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The ideas underlying dynamical decoupling methods are revisited within the framework of quantum-
information processing, and their potential for direct implementations in terms of encoded rather than physical
degrees of freedom is examined. The usefulness of encoded decoupling schemes as a tool for engineering both
closed- and open-system encoded evolutions is investigated based on simple examples.
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[. INTRODUCTION encoded degrees of freedd®15], a different perspective is
taken here—by imagining a preselected encoded structure
Since the pioneering work on coherent averaging effectand by looking at the evolutions that can be enforced through
by Haeberlen and Waug], the use of tailored pulse se- encoded dynamical control.
guences for manipulating the effective Hamiltonian experi- | envision two prospective types of applications of en-
enced by a target quantum system has developed a sol@ded dynamical decoupling methods within QIP and, more
tradition in nuclear magnetic resonari®MVR) [2,3]. In par-  generally, quantum control. Similar to their unencoded coun-
ticular, within the context of NMR quantum-information pro- terparts, these include the simulation of both closed-system
cessingQIP), decoupling and refocusing techniques provideHamiltonian evolutions and open-system nonunitary
the basic tools for enforcing Hamiltonian evolutions that cor-evolutions—all evolutions being, however, restricted to an
respond to quantum logic gates between selected $pins underlying coding space that should be preserved through-
The principles underlying these techniques, along with theout. After summarizing the basic facts about decoupling in
powerful formalism offered by the average Hamiltonian Sec. Il, encoded dynamical decoupling is introduced in Sec.
theory (AHT) [1], have been recently extended beyond thelll. | then discuss the two relevant areas of application based
NMR domain, and suggestive applications have resulted imn simple representative examples in Secs. IV and V. A brief
various directions within QIP. On one hand, ideas from NMRsummary concludes in Sec. VI.
decoupling motivated a “bang-band’5] control-theoretic
framework for generic open quantum systefig§, which
paved the way for the development of quantum symmetriza- Il. BASICS OF DYNAMICAL DECOUPLING
tion procedures and quantum error suppression strategies for
QIP [6—10]. On the other hand, the application of active A bang-bangBB) quantum control problem is concerned
dynamica| control in the bang-bang limit proved a Va|uab|eWith characterizing the effective evolutions that can be engi-
tool for engineering the evolution of coupled quantum sub-heered by repeatedly interspersing, according to various pos-
systemg8], leading to various schemes for universal simu-sible schemes, the natural dynamics of a quantum system
lation of both closed-systefi11] and open-system dynamics With full-power, instantaneous control operatiof®B con-
[12]. trols) [6—8,16G. Let S denote the target control system, de-
So far, in spite of the pervasive role played by quantumfined on a(finite-dimensional state spaceis, dim(Hg)
coding in QIP, the application of active refocusing and de-=N, N=2" for qubit systems. In a general open-system set-
coupling methods has been primarily thought of in terms ofting, S is coupled to an environmeri via an interaction
the basigphysicaldegrees of freedom. Two exceptions are aHamiltonianHgg. The control problem can then be formu-
proposal by Wu and Lidar for applying recoupling schemedated in terms of the following data.
on encoded qubits governed by exchange-type Hamiltonians (1) H, the natural Hamiltonian of the composite system,
[13], and an implementation by Fortunagpal. of encoded H=Hs®lg+Ils®Hg+Hgg, determining the free unitary
refocusing to experimentally demonstrate universal controgvolution Ug(t)=exp(—iHt) on the joint state space
on a decoherence-free quipit4]. It is the purpose of this Hs®Hg. One may writeHge=2,S,® E,, for appropriate
work to further comment on the significance of dynamicalsystem §,) and environmentE,) operators, respectively.
control methods as directly represented in termsmdoded The linear subspacé/=spafS,} of noise-inducing cou-
degrees of freedom, by continuing the investigation of theplings is referred to asrror space Without loss of general-
interplay between quantum coding and decoupling techity, both Hg and the error generators ixf can be assumed to
niques undertaken if9], and by expanding the basic theo- be traceless. Detailed knowledgetd§ or A" may or may not
retical arguments sketched [ii4]. While decoupling meth- be explicitly available from the start.
ods have been already shown to enable, in principle, to (2) Ggg, the set ofall BB operations that can be effected
synthesize effective evolutions supporting noise-protectedyn S. As it is conceivable thaP *=P'e Ggg if Pe Ggg, G
can be associated with a subgroup of the grofipis) of
unitary transformations on the system alone.
*Electronic address: Iviola@lanl.gov (3) G, the discrete subsebf BB decoupling operations,
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G={U,}CGgg, with ke K for some finite set of indexes the algebra of linear operators ovkg, End(Hs) , the action

with order|K|=|d]. (2) defines a trace-preserving, unital, completely positive
(4) T, the relevant control time scaleycle timg, asso- mapAg. Interestingly, the fact thad; is a unitary mixing
ciated with the duration of a single control cycle. operation implies that any Hamiltoniad reachable from

(5 {7}, the set of relative temporal separations betweerH via A, is necessarily at least “as disordered” &sin
consecutive BB operations,=At,/T.>0, in terms of the the sense of majorizatiohl7]. Examples abound in the
free evolution intervaldt,, and=,_,7=1 (cyclicity con-  original NMR setting where decoupling is achieved through
dition). control actions of the general forf2). A relevant represen-

AHT provides a general prescription for characterizingtative case is the so-called Waugh-Huber-Haeberlen
the controlled evolutions in terms of time-independent effecsequence (WHH-4) used for homonuclear dipolar de-
tive Hamiltonians that would result in the same unitarycoupling [2]. This corresponds to a sequence
propagator if applied over the same evolution interval. ImagP={7q,Py,71,P_y,75,Py,73,P_x,74} of BB 7/2
ine that a single control period@. consists of a cyclic se- pulses, P,=exp(—imo,/4), and ro=71,=73=7,=1/6, 7,
quence of K| BB pulses,P={Pk,rk}L’C:‘1, with H‘k’ﬂlPﬁl =1/3—which effectively averages out two-spin interactions
Then proportional to 30— a'- o/ over a cycle.

U(T,) = exp(—iH o ((To) . The simples_t realization of Eg¢2) occurs under the addi-
¢ efflc tional assumptions that control operations are equally sepa-

M rated in time and the composite rotationsdrclose a group
=[] ulUxAtmUn (decoupling group(6]). By letting 7,=1//G|, the quantum

m=0 operationA ; of Eq. (2) reduces in this case to the projector

M II; on the centralizetZ(G) of G in End(Hs), Z2(G)={X
=1 exp(—iH,7yTo), (1) e End(Hg)|[X,U,]=0 Vk} [6-8]:
m=0
— 1
where the first equalitgefinesthe effective average Hamil- HeffHH:@ kglc UfHU=TI4(H). (4)

tonian, and the “toggling-frame” transformed Hamiltonians

H,, are determined by the composite rotations,, The resulting effective Hamiltonian acquires now a direct
=1L Py, k=1,... M—1, Up=1. Here, M=[K| or M symmetry characterization g44,G]=0-meaning that the
=|K|+1 depending on whether the sequence is arranged sgontrolled dynamics is symmetrized accordingit$7], and

as to allow evolution in the frame in a single or a pair of the desired averaging action can be thought of as filtering out
control subintervals—being, in any cad#,=1 by cyclic-  the dynamics that is not invariant undgr

ity. BecausePy € Ggg, thenGC Ggg as anticipated. However, One of the most famousnd practically useflilexamples

G need not itself be a subgroup, neither degsGgg, in  of a decoupling sequence originating from a group is the
general. For instance, allowing fdf# Ggg may be crucial Carr-Purcell sequendd8,2,3, which in its basic variant is
for retaining universal control over decoupled dynaniBs  used for suppressing undesired phase evolution due?to
Although the effective Hamiltonia(il) can be systematically terms—representing, for instance, applied field innomogene-
calculated as a power series in the controllable pararigter ity in NMR. The sequence consists of repeated BB
(Magnus serief3]), AHT is practically useful in the limit of pulses,a=x or y, separated byAt, corresponding to a de-
fast control T.—0 [2,3,6], where the lowest-order contribu- coupling group Gep,={l,ma}, With m,=exp(-imoy,l2).

tions in T suffice for an accurate description. In this limit, \yjithin the cycle timeT.=2At, the pulses can be arranged

Hetr approaches so as eitherr;=7,=1/2 (with M=|K|=2) or 7=13
- =1/4, 7,=1/2 (with M=|K|+1=3). Although the two se-
HerrmH= > nUIHU =A4(H), (20 quences clearly lead to the saireas resulting from Eq4),
kek the second option is actually superior in terms of the overall
with leading corrections accounted for by averaging accuracy —as it corresponds to a_time-symmetric
_ cycle for which all odd-order correction$i®'+1) ¢
— I =0,1, ... ,vanish[3,6].
[ — L ) ,
H 2T A mzn [Hm:Hn]7m7n- ) In a closed-system settinglsg=0 and the control prob-

lem consists in turning offselectively or ngtundesired con-
Under the conditions ensuring convergence of the series déributions toHg. Note that this amounts to simulating the
fining Hg¢s, this correction is at leasD(T.). The zeroth AHT-reachable system’s Hamiltonians big. In particular,
order approximation(2) is, of course, exact if the various BB control may enable universal Hamiltonian simulation on
transformed Hamiltonians commute—in which case anyHs if an arbitrary effective evolution can be simulated by
time scale constraint for the control implementation actuallyHg. In an open-system setting, on the other hand, the focus
disappears. is on averaging out the error generat¢8;}, i.e., ensuring
In passing, it is worth noting that the most general transthatA 4(\N) =0, in order to achieve decoherence suppression.
formation that AHT allows involves, as given in E(@®), a  The limit of fast control may be especially stringent to be
weighted(convex mixture of unitary operators. Extended to met in this case, as it requires thBt< . for the shortest
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correlation time associated with the environmental noisqions{igx,igy,iUZ,R}, R being the rotation by 2/3 about
[5’6’1q_Wh'C.h can be prohlbmvely small_ n Markowar) o the axisﬁz(l,l,l)/\/§ that cyclically permutes the Pauli
guasi-Markovian dynamics. In both situations, the atta'”abl‘?natrices.
control goals are influenced by two main factors: the avail-
able knowledge of the interactions to be manipulated and/or
averaged out, and the overall available control resources.
Some notable results about decoupling are worth men- So far, the fullN=2"-dimensional state space ofohysi-
tioning. cal qubits has been exploited. However, restricting to a
(a) Selective averagingor refocusing requires knowl- N_-dimensional quantum code N, <N, may prove ex-
edge of the transformation properties of the interactions to béemely useful in QIP—the resulting benefits sometimes
turned off with respect to the achievable decoupling sets largely compensating the overheads and complications aris-
For a decoupling groug, a necessary condition for selec- iNg from dealing with a smaller numbex <n of encoded
tivity is that the centralizer is nontrivialZ(G) #{\1} (\ qubits. I_n partlcula_r, the two primary motivations fOI’. seekmg
complex [6,8]. A variety of efficientschemedi.e., polyno- appropriate encodings are either to ensure protection against

mial in n) exist for selective decoupling in systems with at noise—via active error-correcting cod¢g1] or passive

most bilinear interactiongl9]. These are applicable to NMR noiseless _codes on decoherence-free subspgbesSs,

. S . [22,23)/noiseless subsystertNSs,[24,25,19)—or to allow
and NMR-like Hamiltonians in both the weak- and strong- : . : .
coupling limit for alternative routes to universality based on the physically

: . . . available interactions on appropriately defined subsystem
(b) For arbitrary interactionsH s or V), maximal averag- bprop y y

ubits—in the so-called approach ehcoded universalit
ing (or complete decoupling, or annihilatipis possible, in ?25 26, PP y

principle, by lettingG be a unitary error basis dHg [6,11]. A quantum codeH, can be generally thought of as a

Although this choice can be shown to be optimal, the resu“’distinguished subsystem of the physical state spa dé-
ing scheme is inefficient as the number of required BB conigrmined by a correspondence of the form

trol operations is/G|=N?=4", which grows exponentially
with n. Again, efficient schemes can be designed if no terms Hs=H @H;SR, (5)
higher than bilinear ones are known to be relejidsi.

(c) Universal simulation of an arbitrary effective Hamil- for someH;,R. H, is the logical(or computationalfactor,
tonian onHg can be implemented in various ways, depend-which reduces to a proper subspa¢eC Hs when the “syn-
ing on the set of actual simulation requirements and controfirome” cofactor is onedimensional{;=C. The summand
resources. Suppose that, for a giveg, a decoupling sef R collects the noncomputational statesHg. A code can be
exists, such thatHs,Ag(Hg)]#0, and that periods of free algebraically characterized with respect to a suitable algebra
evolution underHg can be alternated with periods of con- A of operators orHs. The prototype example isrwiseless
trolled evolution underAg(Hs). Then, similarly to the code whereby the appropriate algehrais the associative
twisted decoupler schemes discussefBipany Hamiltonian ~ interaction algebrg 24] containing the complex linear com-
L belonging to the Lie algebra generatedibys, iAg(Hg)  binations of arbitrary products ¢is, all (or a subset of, see
can be reached in principle—implying universal control in Sec. \} the error generatorS,s, and thel. Then, in general,
the generic cas¢20]. Even in the unfavorable situation A can be expressed, with respect to an appropriate basis in
whereHg may consist of a single terigsay o, for a qubit,  Hs, as a direct sum ofl;-dimensional complex matrices,
arbitrary Hamiltonians can still be engineered if, for in- each appearing with a multiplicity;,
stance, both a set of BB operations averadtgand a slow + .
application of a HamiltoniaZ e Z(G) can be effected. Then UAU =@, 71y ®@Matq (C), (6)
one can again alternate evolutions untieywith controlled ] ] o
evolutions wherd is applied in parallel with the decouplgr ~ Where the change of basld in Hs is made explicit, and
[8], obtaining as above universality in the generic cdbe. >JesMdy=N. With respect to the same basis, the algebra
the qubit example, witHs=o,, one can choos§=Gcp A'={XeEnd(Hs)|[X,A]=0} [commutant of A in

and applyZ = o, via weak/slow contro8]). Of course, such End(Hs) [24]] is represented as

programming procedures may require additional external ca- uA'Uut= @Je]Math(C)@JldJ' (7)
pabilities beyond BB control and, in general, they will not

ensure universality starting from arbitrary (possibly un- Thus, under the unitary map, the state spack/s becomes
known) Hs. An elegant approach applicable to this generalisomérphic to ’

situation has been recently presentedllifi, where the pos-

sibility of arbitrary universal simulation is related to the HSZ@JEJCJ@)DJ:@JEJWJ@C%, (8)
identification of special decoupling groups callédhns-

former groups Starting from any HamiltoniaA, decoupling i.e., a direct sum of effectively bipartite subspaces. Each of
according to a transformer group is able to n#ajnto any  the left(or right) factors in this decomposition can be asso-
desired effective Hamiltonian. For instance, a transformeciated with anA code(or A’ code, respectively. Typically,
group for a two-dimensional systefa single qubitis gen- to obtain a noiseless coda DFS or a N§ one selects a
erated under the natural representation by the four BB operdixed factorC; =, with dimensionN_ =n; —in which

IIl. ENCODED DYNAMICAL DECOUPLING
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case, with respect to Ed5), H;=D; andR=&,.; C;  coded rotations ovet, G-CU(H,). In the simplest set-

®D;. Note that, because of E7), the code is an irreduc- ting, G- will itself form a group of encoded rotation@n-
ible subspace of the commutadt [24,9]. coded decoupling group

If N_=2", then M, can protect the state space mf There are two minimal requirements for an oper&i{gno
logical qubits against noise id. While theglobal structure ~ provide a legitimate unitary transformation ovky : (i) the
of H, is sufficient for establishing storage or even existentialgate should never draw the system outside the protected re-
controllability results overH, , an additional, crucial re- gion,(ii) the qubit mapping should be preserved at the end of
quirement on théocal structure ofH, stems from the tensor the gatg27]. Both conditions are satisfied iy, is generated
product nature of QIP. In other words, @mcoded tensor by a HamiltonianAj, that is expressible in terms of encoded
productstructure on, is necessary for addressing notions qubit observables—as it suffices for the present discussion.
of efficientsimulation orscalablecontrol over¥, . This is-  Accordingly, Ukzexp@ 776Ak), for effective strength and
sue is especially evident in the encoded universality aptime parameters;, 8, respectively—in such a way that the
proach, where the primary algebraic structure one considellgnit 7»—, §—0 with a finite BB action »é can be
is the Lie algebraC generated under commutation by the setachieved. While specifyingnow rotations are effected is ir-
of accessible Hamiltoniarj26]. (Formally, £ plays the same relevant in the idealized BB limit of instantaneous control
role as. A’ in the noiseless coding approaciven if the actions considered so far, it clearly becomes important in a
code sizeN, is large enough to accommodate many qubitsrealistic scenario where pulses have a finite duration and the
without a precise mapping that defines encoded qubits, thervolution during the pulses should therefore be taken into
is no way for assessing the potential of this set of interactionaccount. Within AHT, compensation schemes have been de-
in terms of one- and two-qubit encoded gates useful foweloped for dealing with pulse-length correctiof®. For
implementing a quantum circuit. In its essence, properly deapplication with encoded pulses, it is necessary to prelimi-
fining this encoded tensor product structure is equivalent taarily make sure that the benefits of the encoding are not lost
properly constructing qubits in a given physical sys{@%. during the pulses. Suppose that unitary operatiorig(iHs)
While no conclusive solution seems available to date, a pracgexist, whose action isot generated by Hamiltonians id’,
tically motivated approach consists in identifying single- but whosenet effect matches, upon restriction fd, , that
qubit encodings intesmall blocks of (two to foun physical  corresponding to somey, . Then, besides the correction ef-
.ng.its, and ther_1 .in.ducing a tensor product structure by adrects that also appear for e)kp@A;';) for finite & (and A'E
joining (or “conjoining”) blocks[25,26,23. To do so, the . 4/}, additional errors are associated with the departure
systemSis partitioned into clustergc,} of physical qubits,  from 7, during 8. While elimination of these effects moti-
i.e., Hs=11,4(°), and a mapping of the forit) defines the  yates, in principle, the necessity of using encoded Hamilto-

state spacéf, , of the (th encoded qubit starting froft ). pians, in practice different compensation techniques may be
An overall structure as in Eq5) still emerges with attempted, for instance, by resorting to robust control design
[14].
Hi=H,@ - @H €) With these definitions and caveats in mind, the applicabil-

ity of decoupling methods directly carries over to the en-
and R grouping all contributions involvingR, for at least ~coded case, once qubits and qubit operators are formally re-
one cluster. The cod, can still be algebraically character- Placed with their encoded counterparts. Thus, if an operator
ized as being, in general, embedded into ¢memore in-  X=F[{o}}] has a given structure in terms of physical qubit
variant subspaces od’—or £, as appropriat§26,23. For ~ observables, and a decoupling scheme accordingg to
definiteness, | focus on the case where encoding is motivated {Ux} accomplishes a desired averaging effect via
by noise protection against henceforth.

L_et the set of encoded qubits be specified by encoded Ag(X)= 2 TkUlXUk- (11)
qubit observables, Kek
{O.L(} a=xy,z; (=1 n, (10) then an equivalent averaging effect is obtained on an en-
a 1 1 L 1 L | ’

coded operatoK' with the same functional dependenxe

satisfying Pauli-matrix commutation and anticommutation=F[{o=}] on encoded qubit observables, via the encoded
rules[25], and belonging ted’. The relevant situation for quantum operation

introducing encoded dynamical controhssumes that the

natural system dynamics—specified By, and possibly by Ly— LtyLy L

some error generators i whose effect is not eliminated by Agu(X )_g’zc miic XU 12

the encoding—arexpressible in terms of encoded qubit ob-
servables The goal is then to actively turn on/off selected
encoded interactions without spoiling the benefits associated
with the underlying encoding. Let/(H,)=U(2") denote

the group of unitary operators ovef; . As in the unencoded Suppose that the noise generated by operatord/iis
case, the decoupling problem can be defined by a discrete steilly taken care of by the chosen encoding, or that noise is
G-={U}} of BB control operations, which represent en-not a concern to begin with, as in the encoded universality

IV. ENGINEERING OF ENCODED
CLOSED-SYSTEM DYNAMICS
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approach. Then encoded dynamical decoupling may providgletely symmetric operators ové{s=(C?)®3, and A’ can

a tool for encoded universal Hamiltonian simulation. be identified with the group algebra of the permutation group
If, as assumed abovéis is expressible in terms of en- s, (under the natural representatiorfitz). A NS code under

coded observables, then the natural dynamics already imples is identified by a correspondence of the fof® — with

ments a nontrivial logical transformation over the code. Thisy,~(? carrying the irreducible representation of Zucor-

provides the primary input to be exploited for engineeringresponding to total angular momentuhs 1/2, H, = (2 car-

desired effective evolutions by encoded manipulations. As iffying the two-dimensional irreducible representationSaf

the unencoded case, detailed knowledge on the structure ghdR~(* being the invariant subspace of symmetric states

Hs may or may not be a data of the problem. faobitrary ith total angular momenturd= 3/2[24,25,29. Explicit ex-

Hs, the results established [11] imply that universal en- pressions for encoded qubit observalesd the associated

coded simulation is achievable, in principle, if a finite en-|ogical statesare given in[25]. In particular,

coded transformer can be constructed. The transformer

groups so far identifieflL1] could be useful, in principle, for 1 3

code sizeN, =2,3—although, unfortunately, practical impact 0!;2 LE(JH S19), ‘T)L/: L?(Szg_ S31), (16

is limited by the large number of encoded rotations involved

(|G| =24 for the above-mentioned single-qubit transformer, _ . . -
and|G'|=168 for dimension B where the notation=, denotes identity upon restriction to

épe logical subsystem. This allows to rewrite the Hamiltonian

For the less ambitious target of generating a universal s ' - ;
(15), up to irrelevant contributions which are constant over

of encoded evolutions starting from a givéknown Hg,

simpler encoded programming strategies along the linedlL+ as

sketched in Sec. Il may suffice. For instance, in the generic L L

case, the Hamiltoniams, together with a noncommuting Hs=1 (231~ Jo3— Jz) o5+ \3(Jps—JaD oy . (17)

Hamiltonian A gL(Hg) obtained fromHg via some encoded

decoupling procedure, will fulfill the conditions for generat- Note that the vanishing dfis for a fully symmetric coupling

ing the whole Lie algebra @{,) of anti-Hermitian encoded network, J;=J Vj,k, correctly verifies the identity action

Hamiltonians—thereby implying universality ovéf, , at  Of permutation-invariant operators ovafi (Hse ANA’ in

least at the existential level. The required gra@ip of en-  this cas¢ GivenHg in the form(17), the above-mentioned

coded BB rotations may be as simple as an encoded Carwniversality scheme based on encoded Carr-Purcell se-

Purcell-type group. Let, for instance;" denote an encoded guences becomes applicable, in principle, provided one has

7 rotation (acting on one or more qub)tsandghp the as- to ability to enact rapid, encoded" pulses. Because, with

sociated encoded group. Then it is always possible to sepespect to the chosen code, the action of dtjeoperator is

rate terms irHg which are symmetri¢s) and antisymmetric ~ effectively identical to swapping the physical qubits 1 and 2,

(a) undergGs,, this is, for instance, achievable if the exchange Hamiltonian

S1» can be switched on for the appropriate time. As a result,

Hg=HZ+HE, (13 one generates an effective encoded Hamiltorﬂa;gp (Hg)

with =(2J1,— Jp3— J3p) ok, which, together wittHg, allows for
universality.
aHY rt=HE=TI L (Hg), 7 H@ 7 =-H2. (19 Although not directly applicable to the weakly coupled
molecule used if28] to experimentally realize the above
Thus, the above argument generally applies providedhree-spin NS, and generally demanding for NMR imple-
[Hs,IgL(Hg)]=[HE,HE]#0, and the two Hamiltonians mentations as th&coupling parameters are not controllable,
Hg, HgCP(Hs) accordingly suffice for universal encoded these ideas could prove viable for a wide class of QIP de-
control. An experimental demonstration using a DFS qubitvices supporting, in principle, fully tunable Heisenberg inter-
encoded into the zero-quantum subspace of two nucleactions[30]. In particular, explicit universality constructions
spins is reported if14]. relevant to solid-state quantum computing architectures
based on exchange interactions are provideld.8).

A. Example: A single NS-encoded qubit

A similar procedure could be relevant for obtaining uni- B. Example: A pair of DFS-encoded qubits

versal encoded control over a NS-encoded qubit of three 1/2 As a further example, motivated from NMR, imagine two
spins under general collective nois4,25,28. Suppose that pairs of spin-1/2 nuclei, corresponding to different species
the noise generatof$, are the global, permutation-invariant (hydrogen and carbon, for instancesubjected to block-
Pauli operator§a=2f':log, a=x,y,z, and that the natural collective dephasing noise. Let the two clusters be associated
system Hamiltonian has the isotropically coupled form with the pairs (1,2) and (3,4), respectively. Then the two
error generators arg Y =ol+¢2, S?=¢3+0%, and A
=A% A in terms of the interaction algebrag'*

where the Heisenberg exchange coupling-o’- o and the ~ generated bys{° for dephasing on two qubi{g4]. Protec-
parameterd),J;, are real. ThenA is the algebra of com- tion against errors ind can be accomplished by replacing

Hs=QS,+ 15815+ J23823+ J31S31, (15
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each physical pair with a DFS-encoded qubit supported byonstant terms proportional ig,)). The remaining hetero-

the states having. =0 andS{"?=0, i.e., nuclear bilinear couplings in E¢21) give
.. . . L L L, L
lici)=liL)®liy).  lo)y=[01, ASWSD 1 BS Vo2 cS Dot Dottot2, (22
|1, >:|10>(Ce)' £=1,2. (18)  Wwith coefficients
€

In this case, with reference to the general structéigeach A=E Jiat Iy st Joat J B=E Jia=Ji4JoaJ
DFS encoding has the fori )=H, &R, with H,, g st Juat Jost Jaa), g V1™ J1at J2a= J2g),

:Spar{|0L4>-|lL(>}:sz R¢=sparf|00),,|11)}=C? (Hz, 1

=( is irrelevant for subspace encoding€orrespondingly,  C=—(J;3+J14—Jp3—Jos), D= —(J13—J1a— Izt Jos).
for four spins;H, =(?®(? is a four-dimensional subspace of 4 4

the six-dimensional zero-quantum subspace corresponding to (23)

total z angular momentunﬁz=2j(ér%=0, j=1....4.andR  Again an overall identity action ovel, is obtained for a

collects all contributions wher8, ' # 0 for at least one pair. fully symmetric coupling network—as well as for other spe-

Encoded observables for the above qubits are provided, fasial coupling patterns in the system. Assuming that none of

example, by the choicgl4] these nongeneric circumstances is met, the action of the
overall HamiltonianH g over the code is finally

Li_

1
(0'%—0'3), o, —LE(U)l(O'i‘f'O')l,U's), (19

Ly

O'Z :LE

L L L L Ly L
Hs= m(Av1p0, + Avgo, >+ 3150, M+ I340, >+ Do, bo,?),

24
and similarly for qubitL,. @49

In general, the physical spin system will exhibit a stronglywith A v;,= v;— v,,A vg,= v3— v,, respectively.
coupled spectrum described by an internal Hamiltonian com-  Remarkably, the structure of the Hamiltonié#) for the
posed of both Zeeman spin-field and indirect spin-spin intertwo encoded qubits is very similar to that of the Hamiltonian
actions([3,14], describing two weakly coupled physical spins—except that,
- in the ordinary NMR setting, control along the transverge
He= >, mvjoh+ > =J;; vl ol (or oy) directions is directly supplied by external radio-
j= frequency fields. While the potential of E@4) for universal
encoded control should be expected by analogy with the un-
2 H, ., (20) encoded case, various schemes may be specified depending
i<it Y on the actual control capabilities. At the existential level,
universality follows from the ability of rapidly effecting a

where the chemical shifts arldcoupling parameters are un- single encoded rotation, say a “haréionselectiveencoded

derstood in frequency units. For typical values of the static_. pulse, 77'2:77;177122 about the encodes axis. Because

Zeeman field, the contribution to the total energy of a giventhe associated averaging produces the encoded effective
pair of spins (,j') due to the couplindgd; , can be treated N _g 9 ,_[1) L L L,
Ii , HamiltonianIl;L(Hg) =J150, '+ Jg40, *+ Do, a,?, by ap-

propriately alternating evolution periods undéts and
and oﬁ-diagona|g§(g§('+giygjy' terms leading to first- and IIgL(Hsg), arbitrary encoded Hamiltonians can be enacted, in
second-order correction effectsJy). , respectively. Because Principle, through repeated commutatig#0]. -
the differences in the chemical Shiftgj—yj,| are larger Constructive prescriptions become possible as soon as a
when different nuclear species are involved, the approximawider range of control options is accessible. In particular,
tion of neglecting off-diagonal couplingéveak-coupling Schemes for effecting a universal set of encoded gates—

limit) is well justified for heteronuclear interactions. Thus, including (i) all single-qubit rotations andii) a two-qubit
Eq. (20) can be effectively replaced by phase coupling—can be provided. Assume that, in formal

analogy with the standar@dinencodefiINMR setting, the pa-
rametersl;, and J;, are independently tunable at will. This
is the scenario also analyzed [ih3]. To selectively rotate
each encoded qubit about tkexis, turn on the appropriate
a';f term in Eq.(24) and simultaneously refocus;f evolu-

tions by applying encodef}'x‘la-r'x‘2 pulses as above. Note that

; ; 1. Lo ; _
In terms of the encoded qubit observables given in (&), although this action preserves tbé o,” coupling, the cor

the chemical shift terms can be immediately rewritten ad®SPonding evolution can be neglected under the usual as-
combinations o0& o eratorgconstant ovef, ) and logi- sumption that single-qubit rotations can be effected rapidly
2 OP L 9 enough. In fact, the whole evolution induced by E2gd) can

L . -
cal o, operators, whereas the homonuclear spin-spin intefhe neglected during the rotation if the strength of the ap-
actions contribute with Iogicai-)L/ operatorgand additional propriateJ,, or J;, parameter can be arbitrarily controlled as

as a perturbation with respect kb, , —the diagonalri o)

ar . .
+ > EJ”,UIZUJZ. (21)
j=1,2;j'=3,4
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assumed. Also, note that the same sequence Of‘h?l’ﬂtz The problem of how to actually effect the required logical
pulses allows to selectively leave this phase coupling alone iff rotations may remain challenging in reality, as the evo-

tesima) durations of the refocusing pulses. Selective rota-9eneral, correspond to encoded Hamiltonians. Again, this is
tions about the appropriate encodedxis are only sligntly ~the case in NMR for control with available radio-frequency
more demanding, as they require the hard logicalpulses magnetic f|eld§t;4]. Thus, even though it is alvyays possible
to be replaced by “soft’ encoded—t“ on the intended spin to enforce a unitary propagator whose net action is the same

| Th | £ th d related uni i as that of the required encoded rotation, the corresponding
alone. the r? e\aancrelz_ C;ﬂ.t hesz _an3 related universality Cor]s'equence of physical gates may be complicated and, as noted
structions is further highlighted ipa.3]. . ._above, will cause departure from the code during the finite
However, the above tunability requirements are too strin- ulsing time. A possible way out is explored [ib4], based

gent, in .ger!efa" for '”.‘p'eme.”ta.‘“ons _vvhere the natura n the idea of compensating for the resulting exposure to
Hamllto.nlan_ |sa_lwaysact|ve. Th!s IS, fqr instance, the rel- noise by optimizing the length of the relevant control se-
evapt situation in NMR.’ where |n.teract|ons can be only Ef.'quences and by incorporating intrinsic robustness features
f_ect|vely set 1o zero via appropriate r_efocu_smg, and aqd"using composite pulse techniqugd]. The situation is rela-
tional constraints also arise for typical |mplementat|on,[i ely straightforward for the special case of pulses, as

parameters. In particular, one may expect that the encode[ e encoded rotations they effect have a simple translation in

chemical shift evolutions will dominate in Ed24), ie., terms of realizable physical spin propagators. The simplest
Avqy,Avg>J345,J32>D. Nevertheless, universal control . . . L, L o .
dpstance is the action of &, *r,?, which is identical to the

can still be gained by having access to a small set of encoded™ ™ ™ .
action induced oveH, by a hardm, pulse on all four spins.

operations. In the scheme | now outling ability of arbi- ! )
trarily tuning encoded Hamiltonians is assumegbart from N fact, the following correspondence for the logica
the fixed combinations of strength and times correspondingPU!Ses involved in the above encoded sequences hofrto

to logical = pulses. Unlike in the previous case, however, "Télévant phase factors

encodedr" rotations aboutwo noncommuting axes will be Ly 1 2
generally needed. The encoded decoupling schemes for Tx T OxTx
implementing the required universal set of coupling are as L 3.4
follows. Selective rotations about the appropriataxis are Ty 7 O0x0xs
easiest, as one can take advantage of the natural averaging of L2 a4
the a)';‘ and O'IZ'lO'IZ'Z that is enforced by the above hierarchy T T2 Ox O Ox Oy
of energy scales. One need only refocus the undesired en- L L, 124
coded phase evolutio(say, 022) by applying sequences of Ty T 7 0x0x0z,
encoded selective)';f pulses(say, 77)';2). It is easily seen that A2 020300
decoupling purely based on simultaneatS'«. 2 pulses is z TxomEmxeEx
not sufficient, without the ability to separately control the ,77.'2-1,77'2-2(_)0.50.;1_

coefficients in the resulting effective Hamiltonian, to imple-

ment selectivex rotations or the two-qubit phase coupling. accordingly, universal manipulation of encoded evolutions
However, a selective implementation of, say?! can be en-  with reduced error rate is still achievable if robust ways for
gineered, for instance, by the encoded pulse sequence  effecting the above physical operations can be devised
[14,32.
77)';177)';2_ At— ’7T)Izl7TIZ_2— At— W)Izlw)lzz— At— 71')';177'2'2,

V. ENGINEERING OF ENCODED
At=T,/4, (25) OPEN-SYSTEM DYNAMICS

. I . . A further direction for application is suggested by looking
which corresponds to suLbJectmE; qubit 2 to maximal encoded; oncoded dynamical decoupling as a tool for encoded quan-
averaging according t9 a,= {1, 05,0y ,07}, and ¢ycling  tym error suppression. Similar to the idea of concatenating
twice qu'E 1 through the encoded Carr-Purcell sequence resassive noise protection via DFSs/NSs with quantum error
focusinga,*. A similar sequence works for rotating the sec- correction—by operating error-correcting codes directly on
ond encoded qubit, by interchanging 1 and 2 in &§). If DFS/NS-encoded qubif83], the idea is now to concatenate

all single-qubit interactions are refocused instead, by applypassive noise protection with active dynamical control—by

ing the abov@anax to both qubits, effecting error suppression directly on encoded qubits.
L L L L L L L L . .
mim A= At—a e 2= At— 2= At— ot 2 A. Example: A decohering encoded qubit

By analogy to the prototype example of a single decoher-
At=T./4, (26)  ing qubit analyzed ifi5], the prototype situation is provided
by a single decoheringncodedqubit. Imagine a systers
the 0210'2‘2 evolution is selectively extracted from E@4). composed of two physical qubits, which are subjected to a
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purely dephasing interaction as a result of the coupling to Hsg, HSBZZSZ®B§1)+U§®B(12)+U§®B(2), (31)
two bosonic environment8,, B,, i.e., the overall system is

described by a Hamiltonian of the form L _ _ _
for S,=o,+0; as earlier defined, and appropriate

environment  operators 8 ==,g("(b(V +b(M"), B
=3,08(b{?+bPT), j=1,2. Physically, this situation cor-
responds to a noise process consisting of both fast collective
dephasing, due t8;, and slow independent dephasing, due
to B,. Whenever a symmetry in the open-system dynamics is
@k present, major gains should be expected by seeking for an
Hszj:lzjffz’ appropriate encoding into a DFS or a NS. In our case, the
' relevant DFS is the one already introduced in Sec. IVB, i.e.,
the one spanned by states corresponding to total zero angular
momentum along, S,=0. Thus, a logical DFS qubit is de-
Hg, + HBZZEK wkb(kl)Tb(kl)+; 0P, (28)  fined by the encoding given in E4L8) (for just one qubit
with

H:HS+HBl+HBZ+HSBl+HSBZ (27)

for the uncoupled subsystem’s Hamiltonians

and a total interaction Hamiltonian

H,=sparf|0.),|1,)}=spad|01),[10)}. (32

H531+Hs32:j:2120j2® Ek g (b + b

By construction, this encoded qubit is perfectly protected

(with infinite distancg against the noise due &,;. However,
+ gi3 (b + bf”)]- (29 mixing with the degrees of freedom &, is still induced
¢ through the error generatoed,, j=1,2 in Eq.(31). The key
In the above equationse;, j=1,2 are the natural frequen- observation is that this residual noise preserves the coding

space, corresponding to a purely decohering coupling be-
tween the encoded qubit alg. Because, by using E(L9),

the error generators are simply expressed in terms of en-
coded observables

cies of single-qubit evolutiond(" ,b{" are bosonic opera-
tors for the environmenB; (similarly for B,), and the pa-
rametergy(;’ (g{”)) determine the coupling strength of qubit
j to modek of bath 1(or mode¢ of bath 2, respective)y
Identity operators on the appropriate subsystems are also un-
derstood as needed. Clearly, implementing decoupling ac-
cording to the groupgcpxz{l,aioi} would dynamically
suppress both error generators—thereby allowing to reduce
the dephasing noise on both qubits to a level, in principle, as

low as desired. However, as recalled earlier, this is only efthe action of the total HamiltoniaH, Eq. (27) on 7, finally
fective in practice in the limit of fast control, whef8,10] rewrites as

: (33

T.=min {7V}, (30)
c=min{ 7’} H= Awot+Hg+ 008, (34)

7) denoting the(shortest correlation time of theth envi-

ronment. Suppose now thB is sufficiently “slow,” but B;  \\here Aw=(w1—,)/2, Hg=Hg +Hg,, and B,= (B
— » : ; ) ! 1 2’

s *fast,” so that decoupling at the rate determined Hy —B@)/2. This form makes it clear that the action léfon

cannot be afforded. Although implementing decoupling att o ; : :
: 2 “the encoded qubit is formally identical to the action of the
the slower rate set b, reduces the noise effects originating Idiagonal spin-qboson Hamilto)r/ﬂan on the physical qubit con-

from B,, there is no actual guarantee that the overall erroél_dered in[5,34.

rate is suppressed due to the possibility of decoherence a . .
celeration from modes at frequency higher thaa/7{?) in By the same argument valid for suppressing decoherence
c on a single physical qubit, implementing a sequence of

B, [5]. In any event, both qubits would remain effectively qually spaced, encoded; pulses sufficiently fast with re-

exposed to noise. Are there other noise control options wortl(qa . 2) :
being considered? spect to theslowerrate determined by 12 is now guaran-

For arbitrary dephasing and just two qubits, quantum erj[eed to suppr(ezs)sz the enched error rate by a factdaof
ror correction does not help, neither does passive nois@s! OL(Tc/7c”)"] [6]. This corrLespon(iis to encodedey-
protection—unless some symmetries can be identified in theamical decoupling according ©@cp ={1-, 04}, whereoy
noise. Suppose that, in the above interaction Hamiltoniais again given in Eq(19). Thus, if the required encoderd;

(29), g¥=g>=g{") to a good accuracy, meaning that the rotation can be effected, suppression of the slow dephasing
environmentB; couples collectively to the qubits. Then the from B, can be accomplished without reintroducing expo-
overall interaction can be rewritten as sure of the encoded qubit to the fast dephasing fBym
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B. Generalizations multiqubit processes to the lowest order are the only class of
interactions, in addition to those exhibiting spatial symmetry,
for which DFSs are known to exi$85].
To summarize, if noise has both slow and fast compo-
nts, so that achieving full decoupling of the physical de-
grees of freedom becomes unfeasible, then encoded dynami-
cal decoupling may be useful in situations where a dominant
symmetry in the fast noise can be exploited to obtain en-
w; w; coded qubits, and the generators for the residual slow noise
HS=70§+ 7a§+J§20§03+J{za§a§+3iza§a§, are expressible in terms of encoded observables. In this
event, using encoded rather than physical degrees of freedom
(39 allows the system to benefit already from enacting decou-
with 3%,=JY,=J and eitherJZ, arbitrary, J%,= 0, or J%,=J pling operations at the slower rate. However, this looser con-
(the so-calledXXZ, XY, and isotropic models, respectively s;ra|cri1t olnhcpnhtrol time scales competes, ai alrea;j)ll emph?—
[13]). In the isotropic case, in particular, which was also 2S¢ with tighter symmetry constraints on the useful contro
. . T Hamiltonians—as encoded Hamiltonians are demanded, and
examined in Sec. IV and is directly relevant to NMR and

i ; .. “they are not always easily available in physical systems.
solid-state devices, the encoded open-system Hamiltonian y y y pny y

(34) is modified to an encoded spin-boson HamiltoniaA] VI. CONCLUSIONS
as

Some generalizations of the above example are wort
pointing out. First, the same encoded decoupling scheme
effective at suppressing encoded phase errors in a situatiorpe
where the internal two-qubit Hamiltonian is governed by a
generally anisotropic exchange Hamiltonian

| have analyzed the relevance and potential usefulness of
active dynamical control, as inspired by NMR spectroscopy,
H'= Awos+Jot+Hg+os0B,. (36) in the light of the QIP-motivated notion of encoded degrees
of freedom. Ultimately, the resulting approach of concatenat-
Once encoded suppression of thié error generator is ac- ing active control with encoded qubits naturally stems from
complished as above, control according to th?HamiI- the program of regarding the information-carrying sub-
tonian can be re-introduced, if desired, by implementing oneystems as the primary degrees of freedom for realizing QIP.
of the programming schemes described@h—implying the  Applications of encoded dynamical decoupling to control
possibility of retaining universal noise-suppressed encodefoth Hamiltonian and non-Hamiltonian encoded evolutions
control. have been suggested by illustration through specific ex-
Situations involving hybrid dephasing processes with@mples. In spite of the important role played by liquid-state
highly correlated components and slow residual noise ifNMR QIP as a motivating experimental setting accessible
multiqubit systems may be also relevant. If, for instance, in aVith present-day technology, it is worth stressing that the
four-qubit system, dephasing froBy, is pairwise correlated Principles of encoded dynamical decoupling as outlined here
on qUOIS (12 and (30 as consdered in Sec. IV, tnen ¢ POl el 2 her thencoces souniear 1 )
encoding into the ten_sor product of the t\.NO. DFSs describe ased on coupled quantum d¢86], silicon-based devices
there ensures protection agaiBst Once this is done, apply- [

) L X 37], or Josephson-junction circui{88] appear especially
ing sequences of encodet]*,? pulses at the appropriate promising, thanks to the natural availability of controllable

rate causes a suppression of dimgependent or correlated exchange-type interactions. The usefulness of decoupling
residual dephasing due &,. techniques for control of neutral atoms in optical lattif8s]
Finally, similar ideas may be more generally applicable towould also be worth exploring in view of rapid experimental
situations where the encoded error generators for the residug}ogress in the fielf40]. While assessing the actual viability
noise are eXpreSSibIe through encoded observables. |f, f@T the proposed schemes for a Specific realization is On|y
instance, starting from the above two-qubit Hamiltonianpossible upon careful consideration of both the natural inter-

(27), the action ovef{, may be cast into the form nal dynamics and the available control resources, | hope that
these ideas will motivate further investigation and serve as
H:LAwUL_JFHBJrUL_@BZJFo;@BX 37) guiding principles to expand our capabilities to manipulate

quantum systems and quantum information.

for appropriate operatois, , 5, on environmenB,, then the
encoded qubit suffers from both decoherence and dissipation

effects. The resulting error rate can be suppressed, in prin- This work was supported by the DOE, under Contract No.
ciple, by using the encoded annihilatorGr.,  W-7405-ENG-36, and the NSA. | am indebted to David Cory
={1",0,0y .05} introduced above. Note that, in terms of for having introduced me to the richness and beauty of the
coupling to the physical degrees of freedom, the interactiotNMR field. It is a pleasure to thank Manny Knill for discus-
(37) involves multiple-qubitexcitations as error generators. sions, and Evan Fortunato for invaluable feedback and a

Interestingly, system-bath couplings allowing for similar critical reading of the manuscript.
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