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Optimal simulation of two-qubit Hamiltonians using general local operations
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We consider the simulation of the dynamics of one nonlocal Hamiltonian by another, allowing arbitrary local
resources but no entanglement or classical communication. We characterize notions of simulation, and proceed
to focus on deterministic simulation involving one copy of the system. More specifically, two otherwise
isolated systemsA andB interact by a nonlocal HamiltonianHÞHA1HB . We consider the achievable space

of HamiltoniansH8 such that the evolutione2 iH 8t can be simulated by the interactionH interspersed with local
operations. For any dimensions ofA and B, and any nonlocal HamiltoniansH and H8, there exists a scale

factors such that for all timest the evolutione2 iH 8st can be simulated byH acting for timet interspersed with
local operations. For two-qubit HamiltoniansH andH8, we calculate the optimals and give protocols achiev-
ing it. The optimal protocols do not require local ancillas, and can be understood geometrically in terms of a
polyhedron defined by a partial order on the set of two-qubit Hamiltonians.

DOI: 10.1103/PhysRevA.66.012305 PACS number~s!: 03.67.Hk, 03.67.Lx
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I. INTRODUCTION

A. Motivation

A central problem of quantum information theory is
understand what kinds and quantities of nonlocal resour
such as entanglement and communication, are necessar
sufficient to accomplish a desired state transformation o
multipartite quantum system, if the parties are allowed
limited local resources, including local unitary operatio
and the change of local Hilbert space dimension by meas
ments and/or the juxtaposition of local ancillas. It can
argued that the most fundamental nonlocal resource, f
which all others are in practice derived, is interaction, rep
sented in nonrelativistic quantum mechanics by a Ham
tonian that is not a sum of local terms. Given two nonlo
HamiltoniansH and H8, one would like to know whethe
one can simulate the other, and if so, how efficiently.

The qualitative answer to this question is quite simple,
shown by the following parable. Let there be two parties w
desire their joint state to evolve according to an arbitra
intense and complex HamiltonianH8. Unfortunately, like the
mythical lovers Pyramus and Thisbe, they are almost co
pletely isolated from one another, living on opposite sides
a wall pierced by a hole so small that only one atom
Pyramus can interact with one atom of Thisbe, via the tw
atom HamiltonianH ~Fig. 1!. Can H, together with local
operations, be used to simulateH8? Yes, given enough time
because any nontrivial bipartite interaction can be used b
to generate entanglement and to perform classical comm
cation. Therefore they can useH, along with local ancillary
degrees of freedom on each side of the wall, to gene
enough entanglement, and perform enough classical com
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nication to teleport Thisbe’s entire original state to Pyram
side. Now that they are~virtually! together, they can interac
to their hearts’ content. When it is time for Thisbe to g
home, they teleport her back to her side, in whatever
tangled state they have gotten themselves into, again usinH
to generate the needed entanglement and perform the ne
classical communication.

A more practical motivation for studying the ability o
nonlocal Hamiltonians to simulate one another comes fr
quantum control theory@1#, in particular the problem of us
ing an experimentally available interaction, together with
cal operations, to simulate the evolution that would ha
occurred under some other Hamiltonian not directly acc
sible to experiment. A more mathematical motivation com
from the desire to parametrize the nonlocal properties of
teraction Hamiltonians, so as to characterize the efficie
with which they can be used to simulate one another,
perform other tasks such as generating entanglement@2,3# or
performing quantum computation@4–7#. This parallels the

FIG. 1. Thisbe and Pyramus, separated by a wall, through wh
they can only interact by a two-atom HamiltonianH.
©2002 The American Physical Society05-1
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many recent efforts to parametrize the nonlocal propertie
quantum states, so as to understand when, and with w
efficiency, one quantum state can be converted to anothe
local operations, or local operations and classical comm
cation. It is not difficult to see, by the Pyramus and This
argument, that all nonlocal Hamiltonians arequalitatively
equivalent, in the sense that for any positivet8 ande, there is
a time t such thatt8 seconds of evolution underH8 can be
simulated, with fidelity at least 12e, by t seconds of evolu-
tion underH, interspersed with local operations; but mu
work remains to be done on thequantitativeefficiency of
such simulations.

In this paper we derive bounds on the time efficiency w
which one Hamiltonian can simulate another using local
sources. In the case of two interacting qubits, we show
these bounds are optimal. The structure of the paper i
follows. In Sec. II, we define the allowed resources and
type of simulation we consider. In Sec. III, we prove som
general results on the type of simulation we consider al
with some examples. In Sec. IV, we define our goal a
summarize our main results for two-qubit Hamiltonians th
are proved in Secs. V and VI. Some discussions and con
sions, and more auxiliary results can be found in Sec. V
Sec. VIII, and Appendixes A and B. We first describe in mo
detail some related results.

B. Related work

The qualitative equivalence of nonlocal Hamiltonia
noted above, and the use of interaction as an infinitesi
generator of entanglement, was already noted several y
ago @8#. These discussions also considered the questio
interconverting discrete nonlocal primitives, such as nonlo
gates, shared entanglement, and uses of a classical bit c
nel. More generally and quantitatively one may ask, give
nonlocal HamiltonianHABÞHA1HB , what is the optimal
efficiency with which it can be used, in conjunction wi
local operations,~1! to generate entanglement betweenA and
B, ~2! to transmit classical or quantum information fromA to
B, or vice versa,~3! to simulate the operation of anothe
nonlocal HamiltonianH8. A partial answer to the first ques
tion, for two-qubit Hamiltonians, was given by Ref.@2#. The
current work is a continuation of previous efforts to study t
efficiency of simulating one Hamiltonian by another.

Hamiltonian simulation has been considered in the c
text of quantum computation@4–7,9–11,23#. In these works
the system consists ofn qubits, with some givenpairwise
interaction Hamiltonian. In Refs.@4–6#, the given Hamil-
tonian was a sum ofsz^ sz interaction terms between dis
tinct qubits~see Sec. III C for definitions! and the goal was
to simulate a particular one of these terms. This was
tended in Refs.@7,10,11# to arbitrary pairwise interactions, in
both the simulating and the simulated Hamiltonians. In th
papers the main concern was to obtain methods for sim
tion, and therefore upper bounds on the resources as a f
tion of n.

Independent results on optimizing the time used o
given Hamiltonian for performing certain tasks are repor
in Refs.@9,12,13#. Reference@9# gives a necessary conditio
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for simulating onen-qubit pairwise interaction Hamiltonian
by another, and gives a necessary and sufficient condition
simulation with a particular given Hamiltonian. Time re
sources for simulating the inverse of a Hamiltonian are d
cussed in Refs.@9,10,12#. Reference@13# considers simulat-
ing a unitary gate using a given Hamiltonian and a set
controllable gates in the shortest time. A general framew
is set up in terms of Riemannian geometry. A time optim
protocol is obtained for the specific Hamiltoniansz^ sz in
the two-qubit case.

Finally, some more recent results have appeared since
original posting of this paper, extending it and related wo
in various ways@14–21#.

II. SIMULATION FRAMEWORK

In this section we describe our framework of Hamiltoni
simulation, i.e., the rules under which the simulation is to
performed. We also describe other possible frameworks
their relations to the one we adopt.

A. Available resources

Let H andH8 each be a nonlocal Hamiltonian acting o
two isolated systemsA andB, possessed by Alice and Bob
We consider the problem of simulatingH8 by H using un-
limited local resources. These include instantaneous local
erations and uncorrelated local ancillas of any finite dim
sions. It is also necessary to allow some initial classi
correlation—Alice and Bob are assumed to have agreed
forehand on their time and spatial coordinates and the si
lation protocol to be followed. Besides this, no other non
cal resources are allowed, neither prior entanglement nor
form of communication beyond what can be achiev
through the interactionH itself. Our goal is to minimize the
time required of the given HamiltonianH to simulate another
HamiltonianH8. This will be defined more formally in Sec
IV.

Note that either the simulating or the simulated system
both can be given the freedom of bringing inlocal degrees of
freedom~ancillas! and allowing interaction between each a
cilla with the corresponding local system. Ancillas on t
simulated system can make it more powerful and theref
harder to simulate. Ancillas on the simulating system pot
tially make the simulation easier. We will allow ancillas o
the simulating system, though they may not always h
~Sec. VI!.

B. One-shot and deterministic simulations

In this paper we only concern ourselves with protoc
that are one-shot—i.e., operate on a single copy of eac
the simulated and simulating systems—and which are
quired to succeed with probability 1.

More generally, a simulation can be ‘‘blockwise,’’ i
which H ^ n is used for the simulation ofH8^ n, or in whichH
is time shared among many copies of the system and
amortized cost is considered. A simulation can also be
chastic and fail with finite probability, in which case th
expected cost is considered.
5-2
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C. Gate versus dynamics simulations

One possible notion of simulation is that, givenH8 andt8,

we simulate the final unitary evolutione2 iH 8t8 by composing
local operations with elements in the one-parameter fam
$e2 iHt% t .1 The final evolution needs to be correct, but t

intermediate evolution need not correspond toe2 iH 8t9 for
0<t9,t8. The efficiency, given by the ratiot/t8 can depend
on t8. For example, a protocol can useH to generate en-
tanglement and classical communication to teleportA to B,

applye2 iH 8t8 locally, and teleportA back. Viewing the costt
as a function oft8, t does not increases indefinitely witht8,
rather,t can be made constant after it reaches a sufficie
large value. As another example, if the nonlocal Hamilton
H85sz^ sz acts for timet85p/2, the resulting unitary gate
isz^ sz is local, and requires no nonlocal interaction time
all to simulate. This type of simulation, with very differen
primitives, is much studied in the context of universality
quantum gates@22# ~composing a small set of available gat
to obtain any desired unitary gate!. More recently, simulation
of a unitary gate using a fixed given Hamiltonian for a min
mal amount of time and local manipulations was studied
Ref. @13# and some partial results were obtained. From n
on, we call this type of simulation ‘‘gate simulation’’ or ‘‘fi-
nite time simulation.’’

A natural direction to strengthen the above notion
Hamiltonian simulation is to require not only the end resu
but also the interveningdynamicsof H8 to be simulated.
Intuitively, one might expect this to mean that the applicat
of H, interspersed with instantaneous local operations, p
duces a trajectory that remains continuously close to the
jectory e2 iH 8t that one wishes to simulate. However, this
impossible in general, because the needed local opera
cause the simulating trajectory to be discontinuous, agre
only intermittently with the trajectory one wishes to sim
late. Accordingly we adopt the following definition of dy
namics simulation. The HamiltonianH simulates the dynam
ics of H8 with efficiency m if ;t8.0,;e.0 the unitary
operatione2 iH 8t8 can be simulated with fidelity>12e by
some protocol usingH for a total timet8/m and local opera-
tions. While this characterization may appear to have gi
up the idea of approximating the simulated system at in
mediate times, in fact it has not, because it can be show
imply the existence of am-efficient ‘‘stroboscopic’’ simula-
tion, which approximates the simulated trajectory arbitrar
closely not only at the beginning and end, but also at
arbitrarily large set of intermediate times. We discuss t
and other simulation notions in Appendix A. We also sho
that the existence of a protocol for dynamics simulation
equivalent to the existence of one for simulating an infi
tesimal time~see Sec. III A!, which in turns implies the abil-
ity to create protocols for arbitrary finite times by approp
ately rescaling and repeating the infinitesimal-time proto
~see Appendix B!.

1The evolution due to a HamiltonianH is given bye2 iHt . Note the
2 sign in the exponent.
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III. GENERAL RESULTS AND EXAMPLES

Having defined the simulation framework, we deriv
some important general results and provide some exam
of dynamics simulation, which motivate our main results a
simplify some of the later discussions.

A. Infinitesimal and time independent simulation

First of all we show that dynamics simulation is equiv
lent to ‘‘infinitesimal simulation,’’ the problem of simulating
the evolution ofH8 for an infinitesimal amount of timet8.
On one hand, any protocol for dynamics simulation sim
lates the initial evolution, therefore is a protocol for infin
tesimal simulation. On the other hand, iterating an infinite
mal simulation results in dynamics simulation. We restr
our attention to infinitesimal simulation from now on, an
focus on the lowest order effects int8. Note that this property
may not hold for other types of simulation described in A
pendix A.

Infinitesimal simulation has a very special structure—t
optimal simulation protocol is independent of the infinite
mal value oft8. The proof is included in Appendix B.

B. Local Hamiltonians are irrelevant

A general bipartite HamiltonianK can be written as

K5KA^ I 1I ^ KB1(
i j

M i j h i ^ h j , ~1!

whereI denotes the identity throughout the paper,KA ,KB are
local Hamiltonians acting onA, B, respectively, and$h i% is a
basis for traceless Hermitian operators acting on each oA
andB. We can ‘‘dispose’’ of the local HamiltoniansKA and
KB by undoing them with local unitaries onA andB,

~eiK At
^ eiK Bt!e2 i tK5e2 i (K2KA^ I 2I ^ KB)t1O~ t2!. ~2!

In other words,K can be made to simulate its own nonloc
component.

Likewise, any Hamiltonian can simulate itself with add
tional local terms. Therefore, given unlimited local r
sources, the problem of simulating an arbitrary Hamilton
H8 by another arbitrary oneH reduces to the case when bo
are purely nonlocal.

C. Possible inefficiencies in simulation

Consider the simplest case of two-qubit systems. We
troduce the Pauli matrices

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D , ~3!

and the useful identity

UeMU†5eUMU†
, ~4!

whereM is any bounded square matrix andU is any unitary
matrix of the same dimension.
5-3
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As an example, letH5sx^ sx and H85 1
3 (sx^ sx1sy

^ sy1sz^ sz). To simulateH8 by H, let U15 1
& (sx1sy)

and U25 1
& (sx1sz), so that sy5U1sxU1

† and sz

5U2sxU2
† . Using Eq.~4!, it is easily verified that

e2 iH 8t85~e2 iHt 8/3!~U1^ U1 e2 iHt 8/3U1
†

^ U1
†!

3~U2^ U2 e2 iHt 8/3U2
†

^ U2
†!. ~5!

Conversely, we can simulateH with H8,

e2 iHt5e2 iH 83t/2~sz^ I e2 iH 83t/2sz^ I !. ~6!

Note that simulatingH8 for a duration oft8 requires apply-
ing H for a duration oft8 whereas simulatingH for a dura-
tion t requires applyingH8 for a duration of 3t. As the time
required of the given Hamiltonian is a resource to be m
mized, we see that some simulations are less efficient
the others. In this paper, we are concerned with the ine
ciencies of simulation intrinsic to the HamiltoniansH andH8
that are not caused by a bad protocol. For example, we
show later that the inefficiency in the above example is
trinsic.

D. Simulating the zero Hamiltonian—stopping the evolution

In some applications, the given HamiltonianH cannot be
switched on and off. Simulating the zero Hamiltonian0 can
be viewed as a means for switching off the HamiltonianH
@4–6#. This can always be done for any dimensions ofA and
B.

First, let A andB be 2n-dimensional, and

H5(
ij

cij Pi ^ Pj , ~7!

where i is a binary vector (i 1 ,i 2 , . . . ,i 2n) that labels the
n-qubit Pauli matrixPi5sx

i 1sz
i 2^ •••^ sx

i 2n21sz
i 2n . It is eas-

ily verified that

1

22n (
i

PiM Pi5tr M
I

2n . ~8!

A protocol for simulating0 by H is given by

P ij ~Pi ^ Pj !e
2 iHt /24n

~Pi
†

^ Pj
†!

5expS 2
i t

24n (
ij

~Pi ^ Pj !H~Pi
†

^ Pj
†!1O~ t2!D

'e2 i t tr H/22n
, ~9!

in which the net evolution is just an overall phase to t
lowest order int.

WhenA andB ared-dimensional, one can embed each
A andB in a larger, 2n-dimensional system forn5 d log2 de to
perform the simulation. Physically, this can be done on e
of A andB, by attaching a qubit ancilla, extending the Hilbe
space to 2d dimensions, and applying the simulation to
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2n-dimensional subspace, such as one spanned byu i & ^ u0&
for i 51, . . . ,d and u i & ^ u1& for i 51, . . . ,2n2d. Such
simulation can also be done without ancillary degrees
freedom, and an alternative method based on Ref.@23# is
given in Appendix C.

E. Arbitrary but inefficient simulations

We now show that any nonlocal bipartite Hamiltonian c
be used to simulate any other, albeit with inefficiencies.
other words, for anyH and H8, operatingH for time t can
simulate the evolution ofH8 for time t8 with t8/t.0. This
holds for any dimensions. We keep all definitions from t
previous example in the following protocol.

First, letA andB be 2n-dimensional,H5( ijcij Pi ^ Pj and
H85( ijcij8Pi ^ Pj . Without loss of generality the coefficien
for Pk ^ Pk is positive, i.e., ckk.0, where k
5(0,1,0, . . . ,0) andPk5sz^ I ^ •••^ I . It is known that for
any Pi and Pj , there exist unitary operationsU ij 6 in the
Clifford group @24#, such that

U ij 6PiU ij 6
† 56Pj . ~10!

In other words, one can always transform anyPi to any other
or to its negation. In our protocol,H simulatesH8 in two
steps. First,H simulatesPk ^ Pk by

P i,i8u i 1 ,i
1850Pi ^ Pi8 e2 iHt /24n22

Pi ^ Pi8

'expS 2
i t

24n22 (
i,i8u i 1 ,i 1850

Pi ^ Pi8HPi ^ Pi8D
5e2 i tckkPk ^ Pk1 local terms. ~11!

Alice and Bob independently apply an averaging over
Pauli operators commuting withPk , removing all operators
except forI 5P0 andPk in each of their systems. The loca
terms can be ignored, following Sec. III B. Second,Pk ^ Pk
simulatesH8 by

P ij ~Uki sgn(c
i j8 ) ^ Ukj 1!e2 iPk ^ Pkuci j8 ut8~Uki sgn(c

i j8 ) ^ Ukj 1!†

'expS 2 i t 8(
ij

Pi ^ Pjci j8 D
5e2 iH 8t8, ~12!

where sgn(x)5x/uxu if xÞ0 and we omit terms withci j8
50.

WhenA andB ared-dimensional, the simulation ofsH8
by H can again be performed in a larger 2n32n system. This
method implies a lower bound on the maximum possi
value of s, s>@1/(22d log2 de)#(maxij ucij u)/(( ij ucij8u). It is also
possible to perform the simulation without ancillas. T
proof is given in Appendix D. Other methods for such sim
lation were independently reported in Refs.@18–20#.
5-4
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F. Equivalent classes of local manipulations

Under our simulation framework, Alice and Bob are giv
unlimited local resources. In this subsection, we show t
they only need a relatively small class of manipulations.
facilitate the discussion, we introduce classes of operat
C, that can be LU, LO, LU1anc, and LO1anc, to be defined
as follows. LU is the class of all local unitaries that act
A^ B. LU1anc is similar, but acts on (A^ A8) ^ (B^ B8)
whereA8 and B8 are uncorrelated ancillary systems of a
finite dimension. LO and LO1anc are similarly defined
with the unitaries replaced by general trace-preserving qu
tum operations. Note that the largest class LO1anc corre-
sponds to what is most generally allowed under our simu
tion framework.

We now show that LU1anc, LO, and LO1anc are
equivalent under our framework. First, we show th
LU1anc is at least as powerful as LO1anc. Any trace pre-
serving quantum operation can be implemented by perfo
ing a unitary operation on a larger Hilbert space, followed
discarding the extra degrees of freedom~see, for example
Ref. @25#!. The exact difference between LO1anc and LU
1anc is that measurements and tracing are disallowed in
latter. However, these are not needed when simula
Hamiltonian in LU1anc, due to the following facts.~1!
Measurements can be delayed until the end of the proto
as operations conditioned on intermediate measuremen
sults can be implemented unitarily.~2! In Hamiltonian simu-
lation, the ancillary systemsA8B8 have to be disentangle
from AB at the end of the simulation.

Thus no actual measurement or discard is needed. T
facts allow any LO1anc protocol to be reexpressed as
LU1anc protocol with pure product state ancillas, mean
that LO and LO1anc are no more powerful than LU1anc.
Conversely, due to fact~2! above, any LU1anc protocol can
be viewed as an LO protocol. Thus, we establish the equ
lence between LO, LU1anc, and LO1anc. From now on,
we focus on LU1anc protocols for full generality, and o
LU protocols as a possible restriction.

IV. FORMAL STATEMENT OF THE PROBLEM
AND SUMMARY OF RESULTS

Let H, H8, A, B, A8, B8 be defined as before.
Definition. H8 can beefficiently simulatedby H,

H8<C H, ~13!

if the evolution according toe2 iH 8t8 for any timet8 can be
simulated by using the HamiltonianH for the same timet8
and using manipulations in the classC.

Definition. H8 andH areequivalentunder the classC,

H8[C H, ~14!

if H8<C H andH<C H8.
Throughout the paper, we only consider LU1anc proto-

cols following Sec. III F. We also restrict our attention toH
andH8 that are purely nonlocal, following Sec. III B.
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An LU1anc protocol simulatesH8 with H by interspers-
ing the evolution ofH with local unitaries onAA8 andBB8.
More specifically, the most general protocol for simulati
H8 usingH for a total timet is to attach the ancillasA8B8 in
the stateu0A8& ^ u0B8&, apply someU1^ V1, evolve AB ac-
cording toH for some timet1, applyU2^ V2, further evolve
AB according toH for time t2, and iterate ‘‘applyUi ^ Vi and
evolve with H for time t i ’’ some n times. At the end, it
applies a finalU f ^ Vf . The t i.0 are constrained2 by
( i 51

n t i5t. Suppose the protocol indeed simulates an evo
tion for time t8 according toH8. Then we can write

~U f ^ VfUn^ Vn e2 iHt nUn
†

^ Vn
†3•••

3U1^ V1e2 iHt 1U1
†

^ V1
†!uc& ^ u0A8& ^ u0B8&

5@e2 iH 8t8uc&] ^ @WA8B8~ t1 , . . . ,tn!u0A8& ^ u0B8&],
~15!

where we have redefinedUi 51,2, . . . ,n and Vi 51,2, . . . ,n , and
uc& denotes the initial state inAB. In Eq. ~15!, e2 iHt i acts on
AB and implicitly means e2 iHt i ^ I A8B8 . The operator
WA8B8(t1 , . . . ,tn) describes the residual transformation
A8B8, and can be chosen to be unitary since the operation
the left-hand side of Eq.~15! is unitary. The problem we are
concerned with can be stated in two equivalent ways.

Optimal and efficient simulation. Let H be arbitrary. The
optimal simulation problemis to, for eachH8, find a solution
$Ui%,$Vi%,$t i% of Eq. ~15! such thatt8/t is maximal. The
efficient simulation problemis to characterize everyH8 that
admits a solution for Eq.~15! with t85t, i.e., H8
<LU1ancH.

Definition. The optimal simulation factorsH8uH under
classC of operations is the maximals.0 such thatsH8
<C H.

The optimal and efficient simulation problems are equiv
lent because inefficient simulation is always possible~see
Sec. III!. The efficient simulation problem can be solved
finding the optimal solution for eachH8 and characterizing
those witht8/t>1. The optimal simulation problem can b
solved by finding the maximums for which sH8 is effi-
ciently simulated. With this in mind, we may talk of solvin
either problem throughout the paper.

We now summarize our results. We show in Appendix
that, in the infinitesimal regime, the most general simulat
protocol Eq.~15! using LU1anc is equivalent to

sH8

5^0A8u ^ ^0B8u(
i

piUi ^ Vi~H ^ I A8B8!Ui
†

^ Vi
†u0A8& ^ u0B8&.

~16!

In the LU case~without ancillas!, Eq. ~16! reads

2Without loss of generality, a protocol with( i 51
n t i,t can be

turned to one with( i 51
n t i5t by simulating the zero Hamiltonian a

described in Sec. III.
5-5
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sH85(
i

piUi ^ ViHUi
†

^ Vi
† , ~17!

where t5t11•••1tn , pk5tk /t, ands5t8/t. Thus, the set
$H8<LU H% is precisely the convex hull of the se
$U ^ VHU†

^ V†% whenU andV range over all unitary ma
trices onA and B, respectively. The linear dependence
(t8/t)H8 on H is manifest in both Eq.~16! and Eq.~17!.

Our main results apply to the simulation of two-qub
Hamiltonians, and are summarized as follows.

Result 1. Any simulation protocol using LU1anc can be
replaced by one using LU with the same simulation fac
This will be proved in Sec. VI. Thus, the four partial orde
<LU , <LU1anc, <LO , <LO1anc are equivalent for two-qubi
Hamiltonians.

Result 2. We present the necessary and sufficient con
tions for H8<LU H, for arbitrary two-qubit HamiltoniansH
andH8, and find the optimal simulation factorsH8uH and the
optimal simulation strategy in terms of$Ui%,$Vi%,$t i%. This
will be discussed in Sec. V.

These results naturally endow the set of two-qubit Ham
tonians with a partial order<C . This induces for eachH, a
set $H8:H8<C H% that is convex: if H8<C H and H9
<C H, pH81(12p)H9<C H for any 0<p<1. Our method
relies on the convexity of the set$H8:H8<C H%, which has a
simple geometric description, and in turns allows the par
order <C to be succinctly characterized by a majorizatio
like relation. The geometric and majorization interpretatio
offer two different methods to obtain, in practice, the optim
protocol and the simulation factor.

V. OPTIMAL LU SIMULATION OF TWO-QUBIT
HAMILTONIANS

We will prove that<LU is equivalent to<LU1anc in the
following section. In this section, we focus on LU simul
tions. We first adapt a result from Ref.@2# to reduce the
problem to a smaller set of two-qubit HamiltoniansH and
H8. Then, for anyH, we identify the set$H8:H8<C H% with
a simple polyhedron and obtain simple geometric and a
braic characterizations of it. The optimal solution for ea
pair of H andH8 is derived. Finally, the problem is rephrase
in the language of majorization.

A. Normal form for two-qubit Hamiltonians

The most general purely nonlocal two-qubit Hamiltoni
K can be written as

K5(
i j

M i j s i ^ s j , ~18!

where the summation is over Pauli matricesi , j 5x,y,z or
1,2,3 throughout the discussion for two-qubit Hamiltonia
Let

H5(
i

his i ^ s i , ~19!
01230
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whereh1>h2>uh3u are the singular values of the 333 ma-
trix M with entriesMi j , andh35sgn(detM )uh3u. We sayH
is thenormal form of K.

Theorem. Let H be the normal form of K. Then
H[LU K.

Proof. If the local unitariesU†
^ V† andU ^ V are applied

before and aftere2 iKt , the resulting evolution is given by

e2 iK 8t5~U ^ V! e2 iKt ~U†
^ V†!

5e2 i (U ^ V)K(U†
^ V†)t, ~20!

with

K85~U ^ V!K~U†
^ V†!

5(
i j

M i j ~Us iU
†! ^ ~Vs jV

†!

5(
i j

M i j S (
l

Ril s l D ^ S (
k

SjkskD ~21!

5(
lk

~RTMS! lks l ^ sk[(
lk

M lk8 s l ^ sk . ~22!

In Eq. ~21!, R,SPSO(3) since conjugatingrW•sW by SU~2!

matrices corresponds to rotatingrW by a matrix in SO~3! ~and
vice versa!. Equation~22! implies K85(U ^ V)K(U†

^ V†)
for some unitaryU,V if and only if M 85RTMS. In particu-
lar, there is a choice ofR andS that makesK85H,

RT5S 1 0 0

0 1 0

0 0 detO1

D 3O1
T ,

S5O2
T 3 S 1 0 0

0 1 0

0 0 detO2

D , ~23!

where M5O1DO2 is the singular value decomposition o
M, with O1 ,O2PO(3) and D5diag(h1 ,h2 ,uh3u). Thus K
andH are related by a conjugation by local unitaries, whi
implies K[LU H. j

As suggested by the above proof, we define a few us
notations.

Definitions. We call the 333 real matrixMi j the ‘‘Pauli
representation’’ ofK, whenM andK are related by Eq.~18!.
We useDK to denote a diagonal Pauli representation ofK.

Since any two-qubit Hamiltonian is equivalent to its no
mal form, we assumeH8, H are in normal forms from now
on. We now turn to LU simulation ofH8 by H.

B. General LU simulation of normal form two-qubit
Hamiltonians

Recall from Eq.~17! in Sec. IV that the most genera
simulation using LU is given by
5-6
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sH85p1~U1^ V1!H~U1
†

^ V1
†!1•••

1pn~Un^ Vn!H~Un
†

^ Vn
†! , ~24!

where s5t8/t. Following the discussion in Sec. V A, w
only need to considerH5( ihis i ^ s i andH85( ihi8s i ^ s i

that are in their normal forms. The Pauli representation
(U ^ V)H(U†

^ V†) is given by RDHS for some R,S
PSO(3). We canreexpress Eq.~24! as

sDH85p1R1DHS11•••1pnRnDHSn , ~25!

where Ri ,SiPSO(3). Since H and H8 are in their normal
form, h1>h2>uh3u andh18>h28>uh38u. Without loss of gen-
erality, we can make two assumptions. First, we can ass
h3>0. If h3,0, we can multiply Eq.~25! on the right side
by S5diag(1,1,21),

sDH8S5p1R1~DHS!~SS1S!1•••1pnRn~DHS!~SSnS!,
~26!

in which SSiSPSO(3), andDHS5diag(h1 ,h2 ,uh3u) is of
the desired form. Thus, we can assumeh3>0. Second, note
that sH8uH5a sH8uaH5(1/a) saH8uH . The protocol is un-
changed when Eq.~25! is divided by trDH5h11h21h3.
Therefore, without loss of generality, the normalizationh1
1h21h351 can be assumed.

Equations~24! and ~25! have a simple physical interpre
tation: the protocol partitions the allowed usage ofH @DH#
into different Uk^ VkHUk

†
^ Vk

† @RkDSk#, resulting in an
‘‘average Hamiltonian’’H8 (DH8), which is a convex com-
bination of theUk^ VkHUk

†
^ Vk

† @RkDSk#.
The Hamiltonians, represented byDH8 , that can be effi-

ciently simulated (s51) correspond to the diagonal elemen
of the convex hull of$RDHS:R,SPSO(3)%. We call this
diagonal subset, which is also convex,CH . Note that the zero
Hamiltonian is in theinterior of CH , becauseH can simulate
any sH8 for small s without ancillas~see Sec. III!. Thus
;DH8Þ0, the optimal solution is aboundarypoint of CH .
The problem of efficient or optimal simulation can be r
phrased.

GivenH, let CH be the diagonal subset of the convex h
of $RDHS:R,SPSO(3)%. ThenH8 can be efficiently simu-
lated byH if and only if DH8PCH . For anyH8, sH8uHDH8 ,
which represents the optimal simulation, is the unique in
section of the semilinelDH8 (l>0) with the boundary of
CH . The optimal protocol can be obtained by decompos
sH8uHDH8 in terms of the extreme points ofCH .

Since each point inCH can be decomposed as a conv
combination of the extreme points ofCH , each efficiently
simulated Hamiltonian can be identified with a simulati
protocol and vice versa. We will refer to elements inCH as
Hamiltonians or simulation protocols interconvertibly.

Central to our problem is the structure ofCH . We inves-
tigate its structure by first defining another objectPH . PH is
a simple polyhedron defined by its set of 24 vertices,P24,
which is a subset ofCH ~thusPH # CH). They are obtained
01230
f

e

l

r-

g

from DH by permuting the diagonal elements and putting
even number of2 signs. More explicitly, the vertices ofPH
arep iDHp isj , where

p05I ,p15F 21 0 0

0 0 1

0 1 0
G , p25F 0 0 1

0 21 0

1 0 0
G ,

p35F 0 1 0

1 0 0

0 0 21
G , p45F 0 1 0

0 0 1

1 0 0
G ,

p55F 0 0 1

1 0 0

0 1 0
G ,

s05I ,s15F 1 0 0

0 21 0

0 0 21
G , s25F 21 0 0

0 1 0

0 0 21
G ,

s35F 21 0 0

0 21 0

0 0 1
G .

The transformationDH → p i DHp i
†sj is physically achieved

by H→(Up i

†
^ Usj

Up i
)H(Up i

^ Usj

† Up i

† ), where Up i

5(1/A2)(s j1sk) for i 51,2,3 and i , j ,k distinct, Up i

5cos(p/3)I 6 i sin(2p/3)(sx1sy1sz)/A3 for i 54,5, and
Usi

5s i for i 51,2,3. These can be verified using Eq.~21!.

We will study the geometry ofPH in Sec. V C. We are
interested inPH because we will show in Sec. V D tha
CH5PH . Then we can find the optimal solution for anyH8
using our knowledge ofPH . Moreover,CH5PH means that
P24 is the set of extreme points ofCH so that any optimal
simulation protocol only involves the transformation
DH→p iDHp isj . We restate the solution in terms of a m
jorizationlike relation in Sec. V F.

C. The polyhedronPH

SinceP24 andPH consist of diagonal matrices only, the
elements can be represented by real three-dimensional
tors. The defining characterization ofPH is the polyhedron
with 24 ~not necessarily distinct! vertices that are elements o
P24. We now turn to a useful characterization ofPH as the
region enclosed by its faces,

~x,y,z!PPH iff 5
uxu<h1 , uyu<h1 , uzu<h1 ,

2~122h3!<1x1y1z<1,

2~122h3!<2x2y1z<1,

2~122h3!<1x2y2z<1,

2~122h3!<2x1y2z<1,
~27!
5-7
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where the facts thatH is in normal form,h3>0, and that
h11h21h351 are used to replace the bounds( ihi and
2(( ihi22 mini hi) by 1 and2(122h3) in Eq. ~27!. Equa-
tion ~27! can be used to determine whether a point, as sp
fied by its coordinates, is inPH or not. The validity of Eq.
~27! can be proved by plottingP24 ~and thereforePH) and
verifying that the faces are as given in Eq.~27!. We first plot
PH for the simple case (h1 ,h2 ,h3)5(1,0,0), for whichP24
has six distinct points: (61,0,0), (0,61,0), (0,0,61) and
Eq. ~27! holds trivially ~Fig. 2!. Now, we plotPH for the
most complicated case,h1.h2.h3.0 in Fig. 3.

Just like Fig. 2, Fig. 3 is viewed from the directio
(1,1,1). Three faces are removed to show the structure in
back. There are three types of faces. There are six iden
rectangular dark grey faces on the planesx56h1 ,y5
6h1 ,z56h1. There are two groups of four identical he
agonal faces. The first group of four consists of the th
light grey faces in the back, and the light grey face in t
front. These are the truncated faces of the original octa

FIG. 2. PH for (h1,h2,h3)5(1,0,0).
01230
i-
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dron, lying on the planesx1y1z51,2x1y2z51,2x2y
1z51,x2y2z51. The second group consists of the thr
empty faces in the front, and the white face in the back. Th
are inside the original octahedron and are parallel to t
original faces. They lie on the planes2x2y2z5122h3 ,
2x1y1z5122h3 ,x2y1z5122h3 ,x1y2z5122h3.
Note that each hexagon in one group has a parallel coun
part in the other group. Altogether, there are seven pairs
parallel faces, each pair bounds one expression in Eq.~27!. It
is straightforward to verify Fig. 3 and Eq.~27!.

The plots for other cases, such as whenh350 or h1
5h2, can be likewise obtained and Eq.~27! be verified.
These are generally simpler than Fig. 3, and may admit s
pler solutions in Sec. V E. However, we leave the details
the interested readers and move on to prove thatCH5PH .

D. Proof of CHÄPH

We now show thatCH5PH . By definitionPH # CH , thus
we only need to showCH # PH . Recall thatCH consists of
Hamiltonians that can be expressed asDH85( i piRi D HSi

T

@by puttings51 in Eq.~25! and usingSi
T in place ofSi#. The

fact thatDH8 is diagonal implies that only the diagonal el
ments in eachRiDHSi

T contribute toDH8 ; it is possible for
an individual RiDHSi

T to be off-diagonal, but the off-
diagonal elements have to cancel out in the sum. To sh
that CH5PH , it suffices to show that the diagonal part
eachRiDHSi

T is in PH , because anyDH8PCH will then be in
PH .

We represent the diagonal part of anyRDHST as a three-
dimensional vector (g1 ,g2 ,g3). We need to show tha
double
FIG. 3. PH for h1.h2.h3.0. The equations for the faces in the background are given in boxes. The empty faces are given by
arrows.
5-8
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(g1 ,g2 ,g3) satisfies Eq.~27! and belongs toPH . SinceDH

5diag(h1 ,h2 ,h3),

gi5~RDHST! i i 5(
k

RikhkSki
T 5(

k
RikSikhk . ~28!

The vectors (h1 ,h2 ,h3) and (g1 ,g2 ,g3) are linearly related
by

F g1

g2

g3

G5R* S F h1

h2

h3

G , ~29!

where * denotes the entry-wise multiplication of two mat
ces, also known as the Schur product or the Hadamard p
uct. It is useful to expandgi in Eq. ~28! explicitly,

gi5Ri1Si1h11Ri2Si2h21Ri3Si3h3 . ~30!

Then, we can prove the first group of inequalities in Eq.~27!,

ugi u<uRi1Si1uh11uRi2Si2uh21uRi3Si3uh3

<max
i

hi5h1 . ~31!

We have used the fact thatR,SPSO(3) to prove the secon
inequality in Eq.~31!: R,S consist of orthonormal rows an
columns. Hence, (uRi1u,uRi2u,uRi3u) and (uSi1u,uSi2u,uSi3u)
are unit vectors, and their inner productuRi1Si1u1uRi2Si2u
1uRi3Si3u<1. We refer to this argument, which we use fr
quently, as the ‘‘inner product argument.’’ The second gro
of inequalities can be proved by

(
i

ugi u5(
i

U(
k

RikSikhkU
<(

k
S (

i
uRikuuSiku D uhku<(

k
hk51. ~32!

The second inequality in Eq.~32! is due to( i uRikuuSiku<1,
obtained again by the inner product argument. This pro
all of

g11g21g3<1, g12g22g3<1,

2g11g22g3<1, 2g12g21g3<1. ~33!

Finally,

g11g21g3

5S R11S11

1R21S21

1R31S31

D h11S R12S12

1R22S22

1R32S32

D h21S R13S13

1R23S23

1R33S33

D h3

5l1h11l2h21l3h3 , ~34!

where eachl i is the coefficient ofhi in the parenthesis. The
inner product argument impliesul i u<1. Moreover, we will
prove( il i>21 shortly, which implies
01230
d-

p

s

g11g21g3>l1h11l2h21~212l12l2!h3

5l1~h12h3!1l2~h22h3!2h3

>2h12h21h3

52~122h3!, ~35!

where Eq.~35! is the minimum of the preceding line, a
tained atl15l2521 and l351. We now prove( il i>
21. First,

(
i

l i5R11S111R21S211R31S311R12S121R22S221R32S32

1R13S131R23S231R33S33

5tr~RTS!. ~36!

As R,SPSO(3), RTSPSO(3).Each SO~3! matrix is a spa-
tial rotation, therefore having the eigenvalue11 that corre-
sponds to the vector defining the rotation axis. Moreover,
SO~3! matrix has determinant 1. Therefore, the eigenval
are generally given by 1,e6 if and the trace is 112 cosf
>21. This completes the proof of Eq.~35!. The last three of
the four inequalities

1g11g21g3>2~122h3!,

1g12g22g3>2~122h3!,

2g11g22g3>2~122h3!,

2g12g21g3>2~122h3!, ~37!

can be proved similarly. For example, consider

g12g22g3

5S R11 S11

2R21 S21

2R31 S31

D h11S R12 S12

2R22 S22

2R32 S32

D h21S R13 S13

2R23 S23

2R33 S33

D h3 .

~38!

The previous argument forg11g21g3 applies by redefining
R to be

F 1 0 0

0 21 0

0 0 21
G3R.

Altogether, the inequalities in Eqs.~31!, ~32!, and ~37!
satisfied by (g1 ,g2 ,g3) are precisely the defining inequal
ties for PH in Eq. ~27!. Therefore, the diagonal part of an
RDHST is in PH , andCH5PH .

E. Optimization over PH

Having provedCH5PH , we can solve the optimal simu
lation problem givenDH and DH8 by finding the unique
intersection of the semilinelDH8 with the boundary ofPH
5-9
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~see Sec. V B!. We now explicitly work outsHuH8 , i.e., the
value ofl in the intersection, as a function ofH andH8.

Let all the symbols be as previously defined. The int
section is given byvW 5sH8uH (h18 ,h28 ,h38), so that

sH8uH 5
uuvW uu1

uu~h18 ,h28 ,h38!uu1
5

uuvW uu1
h181h281uh38u

, ~39!

whereuuvW uu1 for a vectorvW is the sum of the absolute value
of the entries. The setPH has only three types of boundar
faces. Therefore, there are only three possibilities where
intersection can occur.

~1! On the group of faces given byx1y1z51, 2x1y

2z51, 2x2y1z51, x2y2z51. In this case,uuvW uu151,
andsH8uH51/(h181h281uh38u).

~2! On the group of facesx1y2z5122h3 , x2y1z
5122h3 , 2x1y1z5122h3 , 2x2y2z5122h3. In
this case, uuvW uu15122h3, and sH8uH5(122h3)/(h181h28
1uh38u).

~3! On the group of facesx56h1 ,y56h1 ,z56h1. In
this case,vW 5(h1 /h18)(h18 ,h28 ,h38) ~note h18/h1>0), uuvW uu1
5(h1 /h18)(h181h281uh38u) ~not constant on the face!, and
sH8uH5(h1 /h18).

Note that whenH8 is in normal form,vW can only fall on
x1y1z51, x1y2z5122h3, andx5h1 in each of cases
1, 2, and 3. We now characterize (h18 ,h28 ,h38) belonging to
each case.

Case 1. Note that the face ofPH on x1y1z51 is the
convex hull of (h1 ,h2 ,h3) and all permutations of the en
tries. The hexagon contains exactly all vectorsvW majorized

by (h1 ,h2 ,h3), vW a(h1 ,h2 ,h3) ~see the following section fo
definition of majorization!. Hence, (h18 ,h28 ,h38) is in case 1 if

and only if it is proportional to somevW a(h1 ,h2 ,h3).3

Case 3. In this case,vW 5(h1 ,h1h28/h18 ,h1h38/h18). Thus
(h18 ,h28 ,h38) is in case 3 iff (h1h28/h18 ,h1h38/h18) is within the
rectangle with vertices (h2 ,h3),(h3 ,h2),(2h2 ,2h3),
(2h3 ,2h2) ~Fig. 4!. Hence, (h18 ,h28 ,h38) is of case 3 iff

U h1h28

h18
1

h1h38

h18
U<h21h3 and U h1h28

h18
2

h1h38

h18
U<h22h3 ,

iff

h1

h21h3
<

h18

h281h38
and

h1

h22h3
<

h18

h282h38
.

Case 2. This contains all (h18 ,h28 ,h38) not in case 1 or 3.
The intersection on a boundary face can be easily dec

posed as a convex combination of at most three vertice
P24. The decomposition directly translates to an optimal p

3The fact that (h18 ,h28 ,h38)a(h1 ,h2 ,h3) is a necessary condition
for efficient simulation is independently proved in Ref.@9#.
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tocol ~using the discussion at the end of Sec. V B! with at
most three types of conjugation.

F. Optimal simulation, polyhedron PH , and s-majorization

The problem of Hamiltonian simulation also motivates
majorizationlike relation, which in turns provides a compa
language to present the main results of this paper.

Let us recall the standard notions of majorization a
weak majorization as defined in the space ofn-dimensional
real vectors. Letu be ann-dimensional vector with real com
ponentsui , i 51, . . . ,n. We denote byu↓ the vector with
componentsu1

↓>u2
↓>•••>un

↓ , corresponding touui u de-
creasingly ordered. Then, for two vectorsu andv, u is sub-
majorized or weakly majorized byv, written uaw v, if

u1
↓ < v1

↓ ,

u1
↓1u2

↓ < v1
↓1v2

↓ ,

A

u1
↓1u2

↓1•••un
↓ < v1

↓1v2
↓1•••vn

↓ . ~40!

In case of equality in the last equation, we say thatu is
majorized byv, and writeuav.

Weak majorization of vectors induces a similar partial o
der in real matrices. More precisely, supposeM and N are
two n3n real matrices, with respective singular valu
sing(M ) and sing(N). Then, the weak majorization of rea
matrices can be defined as

Maw N iff sing~M !aw sing~N!. ~41!

Since the transformationM→O1MO2 preserves the singula
values whenOi are orthogonal, weak majorization also d
fines an equivalence relation,

M;O1MO2 ;O1 ,O2PO~n!. ~42!

A useful result@26# in weak majorization is that the follow
ing ‘‘convex sum’’ characterization is equivalent to Eq.~42!:

Maw N ⇔ M5(
i

piOi1NOi2 . ~43!

Our results in Secs. V B–V D show that the partial ord
H8<LU H strongly resembles weak majorization.H8<LU H
when the convex sumDH85( i piRiDHSi holds or equiva-
lently when h18 ,h28 ,h38 satisfy the inequalities in Eq.~27!.
This motivates the definition of ans-majorization for all

FIG. 4. jjjj.
5-10
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n3n real matrices without restricting to the special form
DH . Let M andN be realn3n matrices. We say thatM is
s-majorized byN, denoted byMas N, whenM is a ~left and
right! special orthogonal mixing ofN,

Mas N ⇔ M5(
i

piRiNSi . ~44!

This defines an equivalence relation,

M;s RMS ; R,SPSO~n!, ~45!

and associates each matrixM with a vector M ↓s

5„u1 ,u2 , . . . ,un21 ,det(M )un…, where ui are its singular
values in decreasing order. This also defines an ‘‘s-ordered’’
vector v↓s for any real vectorv, viewed as a diagonal rea
matrix: the absolute values of the entries ofv are arranged in
decreasing order, and the product of all the original sign
added to the last element. Note thatuas v ⇒ uaw v. More-
over, when sgn(P iui)5sgn(P iv i) and ( iui5( iv i , aw ,
as , anda are all equivalent.

For n53, our results in Secs. V C–V D can be extend
to obtain the following characterization ofs-majorization in
terms of inequalities.

Let u and v be three-dimensional vectors,u↓s

5(u1 ,u2 ,u3) andv↓s5(v1 ,v2 ,v3). Thenu as v if and only
if

u1 < v1 ,

u11u22u3 < v11v22v3 ,

u11u21u3 < v11v21v3 . ~46!

Let M andN be 333 real matrices. ThenMas N @defined
by Eq. ~44!# if and only if M ↓s as N↓s.
01230
is

Equation ~46! follows from Eq. ~27! and PH5CH , and
from the fact that Eq.~46! is unchanged when the signs ofu3
and v3 are flipped simultaneously and whenui and v i are
rescaled byv11v21v3.

Finally, we restate our result in Hamiltonian simulation
the language ofs majorization.

Theorem. Let H5( ihis i ^ s i and H85( ihi8s i ^ s i , h
5(h1 ,h2 ,h3), andh85(h18 ,h28 ,h38). Then

H8<LU H ⇔ h8as h. ~47!

The optimal simulation factor is given bysH8uH
5max$sh8as h% s.

VI. HAMILTONIAN SIMULATION WITH LU ¿anc

In this section we will show that the use of uncorrelat
ancillas does not help when simulating one two-qubit Ham
tonian with another, so that all results on efficient and op
mal simulation under LU hold under LU1anc. We prove this
by describing the most general LU1anc protocol and reduc
ing it to an LU protocol.

In this scenario, qubitsA and B are, respectively, ap
pended with ancillasA8 andB8, which have finite but arbi-
trary dimensions. The initial state ofA8B8 can be chosen to
be a pure product stateu0A8& ^ u0B8&. At the final stage of the
simulation, the ancillasA8 and B8 may be correlated, bu
A8B8 is uncorrelated withAB if the latter is to evolve uni-
tarily according toH8. The local unitary transformationsUi
and Vi can act onAA8 and BB8, respectively. This feature
distinguishes LU1anc from LU.

The most general LU1anc protocol to simulateH8 with
H can be described as
~U f ^ Vf 3 Un^ Vn e2 iHt nUn
†

^ Vn
† 3•••3U1^ V1 e2 iHt 1U1

†
^ V1

†!uc& ^ u0A8& ^ u0B8&

5~e2 iH 8t8uc&) ^ @WA8B8~ t1 , . . . ,tn!u0A8& ^ u0B8&]. ~48!

In Appendix B we have shown that for infinitesimal times Eq.~48! leads to

sHAB8 5^0A8u ^ ^0B8uF(
k

pkUk^ Vk~H ^ I A8B8!Uk
†

^ Vk
†G u0A8& ^ u0B8&, ~49!
of

-

where pk[tk /t and s[t8/t. Let Mk[^0A8uUk and Nk
[^0B8uVk . We can write Eq.~51! as

sH85(
k

pkMk^ Nk~H ^ I A8B8!Mk
†

^ Nk
† . ~50!

Note that this is the LU1anc analog of Eq.~24! for LU. In
this case,H is replaced byH ^ I A8B8 and the local unitaries
are replaced with more general transformations.
We focus on just one term in the convex combination
Eq. ~50!, M ^ N(HAB^ I A8B8)M†

^ N†, with M[^0A8uUk
andN[^0B8uVk . We will show how to obtain the same con
tribution to H8 using only local unitaries onA and B to
establish the equivalence of LU and LU1anc. First, note that

M ^ N~HAB^ I A8B8!M
†

^ N†5EA+EB~H !, ~51!

whereEA(t)[M (t ^ I A8)M† and similarly forEB . We em-
phasize thatEA,B are linear operators on matrices that arenot
5-11
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necessarily quantum operations@25#, despite various resem
blances to the latter. One can check thatEA is unital, i.e.,
EA(I )5I , by using M5^0A8uU. Furthermore,EA is com-
pletely positive@25#, because an operator-sum representa
EA(t)[( iFitFi

† can be obtained by expandingI A8 in terms
of some basis $u i A8&%, and by writing Fi5M u i A8&
5^0A8uUu i A8&. However, in general,EA is neither trace non-
increasing nor trace nondecreasing, though trA( iFi

†Fi

5trA( i^ i A8uU
†u0A8&^0A8uUu i A8&52. For eachFi , we can

obtain the singular value decompositionFi5W2iQiW1i ,
whereW1i andW2i are unitary, and

Qi5Fqi1 0

0 qi2
G ~52!

is diagonal and positive semidefinite. Altogether,

EA~t!5(
i

W2iQiW1itW1i
† QiW2i

† ~53!

5(
i

1

2
~qi1

2 1qi2
2 !W2iQi8W1itW1i

† Qi8W2i
† , ~54!

where

Qi85A2 Fcosu i 0

0 sinu i
G and

cosu i5qi1

Aqi1
2 1qi2

2
.

We now show that, without affecting the Hamiltonian sim
lation, the conjugation byQi8 in EA(t) @Eq. ~54!# can be
replaced by the operationQi(t)5(12cosu sin u ) I t I
1cosu sinu szt sz, i.e., replacingEA by the following:

ẼA~t!5(
i

1

2
~qi1

2 1qi2
2 !W2iQi~W1itW1i

† !W2i
† . ~55!

It is straightforward to verify that

Qi8IQi85I 1cos~2u!sz , Qi8sxQi85sin~2u!sx ,

Qi8syQi85sin~2u!sy , Qi8szQi85cos~2u!I 1sz ,
~56!

Qi~ I !5I , Qi~sx!5sin~2u!sx ,

Qi~sy!5sin~2u!sy , Qi~sz!5sz . ~57!

Conjugation byQi8 differs from the operationQi only when
the input has anI or sz component. Their differences do no
affect Hamiltonian simulation for the following reasons. A
H is purely nonlocal, the input toEA in Eq. ~51! is traceless
and has noI component. For thesz component in the input
Qi(sz) and Qi8szQi8 differ only by an I component in the
output, which contributes as a local term in Eq.~51!. Hence,
ẼA can be used in place ofE(t). Finally, we note that

( i
1
2 (qi1

2 1qi2
2 )5 1

2 ( i tr Fi
†Fi51, so thatẼA is indeed a con-

vex combination of the individual terms, each in turn a m
01230
n

-

ture of unitary operations onA. Applying the same argumen
to EB , Alice and Bob only need to perform local unitaries
the simulation step of Eq.~51!.

VII. DISCUSSION

First, we point out that the normal form for Hamiltonian
acting on two qubits~Sec. V A! is symmetricwith respect to
exchanging the systemsA and B. More formally, define
S(M1^ M2)5M2^ M1 as the ~nonlocal! SWAP operation.
Then H[LU S(H). This has important consequence—a
task generated by the Hamiltonian can be done equally w
with the role of Alice and Bob interchanged.

In higher dimensions, the propertyH[LU S(H) no longer
holds. For example,H<” LU S(H) and S(H)<” LU H for the
Hamiltonian~see Ref.@29# for a proof!

H5F 1 0 0

0 21 0

0 0 0
G ^F 1 0 0

0 1 0

0 0 22
G . ~58!

In fact, if H5H1^ H2 whereH1 andH2 are members of a
traceless orthogonal basis with different eigenvalu
S(H)<” LU H and H<” LU S(H). This also has importan
consequences—in higher dimensions, the nonlocal deg
of freedom of a Hamiltonian cannot be characterized
quantities that are symmetric with respect toA andB, such as
eigenvalues ofH ~independently reported in Ref.@21#!. Any
normal form necessarily contains terms of the fo
ci j h i ^ h j for some nonzeroci j and the matrix with entries
ci j cannotbe symmetric.

Second, we revisit the notion of efficiency in Hamiltonia
simulation. Our definition ofH8<H depends on the normal
ization of bothH and H8. One method to remove the no
malization dependence is to requireh181h281uh38u51. Alter-
natively, we can consider the productsHuH8sH8uH that
measures the inefficiency of interconvertingH andH8 inde-
pendent of the normalization of the Hamiltonians. We fou
that ~proof omitted! whenh38>0, sHuH8sH8uH> 1

3 . Otherwise,
sHuH8sH8uH> 1

9 , with equality when h5(1/3,1/3,1/3) and
h85(1/3,1/3,21/3).

Third, we have considered the optimal simulation of o
two-qubit Hamiltonian using another, both arbitrary b
known. We can apply the characterization ofPH to analyze
other interesting problems. For example, inverting a kno
Hamiltonian is equivalent to settingH852H. Without loss,
assumeh3>0 and h11h21h351. Using the analysis in
Sec. V E, the intersection is of case 2. Therefore,s2HuH5
2(122h3). The worst case is inverting13 (sx^ sx1sy^ sy
1sz^ sz) in which cases2HuH51/3. In contrast, any proto
col for inverting an unknown Hamiltonian can invert th
worst known Hamiltonian, thuss2HuH<1/3. This is achiev-
able using the following protocol:

~sx^ I !e2 iHt 8~sxsy^ I !e2 iHt 8~sysz^ I !e2 iHt 8~sz^ I !

5e2 i (2H)t8/3. ~59!
5-12
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We can also improve on the time requirement for simulat
protocols for n-qubit pairwise coupling Hamiltonians@7#
with our construction. Instead of selecting a term by te
simulation using a single nonlocal Pauli operator acting o
pair of qubit, one can directly simulate the desired coupl
between the pair with any given one in a time optim
manner.

VIII. CONCLUSION

We have discussed various notions of Hamiltonian sim
lation. Focusing on dynamics simulation, we show
equivalence to infinitesimal simulation, and the intrinsic tim
independence of the protocols. We also show the possib
of simulating one nonlocal Hamiltonian with another witho
ancillas in any twod-dimensional systems. Our main resu
are on two-qubit Hamiltonians, in which case, for a
HamiltonianH, we characterize allH8 that can be simulated
efficiently, and obtain the optimal simulation factor and pr
tocol. We obtain our results by considering a simple poly
dron that is related to some majorizationlike relations. O
results show that the two-qubit Hamiltonians are endow
with a partial order, in close analogy to the partial orderi
of bipartite pure states under local operations and class
communication@27#.

We have restricted our attention to simulation protoc
that are infinitesimal, one-shot, deterministic, and witho
the use of entangled ancillas and classical communicat
We also restricted our attention to bipartite systems. Ext
sions to the unexplored regime, and alternative directi
such as other nonlocal tasks will prove useful, and are be
actively pursued.
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APPENDIX A: NOTIONS OF SIMULATION

We consider various notions of using a HamiltonianH to
simulate the evolution due toH8 for time t8.

In dynamics simulation, the evolution of the system
close toe2 iH 8t9 after an operation time ofmt9 for constantm
and;t9P@0, t8#. It is possible to relax this requirement, s
that,m(t9) is a function oft9, and without loss of generality
m(t9) is nondecreasing. We call this ‘‘variable rate dynam
simulation.’’ Finally, in gate simulation, the only requireme
is that, the final evolution is given bye2 iH 8t8.

As an analogy, letH8 be driving along a particular high
way from house A to house B at 100 km/hr. Dynamics sim
lation is like driving, biking, or walking along the same high
way at any constant speed. Variable rate dynamic
simulation is like driving along the highway at variab
speed, for example, when there is stop-and-go traffic. T
vehicle is always on the trajectory defined byH8. Finally,
gate simulation is like going from house A to house B by a
means, for example, using local roads, or flying a helicop

It is important to note the difference between dynam
simulation~or infinitesimal simulation! and variable rate dy-
namics simulation. For example, iterating infinitesimal sim
lations to perform dynamics simulation, the ancillas are i
plicitly discarded after each iteration, and new ones be u
next. However, it is possible in variable dynamics simulati
that used ancillas can subsequently be used to accelerat
simulation. Such phenomena are known in entanglem
generation@2#. The more complicated analysis for variab
dynamics simulation will be addressed in future work.

APPENDIX B: INFINITESIMAL SIMULATION AND TIME
INDEPENDENCE

In this appendix, we show that the optimal protocol f
infinitesimal simulation is independent oft8, the time of evo-
lution to be simulated.

The most general simulation protocol ofH8 with H using
LU1anc can be described by
the

itesimal
~U f ^ Vf3Un^ Vn e2 iHt nUn
†

^ Vn
†
•••U1^ V1 e2 iHt 1U1

†
^ V1

†!~ uc& ^ u0A8& ^ u0B8&)5~e2 iH 8t8uc&) ^ ~WA8B8u0A8& ^ u0B8&),
~B1!

where the equality must hold for all possible statesuc& of systemAB. Here the unitariesUi andVi , acting onAA8 andBB8,
respectively, and the partition$t i% of the time intervalt5( i t i , correspond to all the degrees of freedom available for
simulation ofH8 for time t8. The initial state of the ancillasA8 andB8 is u0A8& ^ u0B8&, andWA8B8 is their residual, unitary
evolution, which is determined by the other degrees of freedom and may create entanglement betweenA8 andB8.

We have argued earlier that optimal dynamics simulation can always be achieved by a protocol for simulating infin
evolution timest8. This also impliest being infinitesimal. Recall thatpi[t i /t ands[t8/t. We can expand Eq.~B1! to first
order in t to obtain

U f ^ Vf3F I 2 i t(
i

piUi ^ Vi~H ^ I A8B8!Ui
†

^ Vi
†G u0A8& ^ u0B8&5~ I 2 i tsH8! ^ ~WA8B8u0A8& ^ u0B8&). ~B2!
5-13
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The validity of Eq. ~B1! for all uc& is used to obtain Eq
~B2!, each term of which is taken to be an operator onAB. It
follows from Eq.~B2! that

~U f u0A8&) ^ ~Vf u0B8&)5I AB^ ~WA8B8u0A8& ^ u0B8&)1O~ t !,
~B3!

which implies that

U f u0A8&5I A^ ~WA8u0A8&)1O~ t !, ~B4!

Vf u0B8&5I B^ ~WB8u0B8&)1O~ t !, ~B5!

WA8B8u0A8& ^ u0B8&5~WA8u0A8&) ^ ~WB8u0B8&)1O~ t !.
~B6!

Equation~B6! implies WA8B8 is a product operator to zerot
order int. RedefiningU f andVf is necessary, we can assum
WA85I A8 and WB85I B8 . Explicitly writing down the most
generalO(t) terms in Eqs.~B4!–~B6!, we obtain

U f u0A8&5~ I AA82 i tK AA8!u0A8&1O~ t2!, ~B7!

Vf u0B8&5~ I BB82 i tK BB8!u0B8&1O~ t2!, ~B8!

WA8B8u0A8& ^ u0B8&

5@~ I A82 i tK A8!u0A8&)] ^ @~ I B82 i tK B8!u0B8&]

2 i tK A8B8u0A8& ^ u0B8&1O~ t2!, ~B9!

where the unitarity of the operators on the left-hand s
implies the hermiticity ofKAA8 , KBB8 , KA8 , KB8 , and
KA8B8 . Substituting Eqs.~B7!–~B9! in Eq. ~B2! implies

sH8^ ~ I A8B8u0A8& ^ u0B8&)

5O~ t !1S (
i

piUi ^ Vi ~H ^ I A8B8!Ui
†

^ Vi
†

1KAA81KBB82KA82KB82KA8B8D u0A8& ^ u0B8&.

~B10!

Projecting this equation on the left onto^0A8u ^ ^0B8u, the
terms KAA81KBB82KA82KB82KA8B8 become local or
identity terms. Taking into account thatH8 has zero trace and
no local terms~recall Sec. II B!, their contributions vanish
and we obtain
01230
e

sH85

^0A8u ^ ^0B8uF(
i

piUi ^ Vi~H ^ I A8B8!Ui
†

^ Vi
†G u0A8& ^ u0B8&.

~B11!

In the case we do not have ancillary systems,Ui andVi only
act onA andB, and Eq.~B11! reads

sH85(
i

piUi ^ ViHUi
†

^ Vi
† . ~B12!

In Eqs.~B11! and ~B12!, the dependence of the equation o
the original infinitesimal timest and t8 is only throughs
5t8/t. This implies any protocol fort and t8 applies toat
and at8 within the infinitesimal regime. Thus the protoco
namely, the set$Ui ,Vi ,pi% can be considered being indepe
dent of t in the infinitesimal regime.

APPENDIX C: SIMULATING ZERO HAMILTONIAN
IN dÃd WITHOUT ANCILLAS

In Ref. @23#, it is shown that for anyd-dimensional square
matrix M,

(
i j

Ui j MUi j
† 5~tr M )

I

d
, ~C1!

where

Ui j 5F 1 0 0 0 0

0 v 0 0 0

0 0 v2 0 0

0 0 0 • 0

0 0 0 0 vd21

G i

3F 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

G j

~C2!

andv is a primitivedth root of unity.H can simulate0 using
the protocol

P i j ~Ui j ^ I !e2 iHt~Ui j
†

^ I !

'expS 2 i(
i j

~Ui j ^ I !H~Ui j
†

^ I !t D
5e2 i I ^ KBt, ~C3!

which is local and can be removed.
n

APPENDIX D: ARBITRARY HAMILTONIAN SIMULATION IN DÃD WITHOUT ANCILLAS

Let H and H8 act on twod-dimensional systems. We use the following~nonorthonormal! basis for traceless Hermitia
operators acting on ad-dimensional system:

h15F 1 0 0 . . .

0 21 0 . . .

0 0 0 . . .

A A A A
G , h25F 1 0 0 . . .

0 0 0 . . .

0 0 21 . . .

A A A A
G , . . . , hd215F 1 0 0 . . .

0 0 0 . . .

0 0 0 . . .

A A A 21

G ,
5-14
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hd5F 0 1 0 . . .

1 0 0 . . .

0 0 0 . . .

A A A A
G , hd115F 0 2 i 0 . . .

i 0 0 . . .

0 0 0 . . .

A A A A
G ,

hd125F 0 0 1 . . .

0 0 0 . . .

21 0 0 . . .

A A A A
G , hd135F 0 0 2 i . . .

0 0 0 . . .

i 0 0 . . .

A A A A
G , . . . ,

Let H5( i j ci j h i ^ h j and H85( i j ci j8 h i ^ h j . To show thatsH8<LU H for somes.0, it suffices to show thatsh1^ h1

<LU H, sinceh1^ h1[LU (6h i ^ h j ) for all i , j . Furthermore,h1^ h1 can be simulated if one can simulateu i &^ i u ^ u j &^ j u and
2u i 8&^ i 8u ^ u j 8&^ j 8u for any i , j ,i 8, j 8.

Without loss of generality,c11Þ0. We first useH to simulate its diagonal components,Hd5( i , j 51
d21 ci j h i ^ h j ,

Hd5
1

d2 (
i , j 50

d21 F 1 0 0 . . .

0 v 0 . . .

0 0 v2 . . .

A A A A
G i

^F 1 0 0 . . .

0 v 0 . . .

0 0 v2 . . .

A A A A
G j

H F 1 0 0 . . .

0 v 0 . . .

0 0 v2 . . .

A A A A
G i†

^F 1 0 0 . . .

0 v 0 . . .

0 0 v2 . . .

A A A A
G j †

.

~D1!

Hd can further be used to simulatec11u2&^2u ^ u2&^2u, using the protocol

1

~d21!2 (
i , j 50

d22 F 0 0 1 0 . . .

0 1 0 0 . . .

0 0 0 1 . . .

A A A A 1

1 0 0 0 0
G i

^F 0 0 1 0 . . .

0 1 0 0 . . .

0 0 0 1 . . .

A A A A 1

1 0 0 0 0
G j

Hd F 0 0 1 0 . . .

0 1 0 0 . . .

0 0 0 1 . . .

A A A A 1

1 0 0 0 0
G i†

^F 0 0 1 0 . . .

0 1 0 0 . . .

0 0 0 1 . . .

A A A A 1

1 0 0 0 0
G j †

.

~D2!

This corresponds to Alice and Bob each applying an averaging over all the computation basis states except foru2&. Since all
h iÞ1 are traceless on the subspace spanned byu iÞ2&, they vanish after the averaging, leaving only a contribution
h1^ h1,

c11

~d21!2F 1 0 0 0 . . .

0 2~d21! 0 0 . . .

0 0 1 0 . . .

A A A A 0

0 0 0 0 1

G i†

^F 1 0 0 0 . . .

0 2~d21! 0 0 . . .

0 0 1 0 . . .

A A A A 0

0 0 0 0 1

G i†

, ~D3!

which is equivalent toc11u2&^2u ^ u2&^2u up to local terms. It remains to obtain a term with sign opposite toc11. If some
cklÞ0 has a sign opposite toc11, we can simply repeat the same procedure, with Alice applying an averaging ov
u iÞk& and Bob applying an averaging over allu j Þ l &. If all ci j have the same sign, Alice can apply an averaging over
u iÞ1& and Bob can apply an averaging over allu j Þ2& to obtain2( i 51

d21ci1u1&^1u ^ u2&^2u, completing the proof.
s,
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