularities. This ap
proach leads to immense computational savings. TheQL do
not depend on channel information nor the mesh used
solving the integral equations. Thus, the nonsingular par
QL ~apart fromQ0) can be calculated once, and stored
general use together with the quadrature points and wei
corresponding toQ0. This procedure dramatically speeds
the evaluation of the most time-consuming part of t
present calculations. For testing purposes we impleme
also the singularity subtraction method which was used
Mitroy @8#. The latter proved to be equally efficient for rel
tively small calculations and smallJ. However, its efficiency
rapidly diminishes in the case of bigger calculations, invo
ing larger number of channels and partial waves. This fac
a result of the necessity of recalculatingQL in each channe

FIG. 3. Total cross section fore11 H scattering.
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and for each point of the integral equation mesh, which
comes computationally expensive with increasingL. We took
82 Gauss-Chebyshev quadrature points, sufficient to pro
double precision accuracy for the integral~54!.

Calculations are performed for a limited number of part
wavesJ. Extrapolation to infiniteJ is done using the Born
subtraction method for the direct scattering cross secti
and a geometric series method for the positronium forma
cross sections. A number of test runs at intermediate ener
showed that the first ten partial waves were sufficient
reliable extrapolation in the Ps formation channels, while
the same in the direct scattering channels we had to inc
explicitly 10 more partial waves. The total cross sections
obtained as a sum of all cross sections. The breakup c
section is defined as a sum over the open positive-energ
and Ps pseudostates.

Finally, the generalized CCC computer code has b
tested against the CC~3,3! @10#, CC(28,3) @15#, and
CC(30,3) calculations@14#. All were reproduced to a satis
factory accuracy.

IV. RESULTS

One of the main results of our previous work@12# was
that widely used CC(N̄,N8) calculations, with atomically
based pseudostates and few eigenstates of Ps, were una
eliminate unphysical resonances. At the same time it w
demonstrated that in the case of (N̄,N̄) bases, i.e., with the

FIG. 4. Total Ps-formation cross section fore11 H scatter-
ing.

FIG. 5. Total breakup cross section fore11 H scattering.
0-9
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ALISHER S. KADYROV AND IGOR BRAY PHYSICAL REVIEW A66, 012710 ~2002!
pseudostates around both centers, spurious resonances
peared quickly for relatively smallN. Since the model prob
lem considered in@12# is an important constituent of the fu
problem, we expect the earlier conclusions to also hold
the full problem.

Now let us consider the full positron-hydrogen proble
Calculations with bases sizesN5( lNl now need to be
checked for convergence with orbital angular momentuml,
in addition toNl . Our primary interest is above the ioniza
tion threshold, where the cross sections are expected t
smooth as a function of incident energy. For brevity of p
sentation we take the same number of Laguerre-based s
at each incident energy. Any deviation from smooth cro
sections indicates the level of convergence withNl . We set
Nl85Nl . This is not necessary, but demonstrates that we
able to treat either center equivalently. We takeNl5102 l
with Laguerre exponential falloff parameter being vari
slightly around the optimal value for the ground state. T
variation is used above the ionization threshold to ensure
the total energy bisects two pseudothresholds@28#. To show
convergence withl we give some results froml<1, 2, and 3
calculations. The largest calculations performed had a t
of 68 states, 34 each of H and Ps.

We begin with a study of convergence for the total, to
Ps formation, and total breakup cross sections, given in F
3–5, respectively. Reasonably smooth cross sections are
tained for all bases withl convergence being rather rapi
For the three cases consideredf states contribute only mar

FIG. 6. Total cross section fore11 H scattering.

FIG. 7. Total Ps-formation cross section fore11 H scatter-
ing.
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ginally. Having established convergence we next make so
comparison of the converged results, which we denote
CCC, with the available experiment and some other calcu
tions.

In Figs. 6–8 we compare CCC results with other calcu
tions and experimental data of Zhouet al. @29# and Jones
et al. @30#. Since we are not trying to review the latest ca
culations we compare our results only with the most relev
close-coupling calculations available on the full ener
range. For the status of low-energy variational calculatio
see Refs.@31# and @32#, and references therein. Progress u
ing the Faddeev approach is discussed in Ref.@33#. Results
from a coupled-channel optical method may be found in R
@34#. As seen from the figures CCC results agree with exp
ment reasonably well. So do the CC(9,̄9̄) calculations of
Kernoghanet al. @13#, CC(30,3) results of Kernoghanet al.
@14#, and the CC(28,3) data of Mitroy@15#. Note that the
CC(9̄,9̄) used an energy averaging procedure to obt
smooth results, whereas the latter two used then23 scaling
rule to estimate the total Ps formation. Such procedures
not necessary in the present work.

What is particularly interesting is that for the case of t
break-up cross section the CCC results have two compar
contributions, one from the excitation of the positive-ener
H pseudostates~plotted as direct ionization!, and the other
from excitation of positive-energy Ps pseudostates. A sim
result was noted by Kernoghanet al. @13# using the CC(9̄,9̄)

FIG. 8. Total break-up cross section fore11 H scattering.

FIG. 9. Elastic cross sections fore11 H scattering. The CCC
and the calculations of Kernoghanet al. @14# are almost indistin-
guishable.
0-10
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TWO-CENTER CONVERGENT CLOSE-COUPLING . . . PHYSICAL REVIEW A66, 012710 ~2002!
calculations. However, for the CC(N̄,N8)-type bases only
contribution from direct ionization is possible. At the max
mum of the cross section, around 50 eV~same as for
electron-impact ionization of H! the separately converged in
direct contribution to the break-up cross section is aroun
third of the total. Yet the CC(30,3) calculations of Ker-
noghanet al. @14# yield only a marginally smaller result
Clearly, absence of Ps positive-energy states is being
sorbed by the positive-energy H states. More detailed, dif
ential ionization measurements would be very helpful to t
the present formalism.

We next turn to the individual integrated cross sections
scattering ofn<2 states. Beginning with the atomic state
elastic scattering, 2s, and 2p excitation are given in Figs
9–11, respectively. We see good agreement between
present CCC and the CC(30,3) calculations of Kernogha
et al. @14# for the three cases. This indicates that the
glected Ps states have almost no effect on the H cross
tions. In Figs. 12–14 the corresponding Ps excitation cr
sections are considered. While there is excellent agreem
for the excitation of the Ps(1s) state the situation for the
Ps(2s) and Ps(2p) states is markedly different. Only th
CCC calculation yields relatively smooth results. T

CC(30̄,3) calculation generally substantially overestima
both the 2s and 2p cross sections. The CC(9,̄9̄) calculation
of Kernoghanet al. @13# shows most oscillation, but is gen
erally closest to the present CCC results. This is not surp
ing. The CC(30,3) has no allowance for excitation of Ps(n

FIG. 10. 2s excitation cross sections fore11 H scattering.

FIG. 11. 2p excitation cross sections fore11 H scattering.
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.2) states and hence such flux is forced into the Ps(n<2)
states. The CC(9,̄9̄) calculation is simply too small to yield
convergence.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Positron-hydrogen scattering problem has been
proached according to the full CCC formalism. It has be
demonstrated that two-center pseudostate close-coupling
proach to the problem may lead to practical convergen
This is possible when large-enough pseudostate expans
are used on both the H and Ps centers. No overcomplete
problems, intuitively associated with nonorthogonal tw
center expansions, have been found, even in the three-b
breakup channel. However, the underlying equations
highly ill conditioned and numerical techniques are nec
sary to deal with this issue. The one detailed shows con
erable promise not only for positron scattering, but is equa
applicable to electron scattering also.

Since in the present CCC approach both centers h
been modeled on an equal footing, the principle of detai
balance may be readily applied. Therefore accurate pro
positronium scattering data should be simultaneously ca
lated and will be a subject of subsequent work. For now
only note that CC(N̄,M ) calculations are clearly unable t
yield generally accurate results for this problem.

We intend to extend the CCC approach to positron co

FIG. 12. Cross sections Ps for formation in 1s state ine11 H
scattering.

FIG. 13. Cross sections Ps for formation in 2s state ine11 H
scattering.
0-11
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ALISHER S. KADYROV AND IGOR BRAY PHYSICAL REVIEW A66, 012710 ~2002!
sions with alkali-metal atoms and helium. So far, theor
used either solely eigenstates@35,36# or ~above the ionization
threshold! an atomically centredL2 basis, supplemented by
few Ps eigenstates@9#. Results of both approaches systema
cally underestimate Ps formation cross-section data at
~for alkali-metal atoms! and high~in case of helium! ener-
gies. We believe the CCC approach to these problems
cast more light upon the discrepancies between the pres
available calculations and measurements.
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APPENDIX: USEFUL INTEGRALS

Here we give the Hankel transform integrals calculated
this work, namely,

E
0

`

dr j l~pr !r l 12e2r /aLn
2l 12~2r /a!

52l 11al 13l !
~ap! l

@~ap!211# l 12

3 (
m50

n

~m1 l 11!Cm
l 11F ~ap!221

~ap!211
G ~A1!

and

E
0

`

dr j l~pr !r l 11e2r /aLn
2l 12~2r /a!

52lal 12l !
~ap! l

@~ap!211# l 11 (
m50

n

Cm
l 11F ~ap!221

~ap!211
G ,

~A2!

where j l(x), Ln
2l 12(x), and Cm

l 11@x# are the spherica
Bessel functions, the associated Laguerre polynomials,
the Gegenbauer polynomials, respectively. The integ
have been obtained forn,l 50,1, . . . , andp,a.0.
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