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Optimal simulation of two-qubit Hamiltonians using general local operations
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We consider the simulation of the dynamics of one nonlocal Hamiltonian by another, allowing arbitrary local
resources but no entanglement or classical communication. We characterize notions of simulation, and proceed
to focus on deterministic simulation involving one copy of the system. More specifically, two otherwise
isolated system# andB interact by a nonlocal Hamiltoniad #H ,+Hg . We consider the achievable space
of HamiltoniansH’ such that the evolutioa "'t can be simulated by the interactibhinterspersed with local
operations. For any dimensions Afand B, and any nonlocal Hamiltonianid andH’, there exists a scale
factors such that for all times the evolutione™'"'st can be simulated b acting for timet interspersed with
local operations. For two-qubit HamiltoniaikkandH', we calculate the optimaland give protocols achiev-
ing it. The optimal protocols do not require local ancillas, and can be understood geometrically in terms of a
polyhedron defined by a partial order on the set of two-qubit Hamiltonians.

DOI: 10.1103/PhysRevA.66.012305 PACS nunt®er03.67.Hk, 03.67.Lx
I. INTRODUCTION nication to teleport Thisbe’s entire original state to Pyramus’
A. Motivation side. Now that they arévirtually) together, they can interact

to their hearts’ content. When it is time for Thisbe to go

A central problem of quantum information theory is to home, they teleport her back to her side, in whatever en-
understand what kinds and quantities of nonlocal resourcegangled state they have gotten themselves into, again #sing
such as entanglement and communication, are necessary awdgenerate the needed entanglement and perform the needed
sufficient to accomplish a desired state transformation of &lassical communication.
multipartite quantum system, if the parties are allowed un- A more practical motivation for studying the ability of
limited local resources, including local unitary operationsnonlocal Hamiltonians to simulate one another comes from
and the change of local Hilbert space dimension by measurgquantum control theorj], in particular the problem of us-
ments and/or the juxtaposition of local ancillas. It can being an experimentally available interaction, together with lo-
argued that the most fundamental nonlocal resource, froreal operations, to simulate the evolution that would have
which all others are in practice derived, is interaction, repreoccurred under some other Hamiltonian not directly acces-
sented in nonrelativistic quantum mechanics by a Hamilsible to experiment. A more mathematical motivation comes
tonian that is not a sum of local terms. Given two nonlocalfrom the desire to parametrize the nonlocal properties of in-
HamiltoniansH and H’, one would like to know whether teraction Hamiltonians, so as to characterize the efficiency
one can simulate the other, and if so, how efficiently. with which they can be used to simulate one another, and

The qualitative answer to this question is quite simple, aperform other tasks such as generating entangle2egijtor
shown by the following parable. Let there be two parties whoperforming quantum computatig@—7]. This parallels the
desire their joint state to evolve according to an arbitrarily
intense and complex Hamiltonidh'. Unfortunately, like the

mythical lovers Pyramus and Thisbe, they are almost com-

pletely isolated from one another, living on opposite sides of T B

a wall pierced by a hole so small that only one atom of ~ |~

Pyramus can interact with one atom of Thisbe, via the two- —

atom HamiltonianH (Fig. 1). Can H, together with local . .'-'I r.'-'l

operations, be used to simuldté? Yes, given enough time, i i | ..

because any nontrivial bipartite interaction can be used both [ ] [ ] [ | [

to generate entanglement and to perform classical communi- / S

cation. Therefore they can usg along with local ancillary L

degrees of freedom on each side of the wall, to generate %

enough entanglement, and perform enough classical commu- . —
*Email address: wcleung@watson.ibm.com FIG. 1. Thisbe and Pyramus, separated by a wall, through which
TEmail address: Guifre.Vidal@uibk.ac.at they can only interact by a two-atom Hamiltonigin
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many recent efforts to parametrize the nonlocal properties dior simulating onen-qubit pairwise interaction Hamiltonian
guantum states, so as to understand when, and with whhy another, and gives a necessary and sufficient condition for
efficiency, one quantum state can be converted to another gjmulation with a particular given Hamiltonian. Time re-
local operations, or local operations and classical communisources for simulating the inverse of a Hamiltonian are dis-
cation. It is not difficult to see, by the Pyramus and Thisbecussed in Refd.9,10,13. Referencd13] considers simulat-
argument, that all nonlocal Hamiltonians agealitatively ~ iNg @ unitary gate using a given Hamiltonian and a set of
equivalent, in the sense that for any positivande, there is ~ controllable gates in the shortest time. A general framework
a timet such thatt’ seconds of evolution undét’ can be IS Set up in terms of Riemannian geometry. A time optimal

simulated, with fidelity at least %t €, by t seconds of evolu- protocol is obtained for the specific Hamiltonian® o, in

tion underH, interspersed with local operations; but muchtheFt.Wol]quIt case. t its h dsi th
work remains to be done on thguantitative efficiency of _rinafly, some more recent results have appeared since the
such simulations. original posting of this paper, extending it and related work

In this paper we derive bounds on the time efficiency withIn various wayg14-21.
which one Hamiltonian can simulate another using local re-
sources. In the case of two interacting qubits, we show that
these bounds are optimal. The structure of the paper is as In this section we describe our framework of Hamiltonian
follows. In Sec. Il, we define the allowed resources and thesimulation, i.e., the rules under which the simulation is to be
type of simulation we consider. In Sec. Ill, we prove someperformed. We also describe other possible frameworks and
general results on the type of simulation we consider alongheir relations to the one we adopt.
with some examples. In Sec. IV, we define our goal and
summarize our main results for two-qubit Hamiltonians that
are proved in Secs. V and VI. Some discussions and conclu-
sions, and more auxiliary results can be found in Sec. VII, LetH andH’ each be a nonlocal Hamiltonian acting on
Sec. VIII, and Appendixes A and B. We first describe in moretwo isolated system# and B, possessed by Alice and Bob.

Il. SIMULATION FRAMEWORK

A. Available resources

detail some related results. We consider the problem of simulatirtd’ by H using un-
limited local resources. These include instantaneous local op-
B. Related work erations and uncorrelated local ancillas of any finite dimen-

I . ... sions. It is also necessary to allow some initial classical
The qualitative equalenc_e of nc_>n|oca| Ha_ml_ltc_mla_ns orrelation—Alice and Bob are assumed to have agreed be-
noted above, and the use of interaction as an |nf|n|te3|ma} rehand on their time and spatial coordinates and the simu-
generator of ente_mglement, was aIready noted severa[ Y€ation protocol to be followed. Besides this, no other nonlo-
ago [8] Thgse d_lscussmns also cc_)n_3|_dered the question al resources are allowed, neither prior entanglement nor any
interconverting discrete nonlocal primitives, such as nonloc orm of communication beyond what can be achieved
gates, shared entanglement, and uses of a classical bit Cha[ﬂfough the interactioi itself. Our goal is to minimize the

nel. More generally and quantitatively one may ask, given Yime required of the given Hamiltonidt to simulate another

nonlocal HamiltoniarH g #Ha+Hg, what is the optimal o iyonianH . This will be defined more formally in Sec.
efficiency with which it can be used, in conjunction with IV

local operations(l) to generate entanglement betweeand

B, (2) to transmit classical or quantum information fréxio

B, or vice versa,(3) to simulate the operation of another
nonlocal HamiltoniarH'. A partial answer to the first ques-
tion, for two-qubit Hamiltonians, was given by R¢2]. The
current work is a continuation of previous efforts to study the,

efficiency of simulating one Hamiltonian by another. tially make the simulation easier. We will allow ancillas on

Hamiltonian simulation has been considered in the cons . .
. the simulating system, though they may not always hel
text of quantum computatiof®—7,9—11,23 In these works (Sec. V) g sy g y y y P

the system consists of qubits, with some giverpairwise
interaction Hamiltonian. In Refd4-6], the given Hamil-
tonian was a sum ofr,® o, interaction terms between dis-
tinct qubits(see Sec. Il C for definitionsand the goal was In this paper we only concern ourselves with protocols
to simulate a particular one of these terms. This was exthat are one-shot—i.e., operate on a single copy of each of
tended in Refd.7,10,1] to arbitrary pairwise interactions, in the simulated and simulating systems—and which are re-
both the simulating and the simulated Hamiltonians. In thesejuired to succeed with probability 1.
papers the main concern was to obtain methods for simula- More generally, a simulation can be “blockwise,” in
tion, and therefore upper bounds on the resources as a funathichH®" is used for the simulation dfi’*", or in whichH
tion of n. is time shared among many copies of the system and the
Independent results on optimizing the time used of aamortized cost is considered. A simulation can also be sto-
given Hamiltonian for performing certain tasks are reportedchastic and fail with finite probability, in which case the
in Refs.[9,12,13. Referencd9] gives a necessary condition expected cost is considered.

Note that either the simulating or the simulated system or
both can be given the freedom of bringinglatal degrees of
freedom(ancillag and allowing interaction between each an-
cilla with the corresponding local system. Ancillas on the
simulated system can make it more powerful and therefore
harder to simulate. Ancillas on the simulating system poten-

B. One-shot and deterministic simulations
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C. Gate versus dynamics simulations Ill. GENERAL RESULTS AND EXAMPLES

One possible notion of simulation is that, givei andt’, Having defined the simulation framework, we derive
we simulate the final unitary evolutieer "'t by composing  some important general results and provide some examples
local operations with elements in the one-parameter family@f dynamics simulation, which motivate our main results and
{e~™H . The final evolution needs to be correct, but theSimplify some of the later discussions.

intermediate evolution need not correspondefd™ 't for
0=<t"<t’. The efficiency, given by the ratigt’ can depend
on t’'. For example, a protocol can us¢ to generate en- First of all we show that dynamics simulation is equiva-
tanglement and classical communication to telegotd B,  lent to “infinitesimal simulation,” the problem of simulating
applye ™"'t" locally, and telepori back. Viewing the cost ~ the evolution ofH” for an infinitesimal amount of time’.

as a function ot’, t does not increases indefinitely with, ~ ©n one hand, any protocol for dynamics simulation simu-

rather t can be made constant after it reaches a suﬁicientll tes the initial evolution, therefore is a protocol for infini-

large value. As another example, if the nonlocal Hamiltonian eS|m§1I S|ml_JIat|on. On t.he other hand,' |terat!ng an |nf|n|te§|-

H' = o-® o acts for timet’ = /2 ’the resulting unitary gate mal simulation results in dynamics simulation. We restrict
—Vz z - '

. . . . S0 our attention to infinitesimal simulation from now on, and
io,® o, is local, and requires no nonlocal interaction time atfocus on the lowest order effectstih Note that this property
all to simulate. This type of simulation, with very different

o . oo . . may not hold for other types of simulation described in Ap-
primitives, is much studied in the context of universality of j,J. A

quantum gatef22] (composing a small set of available gates™ | finitesimal simulation has a very special structure—the
to obtain any desired unitary gaté/ore recently, simulation  4nimal simulation protocol is independent of the infinitesi-

of a unitary gate using a fixed given Hamiltonian for a mini- .41 value oft’. The proof is included in Appendix B.
mal amount of time and local manipulations was studied in

Ref.[13] and some partial results were obtained. From now
on, we call this type of simulation “gate simulation” or “fi-

A. Infinitesimal and time independent simulation

B. Local Hamiltonians are irrelevant

nite time simulation.” A general bipartite HamiltoniaiK can be written as
A natural direction to strengthen the above notion of
Hamiltonian simulation is to require not only the end result, K=K @1 +1 ®KB+Z My 7,0 7, 1)
1]

but also the interveninglynamicsof H' to be simulated.

Intuitively, one might expect this to mean that the application _ _

of H, interspersed with instantaneous local operations, prowherel denotes the identity throughout the papex, Kg are
duces a trajectory that remains continuously close to the trdocal Hamiltonians acting oA, B, respectively, andl7;} is a
jectory e~ H't that one wishes to simulate. However, this is basis for traceless Hermitian operators acting on eacA of

impossible in general, because the needed local operatiod§d B- We can “dispose” of the local Hamiltoniaris , and
cause the simulating trajectory to be discontinuous, agreeinys by undoing them with local unitaries ok andB,
only intermittently with the trajectory one wishes to simu- ; ; i (K= _
late. Accordingly we adopt the following definition of dy- (eMAgelate =g (T HASITIZKRIL Ot7). (2)
namics simulation. The Hamiltonid# simulates the dynam-
ics of H' with efficiency u if Vt'>0,Ve>0 the unitary

component.

i —iH"t H H i i . . . . . . . .
operatione™ "t can be simulated W,Ith fidelity=1— € by Likewise, any Hamiltonian can simulate itself with addi-
some protocol usingi for a total timet’/u and local opera-  tional local terms. Therefore, given unlimited local re-
tions. While this characterization may appear to have givergyrces, the problem of simulating an arbitrary Hamiltonian

up the idea of approximating the simulated system at intery’ py another arbitrary onél reduces to the case when both
mediate times, in fact it has not, because it can be shown tg,o purely nonlocal.

imply the existence of a-efficient “stroboscopic” simula-
tion, which approximates the simulated trajectory arbitrarily
closely not only at the beginning and end, but also at an
arbitrarily large set of intermediate times. We discuss this Consider the simplest case of two-qubit systems. We in-
and other simulation notions in Appendix A. We also showtroduce the Pauli matrices
that the existence of a protocol for dynamics simulation is )
equivalent to the existence of one for simulating an infini- _ 01 _ 0 —i _ 10 3
tesimal time(see Sec. Ill A, which in turns implies the abil- >l o Yli o) 77 @
ity to create protocols for arbitrary finite times by appropri-

ately rescaling and repeating the infinitesimal-time protocobnd the useful identity

(see Appendix B

In other wordsK can be made to simulate its own nonlocal

C. Possible inefficiencies in simulation

UeMyt=euMu’, (4

The evolution due to a Hamiltonid is given bye "', Note the ~ whereM is any bounded square matrix abidis any unitary
— sign in the exponent. matrix of the same dimension.
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As an example, leH=0,® 0, andH'= (0'X® oxtoy
®oy+ az®02) To simulateH’ by H, IetUl—ﬁ (oxtay)
and U,=% (oy+0,), so that oy= Ulo,(Ul and o,
= UzaxUZ- Using Eq.(4), it is easily verified that
—iH"t' _

e ( —IHt /3)(U ®U e—IHt /3U ®Ul)

X (U,@U,e M'Byleul). (5)

Conversely, we can simulaté with H’,

efth:efiH’3t/2(0.Z®| e*iH’3t/20'Z®|). (6)

Note that simulatingd’ for a duration oft’ requires apply-
ing H for a duration oft’ whereas simulatingd for a dura-
tion t requires applyindd’ for a duration of 3. As the time

required of the given Hamiltonian is a resource to be mini-for
mized, we see that some simulations are less efficient thaa (0,1,9 .
the others. In this paper, we are concerned with the mefﬂany P, and P,

ciencies of simulation intrinsic to the HamiltoniaHsandH’

PHYSICAL REVIEW A 66, 012305 (2002

2"-dimensional subspace, such as one spannefd)igy|0)

for i=1,...d and |i)®|1) for i=1 ,2'—d. Such
S|mulat|on can also be done W|thout ancnlary degrees of
freedom, and an alternative method based on R&S] is
given in Appendix C.

E. Arbitrary but inefficient simulations

We now show that any nonlocal bipartite Hamiltonian can
be used to simulate any other, albeit with inefficiencies. In
other words, for anyH andH’, operatingH for time t can
simulate the evolution oH' for timet’ with t'/t>0. This
holds for any dimensions. We keep all definitions from the
previous example in the following protocol.

First, letA andB be 2'-dimensionalH =X ¢;P;® P; and
H’=Eijci}Pi® P;. Without loss of generality the coefficient
Pc®P, is positive, i.e., cw>0, where k
.,0) andPy=0,81® - --®I. Itis known that for
there exist unitary operationd;;.. in the
Cl|ff0rd group[24], such that

that are not caused by a bad protocol. For example, we will

show later that the inefficiency in the above example is in-

trinsic.

D. Simulating the zero Hamiltonian—stopping the evolution

In some applications, the given Hamiltoniehcannot be
switched on and off. Simulating the zero Hamiltoniaean
be viewed as a means for switching off the Hamiltonkn
[4—6]. This can always be done for any dimension#\afnd
B.

First, letA andB be 2'-dimensional, and

H=i2j ciPi®P;, )
wherei is a binary vector i(,i,, ... iy, that labels the

n-qubit Pauli matrixP;= 0,0 ?® - - - ® 02" 1a 2" It is eas-
ily verified that

|
ﬁz PIMP=trM . (8)

A protocol for simulating0 by H is given by

I;(Pi@Pe "2 (Pl P)
it
—exp| ——- > (Pi®@P)H(P[@P)+0(t?)
24 ]

_i 2
~g ittrH/2 n, (9)

Uj-PUl.==P;. (10

In other words, one can always transform @hyo any other
or to its negation. In our protocoH simulatesH’ in two
steps. FirstH simulatesP,® P by

i 4n—2
Hi,i"il,i1=opi®Pi' e*IHt/Zn Pi®Pi’

it
~exp( -—— X P@PHPP;,
2 ii'fiq,i]=0

—e" itcyy Px® Py +local terms

11)

Alice and Bob independently apply an averaging over all
Pauli operators commuting witR, , removing all operators
except forl =P, and P in each of their systems. The local
terms can be ignored, following Sec. Ill B. Secoi}® P,
simulatesH’ by

LT (Uyg sgn(ci’j)®Ukj+)e

I}

—iP@Py/c/:[t’ t
PEPleglt’ (U sgn(ci’j)®Ukj+)

:efiH’t’, (12)

where sgnf)=x/|x| if x#0 and we omit terms witfc],
=0.

in which the net evolution is just an overall phase to the WhenA andB are d-dimensional, the simulation afH’

lowest order int.

by H can again be performed in a largél>22" system. This

WhenA andB ared-dimensional, one can embed each of method implies a lower bound on the maximum possible

A andB in a larger, 2-dimensional system far=[log, d] to

value of s, s=[1/(2°% ) ](max;|c;|)/(Zjcfl). It is also

perform the simulation. Physically, this can be done on eaclpossible to perform the simulation without ancillas. The
of A andB, by attaching a qubit ancilla, extending the Hilbert proof is given in Appendix D. Other methods for such simu-
space to @ dimensions, and applying the simulation to alation were independently reported in Ref$8—-20.
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F. Equivalent classes of local manipulations An LU+ anc protocol simulatell’” with H by interspers-

Under our simulation framework, Alice and Bob are given'"9 the evolution oH with local unitaries orAA” andBB'.
unlimited local resources. In this subsection, we show thaMore specifically, the most general protocol for simulating
they only need a relatively small class of manipulations. Td' UsingH for a total timet is to attach the ancillad’B" in
facilitate the discussion, we introduce classes of operation®€ Statel0a)®|0g/), apply someU, &V, evolve AB ac-

C, that can be LU, LO, L4 anc, and LG-anc, to be defined cording toH for some timet,, applyU,®Vy, further evolve

as follows. LU is the class of all local unitaries that act onABaccording tcH for timet,, and iterate “applyJ;®V; and
A®B. LU+anc is similar, but acts onA®A’)®(B&B') evolye with _H for time t;” some n times. At the_ end, it
whereA’ andB’ are uncorrelated ancillary systems of any @Pplies a finalU;@V;. The ;>0 are gonstraméd by
finite dimension. LO and L@®anc are similarly defined, 2i-1ti=t. Suppose the protocol indeed simulates an evolu-
with the unitaries replaced by general trace-preserving quartion for timet’ according toH’. Then we can write

tum operations. Note that the largest class+t&nhc corre-
sponds to what is most generally allowed under our simula-
tion framework.

We now show that LW-anc, LO, and LG-anc are
equivalent under our framework. First, we show that
LU+anc is at least as powerful as BGnc. Any trace pre-
serving quantum operation can be implemented by perform-
ing a unitary operation on a larger Hilbert space, followed by
discarding the extra degrees of freeddsee, for example,
Ref. [25]). The exact difference between kGnc and LU
+anc is that measurements and tracing are disallowed in t
latter. However, these are not needed when simulatin
Hamiltonian in LU+anc, due to the following facts(l)

(UroViU,@V,e Mhylovix. ..

xU,@Ve M1uleVvh|y) |0, )®|0g/)

=[e MV @[ Warg(ty, - - - tn)|0a)®]0g)],
(15

where we have redefined;_,,  ,andVi_;,  ,, and

I"J ) denotes the initial state iAB. In Eq.(15), e """ acts on

B and implicity meanse Mi®l, g . The operator
argr(ty, ... ty) describes the residual transformation of
dﬁ’B’, and can be chosen to be unitary since the operation on

Measurements can be delayed until the end of the protoc
as operations conditioned on intermediate measurement
sults can be implemented unitaril2) In Hamiltonian simu-
lation, the ancillary system8’B’ have to be disentangled
from AB at the end of the simulation.

Thus no actual measurement or discard is needed. The;{,l#_i
facts allow any LOranc protocol to be reexpressed as an® dl ) uti ‘
LU+ anc protocol with pure product state ancillas, meaning?dmits & solution for

that LO and LG+anc are no more powerful than Ltanc.
Conversely, due to fad¢®) above, any LU-anc protocol can
be viewed as an LO protocol. Thus, we establish the equiv
lence between LO, LW anc, and LG-anc. From now on,
we focus on LUt+anc protocols for full generality, and on
LU protocols as a possible restriction.

IV. FORMAL STATEMENT OF THE PROBLEM
AND SUMMARY OF RESULTS

LetH, H', A B, A’, B’ be defined as before.
Definition H' can beefficiently simulatedby H,

(13

if the evolution according te "'t for any timet’ can be
simulated by using the Hamiltoniad for the same time’
and using manipulations in the claGs

Definition H' andH are equivalentunder the clas€,

! —

H'=:H, (149
if H'<cH andH=<cH".

Throughout the paper, we only consider tldnc proto-
cols following Sec. Il F. We also restrict our attentionho

andH' that are purely nonlocal, following Sec. Il B.

g]e left-hand side of Eq15) is unitary. The problem we are
concerned with can be stated in two equivalent ways.
Optimal and efficient simulatiorLet H be arbitrary. The
optimal simulation problens to, for eactH’, find a solution
H{Vi}{ti} of Eq. (15) such thatt’/t is maximal. The
cient simulation problens to characterize everyl’ that
Eq.(15 with t'=t, i.e., H’

r

<Lu+ancH-
Definition The optimal simulation factosyy under

ac_lassC of operations is the maxima>0 such thatsH’
<cH.

The optimal and efficient simulation problems are equiva-
lent because inefficient simulation is always possi(dee
Sec. ll)). The efficient simulation problem can be solved by
finding the optimal solution for eacH’ and characterizing
those witht’/t=1. The optimal simulation problem can be
solved by finding the maximuns for which sH’ is effi-
ciently simulated. With this in mind, we may talk of solving
either problem throughout the paper.

We now summarize our results. We show in Appendix B
that, in the infinitesimal regime, the most general simulation
protocol Eqg.(15) using LU+anc is equivalent to

sH’

=(0p/|®(0g/| > PiUi®Vi(H®I A5 )U{@V]|0a)®|0g)).
' (16)

In the LU case(without ancillag, Eq. (16) reads

2Without loss of generality, a protocol wit[_,t;<t can be

turned to one witt=_t;=t by simulating the zero Hamiltonian as
described in Sec. lI.
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P whereh,=h,=|h,| are the singular values of thex3 ma-
sH'=2 pU;eVHUe V], (17 trix M with entriesM;; , andhs=sgn(deM)|hs|. We sayH
' is thenormal form of K.

Theorem Let H be the normal form ofK. Then
H=,K.
Proof. If the local unitaried) '@ V" andU®V are applied
fore and aftee™ !, the resulting evolution is given by

wheret=t,+---+t,, px=ty/t, ands=t'/t. Thus, the set
{H'< yH} is precisely the convex hull of the set
{U®VHU'®V'} whenU andV range over all unitary ma-
trices onA and B, respectively. The linear dependence of
(t'/t)H’ on H is manifest in both Eq(16) and Eq.(17). Skt _iKt

Our main results apply to the simulation of two-qubit € =(UsV)e (UTeVT)
Hamiltonians, and are summarized as follows. — e i(UsVIKUTeVh (20)

Result 1 Any simulation protocol using LY anc can be '
replaced by one using LU with the same simulation factor,,iin
This will be proved in Sec. VI. Thus, the four partial orders
<1U» SlUtane =<Lo, =_0+ancare equivalent for two-qubit K'=(UsV)K(UTeVh
Hamiltonians.

Result 2 We present the necessary and sufficient condi-
tions forH'=< H, for arbitrary two-qubit Hamiltoniansi
andH’, and find the optimal simulation factsy;,|y and the
optimal simulation strategy in terms ¢U;},{V;},{t;}. This .
will be discussed in Sec. V. _% M”(E, Rioy

These results naturally endow the set of two-qubit Hamil-
tonians with a partial orde . This induces for eacH, a
set {H':H'<cH} that is convex: ifH'<cH and H" => (RIMS) a1 ® o=, M o ® oy . (22
<cH, pH'+(1—p)H"<H for any 0<p=1. Our method Ik Ik
relies on the convexity of the sfitl":H'<c H}, which has a .
simple geometric description, and in turns allows the partialn Ed. (21), R,Se SO(3) since conjugating-o by SU?2)
order <. to be succinctly characterized by a majorization-matrices corresponds to rotatiﬁg)y a matrix in S@3) (and
like relation. The geometric and majorization interpretationsvice versa Equation(22) implies K’'=(U®V)K(UTe V")
offer two different methods to obtain, in practice, the optimalfor some unitarnyJ,V if and only if M’=RTMS. In particu-

:; Mij(UO'iUT)®(V0'jVT)

®

EK Sijk) (22)

protocol and the simulation factor. lar, there is a choice dR and S that makeK’=H,
V. OPTIMAL LU SIMULATION OF TWO-QUBIT 10 0
HAMILTONIANS RT=|0 1 0 xXOr,
We will prove that<, is equivalent to< ancin the 0 0 detO,
following section. In this section, we focus on LU simula-
tions. We first adapt a result from RR] to reduce the 1 0 0

problem to a smaller sgt of.two-qubit Hamiltoniaqund s=oTx|0 1 0 (23)
H’. Then, for anyH, we identify the sefH’:H’<c H} with 2 ’

a simple polyhedron and obtain simple geometric and alge- 0 0 deto,

braic characterizations of it. The optimal solution for each ) ) -

pair of H andH ' is derived. Finally, the problem is rephrased Where M=0,DO0, is the singular value decomposition of

andH are related by a conjugation by local unitaries, which
impliesK=H. |

A. Normal form for two-qubit Hamiltonians As suggested by the above proof, we define a few useful

The most general purely nonlocal two-qubit Hamiltonian notations.

K can be written as Definitions We call the 3<3 real matrixM;; the “Pauli
representation” oK, whenM andK are related by Eq18).
K=E 0@, (18) We useDg to denote a diagonal Pauli representatiorkKof

ij

Since any two-qubit Hamiltonian is equivalent to its nor-
mal form, we assumeél’, H are in normal forms from now
where the summation is over Pauli matrideg=x,y,z or ~ On. We now turn to LU simulation ofi" by H.
1,2,3 throughout the discussion for two-qubit Hamiltonians.
Let B. General LU simulation of normal form two-qubit
Hamiltonians

H=2 ho®a;, (19) _ Recqll fror_n Eq.(lj) i.n Sec. IV that the most general
i simulation using LU is given by
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from Dy by permuting the diagonal elements and putting an
even number of- signs. More explicitly, the vertices 6?4

are miDym;s;, where

sH =py(U;©V)HUleVh+. ..

+pa(Up® V) H(UTe V), (24)

where s=t’/t. Following the discussion in Sec. VA, we -10
only need to conside ==;h;o;® o; andH' =3,h{ 0;® o mo=1,m=| 0 O
that are in their normal forms. The Pauli representation of 0 1
(UoV)H(UT®VT") is given by RDyS for some R,S
e SO(3). We camreexpress Eq(24) as

SDH’:lelDHSldl—. . ‘+annDHSn1 (25)

0
m=|1 0 O

0
whereR;,S; € SO(3).SinceH andH' are in their normal
form, hy=h,=|hs| andh;=h,=|hj|. Without loss of gen-
erality, we can make two assumptions. First, we can assume
h;=0. If h;<0, we can multiply Eq(25) on the right side 01 0
by S=diag(1,1;-1),

I
-
o
o

SD S=p1R1(DS)(S§S) + - - - +prRn(DS)(SSS),

26 S=lhs=0 ~1 04,

|
=
o
o

in which S§Se SO(3), andDyS=diag(h;,h,,|hs|) is of
the desired form. Thus, we can assume=0. Second, note
that sy jp=a Sysjan=(1/a) Sanju- The protocol is un-
changed when Eq(25) is divided by tDy=h;+h,+hs.
Therefore, without loss of generality, the normalization
+h,+hz;=1 can be assumed.

Equations(24) and (25) have a simple physical interpre-
tation: the protocol partitions the allowed usagetbf D]
into different U,®V,HU[®V] [RDS,], resulting in an
“average Hamiltonian’H' (D), which is a convex com-
bination of theU,®V,HU® V| [R,DS,]. Us=o; fori=1,2,3. These can be verified using E21).

The Hamiltonians, represented By, that can be effi- We will study the geometry ofy in Sec. V C. We are
ciently simulated = 1) correspond to the diagonal elementsinterested inP,, because we will show in Sec. VD that
of the convex hull Of{RDHSZR,SE 50(3)}. We call this Cy="P4. Then we can find the optimal solution for ahly
diagonal subset, which is also convey,. Note that the zero using our knowledge oP, . Moreover,Cy,=Py means that
Hamiltonian is in thenterior of C;, becauséd can simulate  p,, is the set of extreme points @}, so that any optimal
any sH’ for small s without ancillas(see Sec. I)l. Thus  simulation protocol only involves the transformations
VD, #0, the optimal solution is #oundarypoint of Cy. Dy — mDym;s;. We restate the solution in terms of a ma-
The problem of efficient or optimal simulation can be re-jorizationlike relation in Sec. V F.
phrased.

GivenH, let Cy be the diagonal subset of the convex hull
of {RDyS:R,Se SO(3)}. ThenH’ can be efficiently simu- _ C. The {OOlyhed.ron P _ _
lated byH if and only if Dy, € Cy. For anyH’, sy Dy, SinceP,, and Py consist of diagonal matrices only, their
which represents the optimal simulation, is the unique inter€lements can be represented by real three-dimensional vec-
Section Of the Semi”naDH, ()\20) W|th the boundary of tors. The deﬁning characterization % is the pOlyhedron
Cy . The optimal protocol can be obtained by decomposing/"ith 24 (not necessarily distingtertices that are elements of
SH’lHDH’ in terms Of the extreme points dﬁ i P24-. We now turn tO a useful Characterlzatlonﬂﬂ as the

Since each point i€, can be decomposed as a convexegion enclosed by its faces,
combination of the extreme points ¢f;, each efficiently

The transformatio ; — r; DH7TiTS' is physically achieved
by H—>(UfTi®USjUwi)H(UWi®USjULi), where U,
=(1\2)(oy+0y) for i=1,23 andi,jk distinct, U,
=cos(m/3)l *i sin(2m/3) (a4 + ay+ 0,)/\3 for i=4,5, and

simulated Hamiltonian can be identified with a simulation
protocol and vice versa. We will refer to elementsCip as

Ix|<hg, |yl<h;, |z|<hq,

—(1-2hgy)s+x+y+z=<l,

)
Hamiltonians or simulation protocols interconvertibly. Xv.Z) e Py iffd —(1—2hy)<-—x—y+z<1
Central to our problem is the structure @f. We inves- (x.y.2) € Py ( : Y '
tigate its structure by first defining another obj@gt. P, is —(1-2hg)s+x—y-z<1,
a simple polyhedron defined by its set of 24 vertides,, —(1-2hg)=s—x+ty—2z=<1,

which is a subset of,; (thusPy C Cy). They are obtained

012305-7
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z dron, lying on the planeg+y+z=1,—x+y—z=1,—x—y
+z=1,x—y—z=1. The second group consists of the three
empty faces in the front, and the white face in the back. They
are inside the original octahedron and are parallel to the
original faces. They lie on the planesx—y—z=1-2hs,
—X+y+z=1-2hg,Xx—y+z=1-2hg,x+y—z=1-2h,.

Note that each hexagon in one group has a parallel counter-

p y part in the other group. Altogether, there are seven pairs of
parallel faces, each pair bounds one expression irf{Z. It
FIG. 2. Py, for (hy,hy,hs)=(1,0,0). is straightforward to verify Fig. 3 and EQ27).

The plots for other cases, such as whey=0 or h;
where the facts thal is in normal form,h,=0, and that =h2, can be likewise obtained and E(R7) be verified.
h;+h,+hs=1 are used to replace the bounBsh, and  These are generally simpler than Fig. 3, and may admit sim-

(E h,—2 min h) by 1 and—(1—2hs) in Eq. (27). Equa-  Pler solutions in Sec. V E. However, we leave the details to
tion (27) can be used to determine whether a point, as specih€ interested readers and move on to prove that Py, .

fied by its coordinates, is iy or not. The validity of Eq. D. Proof of C,; =Py
(27) can be proved by plotting,, (and thereforeP,,) and _ .
verifying that the faces are as given in Eg7). We first plot We now show thaly, =Py . By definitionP, C Cy, thus

Py for the simple caseh|,h,,hs)=(1,0,0), for whichP,, we o_nIy peed to showy C Py . Recall thatC, consists gf
has six distinct points: £1,0,0), (0:+1,0), (0,0:1) and Hamiltonians that can be expre;sedTm,=EipiRi D uS
Eq. (27) holds trivially (Fig. 2. Now, we plotP, for the [Py puttings=1 in Eq.(25 and usingS; in place ofS]. The
most complicated casé,>h,>h,>0 in Fig. 3. fact thatDy is dlagonal implies that only the diagonal ele-
Just like Fig. 2, Fig. 3 is viewed from the direction Ments in eactR;DyS contribute toDy, ; it is possible for
(1,1,1). Three faces are removed to show the structure in then individual RiDyS' to be off-diagonal, but the off-
back. There are three types of faces. There are six identicsliagonal elements have to cancel out in the sum. To show
rectangular dark grey faces on the planes =h,;,y= that Cyy = PH, it suffices to show that the diagonal part of
+h,,z=+h,. There are two groups of four identical hex- eachR;DS/ is in P, because anP  Cy, will then be in
agonal faces. The first group of four consists of the threéPy.
light grey faces in the back, and the light grey face in the We represent the diagonal part of aRyD,S' as a three-
front. These are the truncated faces of the original octahedimensional vector d;,9,,93). We need to show that

z=Mh

z—y+z=1-2h
Y | hal —z+y+z=1-2|hs|

(hv,—ha,~h3) & \ (1, ha, hz)
z=h (hh—ha’_h y=h
A (h2,—ha,—h1
T Yy

z+y—z=1-2|hs]

FIG. 3. Py for hy>h,>h3>0. The equations for the faces in the background are given in boxes. The empty faces are given by double
arrows.
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(91,92,93) satisfies Eq(27) and belongs td>, . SinceDy
=diag(hy,hy,hy),

gi:(RDHST)iiZEK RikhkSIi:Ek RiSikhg.  (28)

The vectors K,,h,,h3) and @;,9,,93) are linearly related
by

J1 hy
92| =R*S| hy |, (29
Js3 hs

where * denotes the entry-wise multiplication of two matri-

PHYSICAL REVIEW A 66, 012305 (2002

g1+ 92t093=Ah+Nho+(—=1—A;—Ap)hg
=N1(hy—=h3)+Ay(hy—hg)—hs
=—h;—h,+h;
=—(1-2hy), (35

where Eq.(35) is the minimum of the preceding line, at-
tained at\;=A,=—1 andA;=1. We now proveX\,=
—1. First,

Ei Ni=R11S111T Ry1S51+ R31S31+ R15S151 RppS50+ R3S,

+ R13S13+ R23S:31+ R33Ss3

ces, also known as the Schur product or the Hadamard prod-

uct. It is useful to expand; in Eq. (28) explicitly,
0i=Ri1S1h1 + Ri2S:h + RisSishs.
Then, we can prove the first group of inequalities in &7),

19i|<|Ri1Si1|h1+|Ri2Si2|ho+ [Ri3Sis|hs

<maxh;=h;.
i

(30

(31)

We have used the fact thR;Se SO(3) to prove the second
inequality in Eq.(31): R,S consist of orthonormal rows and

columns. Hence, |Ri1|,|Ri2[,|Ris]) and (Si1],|Sial.|Sial)
are unit vectors, and their inner prod&;;S;;|+|Ri>Si,|

+|Ri3Si3|=<1. We refer to this argument, which we use fre-

=tr(R'S). (36)

As R,Se SO(3),R"Se SO(3).Each S@3) matrix is a spa-

tial rotation, therefore having the eigenvalgiel that corre-
sponds to the vector defining the rotation axis. Moreover, any
SQ(3) matrix has determinant 1. Therefore, the eigenvalues
are generally given by 1e*'? and the trace is 42 cosp
=—1. This completes the proof of E(B5). The last three of
the four inequalities

+091+02+03=—(1—2hy),
+01— 02— 093=—(1—2hy),

— 011792 93=—(1—-2hy),

guently, as the “inner product argument.” The second group

of inequalities can be proved by

Ei |9i|=2i ‘Zk RikSikhk

<>
K

The second inequality in E432) is due toX;|R;|Si|<1,

S Rullsul | Ind=3 -1 @2

obtained again by the inner product argument. This proves

all of
0:+0,+03<1, 0¢;—0,—0s=<1,
—01+0,-093<1, —0;—0grtQs=1. (33
Finally,
0:+0>+03
Ri11S11 R12S12 Ri3S13
= +R21S1 [ hy+| +TR2Su | hy+| +Rx3Ss | hy
+R31S31 + R332 Ss, +R33S33
=N1h;+Nohy+ A 3hs, (34

where each\; is the coefficient oh; in the parenthesis. The
inner product argument impligd;|<1. Moreover, we will
prove Z;\;=—1 shortly, which implies

—01—0921t093=—(1-2hy), (37)
can be proved similarly. For example, consider
91792703

R11 S11 R12 S12 R13 S13
=| "Ry Sn | hy+ | RS | hy+| —Raz Sz hs.
—Rs31 S31 —Rs32 S5 —Rs3S33
(38)

The previous argument far; + g, + g5 applies by redefining
R to be

1 O 0
0 -1 0 |xR.
0 0 -1

Altogether, the inequalities in Eq$31), (32), and (37)
satisfied by §,,9,,95) are precisely the defining inequali-
ties for Py in Eq. (27). Therefore, the diagonal part of any
RDyS' is in Py, andCy="Py.

E. Optimization over Py

Having provedC,="P4, we can solve the optimal simu-
lation problem givenDy and Dy by finding the unique
intersection of the semilineDy, with the boundary ofPy
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(see Sec. VB We now explicitly work outsy:, i.e., the
value of\ in the intersection, as a function f andH’.

Let all the symbols be as previously defined. The inter-

section is given by =sy. 4 (hy,h3,h5), so that

v v
SN T T PR
[[(h1,hs,h3)[|1  hi+hy+|hg]

SH/lH

PHYSICAL REVIEW A 66, 012305 (2002

(=h2,~h3) ly+z| < hoths
(_h‘S)-hZ) Iy - Zl < ha—h3
FIG. 4. ANEN.

where||v||% for a vectorv is the sum of the absolute values 1. (using the discussion at the end of Sec. W\th at
of the entries. The s&®y has only three types of boundary .,ost three types of conjugation.

faces. Therefore, there are only three possibilities where the

intersection can occur.

(1) On the group of faces given by+y+z=1, —x+y
—7z=1, -x—y+z=1,x—y—z=1. In this case||v||;=1,
andsy/y=1/(h;+h,+h|).

(2) On the group of facex+y—z=1—2h;, x—y+z
=1-2h;, —x+y+z=1-2h3, —Xx—y—2z=1-2h;. In
this case, ||v]|;=1—2hs, and sy = (1-2h3)/(h;+h}
+[hg]).

(3) On the group of faceg=*h;,y==*h;,z=*h;. In
this case,u=(h;/h;)(h;,h},h%) (note hi/h,;=0), ||v]l,
=(hy/h})(hi+h3+|hj]) (not constant on the fageand
Spru=(hy/hy).

Note that wherH’ is in normal form,v can only fall on
X+y+z=1, Xx+y—z=1-2h3, andx=h; in each of cases
1, 2, and 3. We now characterizl;(h;,h3) belonging to
each case.

Case 1 Note that the face oy on x+y+z=1 is the
convex hull of f4,h,,h3) and all permutations of the en-
tries. The hexagon contains exactly all vectﬁrmajorized
by (h1,h,,h3), v<(h;,h,,h3) (see the following section for
definition of majorization Hence, b;,h;,h3) isin case 1 if
and only if it is proportional to som§<(h1,h2,h3) 3

Case 3 In this case,v=(hy,hihy/h} hihi/h). Thus
(h1,h3,h3) is in case 3 iff fi,h5/hy,hihi/hy) is within the
rectangle with vertices hj,h3),(hs,h,),(—hy,—hg),
(—hsz,—h,) (Fig. 4). Hence, by,h5,h3) is of case 3 iff

hih,  hih; hih,  hih;
-2, 23 <h,+h; and G <h,—hg,
hy  hi hy  hi
iff
hy hy hy hy

—_—< — < :
hoths  h)+hj ho—hs  h)—h;}
Case 2 This contains all Ig; ,h5,h3) not in case 1 or 3.

The intersection on a boundary face can be easily decom-

F. Optimal simulation, polyhedron Py, and s-majorization

The problem of Hamiltonian simulation also motivates a
majorizationlike relation, which in turns provides a compact
language to present the main results of this paper.

Let us recall the standard notions of majorization and
weak majorization as defined in the spacenafimensional
real vectors. Leti be ann-dimensional vector with real com-
ponentsu;, i=1,...n. We denote byu' the vector with
componentsuj=us=---=ul, corresponding tou;| de-
creasingly ordered. Then, for two vectar@nduv, u is sub-
majorized or weakly majorized by, writtenu<,, v, if

uﬁ$ vﬁ,

ubtust - (40)
In case of equality in the last equation, we say thas
majorized byv, and writeu<uw.

Weak majorization of vectors induces a similar partial or-
der in real matrices. More precisely, suppddeand N are
two nXn real matrices, with respective singular values
sing(M) and sing{N). Then, the weak majorization of real
matrices can be defined as

M<,N iff  sing(M)<,,singN). (41
Since the transformatioM — O;M O, preserves the singular
values wherQ; are orthogonal, weak majorization also de-
fines an equivalence relation,
M~0O;MO, V0O;,0,e0(n). (42
A useful resulf26] in weak majorization is that the follow-
ing “convex sum” characterization is equivalent to E¢2):

M<WN<:> M:E piOilNOiz. (43)
1

posed as a convex combination of at most three vertices in

P,,. The decomposition directly translates to an optimal pro-

3The fact that b} ,h3,h5)<(hy,h,,hs) is a necessary condition
for efficient simulation is independently proved in REd].

Our results in Secs. V B—V D show that the partial order
H’'=<  H strongly resembles weak majorizatidf! <, H
when the convex sud,=Z%;p;R,DyS; holds or equiva-
lently when hj,h;,h; satisfy the inequalities in Eq.27).
This motivates the definition of as-majorization for all
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nXn real matrices without restricting to the special form of

Dy . Let M andN be realnxn matrices. We say tha#l is
s-majorized byN, denoted byM <N, whenM is a(left and
right) special orthogonal mixing dN,

M<cN& M= pRNS. (44)
|
This defines an equivalence relation,
M~sRMS V R,SeSqn), (45

and associates each matriM with a vector M!S
=(Uq,Us, ...,U,_1,detM)u,), where u; are its singular
values in decreasing order. This also defines siordered”
vectorv S for any real vectow, viewed as a diagonal real
matrix: the absolute values of the entriewyodire arranged in

decreasing order, and the product of all the original signs is

added to the last element. Note that ;v = u<,,v. More-
over, when sgr(;u;)=sgn(lv;) and Z;ui=Zv;, <y,
<s, and< are all equivalent.

PHYSICAL REVIEW A 66, 012305 (2002

Equation (46) follows from Eq. (27) and Py=Cy, and
from the fact that Eq(46) is unchanged when the signswof
anduv; are flipped simultaneously and whern andv; are
rescaled by ,+v,+uvs.

Finally, we restate our result in Hamiltonian simulation in
the language o$ majorization.

Theorem Let H=3hjo;® 0y and H'=3hjgi®0;, h
=(hy,hy,h3), andh’=(h{,h5,h3). Then

H'<syH < h'<sh.

(47)

The optimal simulation factor

=MaXspy < ny S

is given bysy/y

VI. HAMILTONIAN SIMULATION WITH LU  +anc

In this section we will show that the use of uncorrelated
ancillas does not help when simulating one two-qubit Hamil-
tonian with another, so that all results on efficient and opti-

Forn=3, our results in Secs. V C-V D can be extendedyg| simulation under LU hold under Lanc. We prove this

to obtain the following characterization efmajorization in
terms of inequalities.

Let u and v be three-dimensional vectorsu's
=(Uy,Up,U3) andv 's=(v,v,,v3). Thenu <qv if and only
if

ul = U1,
Ul+ U2_U3 = Ul+vz_l)3,
U1+ U2+ us = U1+U2+03.

(46)

Let M andN be 3% 3 real matrices. ThelM <¢ N [defined
by Eq.(44)] if and only if M's < N's.

by describing the most general btanc protocol and reduc-
ing it to an LU protocol.

In this scenario, qubit®A and B are, respectively, ap-
pended with ancillag\’ andB’, which have finite but arbi-
trary dimensions. The initial state éf' B’ can be chosen to
be a pure product statf,,)®|0g:). At the final stage of the
simulation, the ancillag\’ and B’ may be correlated, but
A'B’ is uncorrelated withAB if the latter is to evolve uni-
tarily according toH'. The local unitary transformatiord;
andV; can act onAA’ andBB’, respectively. This feature
distinguishes LU-anc from LU.

The most general LW anc protocol to simulatél” with
H can be described as

(U@ Vi X UpeV,e Mhulevi x ... xu eV e Maule v gy |0, ) ©|0g/)

=(e My @[ Wargil(ty, ...

tn)[0a)®[0g/)]. (48)

In Appendix B we have shown that for infinitesimal times E4g) leads to

SHag=(0a/|®(0g/| ; pkUk®Vk(H®|A’B’)Ul®VIZ |0a/)®10g"),

where py=t,/t and s=t'/t. Let M;=(0,/|U, and Ny
=(0g/|V\. We can write Eq(51) as

sH’=§k: PM@N(H® 1 o5 )MI®N] . (50)

Note that this is the LY-anc analog of Eq(24) for LU. In
this caseH is replaced byH®1 5,5 and the local unitaries
are replaced with more general transformations.

(49

We focus on just one term in the convex combination of
EqQ. (50, MON(Has®la 5 )MT@NT, with M=(04|U,
andN=(0g|V,.. We will show how to obtain the same con-
tribution to H' using only local unitaries oA and B to
establish the equivalence of LU and BHanc. First, note that

M@N(Hag®larg )MT@NT=EpoEg(H), (51)
whereEx(1)=M(7@1,,)MT and similarly for. We em-
phasize thaf, g are linear operators on matrices that aoe
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necessarily quantum operatiof5], despite various resem- ture of unitary operations oA. Applying the same argument

blances to the latter. One can check tlatis unital, i.e.,
Ea(1)=1, by using M =(04,|U. Furthermore,£, is com-

to &g, Alice and Bob only need to perform local unitaries in
the simulation step of Eq51).

pletely positivg25], because an operator-sum representation

En(1)=3F;7F can be obtained by expandiig, in terms
of some basis{|ia/)}, and by writing Fi=M|i,/)
=(0a/|U]ia/). However, in generak, is neither trace non-
increasing nor trace nondecreasing, thoughEiﬂF?Fi
=traZi(ia/|UT|0a )(0ar|U]in/)=2. For eachF;, we can
obtain the singular value decompositidf=W,;Q;W;;,
whereW,; andW,; are unitary, and

d1 O
Qi= (52)
Y10 ai
is diagonal and positive semidefinite. Altogether,
EnlT) = 20 Wi QWi 7WEQ W, (53
1 2 2 ' T ’ t
= EI 5 (01T 072) Wai Qf Wa; TW3; Q7 Wi (54)

where

COS/; 0
0 siné;

Cosﬁi =0i1

Q=3 g
| Va5 +ap

VII. DISCUSSION

First, we point out that the normal form for Hamiltonians
acting on two qubitgSec. V A is symmetricwith respect to
exchanging the system& and B. More formally, define
S(Mi®@M,)=M,®M, as the(nonloca) swapr operation.
Then H=,S(H). This has important consequence—any
task generated by the Hamiltonian can be done equally well
with the role of Alice and Bob interchanged.

In higher dimensions, the propertty=,, S(H) no longer
holds. For exampleH+#,,S(H) and S(H)% yH for the
Hamiltonian(see Ref[29] for a proo}

1 0 O 1 0 O
H=(0 -1 0O0|g|0 1 O (58
0O 0 O 0O 0 -2

In fact, if H=H,®H, whereH,; andH, are members of a
traceless orthogonal basis with different eigenvalues,
S(H)% yH and H+%_yS(H). This also has important
consequences—in higher dimensions, the nonlocal degrees
of freedom of a Hamiltonian cannot be characterized by
quantities that are symmetric with respectandB, such as
eigenvalues of (independently reported in R¢21]). Any

We now ShOW that, WI'[hOU'[ affeCting the Hamiltonian Simu- normal form necessar”y contains terms of the form

lation, the conjugation byQ/ in EA(7) [Eq. (54)] can be
replaced by the operationQ;(7)=(1—cosésin )| 7l
+cosésinfo, Tay, i.e., replacingt, by the following:

~ 1
Enl T):zi E(qi21+ 0%) Wai Qi(Wy; 7WI )WY, . (55)
It is straightforward to verify that

Q/1Q{=1+cos(20)0,, QjoQ{=sin(26)o,,

Q/o,Q/=sin(260)oy, Q/o,Q/=cos(26)l+ 0,
(56)

Qi(h)=1, Qi(oy)=sin(20)oy,

Qi(O'y)ZSin(Za)O'y, Qi(o'z):az- (57)

Conjugation byQ/ differs from the operatior®; only when

ci; 7® n; for some nonzera;; and the matrix with entries
Cj; cannotbe symmetric.

Second, we revisit the notion of efficiency in Hamiltonian
simulation. Our definition oH'<H depends on the normal-
ization of bothH andH’. One method to remove the nor-
malization dependence is to requivg+h,+|h;|=1. Alter-
natively, we can consider the produsyy sy that
measures the inefficiency of interconvertidgandH’ inde-
pendent of the normalization of the Hamiltonians. We found
that (proof omitted whenh3=0, syyjy:Sy/4= 5. Otherwise,
SH|H/SH'|W=35, With equality whenh=(1/3,1/3,1/3) and
h'=(1/3,1/3;-1/3).

Third, we have considered the optimal simulation of one
two-qubit Hamiltonian using another, both arbitrary but
known. We can apply the characterization7af to analyze
other interesting problems. For example, inverting a known
Hamiltonian is equivalent to setting’ = —H. Without loss,
assumeh;=0 and h;+h,+hg=1. Using the analysis in
Sec. VE, the intersection is of case 2. Therefae, =

the input has aih or o, component. Their differences do not _ (1 —2h,). The worst case is inverting(o,® o, +o,® o,
affect Hamiltonian simulation for the following reasons. As 1 ; ¢, in which cases_y = 1/3. In contrast, any proto-

H is purely nonlocal, the input t6, in Eq. (51) is traceless
and has nd component. For the-, component in the input,
Qi(0,) and Qi o,Q{ differ only by anl component in the
output, which contributes as a local term in Ef1). Hence,
&, can be used in place of(7). Finally, we note that

3304 +9%) =53 trFIF;=1, so that, is indeed a con-

vex combination of the individual terms, each in turn a mix-

col for inverting an unknown Hamiltonian can invert the
worst known Hamiltonian, thus_y<1/3. This is achiev-
able using the following protocol:

(0'X®I)e_thl(0'xa'y®|)e_thl(a'yUz(X)I)e_th,(UZ®|)

:efi(fH)t’IS. (59)
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We can also improve on the time requirement for simulatiorfice, Grant No. DAAG55-98-C-0041. G.V. was supported by
protocols for n-qubit pairwise coupling Hamiltoniang7]  the European Community project EQU(€ontract No. IST-
with our construction. Instead of selecting a term by term1999-11053 and Contract No. HPMF-CT-1999-00200.
simulation using a single nonlocal Pauli operator acting on a

pair of qubit, one can directly simulate the desired coupling APPENDIX A: NOTIONS OF SIMULATION

between the pair with any given one in a time optimal

We consider various notions of using a Hamiltonkdrio
manner.

simulate the evolution due td’ for time t’.
In dynamics simulation, the evolution of the system is

close toe """ after an operation time git” for constaniu

We have discussed various notions of Hamiltonian simuandVt” e[0,t’]. It is possible to relax this requirement, so
lation. Focusing on dynamics simulation, we show itsthat, u(t") is a function oft”, and without loss of generality,
equivalence to infinitesimal simulation, and the intrinsic timew.(t") is nondecreasing. We call this “variable rate dynamics
independence of the protocols. We also show the possibilitgimulation.” Finally, in gate simulation, the only requirement
of simulating one nonlocal Hamiltonian with another without js that, the final evolution is given bg—iH’t’_
ancillas in any twod-dimensional systems. Our main results  As an analogy, leH’ be driving along a particular high-
are on two-qubit Hamiltonians, in which case, for anyway from house A to house B at 100 km/hr. Dynamics simu-
HamiltonianH, we characterize all’ that can be simulated lation is like driving’ b|k|ng’ or Wa|k|ng a|ong the same h|gh-
efficiently, and obtain the optimal simulation factor and Pro-way at any constant speed. Variable rate dynamics
tocol. We obtain our results by considering a simple polyhesimulation is like driving along the highway at variable
dron that is related to some majorizationlike relations. Ourspeed, for examp|e, when there is Stop_and_go traffic. The
results show that the two-qubit Hamiltonians are endoweqsehicle is always on the trajectory defined by. Finally,
with a partial order, in close analogy to the partial orderinggate simulation is like going from house A to house B by any
of blpartlte pure states under local Operations and Cla.ssicaheans' for example’ using local roadS, or f|y|ng a he"copter_
communicatior{27]. It is important to note the difference between dynamics

We have restricted our attention to simulation protocolssimuylation(or infinitesimal simulationand variable rate dy-
that are infinitesimal, one-shot, deterministic, and withouthamics simulation. For example, iterating infinitesimal simu-
the use of entangled ancillas and classical communicationgtions to perform dynamics simulation, the ancillas are im-
We also restricted our attention to bipartite systems. Extenpiicitly discarded after each iteration, and new ones be used
sions to the unexplored regime, and alternative directiongext. However, it is possible in variable dynamics simulation
such as other nonlocal tasks will prove useful, and are beinghat used ancillas can subsequently be used to accelerate the
actively pursued. simulation. Such phenomena are known in entanglement

generation[2]. The more complicated analysis for variable
ACKNOWLEDGMENTS dynamics simulation will be addressed in future work.
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We thank Wolfgang Dy John Smolin, and Barbara Terhal appenpix B: INFINITESIMAL SIMULATION AND TIME
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work, as well as Herbert Bernstein, Ben Recht, and Aram

Harrow for additional helpful discussions and comments. In this appendix, we show that the optimal protocol for
Part of this work was finished when G.V. was visiting the infinitesimal simulation is independent ©f, the time of evo-
IBM T. J. Watson Research Center, and D.W.L. was visitinglution to be simulated.

the IQI at Caltech. C.H.B. and D.W.L. were supported in part The most general simulation protocol ldf with H using

by the NSA and ARDA under the U.S. Army Research Of-LU+anc can be described by

(Ur@Vix U@V, e Maule vl Uie Vv, e Mule v (|4)©]04)®[0s)) = (7' [4)) ® (Wag/|0a) ®]0g1)),
(B1)

where the equality must hold for all possible stdi#}s of systemAB. Here the unitariet); andV;, acting onAA’ andBB’,
respectively, and the partitioft;} of the time intervalt=3;t;, correspond to all the degrees of freedom available for the
simulation ofH’ for time t’. The initial state of the ancilla8’ andB’ is |0/)®|0g:), andW,, g, is their residual, unitary
evolution, which is determined by the other degrees of freedom and may create entanglement BéteseB’.

We have argued earlier that optimal dynamics simulation can always be achieved by a protocol for simulating infinitesimal
evolution timest’. This also implieg being infinitesimal. Recall thah;=t;/t ands=t'/t. We can expand EdB1) to first
order int to obtain

U@ V¢ X |—it2i PiU;@Vi(H® | o5 ) U@V [|04)®|0g/ ) =(1—itsH')® (W5 [0a)®|0g/)). (B2)
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The validity of Eq.(B1) for all |¢) is used to obtain Eq. sH’'=
(B2), each term of which is taken to be an operato@ It

follows from Eq.(B2) that
(0a/|®(0g/| E. piUi®Vi(H® 1)Ul @V ||0a)®|0g).

(Uf|OA’>)®(Vf|OB’>):IAB®(WA’B’|OA’>®|OB’>)+O§tB)é) (B11)
o In the case we do not have ancillary systetsandV; only
which implies that act onA andB, and Eq.(B11) reads
U|0a) =1a® (War[0a)) +O(1), (B4)
sH' = pU;eVHU[aV/]. (B12)
V¢|0g/) =15® (Wg/|0g/)) + O(1), (B5) i

_ In Egs.(B11) and(B12), the dependence of the equation on
WA'B'loA'>®|OB'>_(WA'|OA'>)®(WB'|OB'>)+O(t)('B6) the original infinitesimal timeg andt’ is only throughs
=t'/t. This implies any protocol fot andt’ applies toat
Equation(B6) implies W, g is a product operator to zeroth and «t’ within the infinitesimal regime. Thus the protocol,
order int. RedefiningU; andV; is necessary, we can assume namely, the sefU;,V;,p;} can be considered being indepen-
W, =1, andWg: =1z, . Explicitly writing down the most dent oft in the infinitesimal regime.

generalO(t) terms in Eqs(B4)—(B6), we obtain
APPENDIX C: SIMULATING ZERO HAMILTONIAN

Ut0a)=(Ian —itK aa)|0ar) +O(1), (B7) IN dXd WITHOUT ANCILLAS
Vi|0g/)=(Igg —itKgg)|0g/ )+ O(t?), (B8) In Ref.[23], it is shown that for anyl-dimensional square
matrix M,
WA/B/|0A/>®|OB!> |
=[(1p=itKa) [0 NI @[ (1= itKe )| Og )] > UMUj=(rM) 5, (€D
—itKarg/|0a1)®[0g/) +O(t?), (B9 where
where the unitarity of the operators on the left-hand side -1 0 0 O o1 ro 1 0 o 07!
implies the hermiticity ofKaa, Kgg/, Kar, Kgr, and
Kargs - Substituting Eqs(B7)—(B9) in Eq. (B2) implies 0 v 00 0 00100
U=l 0 0 @ 0 0 [x|]0 00 10
SH' ® (1 arg/|0a/)®|0g1)) 00 0 0 000 0 1
d-1
—ot)+| S pUieV; (Helag)UleV! L0 0 0 0] L1000 (()62)
I
andw is a primitivedth root of unity.H can simulateéd using
+KAA'+KBB’_KA’_KB’_KA’B’ |OAI>®|OBI>. the prOtOCOI
(B10) IT; (U; @ He MUl @)
Projecting this equation on the left on{@,/|®(0g/|, the wexy{ - (Uij®|)H(UiTj®I)t
terms Kaa +Kpgp —Ka —Kg/ —Kagr become local or i
identity terms. Taking into account thidt’ has zero trace and — e 11®Kgt (3
no local terms(recall Sec. Il B, their contributions vanish, '
and we obtain which is local and can be removed.

APPENDIX D: ARBITRARY HAMILTONIAN SIMULATION IN DXD WITHOUT ANCILLAS

Let H andH’ act on twod-dimensional systems. We use the followifrgpnorthonormal basis for traceless Hermitian
operators acting on d-dimensional system:

1 1 O 0 1 0 O
0 -1 0 O 0 0 0 O
1= 0 o 12T 0 0 -1 ) v Nd-1— 0 0 0 )
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"0 1 0 0 —i
100 i
Nd= 00 O v Md+1— 0 )
T 0 0 1 0 —i
000 0
Md+27 1 0 0 AL T« T o DU R

Let H=Z; ¢jjni®n; and H' =3; cIJ 7i® 1; - To show thatsH'<,,H for somes>0, it suffices to show thasz;® 7,
<iyH, sincen;® m=y (=7 ® ?71) for all i,j. Furthermore,® 5, can be simulated if one can simulai®(i|®|j)(j| and
—[i")(i"|®]§")(j’| for anyiji",j’.

Without loss of generalityc,,# 0. We first useH to simulate its diagonal componentﬂ;d=2ﬂj‘jlcij 7i® 7N,

10 O ..0"r1 o o ..17} 10 0 ..0"r1 o0 o ..47if
1 “110 w 0 ... 0 w 0 ... 0 w 0 ... 0 w O
_ H ®
TdZ2i=| 0 0 w? oL, “lo 0 w2 ... 0 0 o ... 0 0 w?
(D1)

Hgy can further be used to simulate,|2)(2|®|2)(2|, using the protocol

0 0 1 O i 0 0 1 O j 0 0 1 0 ..-° ' 0 01 0 ..+if
, 01 0 O 01 0 O 0 1 0 0
-2
1
. coo0 1 ...f 0o o001 .. H, 0 0 RN N Y 1 .
_1) i,j=0 : : : : 1 : : : : 1 : : : : 1 : : : : 1
1 0 0 O 0 1 0 0 0 0 10 0 O 0 1 0 0 O 0
(D2)

This corresponds to Alice and Bob each applying an averaging over all the computation basis states ep@eSifue all
7i+1 are traceless on the subspace spannedi #y2), they vanish after the averaging, leaving only a contribution by

719 71,

-1 0 00 ..7" rua 0 oo ..q't
0 —(d-1) 0 0 ... 0 —(d-1) 0 O
C
11 0 0 10 ... o]0 0 10 ... , (D3)
(d=1) : : i 10 : : i 0
0 0 0 0 1 0 0 00 1

which is equivalent tacq4|2)(2|®|2)(2| up to local terms. It remains to obtain a term with sign opposite;to If some
c#0 has a sign opposite to,;, we can simply repeat the same procedure, with Alice applying an averaging over all
li#k) and Bob applying an averaging over glk1). If all Cjj have the same sign, Alice can apply an averaging over all
li# 1) and Bob can apply an averaging over [l 2) to obtam 97 1c,|1)(1|®|2)(2|, completing the proof.
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