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Simulation of the diffusion equation on a type-ll quantum computer
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A lattice-gas algorithm for the one-dimensional diffusion equation is realized using radio frequency pulses in
a one-dimensional spin system. The model is a large array of quantum two-qubit nodes interconnected by the
nearest-neighbor classical communication channels. We present a quantum protocol for implementation of the
guantum collision operator and a method for initialization and reinitialization of quantum states. Numerical
simulations of the quantum-classical dynamics are in good agreement with the analytic solution for the diffu-
sion equation.
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[. INTRODUCTION require different quantum logic. We consider in this paper the
realization of one-dimension&lD) diffusion equation in the

Recently a quantum computer of typg1l] has been pro- system of two-qubit nodes interconnected by the classical
posed to solve complex gas and fluid dynanj2s4|. In a  channeld5]. The word “classical channels” means that the
simplest implementation, this type of a quantum computer istates of qubits can be shifted along the chain of the nodes, in
an array of a few-qubit elementary nodes that are organizespite of the fact that these nodes do not interact quantum
in the discrete lattice. The important feature of the type-limechanically. Technically, classical communication between
quantum computer is that different nodes do not interacthe nodes can be realized by measurement of quantum states
quantum mechanically. The operation of the type-Il quantunmof the nodes of the chaifor in an ensemble of the identical
computer includes the sequential repetition of the three maighaing and reinitialization of the spin chain in the new state.
steps. We present in this paper the quantum protocol that realizes

(1) Initialization of the quantum computer: creation of the e quantum logic required to implement the simulation of
quantum-m_echa_nic_al ir_witial state that co_rrespo_nds to th_e iNi1p diffusion equation.
tial probability distribution for a partial differential equation 1o paper is organized as follows. The formal procedure

(PDZE)AO t;g stglvedf. th i itary t ¢ tion th tfor simulation of a 1D diffusion equation in the type-Il quan-
(2) Application of the quantum unitary transformation tha tum computer is discussed in Sec. Il. In Sec. lll we discuss a

acts on all nodes in parallel. - .

3) Measurement:preading out the quantum states of aﬁqrm of the collision operator. The quantum _dynamlcs _Of a
nodes. The results of the measurement are used to reinitializséntgle nlode thaE[_cc)fnslltjsts_ of two_é:ou%Ie_d (éubltsl\yl?cesd n i‘/n
(step ) the quantum computer in the state that corresponds ggXtermnal magnetic field, 1s considered in Sec. 1v. in Sec.
the new probability distribution we use the solution discussed in Sec. 1V to build the protocol

The type-Il quantum computers have many attractive fea(th® seéquence of pulsethat allows us to initialize our sys-
tures including the following: tem and to S|mul_ate the q.uanturn logic in our computer. The
(1) This computer can operate on a macroscopically largdarameters required for simulations are analyzed in Sec. VI.
number of microscopic nodes. Analogous simulations of thdn Sec. VII we show numerically that the quantum logic
PDE on a digital computer would require an enormouscorrectly simulates the diffusion equation. Some general re-
amount of memory and time. marks are presented in Sec. VIII.
(2) The identical(in time and spadeand relatively simple
guantum logic operations are implemented on the whole mi-
croscopic array of elementary nodes. Il. TYPE-Il QUANTUM COMPUTER FOR SIMULATION
(3) The type-Il gquantum computer should not maintain the A 1D DIFFUSION EQUATION
guantum coherence for a long period of time, since the quan-
tum logic operations are relatively simple, and each time Our type-Il quantum computer represents a 1D chaib of
after implementation of the quantum logic the quantumnodes placed in an external magnetic field, as shown in Fig.
states are collapsed by measurement procedure and reinitidl- Each node consists of two coupled spigabits that re-
ized. main phase coherent for some short time. Different nodes are
The disadvantage of the type-1l quantum computer is thainterconnected with each other by the classical communica-
it can be relatively slow, since each time step requires meation channels as indicated in Fig. 1 by dashed lines.
surement and reinitialization based on the results of the mea- First, we derive the formal relation between the observ-
surement. As well, before reinitialization the system shouldables for the quantum-mechanical model presented in Fig. 1
relax to the ground state. and the probability distribution for the 1D diffusion equation.
Simulations of the dynamics of different physical systemsThe Hilbert space for one node consists of four basis states,
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FIG. 1. A schematic illustration of the type-ll quantum com-

puter. Each node of the computer consists of two coupled quantum

bits (qubity connected with each othefThese connections are
shown by solid lines.Only four nodes are shown. Different nodes

are interconnected by the classical communication channels ind

cated by dashed lines.
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p(X,t) = fl(X!t) + fz(X,t)
=[C1(X%,1)[2+]Ca(x,1)[>+]Ca(x,1) |2+ Ca(x,1) |,
(5)

where

1(X,0)=]Cy(x,1)|2+]Ca(x,1)|%,

26,0 =[Co(x,D)[?+|C4(x,)[%. (6)

If an appropriate sequence of quantum gate operations
and classical shift operations as described below is applied to
the quantum computer, the functignin Eq. (5) evolves in

time as a solution of the diffusion equati@,

ap(X,t) B
at

D&Zp(x,t)
2 a2

(7)
whereD is the diffusion constant.

Factorized quantum lattice-gas algorithm

The factorized quantum lattice-gas algorithm for the 1D
diffusion equation can be implemented in the following three
steps: a collision, a measurement, and a reinitialization
(shifting). We assume that the initial state of a node with the
coordinatex is set in the formq,(x,tg))®|da(X,tg) ), where
the symbol ® represents the tensor produdg,(x,t))
=i (x,t)|1)+1—f(x,t)|0). [Here and in Eq(10) below
we do not indicate the phases of the wave functipns.

Step 1 One applies a collision operatﬁr, simultaneously
to all nodes,

[ (x,))=0]g(x,1)). ®

The structure of the collision operator is discussed below.
This step accounts for the quantum part of the algorithm that
is accomplished in parallel fashion across all nodes of the
array.

All nodes in our 1D chain are characterized by the coordinate step 2 One measuregeads outall occupancy probabili-

X. The occupancy probability dth qubit at sitex at timet is
defined as

fOGD =g, D[N g(x,D), (3)
wherel =1,2. The wave functiohi(x,t)) at each node with
the coordinatex can be expanded over the eigenstdigs
[see Eq(1)] of this node as

3
|w<x,t>>=p20 Cp(x,1)|p) exp(—iEt), (4)

whereE, is the energy of the stat@), and we suppose that
the Planck’s constant 8=1. Since all nodes are identical,
we do not indicate the dependencegmf andE, on x. The
mass density at the node with the coordinatat timet is
defined as the sum of the occupancy probabilities,

t|es
F106,0) = (' (%, D)y ' (x,1)),
f5(%,0) = (&' (x,0)[Ng| ' (x,1)). (9)

In practice,f; andf, must be determined by either repeated
measurement of a single realization of the system or by a
single measurement over a statistical ensemble of the sys-
tems.

Step 3 One reinitializesrewriteg the state of the quan-
tum computer as a separable state where each qubit is set as
follows:

| (6t +T))y =V (x—1,0)[1)+ V1—f(x—1,1)]0),

lga(x,t+T))=VEo(x+1,t)| 1)+ 1 —fo(x+1,t)|0),
(10
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for all x. Note that the state of the qubd,) is shifted to its el P1 0 0 0
neighboring node at the left, and the state of the quit is
shifted to its neighboring node to the right. This step requires 0 ie_iﬂm ie‘”"‘ 0
nearest-neighbor “classical” communication between all lat- ) _ J2 J2
tice nodes. U,=e® ,
1 1
0 — ¢ w4 _e—I7T/4 0
Ill. COLLISION OPERATOR \/E \/E
The collision operatotJ “mixes” the occupancy prob- 0 0 0 el®2
abilities, (16)
where®, &, and®d, are arbitrary phases. In this case and
fi=<lﬂ|0+ﬁ10|lﬂ>: %(f1+f2)1 urr:der the conditio{15), the relations(11) and (14) do not
change.

If one of the coefficientsC; or C,, is equal to zero before

, AP 1 the collision then Eq(11) can be satisfied by the collision
fa= (U Ul =5 (f1+T2), (1) operator of a more general form,
i®
so that the probability is conserved, e 0 0 0
! ! O ie“ﬁl ie"lsz O
fl+f2=f1+f2. (12) A \/E \/E
~ U2: [} (17)
The collision operatotd can be written in the following 0 1 ios L i 0
symmetric form[5]: Ee Ee
1 0 0 0 0 0 0 etz
0 L e Y oia 0 where ¢1— ¢3=¢,— ¢4t mmod(2m) and ¢ do= s
€ € — ¢4+ mmod(27), since the matriXJ is unitary. These re-
2 2

U= . (13) lations for phases are automatically satisfied for any physical

0 1 .. 1 . 0 guantum Hamiltonian system provided the corresponding re-
Ee Ee lations for the amplitudes are satisfied. In order to illustrate
0 0 0 1 the action of the collision operatdy,, we chooseC,(x,t)

=0 andC,(x,t)# 0 and directly calculate the unitary trans-

Then, direct calculation yields us the following formulas: formation,

TR 1
1 f1(x,0)=(|Usn U, ) =|Cs(x,t)[?+ = |C1(x,1)|?,
FL0GD=ICax, D]+ SIC1 D2+ [Cox, 1] 060 = MO ZI Gt Z1Cucl

PN 1
Fo060) = (@Uz N0 ) =[Ca(x, D)2+ S[Ca(x, 2.

+51CE () Co— CE (XD Cy(x D),
19

This equation has the same form as Egl) with the substi-
tution C,(x,t)=0. Note, however, that the evolution opera-
tor (17), providing the transformatiofll), has a very gen-
eral form unlike that in Eq.(13), which allows us to
implement the quantum protocol by the radio frequency
pulses with arbitrary initial phases of these pulte=e Sec.

(14) IV below).

As a result of mixing(11) the probabilities to find each of
the spins in the statgl) become equal to each other,

1
fé(X,t): |C3(X!t)|2+ §[|C1(X1t)|2+|02(xat)|2]

~SICHXDC0) ~ CEXDCH (XD,

One can see that in order to satisfy Etyl), wheref(x,t)
andf,(x,t) are defined by Eq6), one should have
fr(x,t)="f5(x,t
CE () Ca(x,1) =C3 (X,1) Cy(X,1) (15) 0= I0en
or
In order to satisfy this conditiorC,(x,t) and C,(x,t) must
be real or one of them should be zero, i€,(x,t)=0 or , 2 , 2 |y 2 , 2_}
C,(x,t)=0. One can see from Ed1l) that the collision |C1 D™+ [Ca(x, 7= Co(x.DI*+[Co(x. 1) —2p(x,t),
operator can have a more general form, (19
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where p is defined in Eq.(5) and prime inC{(x,t), i B
=0, ... ,3indicates that the probability amplitudes are taken z z
after action of the collision operator. In the next stefep 3 ®
in Sec. Il A) the statdq,(x,t)) of the first qubit shifts to the 2
left, and the statéq,(x,t)) of the second qubit shifts to the
right, o,
—>
p(X,t+T)=|CLx+ 1,024 [Ch(x+1,1)[ 2+ |Ch(x—1,1)|2 b(t) J{ Z100>

+|Ci(x—1,1)|? @

1 FIG. 2. A schematic illustration of a single node—a two-qubit
=5Lp(x+ I, +p(x=1,0)]. (200 system in an external permanent magnetic f@jcand in a circu-
larly polarized radio frequency field.

Finally, we obtain the finite-difference diffusion equation

in the form, in the following section for simulation of the diffusion equa-
tion.
1 In the interaction representation the Salinger equation
P HT)=p(X D) =5[p(x+1,1) =2p(x, D) +p(x=1,1)]. for the coefficientsC y(t) in Eq. (4) [hereC,(t) is Cp(x,t) at
(21  fixed x] has the forn{6],
In the continuous limit, Eq(21) is reduced to Eq(7) with . 3
the diffusion coefficienD=12/T [5]. iCp(t)= ZO Vom exdi(Ep—Em)t
m =

IV. QUANTUM DYNAMIC;I(:S(?FITE'\'I/'IWO-QUBIT QUANTUM Fil p (V14 @) 1Ce (1), (24)

In this section, we show how to initializand reinitialize ~ Wherérpm ==1 for E,>Ey, and E,< Fm’ , respectively.
the initial state of our system and how to implement theYpm = —{1,//2 for the stategp) and|m’) connected by a
collision operator. By the term (te)initialization” we mean  flip of I’th spin, andV,., =0 for all other states. Since the
that each node of our computer is excited to the quantunji@miltonian (23) provides only one-spin-flip transitions,
state that corresponds to a given profisgx,t) in Eq. (5). there are two nonzero terms in the nght-ha_nd side of Eq.
All nodes are equivalent, hence for our purposes it is enouggd: S that the statem’) (for which V., #0) is related to
to consider the quantum dynamics only for a single node. the state|p) by the flip of only one spin. For example,
Each node consists of two qubits placed in a magneti/pm = —1/2 for the transition between the state)
field, =|1,0,) with the energyE,= (1/2)(— w;+ w,+J) [see Eq.
(23)] and the statém’)=|1,1;) with the energyE,=(1/2)
B(t)=[bcogwvt+¢),—bsin(vt+¢),B,], (22 X(w1+wy—J). In another exampléy,,y =0 for the transi-
tion between the statép)=|1,0,) and|m’)=|0,1,) since
whereB; is a uniform permanent magnetic field oriented inthese states are related to each other by a two-spin-flip tran-
the positivez direction, andb, v, and¢ are, respectively, the sition.
amplitude, the frequency, and the initial phase of the circu- Wwhen the differencedw=w;— w, between the Larmor
larly polarizedx-y plane magnetic field. This magnetic field frequencies of the spins is large, and when the Rabi frequen-

has the form of rectangular pulses of the len@time dura-  cies), are small,Q);<J<dw, |=1,2, one can flip a par-
tion) 7. The one-node Hamiltonian of the spin chain in theticular spin(without flip of the other spinchoosing the fre-
magnetic field is quency of the external pulse to be resonant to this particular
5 transition. In this case, the system of four differential equa-
4z 1z _eonizyz_ tions (24) splits into two independenin some approxima-
H=~wyl1—wal3= 20115 ;1 (/2) tion) parts[6]. Each part consists of two coupled differential

equations with only one term on the right-hand side,
x{I exd —i(vt+ )]+, exdi(vt+¢)]}

—Ho+ V(1), 23 ICp(t) =Vpmexd i (Ep— Em)t—i(rt+@)]Cr(t),
where the index labels the spins at the nodgjs the Ising iCm(t)=VmpeX|:[—i(Ep—Em)t+i(vt+<p)]Cp(t),
interaction constant();= y,b is the precessioriRabi fre- (25)

qguency,w;= v,B, is the Larmor frequencyy, is the gyro-

magnetic ratio for théth spin, I is thez projection of theth  where we supposg,>E,, and the stategp) and|m) are
spin, andl,"=17+il{ and |, =I{—il} are the one-spin-flip related to each other by the flip of tHéh spin with the
operators. Schematically the two-spin system is illustrated imesonant E,—Ep,—»=0) or near-resonantB,—E,—v
Fig. 2. Below we write the solution for this system and use it~J) transition frequency = —,/2.

012310-4
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In the case where the system is initially in the state,
i.e., whenC,(tg) =1 and Cy(tg) =0, the solution has the

form [6]
A i A
Calt)= coimeﬂ2)+i—$Tsn(x;mﬂz>ex4._ i pm»
Npm 2
—i LN . [ TApm
Cp(t)—lmnsw()\pmr/Z)ex itoA pmti — el
(26)

where r=t—t, is the duration of the puls&,,=E,—E
—v is the detuning from exact resonance\'pm
= \/QF +(Apm)2 is the precession frequency bh qubit in
the frame rotating with the frequency. If the system is
initially in the state|p), i.e., whenC(to)=1 and Cy(to)
=0, the solution has the forf®]
i TApm
”4 2 »
k

Oy | . . TApm
Cp(t)=|)\|—sm()\pmr/2)ex —itpApm—i — e

pm

A
Cp(t) = COS{)\LmT/Z)—i)\IlnSin()\lme/Z)

pm

Equation(27) can be derived from Eq26) by substituting
Cp—Cm: Cu—=Cy, Apn——Apm, ¢——0.

PHYSICAL REVIEW A66, 012310 (2002
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FIG. 3. A schematic illustration of the action of the collision
operator. This operator mixes the stae$) and|10) in equal pro-
portions, while only the phases of the sta@8) and|11) change.

1 "
|p>—>ﬁ(|p>+le"’|m>)- (3D

If the system before the pulse is in a superposition of the
states,|p) and|m), then in the general case thg2 pulse
does not mix the states in equal proportiofG,|># (1/2)
X(|Cpl?+[Cn|?) and |C/|2#(1/2)(ICpl?+|Cyl?). The
probabilities after ar/2 pulse are equal,

In order to optimize the work of our computer we choose
the frequencies of the pulses, which realize the logic opera-
tions in our computer to be resonamt {,,=0, )\'meQ,)
for the corresponding transitions. In this case, and under the

1
|Chl*=1Cpl*=5 (ICpI*+]Crl?), (32

condition Q7= 7 (a = pulse, Eq. (26) describes the com-
plete transition from the stafen) to the statdp),

Im)—ie~'¢|p), (28)

only when the wave function has a definite phase, for ex-
ample, whenC, and C, before the pulse are pure real or
pure imaginary. In the situation when before the pulse only
one level is populated;,=0 or C,,=0, Eq.(32) is satisfied
independently of the phase of the initial wave function.

and Eq.(27) describes the complete transition from the state

|p) to the statgm),

[py—ie'¢|my. (29)

V. PROTOCOL FOR REALIZATION OF THE COLLISION
OPERATOR

The energy levels for the system shown in Fig. 2 are

One can see that the pulse can be used for the swap op- illustrated in Fig. 3. The action of the collision operatdr

eration between the statég) and |m). The result of the

results in mixing of the statg®1) and|10). As follows from

swap operation is independent of the phase of the wave fund@ preceding section, mixing can be implemented ty/2

tion.

If the duration of the pulse i$),7=#/2 (a #/2 pulse,
then according to Eq(26) the state|p) transforms to the
superposition of the statd®) and|m), with equal probabili-
ties,

1 :
|m>—>ﬁ(|m>+ie"‘°lp>), (30

and according to Eq(27) the state|p) transforms to the
superposition

pulse. However, since our Hamiltonid@3) provides only
one-spin-flip transitions, mixing cannot be implemented by a
single pulse. Instead, we propose to use the protocol that
consists of three pulses as shown in Fig. 4. The firgtulse
[see Eqs(28) and (29)] of our protocol transfers the state
|01) to the state|11), and the stateéll) to the statelO1)
(swaps the statd®1) and|11)). The secondr/2 pulse mixes
the stateg10) and|11). The third 7 pulse again swaps the
states|01) and|11). In brief, using two additionair pulses
we shift the swap operation shown in Fig. 3 to upper levels,
so that it could be implemented in our Hamiltonig?8) that
provides only one-spin-flip transitions. From Fig. 4 one can

012310-5
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[11> [8]). In our numerical simulations presented below we used
the exact form of the collision operator calculated numeri-
[10> A A cally. Since our system was initialized in one stdi&) (but
! ! not in the superposition of the statf&l), [10), and|11)),
P ® ® i our protocol is phase independent, i.e., it works for any ini-
i i tial phase of the pulses; .
|01> : x : Step Ill: Measurement and reinitializatioAfter measure-
|00> Y Y Y ment we define a new distribution using EQO), at each

node. The reinitialization is the same procedure like the ini-

FIG. 4. The results of action of a sequence of pulgks pro- tialization (step ) but with the new probabilityp(x,t+T).
tocol that realizes the collision operator. Each diagram indicatesThis step can also be implemented using an array of micro-
the action of one pulse. The whole protocol implements the operaNMR coils [7]. Note, that we assume that after each mea-

tion shown in Fig. 3. The dashed lines indicates the near-resonariyrement all nodes of our system relax to the ground state.
transitions that are suppressed by thek2nethod discussed in Sec.

VI. The symbol® means that the transformations follow after each
other from the left to the right. The solid lines with arrows at both
ends indicate mixing of the states in equal proportions. The solid Now we discuss the parameters of the pulses, which allow
lines with one arrow indicate the swap operation. Before the colli-ys to implement the collision operator. Since all pulses of our
sion only the statef00) and|01) are populated@,=C;3=0). protocol are resonant, the frequency of the pulse used for
_ _ (re)initialization (the transition|00)«|01)) is [see Eq.(23)

see that the statefl1l) and |00) effectively remain un-  for the values of the energids |,
changedthey change only their phages

Now we discuss in detail the procedure outlined above. 1 1

Step I: Initialization The first step is the initialization or  *o=E1~Eo=5(01- w0+ ) =5 (- 01- 0= J)= w01 +J.
creation of the initial state with the probabilify(t=0,Xx). (35)
The initial state of each node is supposed to be the ground
state. Physically, initialization of our system is the excitationThe frequency of the first pulse required for implementation
of each node from the ground state to the s{@®. We  of the collision operatofthe transition01)«|11) in Fig. 4)
assume here that we can initialize each node independently
as might be possible with an array of micro-NMR cdig.
From Eq.(26) we have

VI. PARAMETERS

1 1
vi=E3— E1=§(wl+ wy—J) _E(wl_ wstJ)=wy—J.
p(x,H)=[C1(x,t)|*=sin[ Q1 7(x,1)/2], (33 (36)
where the initial profile at=0 is p(x,0)=po(x). The profile  The frequency of the second pulsé&he transition

of the probability distribution in our model is controlled by |10)«|11)) is,
the duration of the pulse,

1 1
Q,7(x,t)=2 arcsifiyVp(x,1)], (39 V2=E3_El=§(“’l+“’2_‘3)_§(_‘”1+"’2+‘J)=“’1_‘J’
wheret andx are the time and the coordinate in the diffusion 37
equation(7). and the frequency of the third pulse is equal to the frequency
Step 1l: Collision After the initialization, thew pulse of the first one,y;=v;.
transforms the staf@1) to the state11), as shown in Fig. 4. In order to suppress the probabilities of flips of nonreso-
The secondr/2 pulse mixes the staté$0) and|11). These nant spins we choose,— w,;>J>Q,, |=1,2 (see Ref.

states are mixed in equal proportions, since beforesife  [8]). In order to suppress the near-resonant transitfibs-
pulse only the stat¢ll) is populatedand the stat¢10) is trated in Fig. 4 by the dashed linefor which |A|=J, we
empty, see Eq(32)]. The third = pulse swaps between the apply the 2rk method[6]. As follows from Egs.(26) and
states|11) and |01). The parameters of this pulse are the (27) the probability of the near-resonant transitions generated
same as the parameters of the first one. Using Ef$.and by the first or thirdz pulse is,

(27) one can present the evolution operatbrexplicitly. It
has the form(17). The matrix elements of the collision op-
erator of the real physical system slightly differs from those
in Eq. (17) by the values of the ordef)/Sw due to the
nonresonant transitiondlips of nonresonant spihsSince  where the superscript 2 indicates the number of the bkpin
the probabllltles of the nonresonant transitions are very smak-2 (see Fig. 2, and\'=\/Q 24-\]2 This probablllty is equal
[~ (Q/6w)? [8]], the deviations of the matrix elements from to zero if N27r/(2Q,) = 7k, k 1,2, ... .This gives forQ,
those in Eq(17) are small. The matrix elements of the exactthe following values:

matrix U in Eq. (11) can be obtained by numerical integra-

tion of the system of differential equatiot®4) (see also Ref. Q5=dAP-1 (k=12,...). (39

)\2
20,

Q
2 —sino—|r, (39

Er=

012310-6
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0.15

Po.

0.051

FIG. 5. (a) Dynamics of the profilep(x,t),
and (b) broadening of the dispersiai(t), simu-
lated using the quantum-mechanical system
(filled circles and the analytical solution of the
diffusion equation(solid lineg with the same pa-
rameters. The values of parameters are presented
in the text.
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If sza';, the near-resonant transitions indicated in the leftwe compare the profile(t) and the dispersiom(t), ob-
and the right diagrams in Fig. 4 are completely suppressedained by simulating the dynamics of our quantum-

Using the same arguments for the secerd pulse, we ob-
tain

ok =J/\y16K'2-1.

(40)

The total time required to implement the collision operator

IS,

aw a

T:—+—,+ i
af 20 o

In our simulations we choode=k"”=10 andk’=5, so the
values of() are the same for all pulse$)&0.05). We also
used the sam@ for initialization and reinitialization. We put
all initial phases of all pulsegincluding that required for
(re)initialization] equal to zerogp;=0, i=1,2,3, since our
protocol is completely insensitive to them.

VII. NUMERICAL SIMULATIONS

In our simulations, we assume the&1, [=1, (), andw
are dimensionless, and are measured in unitd;of dw
=1000, w;=dw, wr,=20w. We simulate a 1D diffu-

mechanical system with those given by the analytical solu-
tion (36). One can see that our model correctly simulates the
diffusive behavior of the system.

VIIl. CONCLUSION

We simulated a 1D diffusion equation in the system that
consists of quantum two-qubit nodes interconnected by the
classical channels. The initialization and reinitialization are
simulated by a different sequence of the radio frequency
pulses applied independently to each node of the 1D chain.
The collision operator is simulated by a single pulse se-
quence applied to the entire bulk of the sample. In order to
realize the described protocol, the pulses should have the
definite (resonantfrequencies, amplitudeg®Rabi frequencies
Q), and durations. All these parameters are discussed in the
paper. The protocol is insensitive to the initial phases of the
pulses. The 1D diffusion equation is the simplest equation
that describes the fluid dynamics. On the other hand, until
now there were no proposals for implementation of this
equation in the real type-ll quantum computer using electro-
magnetic pulses. Our results can be used to develop quantum
protocols for simulations of quantum logic in more compli-

sion of the Gaussian wave packet, and compare the numetiated systems, such as a 1D Burgers equd®ir2D diffu-

cal results with the analytic solution. The initial profile is

1 x2
exp ——/,
27d} 2d3

whered, is the width of the initial packet;-300<x<300.
The time evolution is given by the equation

p(X,0)=

1 x?
P mdn exp( ) 2d2<t>) W

whered?(t)=d3+Dt, D=1%T=1. In Figs. %a) and §b)

sion or 2D fluid dynamics.
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