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Nature and location of quantum information

Robert B. Griffiths*
Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

~Received 28 March 2002; published 25 July 2002!

Quantum information is defined by applying the concepts of ordinary~Shannon! information theory to a
quantum sample space consisting of a single framework or consistent family. A classical analogy for a spin-half
particle and other arguments show that the infinite amount of information needed to specify a precise vector in
its Hilbert space is not a measure of the information carried by a quantum entity with ad-dimensional Hilbert
space; the latter is, instead, bounded by log2d bits ~one bit per qubit!. The two bits of information transmitted
in dense coding are located not in one but in the correlation between two qubits, consistent with this bound. A
quantum channel can be thought of as astructureor collection of frameworks, and the physical location of the
information in the individual frameworks can be used to identify the location of the channel. Analysis of a
quantum circuit used as a model of teleportation shows that the location of the channel depends upon which
structure is employed; for ordinary teleportation it is not~contrary to Deutsch and Hayden! present in the two
bits resulting from the Bell-basis measurement, but in correlations of these with a distant qubit. In neither
teleportation nor dense coding does information travel backwards in time, nor is it transmitted by nonlocal
~superluminal! influences. It is~tentatively! proposed thatall aspects of quantum information can in principle
be understood in terms of the~basically classical! behavior of information in a particular framework, along
with the framework dependence of this information.

DOI: 10.1103/PhysRevA.66.012311 PACS number~s!: 03.67.2a, 03.65.Ta
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I. INTRODUCTION

Quantum information theory has attracted a great dea
attention, with the interest driven in no small part by pote
tial applications to quantum cryptography and quantum co
puting. It represents an extension of classical informat
theory, as developed by Shannon and his successors,
domain in which quantum effects are important and theref
quantum mechanics must be used as the underlying phy
theory. It has been suggested@1# that quantum information
generalizes classical information in a sense analogous to
in which complex numbers generalize real numbers. Ho
ever, despite impressive advances in the field, the specific
this generalization remain unclear, and various experts h
presented rather different views as to the nature of quan
information; see, for example@2,3,4#. It would seem that the
organizing principles and general laws which govern qu
tum information have yet to be discovered, or at least h
yet to be recognized for what they are.

The aim of this paper is to make a clear, specific propo
about the nature of quantum information, and then apply i
the problem of the physical location, in space and time,
information in a quantum system. The proposal may or m
not turn out to be correct~or interesting, or useful, etc.!, but
it is at least unambiguous, and can be tested in various w
In this paper we apply it to some specific examples, incl
ing dense coding and teleportation, to illustrate what the c
cepts mean, and to show that they provide sensible resul
certain situations which have often seemed obscure and
to think about in physical terms, even though their ma
ematical description is relatively straightforward.

Our presentation begins in Sec. II with a brief discuss

*Electronic address: rgrif@cmu.edu
1050-2947/2002/66~1!/012311~15!/$20.00 66 0123
of
-
-

n
a

e
cal

at
-
of
ve
m

-
e

al
o
f
y

s.
-

n-
in
rd
-

n

of classical information and its location in space and tim
This shows what it is that we want to generalize to the qu
tum case, and provides some analogies which are hel
later in the paper. The discussion of quantum informat
begins in Sec. III with an analysis of how much informatio
can be contained in, or carried by, a single spin-half partic
a single qubit. We argue that this is at most one bit, and g
reasons why it is not larger despite the fact that an infin
amount of information is needed to describe~with infinite
precision! the mathematical state of the qubit as an elem
of its Hilbert space. In addition, in Sec. III B we develop
classical analogy for a spin-half particle, one that provid
what seems to be a more satisfactory intuitive picture th
the fairly common mental image of a gyroscope with its a
pointed in a precise direction in space.

Since the quantitative measures of information, such
entropy, used in ordinary~classical! information theory are
expressed in terms of probabilities, their extension to
quantum domain requires a consistent probabilistic formu
tion of quantum theory. For our purposes the traditional
proach based upon outcomes of measurements is not
equate, and Sec. IV A indicates how this goal can be reac
using quantum frameworks~consistent families!. One conse-
quence, Sec. IV B, is a maximum information capacity
‘‘one bit per qubit’’ for carriers of quantum information, con
firming the conclusions reached in Sec. III. The use of fram
works also allows one to assign a location to quantum inf
mation, as explained in Sec. IV C.

Dense coding is taken up in Sec. V. It has often be
supposed that this is a situation in which a single qubit c
transport two bits of information. However, using the too
developed in Sec. IV we show that this is not so: the two b
~and each bit independently! reside on two qubits, not one
so the maximum capacity result of Sec. IV B is respect
We also show that the information does not travel backwa
©2002 The American Physical Society11-1
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in time, and argue that it is not transmitted instantaneou
by some peculiar superluminal influence violating classi
causality, to a distant qubit. To be sure, there is someth
mysterious~i.e., nonclassical! about dense coding, and ou
analysis makes clear precisely what it is.

Quantum theory allows a physical system to be descri
by a variety of different frameworks, and the presence
absence of information~and hence its location! depends, in
general, upon the framework. As an aid to thinking about t
framework dependence, which is a novel feature of quantum
mechanics with no classical analog, we introduce in S
VI A the notion of astructure, or collection of frameworks
with a common algorithm for calculating probabilities.
particular example of a structure is an ideal quantum ch
nel, discussed in Sec. VI B from the point of view of th
physical location of information in the different framework
that constitute the channel, and this is used to define
location of the channel itself.

The tools developed in Sec. VI B for locating a quantu
channel are applied in Sec. VII to a particular three-qu
quantum circuit which has been used to discuss teleporta
@5#. This circuit is analyzed from different points of view
i.e., by using different structures, and the location of
channel is shown to depend upon which of these one
ploys. Teleportation itself corresponds to a particular str
ture, and we identify the location of the relevant informati
during the ‘‘classical’’ communication process. Once aga
the information does not travel backwards in time, nor
there magical long-range influences.

The concluding Sec. VIII summarizes the basic propo
of this paper in terms of two theses. The first is that the
of frameworks is an appropriate~consistent, useful, etc.! gen-
eralization of classical information to quantum mechanics
embodies at least something of what quantum informatio
all about. The second, more speculative thesis is that
generalization is sufficient to cover, at least in principle,all
of quantum information: that is, there is no addition
irreducibly-quantum information which is not ‘‘classical’’ in
formation in a particular framework, or else the framewo
dependence of such information.

The only other work we are aware of which addresses
a similar way questions about the location of quantum inf
mation is that of Deutsch and Hayden@3#. Aside from one or
two points of similarity, e.g., we agree that there can be
instantaneous~superluminal! transmission of information in
a quantum system, their approach is completely differ
from ours; see the comments in the Appendix.

II. CLASSICAL INFORMATION

The morning newspaper contains an account of a spe
which the President made yesterday. One can say tha
newspapercontains informationbecause from the shapes a
positions of the symbols on the paper it is possible to in
something of what the President said. It is acarrier of infor-
mation about amessage, in this case the original speech. Th
information has a physical location in the same sense tha
newspaper has a physical location. Of course this locatio
not unique—there are many copies of the newspaper—n
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it a mathematically precise location, since the printed wo
take up some space, and the message cannot be reco
from a single letter or even a single word; in some sens
resides in the correlations among the symbols.

The notions of information and its location can be ma
more precise by embedding them in a probabilistic or s
chastic model, something which is necessary if one want
use the concepts of classical information theory@6#. Let M be
a random variable representing the different possible m
sages which can be produced by a source, and letN be an-
other random variable representing different physical sta
of a carrier of information. If for anyM that occurs with
nonzero probability there is someN such that the conditiona
probability Pr(M uN) is 1, we shall say that the carrier con
tains the information produced by the source, whereas iM
andN are statistically independent, the carrier does not c
tain this information. It is convenient to use Shannon’s m
tual informationI (M :N) @6# as a quantitative measure of th
information present inN, especially when, as will be the cas
in most of the discussion that follows, we are interested i
small number of messages which occur with equal proba
ity.

As a simple example, suppose Alice sends a one-bit m
sageM50 or 1 to Bob by mailing him a colored slip o
paper, red~R! for 0, green~G! for 1, inside an envelope
While it is in transit the message is contained in or carried
the slip of paper, and if 0 and 1 are equally likely, the s
carries log2251 bit of information. Next consider a mor
complicated arrangement in which the message is encode
two slips of paper which Alice sends to Bob in separa
envelopes: identical colors,RR or GG, chosen at random
stand for 0, and opposite colors,RG or GR, also chosen at
random, stand for 1. In this case a single envelope cont
no information about the message, since both forM50 and
M51, R or G will be present with probability 1/2. Instead
the message is present as acorrelation between the content
of the two envelopes. It isdelocalizedin the sense that it is
not present in either envelope by itself, but can still be said
be in the region of space occupied by both envelopes—
union or their interiors, to use a set-theoretical term—even
cases in which the envelopes are far away from each ot
Information is something abstract whose location need
satisfy the usual rules for the location of material objects

A third example useful in a later discussion of an ana
gous quantum situation is the following: Suppose that Al
and Bob initially share slips of paper that are known to
identical in color: bothR or bothG. For example, they were
prepared and placed in separate envelopes sent to Alice
Bob by Charlie, who flipped an honest coin to decide b
tweenRR andGG. Alice now sends a one-bit messageM to
Bob in the following way. ForM50 she sends him the slip
of paper in her possession, and forM51 she sends him a
slip of the opposite color. Where is the information aboutM
located while this slip is in transit from Alice to Bob?
cannot be in the slip which is in the mail, because in o
stochastic model bothM50 andM51 lead toR andG with
equal probability. Nor is it, obviously, in the slip that is a
ready in Bob’s possession. Instead, it is present in the co
lation between these two slips, and physically located in
1-2
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union of the two regions that they occupy.
One can imagine more complicated situations. For

ample, modify the previous example so that Charlie prepa
RG and GR as well asRR and GG, each with probability
1/4, and sends the first slip to Alice and the second to B
Later, at the same time Alice sends her message to Bo
following the procedure in the preceding paragraph, Cha
mails to Bob a yellow slip of paper indicating that the earl
slips he sent were of the same color, or a blue slip indica
that the colors were opposite. While the slips from Alice a
Charlie are in transit to Bob, the message is contained in
correlation between these and the slip already in Bob’s p
session, whereas it is not present in the individual slips o
any of the three pairs of two slips. A quantum analog of t
situation will be discussed later.

III. SPIN HALF

A. Distinct states

The simplest quantum carrier of information is a tw
level system or qubit, which for convenience we shall thi
of as the spin degree of freedom of a spin-half particle,
though the polarization of a photon would do just as we
Suppose a polarization apparatus~polarizer! produces a par-
ticle with its z component of spin angular momentumSz
equal to11/2 or 21/2 ~in units of \), depending upon the
setting 0 or 1 of a switchM. This particle then travels
through a field-free region to a Stern-Gerlach measuring
paratus where the value ofSz is measured, with outcomeN
equal to 0 or 1 indicated by a suitable pointer. As there i
perfect correlation between the polarization settingM and
the measurement outcomeN, the mutual information
I (M :N) is log22 or 1 bit, assuming equala priori probabili-
ties for M.

It makes sense to suppose that this 1 bit of information
carried by the spin-half particle during the time betwe
preparation and measurement, since, for example, the pe
correlation betweenM andN requires that the particle actu
ally arrive at the measuring apparatus, and can be altere
the particle is scattered or passes through a magnetic
during its trajectory. That the particle contains informati
aboutM can be confirmed using the formulation in Sec. II
working out the joint probability distribution for the random
variablesM andSz ,

Pr~M50,Sz511/2!51/2

5Pr~M51,Sz521/2!, ~1!

with Pr(M50,Sz521/2) and Pr(M51,Sz511/2) both
equal to 0. Introducing probabilities that refer to a micr
scopic quantum system requires some care, and we sha
turn in Sec. IV A to the considerations which justify~1!.
Assuming its validity, the situation is analogous to one
which a switch setting ofM equal to 0 or 1 on one piece o
apparatus gives rise to two distinct macroscopic electr
signals in a cable~the analogs ofSz561/2) connecting this
apparatus to a second one in which the signals give ris
two different pointer positions. In such a situation one wou
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not hesitate to say that the information aboutM is carried by
the electrical signal, and in the same way it seems plaus
that information is carried by the spin-half particle.

However, the quantum case is conceptually more com
cated than its classical analog because the polarizer can
pare other components of spin angular momentum bes
Sz . There might, for example, be additional switch settin

M50̄ or 1̄ which result in a particle withSx511/2 or
21/2, respectively. The vectors in the Hilbert space cor
sponding toSx561/2 are quite distinct from those corre
sponding toSz561/2, and if these were to correspond
physically distinct states of the quantum particle one mi
plausibly conclude that the particle could carry log2452 bits
of information. Indeed, there is no reason not to allow t
polarizer the possibility of producing a particle with a pola
izationSw51/2 for w any direction in space. Since the stat
~or, to be more precise, the rays or one-dimensional s
spaces! of the Hilbert space corresponding to distinctw are
different, a single spin-half particle would, according to th
point of view, be capable of containing or carrying an infin
amount of information.~This idea seems to be widesprea
for a specific reference, see@2#.!

There are, however, serious objections to the possibility
a spin-half particle carrying more than 1 bit of information
its spin degree of freedom. To begin with, the classical d
nition of log2n as the information~entropy! of a source ofn
equally likely messages requires that these messages bedis-
tinct from one another. From a quantum perspective, any
states of affairs which are classically~i.e., macroscopically!
distinct, such as two pointer positions, always correspond
quantum states that areorthogonalto each other.~If the dis-
tinct states are described by two density matricesr andr8,
thenrr850.! For spin half, the eigenstates corresponding
Sz511/2 and21/2 are orthogonal, whereas eigenstates
Sz are not orthogonal to eigenstates ofSx . Therefore,Sz5
11/2 andSx511/2 do not correspond to distinct states
the classical sense, and this is confirmed by the fact that t
is no measurement that can distinguish them. To be s
there might be a distinction which is physically present bu
inaccessible to measurements. But this sounds a bit lik
student’s claim to understand a subject when he has
failed the examination, and one tends to be skeptical.

To be sure, the statesSz51/2 from Sx51/2, while they
cannot be distinguished for an individual particle, are disti
in that they give rise to different statistical predictions for t
outcomes of various measurements. Such a distinction d
not, however, mean that individual particles are in so
sense distinct depending on whether they were prepared
the polarizer switch setting ofM50 or M50̄, as can be seen
from a classical analogy. Consider an ensemble of bolts p
duced by machine no. 1 that creates one defective bolt in
and another ensemble produced by machine no. 2 that
ates one defective bolt in 20. Separate ensembles of b
produced by the two machines can be distinguished wit
probability that approaches 1 if the ensembles are su
ciently large, but the distinction cannot be made on the ba
of a single bolt. Distinct probability distributions do no
mean distinct bolts, and it would be somewhat strange
1-3
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 012311 ~2002!
claim that because the probability of a defective bolt is
scribed by a real numberp having an uncountably infinite
number of possibilities, that therefore every bolt carries
infinite amount of information relative to its being or n
being defective. Of course, a pure quantum state is not
same thing as a probability distribution. But when it fun
tions as a preprobability@7# used to calculate a probabilit
distribution, it has a somewhat similar character.

In summary, the undeniablemathematicaldifference be-
tween the statesSz51/2 andSx51/2 as elements~or, better,
rays! in the Hilbert space need not reflect aphysicaldistinc-
tion in any sense analogous to those between two nonid
cal classical messages. And if it does not, then it provides
basis for supposing that a single qubit can contain more t
one bit of information.

B. Classical analogy

One source of the~mistaken, in our opinion! idea that a
spin-half particle can carry an infinite amount of informati
is a mental image in which one thinks of it as a classi
object like a gyroscope, spinning about an axis pointing i
well-defined direction in space, say the1z direction if the
quantum state isSz511/2. Such mental images, or mode
of quantum objects in classical terms are probably unav
able in that quantum theory is a product of human think
that is shaped in large part by ordinary ‘‘classical’’ expe
ence, and they need cause no harm if one understands
limitations and realizes how they can be misleading. T
gyroscope model under discussion is misleading in that
components of angular momentum in directions perpend
lar to the special axis are zero, whereas one knows tha
quantum operatorsSx

2 and Sy
2 are identical toSz

2 , and thus
thinking of Sx andSy as equal to zero whenSz51/2 cannot
be correct. A modification of this model, which is still cla
sical but a bit less misleading, has the axis of the gyrosc
pointing in a random direction in space consistent with
definite positive value ofSz , but with random nonzero val
ues ofSx andSy . It resembles what one finds in older tex
on atomic physics, where even whenSz has its maximum
value, the total angular momentum is shown as a ve
pointing in a direction which does not coincide with thez
axis.

If one uses the first model, in whichSz511/2 corre-
sponds to the gyroscope axis pointing along thez axis, one
tends to get the idea that the quantum state contains a
amount oforientational information needed to specify th
precise direction in which the spin is ‘‘pointing.’’ This i
reinforced by the observation that a spin polarizer, a la
classical apparatus, can be oriented quite precisely, comb
with the plausible, but questionable, supposition that
same precise orientation is imparted to the spin-half parti
The second model, in which the orientation of the gyrosco
axis is to a large extent random, suggests that, on the
trary, while the polarizer can fix one component of the an
lar momentum quite precisely, it does not impart a prec
orientation, for the other components of angular moment
are random. That the polarizer should produce random
ues for the components of angular momentum perpendic
01231
-

n

e

ti-
o
n

l
a

-
g

eir
e
e

u-
he

e
a

or

rge

e
ed
e
e.
e
n-
-
e
m
l-
ar

to the polarization direction is consistent with the usual b
lief that a measurement of one component of the spin o
spin-half particle randomizes the orthogonal compone
when one remembers that such measurements are one w
producing polarized particles. In summary, while this seco
model remains classical, and is thus bound to be mislead
in some respects, in other respects it provides a significa
better intuitive feeling for the quantum situation than do
the first model.

It is possible to carry out a quantitative analysis of t
information contained in a simplified version of the seco
model that no longer respects the requirement of rotatio
invariance. We suppose that a classical object hasx, y, andz
components of angular momentum equal to11/2 or21/2 in
some set of units, and thus a set of eight possible sta
which can be denoted by (6,6,6); e.g., (1,1,2) stands
for Sx511/2, Sy511/2, Sz521/2. We assume that th
polarizing apparatus in preparing a stateSz511/2 randomly
perturbs thex and y components of angular momentum, s
that it produces one of the four states (6,6,1) with equal
probability.

Now suppose that the polarizer is equipped with
switch settings allowing it to produce the statesSx561/2,
Sy561/2, andSz561/2, where in each case the state h
the specified value for that component of angular mom
tum, but random values for the other two. It is then clear t
from the resulting ‘‘spin configuration’’ of the object, say
(1,2,1), one can decide unambiguously between the
larization settingsSx511/2 andSx521/2, but not between
Sx511/2 andSz511/2. For this model one can calcula
the mutual information between the six polarization settin
assumed equiprobable, and the spin state, and the resul
bit. That is to say, the object can carry enough information
distinguish two opposite values of one component of angu
momentum, but contains no additional information about
orientation of the polarizer.

Since this model is classical it cannot clarify all the co
ceptual difficulties of the quantum case. However, it do
suggest how a preparation procedure can impart to a si
particle much less information than is required to descr
the procedure~in particular, the orientation of the polarize!
itself.

IV. QUANTUM INFORMATION

A. Frameworks

While the qualitative arguments in Sec. III A and the~sec-
ond! classical model in Sec. III B provide reasons for su
posing that a spin-half particle cannot carry a large amo
of information in its spin degree of freedom, they are ob
ously not substitutes for a precise discussion prope
grounded in the fundamental principles of quantum theo
which we shall now begin to construct.

Classical information theory is formulated in probabilist
terms, and hence it makes sense to try and construct a q
tum counterpart using a consistent probabilistic formulat
of quantum theory. Unfortunately, quantum textbooks u
ally introduce probabilities in terms of the outcomes of me
surements, and take a more or less agnostic attitude tow
1-4
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NATURE AND LOCATION OF QUANTUM INFORMATION PHYSICAL REVIEW A 66, 012311 ~2002!
what goes on between measurements, or between the p
ration of a system by some macroscopic device and its m
surement by another. During this time interval the quant
system is thought of as a black box, or ‘‘smoky dragon
Such an approach is obviously not adequate for addres
questions about the amount of information carried by
single qubit when it is not being measured. One might s
make some progress if one could assume that the outcom
a measurement reveals a property the measured system
before the measurement took place, but it is precisely
that the traditional approach denies. Fortunately, there
other tools available for assigning probabilities in a cons
tent way to quantum systems without reference to meas
ments@8–14#.

Ordinary probability theory is based upon the notion o
sample spaceof mutually exclusive possibilities, one an
only one of which occurs in any given experimental tri
e.g., the two sides of a coin, or the six sides of a die. T
quantum counterpart of a sample space is aframework, also
known as a consistent family or decoherent set. The simp
example is an orthonormal basis$uaj&% of states of the quan
tum Hilbert space, or, equivalently, the associated collec
of projectorsPj5uaj&^aj u which form a decomposition o
the identity,

I 5(
j

Pj , Pj5Pj
† , Pj Pk5d jkPj . ~2!

It is important that the states be orthogonal, for only then
they correspond to physically distinct states that are mutu
exclusive~see the discussion in Sec. III A!. A framework or
quantum sample space for a system at a single time is alw
associated with a decomposition of the identity$Pj% with the
projectors satisfying~2!, but some of these projectors ma
project onto subspaces of dimension greater than 1, in w
case the decomposition is not associated with a unique
thonormal basis.

For a spin-half system the orthonormal basis consisting
the eigenstates ofSz constitutes a framework, and that co
responding to the eigenstates ofSx a different framework.
These two frameworks areincompatible: it is impossible to
combine them into a single sample space, because one
not simultaneously assign values toSx andSz for a spin-half
particle~there is no ray in the Hilbert space corresponding
the combined values! @15#. More generally, two frameworks
are incompatible when the projectors corresponding to
decomposition of the identity fail to commute with the pr
jectors of a different decomposition. While it is possible
assign probabilities separately in different frameworks, i
impossible to combine probabilities associated with inco
patible frameworks, because there is no common sam
space. This is an instance of thesingle framework rule@16#,
which states that it is meaningless to try and combine two~or
more! quantum descriptions of a system based upon inc
patible frameworks. This rule is important, because wh
one is analyzing quantum systems it is easy to be misled
combining results in a manner which is quite acceptable
classical physics, where incompatible frameworks ne
arise, but which leads to quantum paradoxes.
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When one is considering probabilities of events that ta
place at different times, as in~1!, it is necessary to employ a
framework or quantum sample space ofhistories, sequences
of events at different times. Rules for incompatibility o
frameworks and for assigning probabilities to histories in
single framework have been worked out by Gell-Mann a
Hartle @14#, Omnès @9,12,13#, and the author@11#; for a re-
cent, detailed formulation see Chap. 10 of@8#. These are
more complicated than those for a single Hilbert space a
single time, but for the purposes of the present paper th
complications, embodied in what are called ‘‘consisten
conditions’’ or ‘‘decoherence conditions,’’ can for the mo
part be ignored; exceptions will be noted as they occur. O
can also employ frameworks to discuss measurements,
vided the measuring apparatus is regarded as a quantum
ject, part of an overall system that is described using qu
tum theory. The probabilities of measurement outcomes
then the same as those calculated by the rules of stan
textbook quantum theory. Hence the use of frameworks
not a new version of quantum theory different from what
found in textbooks, but instead a consistent extension
allows probabilistic descriptions of microscopic as well
macroscopic systems.

The use of frameworks provides a quantum mechan
justification for~1!, where the values ofM refer to the polar-
izer switch setting at a time before the particle is produc
and Sz561/2 to a later time before any measurement o
curs. The assignment of probabilities in~1! is a consequence
of the usual Born rule along with the assumption thatM
50 andM51 are equally probable. Another framework ca
be used to discuss the values ofSx rather thanSz . It is
possible to incorporate all four values ofM, 0,1,0̄,1̄—note
that these are four mutually exclusive possibilities—at
earlier time in either theSx or Sz ~at the later time! frame-
work, but theSx andSz frameworks are incompatible, sinc
it makes no sense to simultaneously assign values ofSx and
Sz to a spin-half particle.

B. Maximum capacity

Consider a carrier of information described quantum m
chanically by a Hilbert space with a finite dimensiond. Then
d is the sum of the dimensions of the different subspa
corresponding to the projectors making up a decomposi
of the identity, as is obvious by taking the trace of both sid
of ~2!. Consequently, there can be at mostd projectors in
such a decomposition of the identity, and the correspond
sample space contains at mostd mutually exclusive possi-
bilities. For this reason, the maximum amount of informati
that can be carried by this system is the same as that
classical object withd different states, namely log2d bits. In
particular, ford52, a single qubit, the maximum capacity
1 bit; for d52n, n qubits, it isn bits. Thus a quantum system
can contain at most one bit of information per qubit.

One might suppose that this limit could be exceeded
using more than one framework. However, that would co
tradict the single framework rule: one could not find a sing
sample space or a corresponding random variable~Hermitian
operator! to represent the additional information. To bett
1-5
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understand what is involved in using different framewor
one needs to look at various examples, which is what
shall do in the following sections.

C. Location of information

We looked at various examples in Sec. II where class
information can be assigned a location in the sense th
carrier of information~newspaper, colored slip of paper! can
be assigned a location. It seems plausible that the same
ciple applies to the quantum case: if a spin-half particle is
a particular location and its spin is appropriately correla
with some initial message, then the information is loca
wherever the particle is located. Quantum particles canno
assigned a precise location, but neither can newspaper
this is not a serious difficulty. Of greater concern is the f
that quantum theory allows the use of different incompati
frameworks for describing quantum entities, and, as we s
see, the presence or absence of information in some ca
of information can depend upon the framework used to
scribe it.

Let us begin with the simple case of a spin-half parti
prepared by a polarizer in the stateSz511/2 and traveling
through a field-free region, as in Sec. III A. If we use theSz
framework, this component of spin is correlated with t
switch settingM on the polarizer, and the particle can be sa
to contain or carry the information as to whetherM was 0 or
1. If instead one uses theSx framework, the joint probability
of M50 or 1 andSx can be calculated using the Born rul
and one finds that they are statistically independent, so in
framework there is no information about the two switch s
tings. ~For present purposes we are ignoringM50̄ or 1̄.!
That the information should be present in one framework
not another is not too surprising given the classical anal
~the second model! introduced in Sec. III B: If the polarize
stores information in thez component of angular momentum
while leaving thex andy components undefined or random
it is not surprising that the information is later found inSz
and not inSx . Thus in studying quantum information it i
important to look at a variety of frameworks.

Consider a situation in which two spin-half particles a
used to carry two bits of information. As long as each p
ticle is polarized separately, the situation is straightforwa
Suppose that polarizerA imparts to particlea a polarization
of Sz561/2 and polarizerB imparts to particleb a polariza-
tion of Sx561/2. Then one can exhibit perfect correlatio
between the initial switch settings of the polarizers and
spin states of the particles by using for the latter a framew
consisting of the orthonormal basis~with kets in the order
ua,b&) of

u0,1&, u0,2&, u1,1&, u1,2&, ~3!

where u0& and u1& are the states withSz511/2 and21/2,
respectively, and

u1&5~ u0&1u1&)/A2, u2&5~ u0&2u1&)/A2, ~4!

are states withSx511/2 and21/2, with a particular choice
of overall phase. For this framework, information aboutA
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will be located wherever particlea is located, information
aboutB will be at the location of particleb, and the com-
bined information can be said to be in the union of the t
regions of space occupied by the two particles.

This is entirely analogous to the corresponding class
case and would scarcely be worth mentioning except tha
provides a contrast with a very different way in which tw
bits of information can be encoded in two spin-half partic
by using the four Bell states

uB00&5~ u00&1u11&)/A2,

uB01&5~ u01&1u10&)/A2,

uB10&5~ u00&2u11&)/A2,

uB11&5~ u01&2u10&)/A2. ~5!

As these form an orthonormal basis of the two spin syste
they can be used as a framework of mutually exclusive p
sibilities. One could imagine that they are produced by
suitable apparatus, with each state corresponding to on
four settings of a switch on the apparatus. Then the inform
tion about the switch setting is located in the union of t
regions occupied by the two particles. However, in contr
to the previous case, it is not possible to say that any par
this information is located in either particle by itself.

To begin with, each of the Bell states is a delocaliz
entity of a type which possesses no classical analog:
impossible to ascribe properties to the individual spins wh
they are in such an entangled state. The reason is th
projector representing some property of particlea is neces-
sarily of the form 1

2 (I a1Saw), where the subscripta labels
the particle,w indicates some direction in space, andI is the
identity operator on the Hilbert space. Such a projector d
not commute with a projectoruBjk&^Bjku representing one o
the Bell states. To suppose that a quantum system can si
taneously possess properties corresponding to two nonc
muting projectors is to abandon standard quantum mecha
in favor of a theory of hidden variables. And it violates th
single-framework rule.

Even if a system has been prepared in one of the four B
states by some apparatus, there is no reason why at a
time we must describe it using the Bell states as an ortho
mal basis. We could, instead, adopt a basis in which
individual particlesa andb are assigned specific propertie
for example,Saz andSbz . If one works out the correspond
ing probabilities~which are the same as ifSaz andSbz were
measured!, one will find that in this framework the differenc
between a preparation which produceduB00& or uB10& on the
one hand, anduB01& or uB11& on the other, is present in th
correlation between the value ofSaz andSbz , but not in the
values ofSaz by itself orSbz by itself. Other frameworks can
be used to extract other pieces of information, but in no c
is any part of the information located in one of the partic
by itself. The situation is thus analogous to the example
classical information encoded in two slips of paper of t
same or of different colors, Sec. II, and thus not available
either slip by itself.
1-6
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V. DENSE CODING

A. Circuit and unitary time development

As noted in Sec. I, the phenomenon of dense~or super-
dense! coding has been interpreted as indicating that a sin
qubit can somehow contain two bits of information. If tru
this would contradict the maximum capacity result of S
IV B, and both for this reason and also because it provide
instructive example of using frameworks to locate inform
tion, dense coding is worth examining in some detail.

A quantum circuit corresponding to this process is sho
in Fig. 1, with the usual convention that time increases fr
left to right. Each of the two qubitsa and ā in Alice’s labo-
ratory, above the dashed line, is initially in a stateu0& or u1&,
and together they constitute an information source with f
possible messages. In Bob’s laboratory, below the das
line, two qubitsb and c, initially both in the u0& state, are
entangled by applying a Hadamard gateH to ub50&, produc-
ing (u0&1u1&)/A2, followed by a controlled-NOT in which
the c qubit is flipped fromu0& to u1&, or vice versa, if and
only if the b qubit is in the stateu1&, where the notation
follows @17#. These two unitary transformations place t
two qubitsb and c in the Bell stateuB00&, see~5!. At this
point theb qubit is transported to Alice’s laboratory and th
information in thea and ā qubits is written into it using a
controlled-NOT and a controlled-Z gate. The latter multiplies
the total state by21 if and only if botha andb are in the
stateu1&. After this theb qubit is returned to Bob’s labora
tory where it and thec qubit undergo the inverse of th
operation that initially entangled them. The overall unita
time evolution results in theb qubit being in the same state
u0& or u1&, as thea qubit, andc in the same state asā, as
indicated in the figure.~Note that ifa is in a superposition of
u0& and u1&, this same state willnot emerge at the final time
at either of the points labeledua& in the diagram, and the
same is true ofā.! The term ‘‘dense coding’’ refers to th
idea, which at first glance seems intuitively plausible, t
the single qubitb on its way back to Bob’s laboratory con
tains the information that was initially in botha andā, which
is to say two bits of information, and it is this idea that w
shall investigate using various frameworks.

B. Different frameworks

Let us begin with the frameworkF1 corresponding to the
unitary time development of the initial states discuss
above. One then finds that during the time interval fromt5 to

FIG. 1. Quantum circuit for dense coding.
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t6 in Fig. 1 the qubitsb andc are in one of the entangled Be
states defined in~5!, which state depends on the values ofa
andā. But in this situation, as discussed in the Sec. IV C,
information cannot be said to be present in qubitb, instead it
is in a sort of quantum correlation betweenb andc. Conse-
quently, if we useF1 there is no violation of the maximum
capacity result of Sec. IV B, because 2 bits of informati
are carried by a Hilbert space of dimension 23254 repre-
senting both qubits.

The reader may find this result, even though formally c
rect, to be intuitively troubling in that it seems as if th
information which at times beforet3 was entirely in Alice’s
laboratory has somehow managed to ‘‘jump,’’ so that at tim
t5 it is at least partly in Bob’s laboratory in qubitb, despite
the fact that this qubit has not interacted with eithera or ā.
Have we uncovered some mysterious long-range interac
which can influenceb despite the fact that it is far away from
Alice’s laboratory?

To see that there is nothing particularly odd about inf
mation suddenly appearing in this manner in a delocali
correlation with a distant object, it is useful to analyze t
circuit in Fig. 1 using a different frameworkF2 in which we
suppose that att2 and all later times each qubit is describe
using theSz or computational basis,u0& or u1&, which for this
discussion we shall denote by 0 or 1 without using the
symbol. ~The state ofb at t8 is an exception, see below!
Given the initial states shown in the figure, it follows fro
the Born rule that in this framework at timet2 either b5c
50 or b5c51, with equal probability. The same is true
t3, but betweent3 andt4 theb qubit will be flipped from 0 to
1 or from 1 to 0 if ā51, or remain the same ifā50. As a
consequence, att4 the information initially present inā will
be present in thecorrelation betweenb andc: if ā50, then
b5c, and if ā51, thenbÞc. Notice that this information is
not present in eitherb or c separately, for att4 each is 0 or 1
with a probability of 1/2, the same as att3. Once again we
have a situation in which information ‘‘suddenly’’~between
t3 andt4) appears as a correlation with a distant object wh
has taken no part in any interaction. However, the situatio
precisely parallel with the classical analogy discussed in S
II, in which Alice and Bob share two slips of paper which a
both red or both green, and there are obviously no nonlo
influences or other sorts of magic. And if such an inform
tion ‘‘jump’’ is unproblematic in the classical case, and th
in framework F2, there seems to be no reason to be co
cerned about it in frameworkF1.

Now let us continue the description using frameworkF2
to times later thant4 in Fig. 1. Betweent4 andt5 theb qubit
is left unchanged, for even ifa51 the only effect of this is to
change the sign ofub51&, but this has no effect upon th
projectoru1&^1u. ~This is perhaps clearer if one employs th
histories formalism, see the next paragraph.! Nor is there,
obviously, any change betweent5 and t6. The next
controlled-NOT gate has the effect thatc is equal to 0 or 1 at
t7 depending upon whetherb5c or bÞc at t6. Conse-
quently, the information originally contained inā, which dur-
ing the time interval fromt4 to t6 is present as a correlatio
betweenb andc, emerges at the end inc, as indicated in the
1-7
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figure. The final Hadamard gate changes qubitb from u0& to
u1& or u1& to u2& as the case may be; inF2 one cannot
assignu0& or u1& at t8 to b without violating consistency
~decoherence! conditions@18#.

The somewhat informal discussion of frameworkF2 in
the previous paragraphs can be given a formal justifica
using the consistent histories formalism, where the nota
is that of @8#. Consider a consistent family with four initia
states

uC0
aā&5ua,ā,b50,c50&, ~6!

wherea and ā are either 0 or 1, and a set of histories of t
form

@C0
aā#(F2(F4(F7 , ~7!

where the subscripts refer to the times shown in Fig. 1.~One
could include additional events at additional times, but t
selection suffices for displaying the essential ideas.! In ~7!
and below we use the abbreviation@F# for the projector
uF&^Fu. For each possible initial state there are two histor

@C0
aā#(@a,ā,0,0#2(@a,ā,ā,0#4 (@a,ā,ā,ā#7 ,

@C0
aā#(@a,ā,1,1#2(@a,ā,12ā,1#4(@a,ā,12ā,ā#7 ~8!

with nonzero probabilities. Here subscripts have been ad
to the projectors to identify the time. For a givena andā the
two nonzero probabilities are equal to each other; they
be calculated using the methods discussed in@11# or in
Chaps. 10 and 11 of@8#. From these one can see that att4
information corresponding to the value ofā is, indeed,
present in the correlation between the last two qubitsb andc,
but not in either of these separately, because one does
know which of the histories in~8! is the one that actually
occurs.

Finally, let us consider a third frameworkF3 which is
similar to F2 except that for times in the intervalt2<t<t6
we use theSx basis for qubitsb andc, i.e., the statesu1& and
u2& defined in~4!, while retainingu0& and u1& for a and ā.
Sinceb andc evolve unitarily to

uB00&5~ u00&1u11&)/A25~ u11&1u22&)/A2 ~9!

at timet2, by thinking of this state as a preprobability@7#, or
by invoking the Born rule, one sees that in frameworkF2 ,
b5c51 and b5c52 occur with equal probability. The
controlled-NOT betweent3 andt4 has no effect uponb in this
basis, whereas the controlled-Z between t4 and t5 inter-
changes1 and 2 if a51, or leavesb the same ifa50.
Thus in the time interval betweent5 and t6 the information
originally present ina is found in the correlationb5c51 or
2 for a50, andbÞc for a51. The situation is thus analo
gous to what we found usingF2, but with the roles ofa and
ā interchanged. The controlled-NOT betweent6 and t7 maps
b5c into b51, andbÞc into b52, while the final Had-
amard gate maps these tob50 andb51, respectively, so
that at the endb is identical to a. On the other hand,c
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continues to have the same value,1 or 2, at t7 and t8 as it
had earlier; ascribing a value of 0 or 1 to it at these tim
would violate the consistency conditions@18#.

In terms of the location of information, theF3 framework
leads to a conclusion parallel to the one obtained usingF2:
during the time interval fromt5 to t6 the information abouta
is located in a correlation betweenb andc in a manner which
is, once again, quite analogous to the classical situation c
sidered in Sec. II. In particular, one cannot say that the
formation is present inb by itself any more than that it is in
c by itself.

C. Discussion

It should be noted that the three frameworksF1 , F2, and
F3 are incompatible, as is immediately obvious from the fa
that they use noncommuting projectors to describe theb and
c qubits att2 and at each later time. Thus the descriptio
provided by these frameworks cannot be combined int
single quantum description; this would be just as meani
less as assigning values to bothSx and Sz for a spin-half
particle. Nonetheless, they provide qualitatively similar a
swers to the question of the location of the information tra
mitted from Alice to Bob: it is not to be found in theb qubit
alone during the time interval betweent5 and t6, but instead
in some sort of correlation betweenb andc. In F1 this ‘‘non-
locality’’ arises from the delocalized nature of entangl
quantum states, which has no classical analog, whereas iF2
and F3 it is rather more like the classical nonlocality di
cussed in Sec. II. In addition, inF2 and F3, half of the
information—a different half in the two cases—has co
pletely disappeared by the timet5t5, and does not reemerge
That information should be ‘‘invisible’’ in certain frame
works is not by itself too surprising, since there is a classi
analog, Sec. III B: thex component of angular momentum o
a spinning object reveals no information about thez compo-
nent. However, the inability to combine these incompati
frameworks into a single description is very much a quant
effect.

Note that in no case is the maximum capacity limit of Se
IV B exceeded, because with each of these frameworks
information is carried jointly byb andc, and not byb alone.
One might worry that there could be some other framew
in which all of the information is found inb, but one can
easily show that this is impossible by calculating the redu
density matrix forb at time t5 using unitary time develop-
ment from any of the initial states, and verifying that it is 1
times the identity operator whatever may be the initial cho
of a andā. This density matrix functions as a preprobabili
@19#, i.e., it can be used to assign probabilities for any ba
in the Hilbert space ofb, and the corresponding probabilitie
are thus independent of the values ofa and ā.

Difficulties in understanding dense coding have led to
suggestion@20# that somehow some of the informatio
present ina andā travels backwards in time in order to reac
Bob’s laboratory. However, it is easy to show that given t
initial states shown in Fig. 1, at any timet<t3 any random
variable~i.e., any Hermitian operator! on the Hilbert space of
the two qubitsb andc is uncorrelated witha andā. Thus the
1-8
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information does not travel backwards in time, except, p
haps, in some metaphorical sense, and then one would ex
this to be equally true in the corresponding classical c
discussed in Sec. II.

Nonetheless thereis something very odd, that is to sa
nonclassical, about dense coding. In the classical ana
while it is possible to encode information in correlations b
tween two carriers of information, each with a maximu
capacity of 1 bit, one can insert at most a single bit of inf
mation into this system by using interactions affectingonly
oneof the two carriers. In the quantum case the situation
different, for starting with a single Bell state one can gen
ate any of the other three by applying an appropriate uni
interaction to justoneof the qubits, as noted in@21#. In this
respect quantum theory is very different from classical ph
ics, and one has a genuine quantum mystery. But it i
mystery fully compatible with the information bound in Se
IV B, and with the absence of mysterious nonlocal influen
which can transfer information instantly between separa
~thus noninteracting! systems.

VI. STRUCTURES AND CHANNELS

A. Structures

Thus far we have discussed information in the quant
context in terms of frameworks. As long as a single fram
work is employed to describe a quantum system, the u
rules which govern classical probabilities and ordinary~clas-
sical! information theory apply, so in this sense there is no
ing new. However, in quantum theory, in contrast to class
physics, one has the possibility of using many different
compatible frameworks, and each framework has a dist
probabilistic structure. Thisframework dependenceis some-
thing with no classical analog, and gives rise to problems
a sort not encountered in other uses of information the
Examples of framework dependence have already come
in the discussion of dense coding in Sec. V.

For discussions of framework dependence it is usefu
introduce the concept of astructure: a collection of frame-
works, typically mutually incompatible, along with a com
mon algorithm for assigning probabilities in the differe
frameworks. This is not a precise definition, for the conc
is still under development, but a few examples will serve
indicate what we have in mind. A particular density mat
can be used to assign probabilities to the elements of
orthonormal basis of the Hilbert space on which it is defin
and in this case the bases are the different frameworks
constitute the structure, while the density matrix provides
probability algorithm. As another example, suppose Eve
contemplating how best to extract information about
common key which Alice and Bob are in the process
establishing using the BB84 quantum cryptographic proto
@22#. She has to design an apparatus to intercept and in s
sense copy a qubit on the way from Alice to Bob, and
working out the design needs to compute what will happ
using either anSx or Sz framework for the initial state of the
qubit, as well as various alternatives at later times. The
namical properties of the eavesdropping device provide
algorithm for calculating probabilities for the different sc
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B. Channels

Perhaps the simplest example of a structure involving h
tories of a quantum system, thus properties at more than
time, is aquantum channel. Typically, one is interested in
some basis for the Hilbert space representing the input to
channel, which is tensored to a second Hilbert space re
senting the environment, and then another~possibly the
same! basis for the first space at a later time. A particu
framework corresponds to a particular choice of the init
and final bases, the structure consists of all frameworks
this sort, and unitary time evolution of the total syste
~channel plus environment! along with the Born rule is used
to calculate probabilities in each framework.

Let A be the input of the channel,E the environment, and
H5A^ E the total Hilbert space. Suppose that att0 the en-
vironment is always in a fixed stateue0&, while the initial
stateua& of the channel is one of a set of states$upm&%, m
51,2, . . . ,which form an orthonormal basis ofA. At a time
t1.t0, define

uC1
m&5T~ t1 ,t0!~ upm&ue0&), ~10!

where T(t8,t) is the unitary time development operato
equal to exp@2i(t82t)H/\# for a time-independent Hamil
tonianH.

Next consider a framework consisting of a family of hi
tories, each of which begins with some initial stateupm&ue0&
at t0, and ends with one of the events associated with
decomposition of the identity

I 5 P̄1(
m

Pm ~11!

in orthogonal projectors, whereP̄ might be zero, and the
$Pm% have the property that

PmuC1
m8&5dmm8uC1

m&. ~12!

As a consequence, information about the basis states$upm&%
at t0 is at time t1 contained in the collection of projector
$Pm%.

Suppose that the$Pm% have been chosen in such a wa
that for some factorizationB^ F of H, which could but need
not be the same asA^ E, it is the case that each projectorPm

is on B in the sense that it is an operator of the for
Pm

^ I ~which meansP̄ is also of this form!. Then we can
say that the information about$upm&% is in B ~or ‘‘on’’ or
‘‘carried by’’ B). Typically B will refer to some subsystem o
the total system described byH, and if this subsystem is
located in a particular region of space, then the informat
can be said to be located in that region.

One can always find projectors such that~12! is satisfied,
for example,

Pm5uC1
m&^C1

mu. ~13!
1-9
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However, this choice is so precise thatB will be equal toH,
and to find more interesting cases in terms of location
information one needs to choose coarser projectors. S
examples will be found in Sec. VII B, or the reader may wi
to think about the case in which the time transformation
trivial, T(t8,t)5I , andB5A.

In the case of a quantum channel one is usually not in
ested in just a single orthonormal basis ofA at t0, but instead
all possible orthonormal bases. Let$upl

m&,m51,2, . . .% be
the collection of vectors forming the orthonormal basisl.
Herel can be any convenient label or set of parameters u
to label the bases, but it should be chosen so that it does
distinguish bases which differ only through relabeling t
basis vectors, or multiplying them by phase factors: in ot
words, it should label distinct decompositions of the ident
into pure states. For example, for a spin-half particle o
single qubit, with u0& and u1& the eigenstates ofSz with
eigenvalues11/2 and21/2, define

upl
m&5al

mu0&1bl
mu1&, ~14!

with m50 or 1, where

al
05

1

A11ulu2
, bl

05
l

A11ulu2
,

al
15

l*

A11ulu2
, bl

15
21

A11ulu2
, ~15!

for l a complex number satisfyingulu,1, or l5eif with
0<f,p. In particular,l50 is theSz or computational ba-
sis, l51 theSx basis, andl5 i the Sy basis in the familiar
Bloch sphere picture.

Let us in addition allow many different times:t0,t1,
t2,•••,t f . For each basisl and each timet j choose a
decomposition of the identity

I 5 P̄l j1(
m

Pl j
m , ~16!

such that

Pl j
m uCl j

m8&5dmm8uCl j
m &, ~17!

where

uCl j
m &5T~ t j ,t0!~ upl

m&ue0&). ~18!

Next suppose that at timet j there is a factorization
Bj ^ Fj of H such that for alll and everym, Pl j

m is on Bj .
Then since for anyl the information about$upl

m&% is in Bj ,
it seems reasonable to say that the channel itself isin ~or
‘‘on’’ or ‘‘carried by’’ ! Bj at time t j . Let us adopt this as a
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tentative definition that deserves further exploration to
if it is reasonable and useful. That exploration begins
Sec. VII.

Note that for a fixedl the set of histories

@pl
m#(Pl1

m (Pl2
m (•••(Pl f

m , ~19!

with m51,2, . . . ,form the support of a consistent family o
frameworkFl in the notation of@8#. Consistency is easily
established using the method of chain kets@23#. Note thatFl

and Fl8 are incompatible forlÞl8, so it is not correct to
think of information about$upl

m&% and $upl8
m &% as simulta-

neously present inBj even when the channel itself, viewed a
a structure, can be said to be present inBj .

VII. TELEPORTATION CIRCUIT

A. Circuit and unitary time development

The circuit shown in Fig. 2, with labels chosen to faci
tate comparison with Fig. 1, was first proposed~in a slightly
different notation! as a model for teleportation in@5#; also
see p. 187 of@17#. The unknown stateuc& to be teleported is
initially in qubit a, whereasb andc at timet2 are in the Bell
stateuB00&, see~5!. If qubits a andb are in one of the Bell
statesuBjk& at t3, the two gates which follow will put them in
a product stateuab&5u jk&. Consequently, a measurement
both a andb at time t5 in the computational basis is equiva
lent to measuring the pair of qubitsa,b at t3 in the Bell basis
@24#. In the standard teleportation scenario Alice sends
results of such measurements over a classical channe
Bob, who carries out appropriate unitary operations on qu
c. There are no measurements in the circuit in Fig. 2 and
final unitary operations onc are carried out ‘‘automatically’’
by the last two gates. Thus this circuit does not actua
represent teleportation, though it can be viewed in a part
lar way using an appropriate structure, Sec. VII D belo
which makes it essentially equivalent to teleportation. Ho
ever, it is also of interest as a nontrivial example of an id
quantum channel, and we shall begin by studying it from t
point of view, in particular addressing the question of t
location of information in various frameworks.

The circuit in Fig. 2 constitutes a quantum channel in t
sense defined in Sec. VI B, where qubitsb andc in the state
ue0&5u00& at t0 are the environment, while the channel inp
can be thought of as being in a state

ua&5au0&1bu1&, uau21ubu251. ~20!

FIG. 2. Quantum circuit for teleportation.
1-10
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Unitary time development will then result in a stateuCk& for
the total system at timetk , with, in particular,

uC2&5~au0&1bu1&) ^ ~ u00&1u11&)/A2, ~21!

uC5&5~1/A2!@~au1&1bu2&) ^ u11&

1~au1&2bu2&) ^ u22&]

5 1
2 @ u00& ^ ~au0&1bu1&)1u01& ^ ~bu0&1au1&)1u10&

^ ~au0&2bu1&)1u11& ^ ~2bu0&1au1&)], ~22!

uC8&5u11& ^ ~au0&1bu0&). ~23!

Here u1& and u2& are theSx basis states defined in~4!, the
qubits are in the orderuabc&, and the tensor product symbo
^ has been inserted at various points for clarity.

B. Location of the channel

Let us now consider a particular basisl for thea qubit at
t0, with the basis states given byua&5upl

m&, ~14!, with coef-
ficients defined in~15!. Then it is easy to construct a frame
work in which att3 the information about the initial states
found in qubita using the criteria of Sec. VI B. In particula
the decomposition of the identity~16! is of the form

I 5@pl
0# ^ I ^ I 1@pl

1# ^ I ^ I ~24!

with projectors which are on qubita, and one can check tha
the conditions~17! are satisfied. As this is true for any choic
of basisl, we can, using the definition given in Sec. VI B
say that the channel itself isin qubit a at t3, and of course the
same argument will work att1 andt2. This agrees with one’s
intuition in that up to timet3 the a qubit has not interacted
with the other qubits, so one would expect that any inform
tion initially present in any basis, and thus the channel its
would continue to be present in qubita. Note, by the way,
that for all t<t3 and for any choice of initial basisl, there is
no information about the initial state ofa in qubitsb or c or
the combination of the two—the situation is analogous to
case of dense coding, see the discussion in Sec. V—so
again there is no question of information in some way tr
eling backwards in time through eitherb or c @25#.

Next let us consider the situation at timet5. First, it is
easy to show that except for special choices ofl the infor-
mation about the initial state is not present~or at least not
completely present! in qubit a by itself, and therefore the
quantum channel cannot be said to be present ina. However,
it is present in thepair a,b. This can be seen most easily b
noting that in the first expression foruC5& in ~22!, the u1&
and u2& states for qubitb occur in conjunction withau1&
1ubu2& andau1&2ubu2& for qubit a, and the latter are, in
turn, obtained by applying the unitary operatorsH andHZ,
01231
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respectively, to the stateau0&1bu1&. With this as a hint one
can work out the projectors for which~17! will be satisfied;
they are

Pl5
m 5H@pl

m#H ^ @1# ^ I 1HZ@pl
m#ZH^ @2# ^ I ~25!

for m50 and 1, and are obviously located in the paira,b. As
this is the case for any initial basisl, it shows that the
channel itself is located in~or on! the pair of qubitsa andb.

A similar analysis shows that the same is true at timet4,
and this is not surprising, since betweent4 and t5 the only
thing that happens is a unitary transformation ona, and while
this can change the form in which the information is locat
on the two qubits, it cannot affect its presence. Indeed,
same sort of reasoning shows that one should not be
prised that the information is ina,b at t4, since it is already
in a and thereforea,b at t3, and betweent3 and t4 these
qubits interact with each other, but with nothing else. But
it really true that the information is in thea,b pair att3 given
that it is in a? Yes, because the projectors used to estab
the latter are given in~24!, and the projector@pl

m# ^ I ^ I on a
is also a projector (@pl

m# ^ I ) ^ I on a,b. Note that the argu-
ment by which the information initially ina at t3 should be
present in the paira,b at t4 depends upon the fact that th
quantum gates in the circuit represent unitary, and thus
versible, operations; one would not reach the same con
sion if they represented stochastic processes. Indeed if
adopts, as is quite possible, frameworks in which some g
produce random effects, information can disappear.~See the
first example of Sec. VII C, where the action of the Ha
amard gate acting on qubita destroys information.!

Another way of seeing that the channel must be ina,b at
t5 is to note that it can be extracted and placed once aga
qubit a by replacing the part of the circuit followingt6 in
Fig. 2 with a different set of gates acting only ona,b. One
choice is simply to invert the unitary operation produc
earlier ona,b betweent3 and t5 by applying a second Had
amard gate toa, followed by another controlled-NOT be-
tweena ~control! andb.

It is immediately evident from the first expression f
uC5& in ~22!, and also from the second expression if o
multiplies out the products, that this state is unchanged if
interchangesb and c. Consequently, the argument based
~17! for the presence of the channel ina,b can also be used
to show that it is present ina,c: one only needs to inter
change the second and third projectors in each of the te
on the right side of~25!. Although the presence of the chan
nel in a,c is not as intuitively obvious as in the case ofa,b,
one can still check that it is correct by once again replac
that part of the circuit in Fig. 2 which followst6 with a
suitable set of gates involving only qubitsa andc in such a
way that the channel reemerges ina ~or, if one prefers, inc);
this construction is left as an exercise.

But how can it be that the channel is present ina,b and
also present ina,c, but not present ina alone? Here one
needs to remember that information is an abstract entity,
a physical object, and the rules for its location do not have
satisfy the axioms of set theory. If there is a mystery here
1-11
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 012311 ~2002!
is not a quantum mystery, for the same thing occurs in
following classical example. Let 0 be encoded asRRR or
GGG, with equal probability, on three colored slips of pap
abc, and let 1 be encoded asRGG or GRR, again with
equal probability. The information which distinguishes
from 1 is not present in any of the slips of paper separat
as in both casesR andG occur with equal probability. How-
ever, it can be obtained by comparinga with b or a with c,
whereas comparingb with c tells one nothing.

There is, nonetheless, att5 a nonclassical effect in that fo
most choices of the initial basisl ~the exceptions arel50
and ulu51), the framework needed to exhibit the presen
of information in the paira,b is incompatible with that
needed for the paira,c. Consequently, while it makes sen
to say that thechannelis in a,b, or that it is inb,c, it does
not make sense to say that it is both ina,b and in a,c.

C. Alternative frameworks

Just as in the case of dense coding, Fig. 1, additio
insight into the circuit in Fig. 2 can be obtained by cons
ering what happens in some special frameworks. In the
of these theSz or computational basis is employed for a
three qubits at all times. This resembles frameworkF2 in the
case of dense coding, Sec. V B, so it will suffice to note o
the main points. Att2 ~and thereforet3) the b andc qubits
are either both 0 or both 1, with equal probability, and thus
t4 the information about whethera was 0 or 1 att0 resides in
correlations betweenb andc—they are equal fora50, and
different if a51—as well as in qubita itself. But at t5 the
Hadamard gate has randomizeda, and it is uncorrelated with
its earlier value, whereas that information is still present
the pairb,c. In particular, att5 the information is not presen
in the paira,b, nor is it present ina,c. This does not con-
tradict the result of Sec. VII B, for the presence or absenc
information in some particular location depends upon
framework used to describe the quantum system, and the
under discussion is incompatible with the framewor
needed to exhibit the same information ina,b or in a,c. The
presence of information in correlations betweenb and c is
limited to thel50 or Sz basis for qubita at t0; for all other
l the information is, at best, partially present. Next, t
controlled-NOT between t6 and t7 writes the information
from theb,c correlation into qubitc, while in this framework
the final controlled-Z gate has no effect, as in the analogo
situation in Fig. 1.

The second framework we will consider employs thel
51 or Sx basis fora at t0, and also for this and the othe
qubits at all later times, except that theSz ~computational!
basis is used fora at times t>t5. The situation resemble
frameworkF3 in the case of dense coding, Sec. V B, in th
at t2 ~and t3) the b,c pair is with probability 1/2 in the state
11 and with probability 1/2 in22. The action of the
controlled-NOT gate acting just aftert3 is to leave thea qubit
(1 or 2) unchanged ifb51, or flip it from 1 to 2 or vice
versa if b52; in either caseb remains unchanged. Cons
quently, att4 the informationa51 or 2 originally present
at t0 is no longer present ina by itself, but in a correlation
betweena and b, or, equivalently, betweena and c. The
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situation is very similar to the classical analogy discuss
above in Sec. VII B. The Hadamard gate changesa from 1
to 0 or2 to 1 betweent4 andt5, so if we use theSz basis for
a at t5 and later times the initial information abouta at t0
continues to be present in the correlations betweena andc.
The next controlled-NOT gate in Fig. 2 changes theb qubit to
1, so it no longer contains any information, and the fin
controlled-Z transfers the information in the correlation b
tweena andc to c, where it is located att8.

D. Teleportation

As noted in Sec. VII A, in the usual teleportation scena
Alice measures qubitsa andb in Fig. 2 in theSz or compu-
tational basis att5 and communicates the results to Bob ov
a classical channel. The same result can be obtained, fol
ing the proposal in@5# but using somewhat different lan
guage, by employing a structure of frameworks in whi
qubitsa andb are in one of theSz eigenstates fort>t5, but
~in contrast to the first example in Sec. VII C! c is not. In-
stead, att5 one uses an orthonormal basis

u00pl
m&, u01ql

m&, u10r l
m&, u00sl

m&, ~26!

for the system of three qubits, wherem is 0 or 1, upl
m& is

defined in~14!, and the statesuql
m&, ur l

m&, usl
m& are obtained

from upl
m& by applying the unitary transformationsX, Z, and

XZ, respectively. This basis consists of product states,
the c states are ‘‘contextual’’ or ‘‘dependent’’ in the notatio
of @8#, Chap. 14.~The term ‘‘nonlocal’’ employed in@26# is,
in our opinion, somewhat misleading.!

If we use thel basis fora at t0, the basis states in~26! at
t5, and the images of the states in~26! under unitary time
development at later times, the result is a framework
which the initial information,m50 versusm51 in the l
basis att0, is contained in correlations between all thr
qubits at timet5 andt6, in correlations betweena andc at t7,
and in qubitc at t8. That all three qubits are needed att5 does
not contradict the fact, Sec. VII B, that for eachl there is an
alternative framework in which the information is contain
in qubits a and b; it is merely one more example of th
dependence of the location of information upon the choice
framework. In the same way, the location of a quantum ch
nel depends upon the structure employed for describing i
one uses the structure under discussion, the collection
frameworks that employ~26! at t5, then att5 the channel is
located in or expressed as correlations among all three
bits, and not in any smaller subset. Indeed, if one uses thSz
basis fora andb at t5 there isno information whatsoever in
these two qubits about the initial state forany choice ofl;
their values are completely random, in accord with the us
statement that Alice’s measurements tell her nothing ab
the nature of the state that is being teleported.

Note that by assuming that the two qubitsa andb are sent
from Alice to Bob through a quantum channel, as sugges
by Fig. 2, but at the same time requiring that they be
scribed in theSz basis for all frameworks in the structure
one arrives at a situation whose end result is just the sam
1-12
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if Alice had measureda andb in theSz basis and the result
had been sent to Bob over a classical channel in orde
actuate the final two gates acting onc. The circuit in Fig. 2 is
not an improvement over the original teleportation schem
a commercial sense, for one of the motivations for the la
was to remove any need for a quantum channel betw
Alice and Bob once the initial entangled state has been
tablished, i.e., at any time aftert3. However, both ‘‘measure
ment’’ and ‘‘classical communication’’ are somewhat comp
cated ideas, and replacing them with alternative noti
which apply to a simple quantum circuit without the need
invoke external apparatus might lead to conceptual simp
cations in other applications of quantum information theo

VIII. CONCLUSION

This paper proposes a way in which to view, or analy
or think about quantum information, and, as indicated
wards the end of Sec. I, it is convenient to summarize it
terms of two theses, one of which seems well found
though it may in the end turn out to be defective, while t
other is more speculative. The first and less controver
thesis is that a framework or consistent family, Sec. IV, p
vides a natural means of extending classical informat
theory, both its formalism and the associated intuition, i
the quantum domain. This is because a framework provid
consistent probabilistic description of a quantum system
which probabilities have all their usual properties~they are
positive, sum to 1, etc.! and their usual intuitive interpreta
tion. The only difference is that now they apply to quantu
properties described by a quantum Hilbert space. There i
other consistent way of embedding standard probab
theory in standard quantum mechanics~using a Hilbert space
without hidden variables! known at the present time, asid
from the well-known approach based on measureme
whose inadequacy for the purposes of this paper was poi
out in Sec. IV A. In any case, all the probabilities for me
surement outcomes which one can obtain through a v
application of the~not always very clear! rules in the text-
books are also consequences of the correct applicatio
histories methods using frameworks, so the former appro
is subsumed under the latter.

The example of dense coding, Sec. V, shows that class
ideas about information of the sort discussed in Sec. II
be translated in a fairly natural way into the quantum d
main, and the results are physically sensible as long as
adheres to the single framework rule, something which is
any case necessary for a consistent interpretation of quan
mechanics; see the discussion in Sec. 4.6 of@8#. That dense
coding is able to transport two bits of information has no
ing to do with mysterious long-range influences, which are
any case absent from quantum theory when properly for
lated @27#, or with information traveling backwards in time
and it is fully consistent with the condition on the maximu
capacity of a quantum carrier of information~no more than
one bit per qubit! stated in Sec. IV B. Its peculiarity arise
from the fact that the tensor product of two quantum Hilb
spaces provides a very different description of a phys
system than does the Kronecker product of two class
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phase spaces. The analysis of the teleportation circuit in
VII using a variety of frameworks provides additional e
amples of how this approach can answer questions abou
physical location of information and its flow from one regio
in space to another. In addition, it is possible to argue t
many of the ideas in the published literature having to
with ‘‘classical’’ information in the quantum context, such a
the classical capacity of a quantum channel, have a q
natural formulation in terms of frameworks.

Further support for the first thesis comes from the follo
ing observation. Quantum physicists~with some notable ex-
ceptions! believe that the macroscopic, classical world is a
governed by quantum principles at a fundamental level,
that classical mechanics is a particular limiting case of qu
tum mechanics; see@28# for one expression of this wide
spread faith. The histories approach provides a program,
yet complete but very plausible@29#, for understanding clas
sical physics in precisely this way, by the use of quasicla
cal frameworks. The first thesis states, in essence, that q
tum information theory consists in applying the ideas
classical information theory to quantum processes descr
by a single~quasiclassical! framework. We can then ask wha
the implications of quantum information theory, as defined
this way, are for the classical or macroscopic world. T
answer is quite clear: because the classical world can
described quantum mechanically using a single framewo
quantum information theory in the classical context is au
matically the same as standard classical information the
While such a ‘‘correspondence principle’’ is obviously not
proof that quantum information can be correctly formulat
in the way we are proposing, it does provide some supp

We now come to the second thesis, which is much m
speculative. It is thatall of quantum information theory is
ultimately, just a matter of applying ‘‘classical’’ information
theory in different frameworks to a quantum system, a
paying attention to framework dependence. That is, ther
no special form of ‘‘quantum’’ information lying outside th
purview encompassed by the first thesis. To put it in anot
way, the second thesis claims that the concept of informa
in a particular framework, together with a consideration
various collections of frameworks~thus structures, in the
sense defined in Sec. VI A!, is an adequate tool for formu
lating the various problems, such as entanglement, cryp
raphy, and the capacity of quantum channels, which no
days constitute the central concerns of quantum-informa
theory. Being able to formulate the problems in this w
does not mean that they will be easy to solve, for, as any
working in the field is well aware, there are a host of form
dable technical difficulties confronting attempts to do calc
lations even in systems as simple as two qubits. Nonethe
being able to formulate the different problems from this p
spective, if it is possible, could provide a certain unity
coherence to quantum information theory, something wh
has been lacking up to now.

The first ‘‘test case’’ for the second thesis is the analy
of the teleportation circuit in Sec. VII, carried out using va
ous different frameworks. In essence the circuit represen
particular form of quantum channel, thus capable of tra
mitting quantum information, whatever that may be. Is the
1-13
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ROBERT B. GRIFFITHS PHYSICAL REVIEW A66, 012311 ~2002!
anything essential missing from our discussion based u
structures consisting of collections of frameworks, each
ing a different basis for the channel input? Is there any ph
cal question which cannot be addressed in this manner?
clear that there are various interesting questions that have
yet been addressed from this point of view, such as why
that one needs two ‘‘classical’’ bits in the standard telepo
tion process, and it may turn out that the frameworks
proach lacks adequate concepts to deal with this and sim
issues. Only further research will show whether the use
frameworks can provide a reasonably complete underst
ing of teleportation and of other significant problems
quantum information theory. While the analysis of the te
portation circuit represents an encouraging first step, m
remains to be done.

Thus I present the second thesis not as something
which there are strong and compelling arguments, but ra
as an idea worth exploring. Even if partly successful, it co
prove to be a significant advance in our understanding
quantum systems in information-theoretic terms, and i
fails, this itself could be the source of interesting insights
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APPENDIX: DEUTSCH AND HAYDEN

Deutsch and Hayden in@3# use the following approach to
describe quantum information in a collection ofn qubits un-
dergoing unitary time evolution, where we use a slightly d
ferent notation from theirs. Lets j

a be the j th Pauli spin
operator for qubita, where j 5x,y, or z, anda51,2, . . .n,
and let

ŝ j
a~ t !5T~0,t !s j

aT~ t,0!, ~A1!

with T the time development operator in~10!, be the corre-
sponding Heisenberg operator at a reference timet50, as a
function of the~physical! time t.0. Deutsch and Hayden
adopt the view that the three operators$ŝ j

a% for j 5x,y,z
constitute a quantum description of qubita at timet, and the
collection of all such operators, fora51,2, . . .n, provides a
complete description of the entire system at timet. Note that
the $ŝ j

a% are~in general rather complicated! operators on the
full 2 n-dimensional Hilbert space. Probabilities are e
pressed, as is usual in the Heisenberg picture, by using
pectation values of operators of the form~A1!, products of
these for differenta, and sums of such products, in a suitab
initial state, which is chosen to beu0& ^ u0&•••u0&.

The unitary time transformationT may depend on a rea
parameteru. For example, during the interval fromt1 to
t11Dt qubit 5 may pass through a unitary gate correspo
ing to a rotation of the Bloch sphere by an angleu around
some axis. As a consequence, at later times some of theŝ j

a ,

in particular theŝ j
5 , but also Heisenberg operators for oth

qubits if they have interacted with this one after the timet1
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1Dt, will depend uponu. Information aboutu is, by defini-
tion, said to be locatedin the qubits whose Heisenberg op
erators depend uponu. Even if at timet one or more com-

ponents ofŝ j
a(t) for a givena depend uponu, it is possible

that the probabilities associated with any measurement
ried out on this qubit at timet will be independent ofu; see
@3# for examples. In such a case, while the information
present in this qubit, it isinaccessible. The same ideas appl
to cases in whichT depends upon additional parametersf,
x, etc. Information defined in this way has a definite locati
and flows from place to place through interactions among
qubits: there is never any instantaneous or superlum
transfer between noninteracting subsystems.

When applied to the examples considered in the pres
paper, the Deutsch and Hayden prescription would say
in the case of dense coding, the two bits of information s
by Alice to Bob are present but inaccessible in the qu
which she sends him, during the interval betweent5 andt6 in
Fig. 1, rather than, as we argued in Sec. V, in the correlati
between this qubit and the one already in Bob’s possess
In the case of teleportation, the information initially prese
in the unknown stateuc& of qubit a in Fig. 2 is in the~clas-
sical! two-bit signal sent from Alice to Bob after her mea
surement, rather than in the correlation between these an
qubit in Bob’s possession, as we argued in Sec. VII. Th
are various other differences between the conclusi
reached by Deutsch and Hayden and those in the pre
paper. One of particular interest, as it involves a pur
‘‘classical’’ situation, is the third example in Sec. II, wher
they would argue that the information which Alice sends
Bob is present~but, once again, inaccessible! in the single
slip of paper she sends to him, whereas we argued that
not present there, but instead in a statistical correlation
tween this and a different slip of paper.

The differences between the Deutsch and Hayden
proach and that found in the present paper reflect two q
distinct approaches to defining ‘‘quantum information.’’ Th
first is based on a notion of information as reflecting cau
influences, whereas the second uses statistical correlat
The latter seems closer to the perspective of classical in
mation theory as developed by Shannon and his succes
but of course this does not imply that it is the correct, mu
less the unique approach to use when dealing with quan
systems. The one point at which the two approaches agre
in affirming that, just as in the case of classical informatio
quantum information cannot be transmitted instantly b
tween noninteracting systems; for more on this from the p
spective of the present paper, see Chaps. 23 and 24 of@8#.
However, this agreement is only superficial, since Deut
and Hayden assert that a quantum description of the sta
each individual qubit is possible even when the system a
whole is in an entangled state, in contrast to the discussio
Bell states found in Sec. IV C above. The reader is invited
compare these approaches and make up his own mind a
their virtues and vices, preferably after a careful reading
@3#, since the summary given above is necessarily very br
and the original paper contains several helpful examp
along with much more detail.
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