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Quantum control via encoded dynamical decoupling
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The ideas underlying dynamical decoupling methods are revisited within the framework of quantum-
information processing, and their potential for direct implementations in terms of encoded rather than physical
degrees of freedom is examined. The usefulness of encoded decoupling schemes as a tool for engineering both
closed- and open-system encoded evolutions is investigated based on simple examples.
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I. INTRODUCTION

Since the pioneering work on coherent averaging effe
by Haeberlen and Waugh@1#, the use of tailored pulse se
quences for manipulating the effective Hamiltonian expe
enced by a target quantum system has developed a
tradition in nuclear magnetic resonance~NMR! @2,3#. In par-
ticular, within the context of NMR quantum-information pro
cessing~QIP!, decoupling and refocusing techniques provi
the basic tools for enforcing Hamiltonian evolutions that c
respond to quantum logic gates between selected spins@4#.
The principles underlying these techniques, along with
powerful formalism offered by the average Hamiltoni
theory ~AHT! @1#, have been recently extended beyond
NMR domain, and suggestive applications have resulted
various directions within QIP. On one hand, ideas from NM
decoupling motivated a ‘‘bang-bang’’@5# control-theoretic
framework for generic open quantum systems@6#, which
paved the way for the development of quantum symmetr
tion procedures and quantum error suppression strategie
QIP @6–10#. On the other hand, the application of acti
dynamical control in the bang-bang limit proved a valua
tool for engineering the evolution of coupled quantum su
systems@8#, leading to various schemes for universal sim
lation of both closed-system@11# and open-system dynamic
@12#.

So far, in spite of the pervasive role played by quant
coding in QIP, the application of active refocusing and d
coupling methods has been primarily thought of in terms
the basicphysicaldegrees of freedom. Two exceptions are
proposal by Wu and Lidar for applying recoupling schem
on encoded qubits governed by exchange-type Hamilton
@13#, and an implementation by Fortunatoet al. of encoded
refocusing to experimentally demonstrate universal con
on a decoherence-free qubit@14#. It is the purpose of this
work to further comment on the significance of dynamic
control methods as directly represented in terms ofencoded
degrees of freedom, by continuing the investigation of
interplay between quantum coding and decoupling te
niques undertaken in@9#, and by expanding the basic the
retical arguments sketched in@14#. While decoupling meth-
ods have been already shown to enable, in principle
synthesize effective evolutions supporting noise-protec
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encoded degrees of freedom@9,15#, a different perspective is
taken here—by imagining a preselected encoded struc
and by looking at the evolutions that can be enforced thro
encoded dynamical control.

I envision two prospective types of applications of e
coded dynamical decoupling methods within QIP and, m
generally, quantum control. Similar to their unencoded co
terparts, these include the simulation of both closed-sys
Hamiltonian evolutions and open-system nonunita
evolutions—all evolutions being, however, restricted to
underlying coding space that should be preserved throu
out. After summarizing the basic facts about decoupling
Sec. II, encoded dynamical decoupling is introduced in S
III. I then discuss the two relevant areas of application ba
on simple representative examples in Secs. IV and V. A b
summary concludes in Sec. VI.

II. BASICS OF DYNAMICAL DECOUPLING

A bang-bang~BB! quantum control problem is concerne
with characterizing the effective evolutions that can be en
neered by repeatedly interspersing, according to various
sible schemes, the natural dynamics of a quantum sys
with full-power, instantaneous control operations~BB con-
trols! @6–8,16#. Let S denote the target control system, d
fined on a ~finite-dimensional! state spaceHS , dim(HS)
5N, N52n for qubit systems. In a general open-system s
ting, S is coupled to an environmentE via an interaction
HamiltonianHSE. The control problem can then be formu
lated in terms of the following data.

~1! H, the natural Hamiltonian of the composite syste
H5HS^ 1E11S^ HE1HSE, determining the free unitary
evolution U0(t)5exp(2iHt) on the joint state space
HS^ HE . One may writeHSE5(aSa ^ Ea for appropriate
system (Sa) and environment (Ea) operators, respectively
The linear subspaceN5span$Sa% of noise-inducing cou-
plings is referred to aserror space. Without loss of general-
ity, both HS and the error generators inN can be assumed to
be traceless. Detailed knowledge ofHS or N may or may not
be explicitly available from the start.

~2! GBB , the set ofall BB operations that can be effecte
on S. As it is conceivable thatP215P†PGBB if PPGBB , G
can be associated with a subgroup of the groupU(HS) of
unitary transformations on the system alone.

~3! G, the discrete subsetof BB decoupling operations
©2002 The American Physical Society07-1
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G5$Uk%#GBB , with kPK for some finite set of indexe
with order uKu[uGu.

~4! Tc , the relevant control time scale~cycle time!, asso-
ciated with the duration of a single control cycle.

~5! $tk%, the set of relative temporal separations betwe
consecutive BB operations,tk5Dtk /Tc.0, in terms of the
free evolution intervalsDtk , and(kPKtk51 ~cyclicity con-
dition!.

AHT provides a general prescription for characterizi
the controlled evolutions in terms of time-independent eff
tive Hamiltonians that would result in the same unita
propagator if applied over the same evolution interval. Im
ine that a single control periodTc consists of a cyclic se
quence ofuKu BB pulses,P5$Pk ,tk%k51

uKu , with )k51
uKu Pk51.

Then

U~Tc!5exp~2 iH e f fTc!

5 )
m50

M

Um
† U0~Dtm!Um

5 )
m50

M

exp~2 iH mtmTc!, ~1!

where the first equalitydefinesthe effective average Hamil
tonian, and the ‘‘toggling-frame’’ transformed Hamiltonian
Hm are determined by the composite rotationsUm

5)k51
m Pk , k51, . . . ,M21, U051. Here, M5uKu or M

5uKu11 depending on whether the sequence is arrange
as to allow evolution in the1 frame in a single or a pair o
control subintervals—being, in any case,U uKu51 by cyclic-
ity. BecausePkPGBB , thenG#GBB as anticipated. However
G need not itself be a subgroup, neither doesG5GBB , in
general. For instance, allowing forGÞGBB may be crucial
for retaining universal control over decoupled dynamics@8#.
Although the effective Hamiltonian~1! can be systematically
calculated as a power series in the controllable parameteTc
~Magnus series@3#!, AHT is practically useful in the limit of
fast control Tc→0 @2,3,6#, where the lowest-order contribu
tions in Tc suffice for an accurate description. In this lim
He f f approaches

He f f °H̄5 (
kPK

tkUk
†HUk5LG~H !, ~2!

with leading corrections accounted for by

H̄ (1)52
i

2Tc\
(

m.n
@Hm ,Hn#tmtn . ~3!

Under the conditions ensuring convergence of the series
fining He f f , this correction is at leastO(Tc). The zeroth
order approximation~2! is, of course, exact if the variou
transformed Hamiltonians commute—in which case a
time scale constraint for the control implementation actua
disappears.

In passing, it is worth noting that the most general tra
formation that AHT allows involves, as given in Eq.~2!, a
weighted~convex! mixture of unitary operators. Extended
01230
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the algebra of linear operators overHS , End(HS) , the action
~2! defines a trace-preserving, unital, completely posit
map LG . Interestingly, the fact thatLG is a unitary mixing
operation implies that any HamiltonianH̄ reachable from
H via LG is necessarily at least ‘‘as disordered’’ asH in
the sense of majorization@17#. Examples abound in the
original NMR setting where decoupling is achieved throu
control actions of the general form~2!. A relevant represen-
tative case is the so-called Waugh-Huber-Haeber
sequence ~WHH-4! used for homonuclear dipolar de
coupling @2#. This corresponds to a sequen
P5$t0 ,Px ,t1 ,P2y ,t2 ,Py ,t3 ,P2x ,t4% of BB p/2
pulses, Pa5exp(2ipsa/4), and t05t15t35t451/6, t2
51/3—which effectively averages out two-spin interactio
proportional to 3sz

i sz
j 2sW i

•sW j over a cycle.
The simplest realization of Eq.~2! occurs under the addi

tional assumptions that control operations are equally se
rated in time and the composite rotations inG close a group
~decoupling group@6#!. By letting tk51/uGu, the quantum
operationLG of Eq. ~2! reduces in this case to the project
PG on the centralizerZ(G) of G in End(HS), Z(G)5$X
PEnd(HS)u@X,Uk#50 ;k% @6–8#:

He f f°H̄5
1

uGu (
kPK

Uk
†HUk5PG~H !. ~4!

The resulting effective Hamiltonian acquires now a dire
symmetry characterization as@H̄,G#50 –meaning that the
controlled dynamics is symmetrized according toG @7#, and
the desired averaging action can be thought of as filtering
the dynamics that is not invariant underG.

One of the most famous~and practically useful! examples
of a decoupling sequence originating from a group is
Carr-Purcell sequence@18,2,3#, which in its basic variant is
used for suppressing undesired phase evolution due tosz

terms—representing, for instance, applied field inhomoge
ity in NMR. The sequence consists of repeated BBpa
pulses,a5x or y, separated byDt, corresponding to a de
coupling group GCPa

5$1,pa%, with pa5exp(2ipsa/2).

Within the cycle timeTc52Dt, the pulses can be arrange
so as eithert15t251/2 ~with M5uKu52) or t15t3
51/4, t251/2 ~with M5uKu1153). Although the two se-
quences clearly lead to the sameH̄ as resulting from Eq.~4!,
the second option is actually superior in terms of the ove
averaging accuracy —as it corresponds to a time-symme
cycle for which all odd-order correctionsH̄ (2, l 11), ,
50,1, . . . ,vanish@3,6#.

In a closed-system setting,HSE50 and the control prob-
lem consists in turning off~selectively or not! undesired con-
tributions to HS . Note that this amounts to simulating th
AHT-reachable system’s Hamiltonians byHS . In particular,
BB control may enable universal Hamiltonian simulation
HS if an arbitrary effective evolution can be simulated b
HS . In an open-system setting, on the other hand, the fo
is on averaging out the error generators$Sa%, i.e., ensuring
thatLG(N)50, in order to achieve decoherence suppress
The limit of fast control may be especially stringent to
met in this case, as it requires thatTc&tc for the shortest
7-2
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correlation time associated with the environmental no
@5,6,10#—which can be prohibitively small in Markovian o
quasi-Markovian dynamics. In both situations, the attaina
control goals are influenced by two main factors: the av
able knowledge of the interactions to be manipulated an
averaged out, and the overall available control resources

Some notable results about decoupling are worth m
tioning.

~a! Selective averaging~or refocusing! requires knowl-
edge of the transformation properties of the interactions to
turned off with respect to the achievable decoupling setsG.
For a decoupling groupG, a necessary condition for sele
tivity is that the centralizer is nontrivial,Z(G)Þ$l1% (l
complex! @6,8#. A variety of efficientschemes~i.e., polyno-
mial in n) exist for selective decoupling in systems with
most bilinear interactions@19#. These are applicable to NMR
and NMR-like Hamiltonians in both the weak- and stron
coupling limit.

~b! For arbitrary interactions (HS or N), maximal averag-
ing ~or complete decoupling, or annihilation! is possible, in
principle, by lettingG be a unitary error basis onHS @6,11#.
Although this choice can be shown to be optimal, the res
ing scheme is inefficient as the number of required BB c
trol operations isuGu5N254n, which grows exponentially
with n. Again, efficient schemes can be designed if no ter
higher than bilinear ones are known to be relevant@19#.

~c! Universal simulation of an arbitrary effective Hami
tonian onHS can be implemented in various ways, depen
ing on the set of actual simulation requirements and con
resources. Suppose that, for a givenHS , a decoupling setG
exists, such that@HS ,LG(HS)#Þ0, and that periods of free
evolution underHS can be alternated with periods of co
trolled evolution underLG(HS). Then, similarly to the
twisted decoupler schemes discussed in@8#, any Hamiltonian
L belonging to the Lie algebra generated byiH S , iLG(HS)
can be reached in principle—implying universal control
the generic case@20#. Even in the unfavorable situatio
whereHS may consist of a single term~saysz for a qubit!,
arbitrary Hamiltonians can still be engineered if, for i
stance, both a set of BB operations averagingHS and a slow
application of a HamiltonianZPZ(G) can be effected. Then
one can again alternate evolutions underHS with controlled
evolutions whereZ is applied in parallel with the decouplerG
@8#, obtaining as above universality in the generic case.~In
the qubit example, withHS5sz , one can chooseG5GCPx

and applyZ5sx via weak/slow control@8#!. Of course, such
programming procedures may require additional external
pabilities beyond BB control and, in general, they will n
ensure universality starting from anarbitrary ~possibly un-
known! HS . An elegant approach applicable to this gene
situation has been recently presented in@11#, where the pos-
sibility of arbitrary universal simulation is related to th
identification of special decoupling groups calledtrans-
former groups. Starting from any HamiltonianA, decoupling
according to a transformer group is able to mapA into any
desired effective Hamiltonian. For instance, a transform
group for a two-dimensional system~a single qubit! is gen-
erated under the natural representation by the four BB op
01230
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tions $ isx ,isy ,isz ,R%, R being the rotation by 2p/3 about

the axis n̂5(1,1,1)/A3 that cyclically permutes the Pau
matrices.

III. ENCODED DYNAMICAL DECOUPLING

So far, the fullN52n-dimensional state space ofn physi-
cal qubits has been exploited. However, restricting to
NL-dimensional quantum code, NL,N, may prove ex-
tremely useful in QIP—the resulting benefits sometim
largely compensating the overheads and complications a
ing from dealing with a smaller numbernL,n of encoded
qubits. In particular, the two primary motivations for seeki
appropriate encodings are either to ensure protection ag
noise—via active error-correcting codes@21# or passive
noiseless codes on decoherence-free subspaces~DFSs,
@22,23#!/noiseless subsystems~NSs,@24,25,15#!—or to allow
for alternative routes to universality based on the physica
available interactions on appropriately defined subsys
qubits—in the so-called approach ofencoded universality
@25,26#.

A quantum codeHL can be generally thought of as
distinguished subsystem of the physical state space ofS, de-
termined by a correspondence of the form

HS.HL ^ HZ% R, ~5!

for someHZ ,R. HL is the logical~or computational! factor,
which reduces to a proper subspaceHL,HS when the ‘‘syn-
drome’’ cofactor is onedimensional,HZ.C. The summand
R collects the noncomputational states inHS . A code can be
algebraically characterized with respect to a suitable alge
A of operators onHS . The prototype example is anoiseless
code, whereby the appropriate algebraA is the associative
interaction algebra@24# containing the complex linear com
binations of arbitrary products ofHS , all ~or a subset of, see
Sec. V! the error generatorsSas, and the1. Then, in general,
A can be expressed, with respect to an appropriate bas
HS , as a direct sum ofdJ-dimensional complex matrices
each appearing with a multiplicitynJ ,

UAU†5 % JPJ 1nJ
^ MatdJ

~C!, ~6!

where the change of basisU in HS is made explicit, and
(JPJnJdJ5N. With respect to the same basis, the alge
A85$XPEnd(HS)u@X,A#50% @commutant of A in
End(HS) @24## is represented as

UA8U†5 % JPJ MatnJ
~C! ^ 1dJ

. ~7!

Thus, under the unitary mapU, the state spaceHS becomes
isomorphic to

HS. % JPJ CJ^ DJ. % JPJ CnJ^ CdJ, ~8!

i.e., a direct sum of effectively bipartite subspaces. Each
the left ~or right! factors in this decomposition can be ass
ciated with anA code~or A8 code!, respectively. Typically,
to obtain a noiseless code~a DFS or a NS!, one selects a
fixed factor CJ 5HL with dimensionNL5nJ —in which
* *

7-3
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LORENZA VIOLA PHYSICAL REVIEW A 66, 012307 ~2002!
case, with respect to Eq.~5!, HZ5DJ
*

and R5 % JÞJ
*
CJ

^ DJ . Note that, because of Eq.~7!, the code is an irreduc
ible subspace of the commutantA8 @24,9#.

If NL>2nL, then HL can protect the state space ofnL
logical qubits against noise inA. While theglobal structure
of HL is sufficient for establishing storage or even existen
controllability results overHL , an additional, crucial re-
quirement on thelocal structure ofHL stems from the tenso
product nature of QIP. In other words, anencoded tensor
productstructure onHL is necessary for addressing notio
of efficientsimulation orscalablecontrol overHL . This is-
sue is especially evident in the encoded universality
proach, where the primary algebraic structure one consi
is the Lie algebraL generated under commutation by the s
of accessible Hamiltonians@26#. ~Formally,L plays the same
role asA8 in the noiseless coding approach.! Even if the
code sizeNL is large enough to accommodate many qub
without a precise mapping that defines encoded qubits, t
is no way for assessing the potential of this set of interacti
in terms of one- and two-qubit encoded gates useful
implementing a quantum circuit. In its essence, properly
fining this encoded tensor product structure is equivalen
properly constructing qubits in a given physical system@25#.
While no conclusive solution seems available to date, a p
tically motivated approach consists in identifying sing
qubit encodings intosmall blocks of ~two to four! physical
qubits, and then inducing a tensor product structure by
joining ~or ‘‘conjoining’’ ! blocks @25,26,23#. To do so, the
systemS is partitioned into clusters$c,% of physical qubits,
i.e.,HS5),H (c,), and a mapping of the form~5! defines the
state spaceHL,

of the,th encoded qubit starting fromH (c,).
An overall structure as in Eq.~5! still emerges with

HL5HL1
^ •••^ HLnL

~9!

and R grouping all contributions involvingR, for at least
one cluster. The codeHL can still be algebraically characte
ized as being, in general, embedded into one~or more! in-
variant subspaces ofA8—or L, as appropriate@26,23#. For
definiteness, I focus on the case where encoding is motiv
by noise protection againstA henceforth.

Let the set of encoded qubits be specified by enco
qubit observables,

$sa
L,%, a5x,y,z; ,51, . . . ,nL , ~10!

satisfying Pauli-matrix commutation and anticommutati
rules @25#, and belonging toA8. The relevant situation for
introducing encoded dynamical controlassumes that the
natural system dynamics—specified byHS and possibly by
some error generators inN whose effect is not eliminated b
the encoding—areexpressible in terms of encoded qubit o
servables. The goal is then to actively turn on/off selecte
encoded interactions without spoiling the benefits associ
with the underlying encoding. LetU(HL).U(2nL) denote
the group of unitary operators overHL . As in the unencoded
case, the decoupling problem can be defined by a discret
G L5$Uk

L% of BB control operations, which represent e
01230
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coded rotations overHL , G L,U(HL). In the simplest set-
ting, G L will itself form a group of encoded rotations~en-
coded decoupling group!.

There are two minimal requirements for an operatorUk
L to

provide a legitimate unitary transformation overHL : ~i! the
gate should never draw the system outside the protected
gion, ~ii ! the qubit mapping should be preserved at the end
the gate@27#. Both conditions are satisfied ifUk

L is generated
by a HamiltonianAk

L that is expressible in terms of encode
qubit observables—as it suffices for the present discuss
Accordingly, Uk

L5exp(ihdAk
L), for effective strength and

time parametersh, d, respectively—in such a way that th
limit h→`, d→0 with a finite BB action hd can be
achieved. While specifyinghow rotations are effected is ir
relevant in the idealized BB limit of instantaneous cont
actions considered so far, it clearly becomes important i
realistic scenario where pulses have a finite duration and
evolution during the pulses should therefore be taken i
account. Within AHT, compensation schemes have been
veloped for dealing with pulse-length corrections@2#. For
application with encoded pulses, it is necessary to preli
narily make sure that the benefits of the encoding are not
during the pulses. Suppose that unitary operations inU(HS)
exist, whose action isnot generated by Hamiltonians inA8,
but whosenet effect matches, upon restriction toHL , that
corresponding to someUk

L . Then, besides the correction e
fects that also appear for exp(ihdAk

L) for finite d ~and Ak
L

PA8), additional errors are associated with the depart
from HL during d. While elimination of these effects moti
vates, in principle, the necessity of using encoded Hami
nians, in practice different compensation techniques may
attempted, for instance, by resorting to robust control des
@14#.

With these definitions and caveats in mind, the applica
ity of decoupling methods directly carries over to the e
coded case, once qubits and qubit operators are formally
placed with their encoded counterparts. Thus, if an oper
X5F@$sa

j %# has a given structure in terms of physical qu
observables, and a decoupling scheme according toG
5$Uk% accomplishes a desired averaging effect via

LG~X!5 (
kPK

tkUk
†XUk , ~11!

then an equivalent averaging effect is obtained on an
coded operatorXL with the same functional dependenceXL

5F@$sa
L,%# on encoded qubit observables, via the encod

quantum operation

LG L~XL!5 (
kPK

tkUk
L†XLUk

L . ~12!

IV. ENGINEERING OF ENCODED
CLOSED-SYSTEM DYNAMICS

Suppose that the noise generated by operators inN is
fully taken care of by the chosen encoding, or that noise
not a concern to begin with, as in the encoded universa
7-4
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QUANTUM CONTROL VIA ENCODED DYNAMICAL DECOUPLING PHYSICAL REVIEW A66, 012307 ~2002!
approach. Then encoded dynamical decoupling may pro
a tool for encoded universal Hamiltonian simulation.

If, as assumed above,HS is expressible in terms of en
coded observables, then the natural dynamics already im
ments a nontrivial logical transformation over the code. T
provides the primary input to be exploited for engineeri
desired effective evolutions by encoded manipulations. A
the unencoded case, detailed knowledge on the structu
HS may or may not be a data of the problem. Forarbitrary
HS , the results established in@11# imply that universal en-
coded simulation is achievable, in principle, if a finite e
coded transformer can be constructed. The transfor
groups so far identified@11# could be useful, in principle, for
code sizeNL52,3—although, unfortunately, practical impa
is limited by the large number of encoded rotations involv
(uG Lu524 for the above-mentioned single-qubit transform
and uG Lu>168 for dimension 3!.

For the less ambitious target of generating a universal
of encoded evolutions starting from a given~known! HS ,
simpler encoded programming strategies along the li
sketched in Sec. II may suffice. For instance, in the gen
case, the HamiltonianHS , together with a noncommuting
HamiltonianLG L(HS) obtained fromHS via some encoded
decoupling procedure, will fulfill the conditions for genera
ing the whole Lie algebra u(HL) of anti-Hermitian encoded
Hamiltonians—thereby implying universality overHL , at
least at the existential level. The required groupG L of en-
coded BB rotations may be as simple as an encoded C
Purcell-type group. Let, for instance,pL denote an encode
p rotation ~acting on one or more qubits!, andG CP

L the as-
sociated encoded group. Then it is always possible to s
rate terms inHS which are symmetric~s! and antisymmetric
~a! underGCP

L ,

HS5HS
s1HS

a , ~13!

with

pLHS
(s)pL5HS

s5PG L~HS!, pLHS
(a)pL52HS

a . ~14!

Thus, the above argument generally applies provid
@HS ,PG L(HS)#5@HS

s ,HS
a#Þ0, and the two Hamiltonians

HS , PGCP
(HS) accordingly suffice for universal encode

control. An experimental demonstration using a DFS qu
encoded into the zero-quantum subspace of two nuc
spins is reported in@14#.

A. Example: A single NS-encoded qubit

A similar procedure could be relevant for obtaining un
versal encoded control over a NS-encoded qubit of three
spins under general collective noise@24,25,28#. Suppose that
the noise generatorsSa are the global, permutation-invarian
Pauli operatorsSa5( j 51

3 sa
j , a5x,y,z, and that the natura

system Hamiltonian has the isotropically coupled form

HS5VSz1J12s121J23s231J31s31, ~15!

where the Heisenberg exchange couplingsjk5sW j
•sW k and the

parametersV,Jjk are real. ThenA is the algebra of com-
01230
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pletely symmetric operators overHS.(C2) ^ 3, and A8 can
be identified with the group algebra of the permutation gro
S3 ~under the natural representation inHS). A NS code under
A is identified by a correspondence of the form~5! – with
HZ.C2 carrying the irreducible representation of su~2! cor-
responding to total angular momentumJ51/2, HL.C2 car-
rying the two-dimensional irreducible representation ofS3,
andR.C4 being the invariant subspace of symmetric sta
with total angular momentumJ53/2 @24,25,29#. Explicit ex-
pressions for encoded qubit observables~and the associated
logical states! are given in@25#. In particular,

sx
L5L

1

2
~11s12!, sy

L5L

A3

6
~s232s31!, ~16!

where the notation5L denotes identity upon restriction t
the logical subsystem. This allows to rewrite the Hamiltoni
~15!, up to irrelevant contributions which are constant ov
HL , as

HS5L~2J122J232J31!sx
L1A3~J232J31!sy

L . ~17!

Note that the vanishing ofHS for a fully symmetric coupling
network, Jjk5J ; j ,k, correctly verifies the identity action
of permutation-invariant operators overHL (HSPAùA8 in
this case!. Given HS in the form ~17!, the above-mentioned
universality scheme based on encoded Carr-Purcell
quences becomes applicable, in principle, provided one
to ability to enact rapid, encodedpL pulses. Because, with
respect to the chosen code, the action of thesx

L operator is
effectively identical to swapping the physical qubits 1 and
this is, for instance, achievable if the exchange Hamilton
s12 can be switched on for the appropriate time. As a res
one generates an effective encoded HamiltonianPG

CPx

L (HS)

5(2J122J232J31)sx
L , which, together withHS , allows for

universality.
Although not directly applicable to the weakly couple

molecule used in@28# to experimentally realize the abov
three-spin NS, and generally demanding for NMR imp
mentations as theJ-coupling parameters are not controllabl
these ideas could prove viable for a wide class of QIP
vices supporting, in principle, fully tunable Heisenberg inte
actions@30#. In particular, explicit universality construction
relevant to solid-state quantum computing architectu
based on exchange interactions are provided in@13#.

B. Example: A pair of DFS-encoded qubits

As a further example, motivated from NMR, imagine tw
pairs of spin-1/2 nuclei, corresponding to different spec
~hydrogen and carbon, for instance!, subjected to block-
collective dephasing noise. Let the two clusters be associ
with the pairs (1,2) and (3,4), respectively. Then the t
error generators areSz

(c1)
5sz

11sz
2 , Sz

(c2)
5sz

31sz
4 , andA

5A z
(c1)

^ A z
(c2) in terms of the interaction algebrasA z

(c,)

generated bySz
(c,) for dephasing on two qubits@14#. Protec-

tion against errors inA can be accomplished by replacin
7-5
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each physical pair with a DFS-encoded qubit supported
the states havingSz

(c1)
50 andSz

(c2)
50, i.e.,

u i L1
j L2

&5u i L1
& ^ u j L2

&, u0L,
&5u01& (c,),

u1L,
&5u10& (c,), ,51,2. ~18!

In this case, with reference to the general structure~5!, each
DFS encoding has the formH (c,).HL,

% R, , with HL,

5span$u0L,
&,u1L,

&%.C2, R,5span$u00&, ,u11&,%.C2 (HZ,

.C is irrelevant for subspace encodings!. Correspondingly,
for four spins,HL.C2

^ C2 is a four-dimensional subspace
the six-dimensional zero-quantum subspace correspondin
total z angular momentumSz5( jsz

j 50, j 51, . . . ,4, andR
collects all contributions whereSz

(c,)
Þ0 for at least one pair

Encoded observables for the above qubits are provided
example, by the choice@14#

sz
L15L

1

2
~sz

12sz
2!, sx

L15L

1

2
~sx

1sx
21sy

1sy
2!, ~19!

and similarly for qubitL2.
In general, the physical spin system will exhibit a strong

coupled spectrum described by an internal Hamiltonian co
posed of both Zeeman spin-field and indirect spin-spin in
actions@3,14#,

HS5 (
j 51, . . . ,4

pn jsz
j 1 (

j , j 851, . . . ,4

p

2
Jj j 8s

W j
•sW j 8

5(
j

HZj
1 (

j , j 8
HJj j 8

, ~20!

where the chemical shifts andJ-coupling parameters are un
derstood in frequency units. For typical values of the sta
Zeeman field, the contribution to the total energy of a giv
pair of spins (j , j 8) due to the couplingHJj j 8

can be treated

as a perturbation with respect toHZj ( j 8)
—the diagonalsz

j sz
j 8

and off-diagonalsx
j sx

j 81sy
j sy

j 8 terms leading to first- and
second-order correction effects inJj j 8 , respectively. Becaus
the differences in the chemical shiftsun j2n j 8u are larger
when different nuclear species are involved, the approxim
tion of neglecting off-diagonal couplings~weak-coupling
limit ! is well justified for heteronuclear interactions. Thu
Eq. ~20! can be effectively replaced by

HS5 (
j 51, . . . ,4

pn jsz
j 1

p

2
~J12sW

1
•sW 21J34sW

3
•sW 4!

1 (
j 51,2;j 853,4

p

2
Jj j 8sz

j sz
j . ~21!

In terms of the encoded qubit observables given in Eq.~19!,
the chemical shift terms can be immediately rewritten
combinations ofSz

(c,) operators~constant overHL) and logi-

cal sz
L, operators, whereas the homonuclear spin-spin in

actions contribute with logicalsx
L, operators~and additional
01230
y

to

or

-
r-

c
n

a-

,

s

r-

constant terms proportional tosz
j sz

j ). The remaining hetero-
nuclear bilinear couplings in Eq.~21! give

ASz
(c1)Sz

(c2)
1BSz

(c1)
sz

L21CSz
(c2)

sz
L11Dsz

L1sz
L2 , ~22!

with coefficients

A5
1

8
~J131J141J231J24!, B5

1

4
~J132J141J232J24!,

C5
1

4
~J131J142J232J24!, D5

1

4
~J132J142J231J24!.

~23!

Again, an overall identity action overHL is obtained for a
fully symmetric coupling network—as well as for other sp
cial coupling patterns in the system. Assuming that none
these nongeneric circumstances is met, the action of
overall HamiltonianHS over the code is finally

HS5Lp~Dn12sz
L11Dn34sz

L21J12sx
L11J34sx

L21Dsz
L1sz

L2!,
~24!

with Dn125n12n2 ,Dn345n32n4, respectively.
Remarkably, the structure of the Hamiltonian~24! for the

two encoded qubits is very similar to that of the Hamiltoni
describing two weakly coupled physical spins—except th
in the ordinary NMR setting, control along the transversesx
~or sy) directions is directly supplied by external radio
frequency fields. While the potential of Eq.~24! for universal
encoded control should be expected by analogy with the
encoded case, various schemes may be specified depe
on the actual control capabilities. At the existential lev
universality follows from the ability of rapidly effecting a
single encoded rotation, say a ‘‘hard’’~nonselective! encoded
pL pulse,px

L5px
L1px

L2 about the encodedx axis. Because
the associated averaging produces the encoded effe
HamiltonianPG L(HS)5J12sx

L11J34sx
L21Dsz

L1sz
L2 , by ap-

propriately alternating evolution periods underHS and
PG L(HS), arbitrary encoded Hamiltonians can be enacted
principle, through repeated commutation@20#.

Constructive prescriptions become possible as soon
wider range of control options is accessible. In particu
schemes for effecting a universal set of encoded gate
including ~i! all single-qubit rotations and~ii ! a two-qubit
phase coupling—can be provided. Assume that, in form
analogy with the standard~unencoded! NMR setting, the pa-
rametersJ12 andJ34 are independently tunable at will. Thi
is the scenario also analyzed in@13#. To selectively rotate
each encoded qubit about thex axis, turn on the appropriate
sx

L, term in Eq.~24! and simultaneously refocussz
L, evolu-

tions by applying encodedpx
L1px

L2 pulses as above. Note tha

although this action preserves thesz
L1sz

L2 coupling, the cor-
responding evolution can be neglected under the usual
sumption that single-qubit rotations can be effected rapi
enough. In fact, the whole evolution induced by Eq.~24! can
be neglected during thex rotation if the strength of the ap
propriateJ12 or J34 parameter can be arbitrarily controlled a
7-6
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assumed. Also, note that the same sequence of hardpx
L1px

L2

pulses allows to selectively leave this phase coupling alon
both J12 andJ34 are kept to zero—except during the~infini-
tesimal! durations of the refocusing pulses. Selective ro
tions about the appropriate encodedz axis are only slightly
more demanding, as they require the hard logicalpx

L pulses
to be replaced by ‘‘soft’’ encodedpx

L, on the intended spin
alone. The relevance of these and related universality c
structions is further highlighted in@13#.

However, the above tunability requirements are too st
gent, in general, for implementations where the natu
Hamiltonian isalwaysactive. This is, for instance, the re
evant situation in NMR, where interactions can be only
fectively set to zero via appropriate refocusing, and ad
tional constraints also arise for typical implementati
parameters. In particular, one may expect that the enco
chemical shift evolutions will dominate in Eq.~24!, i.e.,
Dn12,Dn34@J12,J34@D. Nevertheless, universal contro
can still be gained by having access to a small set of enco
operations. In the scheme I now outline,no ability of arbi-
trarily tuning encoded Hamiltonians is assumed, apart from
the fixed combinations of strength and times correspond
to logical pL pulses. Unlike in the previous case, howev
encodedpL rotations abouttwo noncommuting axes will be
generally needed. The encoded decoupling schemes
implementing the required universal set of coupling are
follows. Selective rotations about the appropriatez axis are
easiest, as one can take advantage of the natural averag
the sx

L, andsz
L1sz

L2 that is enforced by the above hierarch
of energy scales. One need only refocus the undesired
coded phase evolution~say,sz

L2) by applying sequences o

encoded selectivepx
L, pulses~say,px

L2). It is easily seen tha

decoupling purely based on simultaneouspx
L1px

L2 pulses is
not sufficient, without the ability to separately control th
coefficients in the resulting effective Hamiltonian, to impl
ment selectivex rotations or the two-qubit phase couplin
However, a selective implementation of, say,sx

L1 can be en-
gineered, for instance, by the encoded pulse sequence

px
L1px

L22Dt2px
L1pz

L22Dt2px
L1px

L22Dt2px
L1pz

L2 ,

Dt5Tc/4, ~25!

which corresponds to subjecting qubit 2 to maximal enco
averaging according toG max

L 5$1L,sx
L ,sy

L ,sz
L%, and cycling

twice qubit 1 through the encoded Carr-Purcell sequence
focusingsz

L1 . A similar sequence works for rotating the se
ond encoded qubit, by interchanging 1 and 2 in Eq.~25!. If
all single-qubit interactions are refocused instead, by ap
ing the aboveG max

L to both qubits,

px
L1px

L22Dt2pz
L1pz

L22Dt2px
L1px

L22Dt2pz
L1pz

L2 ,

Dt5Tc/4, ~26!

the sz
L1sz

L2 evolution is selectively extracted from Eq.~24!.
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The problem of how to actually effect the required logic
pL rotations may remain challenging in reality, as the ev
lutions induced by the external controlling fields will not,
general, correspond to encoded Hamiltonians. Again, thi
the case in NMR for control with available radio-frequen
magnetic fields@14#. Thus, even though it is always possib
to enforce a unitary propagator whose net action is the s
as that of the required encoded rotation, the correspond
sequence of physical gates may be complicated and, as n
above, will cause departure from the code during the fin
pulsing time. A possible way out is explored in@14#, based
on the idea of compensating for the resulting exposure
noise by optimizing the length of the relevant control s
quences and by incorporating intrinsic robustness featu
using composite pulse techniques@31#. The situation is rela-
tively straightforward for the special case ofpL pulses, as
the encoded rotations they effect have a simple translatio
terms of realizable physical spin propagators. The simp
instance is the action of apx

L1px
L2 , which is identical to the

action induced overHL by a hardpx pulse on all four spins.
In fact, the following correspondence for the logicalpL

pulses involved in the above encoded sequences holds~up to
irrelevant phase factors!:

px
L1↔sx

1sx
2 ,

px
L2↔sx

3sx
4 ,

px
L1px

L2↔sx
1sx

2sx
3sx

4 ,

px
L1pz

L2↔sx
1sx

2sz
4 ,

pz
L1px

L2↔sz
2sx

3sx
4 ,

pz
L1pz

L2↔sz
2sz

4 .

Accordingly, universal manipulation of encoded evolutio
with reduced error rate is still achievable if robust ways
effecting the above physical operations can be devi
@14,32#.

V. ENGINEERING OF ENCODED
OPEN-SYSTEM DYNAMICS

A further direction for application is suggested by lookin
at encoded dynamical decoupling as a tool for encoded qu
tum error suppression. Similar to the idea of concatena
passive noise protection via DFSs/NSs with quantum e
correction—by operating error-correcting codes directly
DFS/NS-encoded qubits@33#, the idea is now to concatenat
passive noise protection with active dynamical control—
effecting error suppression directly on encoded qubits.

A. Example: A decohering encoded qubit

By analogy to the prototype example of a single decoh
ing qubit analyzed in@5#, the prototype situation is provide
by a single decoheringencodedqubit. Imagine a systemS
composed of two physical qubits, which are subjected t
7-7
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purely dephasing interaction as a result of the coupling
two bosonic environmentsB1 , B2, i.e., the overall system is
described by a Hamiltonian of the form

H5HS1HB1
1HB2

1HSB1
1HSB2

~27!

for the uncoupled subsystem’s Hamiltonians

HS5 (
j 51,2

vk

2
sz

j ,

HB1
1HB2

5(
k

vkbk
(1)†bk

(1)1(
,

v,b,
(2)†b,

(2) , ~28!

and a total interaction Hamiltonian

HSB1
1HSB2

5 (
j 51,2

sz
j
^ H(

k
gk j

(1)~bk
(1)1bk

(1)†!

1(
,

g, j
(2)~b,

(2)1b,
(2)†!J . ~29!

In the above equations,v j , j 51,2 are the natural frequen
cies of single-qubit evolutions,bk

(1) ,bk
(1)† are bosonic opera

tors for the environmentB1 ~similarly for B2), and the pa-
rametersgk j

(1) (g, j
(2)) determine the coupling strength of qub

j to modek of bath 1 ~or mode, of bath 2, respectively!.
Identity operators on the appropriate subsystems are also
derstood as needed. Clearly, implementing decoupling
cording to the groupGCPx

5$1,sx
1sx

2% would dynamically
suppress both error generators—thereby allowing to red
the dephasing noise on both qubits to a level, in principle
low as desired. However, as recalled earlier, this is only
fective in practice in the limit of fast control, where@5,10#

Tc&mini$tc
( i )%, ~30!

tc
( i ) denoting the~shortest! correlation time of thei th envi-

ronment. Suppose now thatB2 is sufficiently ‘‘slow,’’ but B1

is ‘‘fast,’’ so that decoupling at the rate determined bytc
(1)

cannot be afforded. Although implementing decoupling
the slower rate set byB2 reduces the noise effects originatin
from B2, there is no actual guarantee that the overall er
rate is suppressed due to the possibility of decoherence
celeration from modes at frequency higher than;1/tc

(2) in
B1 @5#. In any event, both qubits would remain effective
exposed to noise. Are there other noise control options w
being considered?

For arbitrary dephasing and just two qubits, quantum
ror correction does not help, neither does passive n
protection—unless some symmetries can be identified in
noise. Suppose that, in the above interaction Hamilton
~29!, gk1

(1)5gk2
(1)5gk

(1) to a good accuracy, meaning that th
environmentB1 couples collectively to the qubits. Then th
overall interaction can be rewritten as
01230
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HSB1
1HSB2

5Sz^ B z
(1)1sz

1
^ B 1

(2)1sz
2

^ B 2
(2) , ~31!

for Sz5sz
11sz

2 as earlier defined, and appropria
environment operatorsB z

(1)5(kgk
(1)(bk

(1)1bk
(1)†), B j

(2)

5(,g, j
(2)(b,

(2)1b,
(2)†), j 51,2. Physically, this situation cor

responds to a noise process consisting of both fast collec
dephasing, due toB1, and slow independent dephasing, d
to B2. Whenever a symmetry in the open-system dynamic
present, major gains should be expected by seeking fo
appropriate encoding into a DFS or a NS. In our case,
relevant DFS is the one already introduced in Sec. IV B, i
the one spanned by states corresponding to total zero an
momentum alongz, Sz50. Thus, a logical DFS qubit is de
fined by the encoding given in Eq.~18! ~for just one qubit!,
with

HL5span$u0L&,u1L&%5span$u01&,u10&%. ~32!

By construction, this encoded qubit is perfectly protect
~with infinite distance! against the noise due toB1. However,
mixing with the degrees of freedom ofB2 is still induced
through the error generatorssz

j , j 51,2 in Eq.~31!. The key
observation is that this residual noise preserves the co
space, corresponding to a purely decohering coupling
tween the encoded qubit andB2. Because, by using Eq.~19!,
the error generators are simply expressed in terms of
coded observables

sz
15L

Sz

2
1sz

L , sz
25L

Sz

2
2sz

L , ~33!

the action of the total HamiltonianH, Eq. ~27! on HL finally
rewrites as

H5LDvsz
L1HB1sz

L
^ Bz , ~34!

where Dv5(v12v2)/2, HB5HB1
1HB2

, and Bz5(B 1
(2)

2B 2
(2))/2. This form makes it clear that the action ofH on

the encoded qubit is formally identical to the action of t
diagonal spin-boson Hamiltonian on the physical qubit co
sidered in@5,34#.

By the same argument valid for suppressing decohere
on a single physical qubit, implementing a sequence
equally spaced, encodedpx

L pulses sufficiently fast with re-
spect to theslowerrate determined by 1/tc

(2) is now guaran-
teed to suppress the encoded error rate by a factor o~at
least! O@(Tc /tc

(2))2# @6#. This corresponds to encoded d
namical decoupling according toG CPx

L 5$1L,sx
L%, wheresx

L

is again given in Eq.~19!. Thus, if the required encodedpx
L

rotation can be effected, suppression of the slow depha
from B2 can be accomplished without reintroducing exp
sure of the encoded qubit to the fast dephasing fromB1.
7-8
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B. Generalizations

Some generalizations of the above example are w
pointing out. First, the same encoded decoupling schem
effective at suppressing encoded phase errors in a situa
where the internal two-qubit Hamiltonian is governed by
generally anisotropic exchange Hamiltonian

HS5
v1

2
sz

11
v1

2
sz

21J12
x sx

1sx
21J12

y sy
1sy

21J12
z sz

1sz
2 ,

~35!

with J12
x 5J12

y 5J and eitherJ12
z arbitrary,J12

z 50, or J12
z 5J

~the so-calledXXZ, XY, and isotropic models, respective
@13#!. In the isotropic case, in particular, which was al
examined in Sec. IV and is directly relevant to NMR a
solid-state devices, the encoded open-system Hamilto
~34! is modified to an encoded spin-boson Hamiltonian@34#
as

H85LDvsz
L1Jsx

L1HB1sz
L

^ Bz . ~36!

Once encoded suppression of thesz
L error generator is ac

complished as above, control according to thesz
L Hamil-

tonian can be re-introduced, if desired, by implementing o
of the programming schemes described in@8#—implying the
possibility of retaining universal noise-suppressed enco
control.

Situations involving hybrid dephasing processes w
highly correlated components and slow residual noise
multiqubit systems may be also relevant. If, for instance, i
four-qubit system, dephasing fromB1 is pairwise correlated
on qubits ~1,2! and ~3,4! as considered in Sec. IVB, the
encoding into the tensor product of the two DFSs descri
there ensures protection againstB1. Once this is done, apply
ing sequences of encodedpx

L1px
L2 pulses at the appropriat

rate causes a suppression of any~independent or correlated!
residual dephasing due toB2.

Finally, similar ideas may be more generally applicable
situations where the encoded error generators for the res
noise are expressible through encoded observables. If
instance, starting from the above two-qubit Hamiltoni
~27!, the action overHL may be cast into the form

H5LDvsz
L1HB1sz

L
^ Bz1sx

L
^ Bx ~37!

for appropriate operatorsBz ,Bx on environmentB2, then the
encoded qubit suffers from both decoherence and dissipa
effects. The resulting error rate can be suppressed, in p
ciple, by using the encoded annihilatorG max

L

5$1L,sx
L ,sy

L ,sz
L% introduced above. Note that, in terms

coupling to the physical degrees of freedom, the interac
~37! involves multiple-qubitexcitations as error generator
Interestingly, system-bath couplings allowing for simil
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multiqubit processes to the lowest order are the only clas
interactions, in addition to those exhibiting spatial symme
for which DFSs are known to exist@35#.

To summarize, if noise has both slow and fast comp
nents, so that achieving full decoupling of the physical d
grees of freedom becomes unfeasible, then encoded dyn
cal decoupling may be useful in situations where a domin
symmetry in the fast noise can be exploited to obtain
coded qubits, and the generators for the residual slow n
are expressible in terms of encoded observables. In
event, using encoded rather than physical degrees of free
allows the system to benefit already from enacting dec
pling operations at the slower rate. However, this looser c
straint on control time scales competes, as already em
sized, with tighter symmetry constraints on the useful con
Hamiltonians—as encoded Hamiltonians are demanded,
they are not always easily available in physical systems.

VI. CONCLUSIONS

I have analyzed the relevance and potential usefulnes
active dynamical control, as inspired by NMR spectrosco
in the light of the QIP-motivated notion of encoded degre
of freedom. Ultimately, the resulting approach of concaten
ing active control with encoded qubits naturally stems fro
the program of regarding the information-carrying su
systems as the primary degrees of freedom for realizing Q
Applications of encoded dynamical decoupling to cont
both Hamiltonian and non-Hamiltonian encoded evolutio
have been suggested by illustration through specific
amples. In spite of the important role played by liquid-sta
NMR QIP as a motivating experimental setting accessi
with present-day technology, it is worth stressing that
principles of encoded dynamical decoupling as outlined h
are potentially useful, as their unencoded counterpart, in
generality. In particular, applications to solid-state propos
based on coupled quantum dots@36#, silicon-based devices
@37#, or Josephson-junction circuits@38# appear especially
promising, thanks to the natural availability of controllab
exchange-type interactions. The usefulness of decoup
techniques for control of neutral atoms in optical lattices@39#
would also be worth exploring in view of rapid experiment
progress in the field@40#. While assessing the actual viabilit
of the proposed schemes for a specific realization is o
possible upon careful consideration of both the natural in
nal dynamics and the available control resources, I hope
these ideas will motivate further investigation and serve
guiding principles to expand our capabilities to manipula
quantum systems and quantum information.
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