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Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quan-
tum device. It allows the complete reconstruction of the state produced from a given input into the device.
From this reconstructed density matrix, relevant quantum information quantities such as the degree of entangle-
ment and entropy can be calculated. Generally, orthogonal measurements have been discussed for this tomog-
raphic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes.
First, we show how nonorthogonal measurements allow the reconstruction of the state of the system provided
the measurements span the Hilbert space. We then detail how quantum-state tomography can be performed for
multiqudits with a specific example illustrating how to achieve this in one- and two-qutrit systems.
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I. INTRODUCTION

With increasing interest in quantum computing, crypto
raphy, and communication, it is of paramount importan
that there exist means of benchmarking quantum informa
experiments. A singularly useful tool in this regard
quantum-state tomography~QST!, which provides a mean
of fully reconstructing the density matrix for a state. T
procedure relies on the ability to reproduce a large numbe
identical states and perform a series of measurement
complimentary aspects of the state within an ensemble.
concept is not new, with the first such techniques develo
by Stokes@1# to determine the polarization state of a lig
beam. Recently, Jameset al. @2# gave an extensive analys
of qubit systems specifically focusing on polarization e
tangled qubits, building on earlier experimental work@3#, but
more generally for any number of qubits. We also refer
reader to Leonhardt‘s book@4# that gives an introduction to
some of the concepts and experimental techniques of tom
raphy relating to continuous variable systems in mod
quantum optics.

It is our aim here to expand on the work of Jameset al. in
two ways: first, to detail how to perform QST on systems
n qudits; second, to show how to perform QST when acc
to a full range of single qubit rotations and hence the s
space is restricted. The first point is also motivated with
spect to fundamental questions regarding nonlocality
higher dimensions@5,6# as well as quantum information pro
cessing with improved security for quantum key distributi
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@7,8# and the need to characterize these larger quan
states. The second point provides a much larger cross se
of the physics community with the possibility of performin
QST.

II. 1 QUBIT

To start with, we will first introduce the Pauli operato
using the group theoretical definition of them as generat
This is not crucial, though facilitates the procedure of goi
to higher dimensions with more subsystems without conf
ing notation changes. Hence, we can write a complete H
mitian operator basis for the qubit space:

I[l̂05F1 0

0 1G , X[l̂15F0 1

1 0G ,
~1!

Y[l̂25F0 2 i

i 0 G , Z[l̂35F1 0

0 21G ,
corresponding to the 232 identity operatorl̂0 and the gen-
erators of the SU~2! group l̂ j , j 51,2,3. The reason for de
noting these withl̂ j will become apparent as we go to high
dimensions. For a single qubit we can always write the d
sity matrix as

r̂25
1

2 (
j 50

3

r j l̂ j ,r jPRe. ~2!

As the generators of SU~2! are all traceless operators, th
normalization of the density matrixr̂2 requiresr 0 set to one,
©2002 The American Physical Society03-1
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leaving the other parametersr j 51, . . . ,3 constrained only by
r 1

21r 2
21r 3

2<1. The termsr j can be determined from th

expectation value of the operators such thatr j5^l̂ j&
5Tr@ r̂2l̂ j #. Thus the single qubit density matrix has th
form

r̂25
1

2 F 11^l̂3& ^l̂1&2 i ^l̂2&

^l̂1&1 i ^l̂2& 12^l̂3&
G . ~3!

Theoretically, only three measurements are required to de
the qubit density matrix. The fourth measurementl̂0 is prac-
tically necessary, as it allows renormalization of the co
statistics to compensate for various experimental biases.
experimental data and the calculation of the expectation
ues ^l̂ j& may lead to negative eigenvalues for the dens
matrix even though Tr@ r̂2#51. This is due to the intrinsic
uncertainty in experiments, however, the mathematical
pression~2! allows such nonphysical states~without the con-
straint r 1

21r 2
21r 3

2<1). By using a maximally likelihood
technique@2#, a physical density matrix can be derived.

We note that though the SU~2! generators described abov
do not correspond to any physical state, we can always w
these operators in conjunction with the identityl̂0 as a linear
combination of physical basis state-density operators. In s
systems this Pauli group provides a perfectly reasonable
of observables, however, in optics this is not the case
optics a more common example could be the polariza
basis,

uH&^Hu5 1
2 @ l̂01l̂3#uV&^Vu5 1

2 @ l̂02l̂3#,
~4!

uD&^Du5 1
2 @ l̂01l̂1#uL&^Lu5 1

2 @ l̂01l̂2#,

where, in the computational basis,uH&5u0&, uV&5u1&, uD&
5@ u0&1u1&]/A2, and uL&5@ u0&1 i u1&]/A2. The three or-
thogonal measurements areuH&, uD& and uL& @depicted in
Fig. 1#. Regardless of what orthogonal measurements
choose, we can always writel̂ j5(kajkr̂k for some other se
of operatorsr̂k . State tomography may then be perform
by measuring the expectation valuesajk5^r̂k&5Tr@ r̂2r̂k#.

Nonorthogonal-state tomography

In the state tomography that has been previously
cussed, we had assumed that we could measure observ

FIG. 1. Schematic of measurements on the characteristic sp
~e.g., Poincare´ or Bloch! for qubit quantum-state tomography In~a!
an orthogonal set ofu0&, uD&, and uL& is shown while in~b! a
nonorthogonal setu0&, uu1&, anduf1& is shown.
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at orthogonal points on the characteristic sphere.@For in-
stanceuH&, uD&, anduL& in Fig. 1.# In many practical situa-
tions the method of achieving these measurements could
single qubit rotation followed by a measurement onu0&,
more explicitly, single qubit rotation would be necessa
from u0&1u1& and u0&1 i u1& to u0&. One could envisage
many practical situations where it is difficult to perfor
these large single qubit rotations to theu0& state. Does this
mean that state tomography cannot be performed? The
swer is no, state tomography can also be performed if
has access only to a small solid angle on the character
sphere. For ideal measurements, one still needs to make
of three measurements that project ontou0& and

uu1&5
1

A2
@cosuu0&1sinuu1&], ~5!

uf1&5
1

A2
@cosfu0&1 i sinfu1&], ~6!

whereu,f can be small. Thus, we only require a small pe
turbation about some accessible point on the character
sphere@see Fig. 1~b!#. This observation is likely to be impor
tant in experiments where qubit rotation is more demand
than measurement in the logical basis, such as flux q
systems.

Naturally, as the measurement axes tend further aw
from orthogonal, the uncertainties for a fixed number
measurements will grow accordingly, or alternative
achieving a target uncertainty in the state reconstruction
require a larger number of measurements@9# .

Consider arbitrary statesucn& such that a projection mea
surement is represented byl̂n5ucn&^cnu. The count statis-
tics arise from a series of these measurements. Corresp
ingly, the average counts from a series of measurements
be

nn5N^cnur̂ucn&, ~7!

whereN is a constant that will be dependent on experimen
factors such as detection efficiencies. The measured co
nn are statistically independent Poissonian random varia
and hence we assume that they will satisfy

dnndnm5nndnm . ~8!

This now allows us to consider how these statistics will va
with respect to the nonorthogonal measurements.

The difference in count statistics when measuring w
orthogonal states and when using nonorthogonal states
be proportional to the overlap of the two states@10#. We now
denote the measurement statistics resulting from projec
onto one of a set of nonorthogonal statesucn8& asnn8 . Hence
we find that the counts for nonorthogonal measurements
related to the orthogonal in the following manner:

nn85N u^cnucn8&u
2^cnur̂ucn&5nnu^cnucn8&u

2, ~9!

with the errors appropriately scaled and given by

re
3-2
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dnn8dnm8 5
nndnm

u^cnucn8&u
2

. ~10!

The counts and the errors all revert to the orthogonal cas
u^cnucn8&u

2→1.

III. GENERALIZATION TO QUDITS

We introduced the qubit tomography in terms of t
SU~2! generators. Let us now consider a state withd levels.
First, we prepare the generators for SU(d) systems and
thereby construct the density matrices for a qudit sys
@12#. For convenience we use the SU algebra but we w
denote the algebra for ad-dimensional system as SU(d). The
generators of SU(d) group may be conveniently constructe
by the elementary matrices ofd dimension, $ej

kuk, j
51, . . . ,d%. The elementary matrices are given by

~ej
k!mn5dn jdmk , 1<n,m<d, ~11!

which are matrices with one matrix element equal to un
and all others equal to zero. These matrices satisfy the c
mutation relation

@ej
i ,el

k#5dk, jel
i2d i l ej

k . ~12!

There ared(d21) traceless matrices

Q j
k5ej

k1ek
j , ~13!

b j
k52 i ~ej

k2ek
j !, 1<k, j <d, ~14!

which are the off-diagonal generators of the SU(d) group.
We add thed21 traceless matrices

h r
r5A 2

r ~r 11! F (
j 51

r

ej
j2rer 11

r 11G ~15!

as the diagonal generators and obtain a total ofd221 gen-
erators. SU~2! generators are, for instance, given as$X
5Q2

15e2
11e1

2 ,Y5b2
152 i (e2

12e1
2),Z5h1

15e1
12e2

2%.
We now define thel matrices, this is how we labeled th

Pauli matrices in Eq.~1!,

l ( j 21)212(k21)5Q j
k , ~16!

l ( j 21)212k215b j
k , ~17!

l j 2215h j 21
j 21 , ~18!

which, as shown previously, produce theX,Y,Z operators of
the SU~2! group and so on for higher dimensions. In co
junction with a scaledd-dimensional identity operator thes
form a complete Hermitian operator basis.

It is then straightforward from Eq.~2! to see that a density
matrix rd can be a linear combination of the generators a

r̂d5
1

d (
j 50

d221

r j l̂ j . ~19!
01230
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This rd is a density matrix of dimensiond, a qudit, and the
coefficient r 0 is one for the normalization. The conditio

Tr@rd
2#<1 requires( j 51

d221r j
2<d(d21)/2.

Now let us extend these results ton qudits. It was shown
that for multiple qubits we only had to consider a space
operators defined by the tensor product of the generat
SU(2)^ SU(2)^ •••^ SU(2), where we have includedl0
~the normalized identity matrix! with the normal SU(2) gen-
erators@2#. For two qudits, a density matrixr2d , which has
dimensiond2, can be expanded similarly. All combination
of the tensor products of thel matrices~complimented with
l0), l j 1^ l j 2, are linearly independent to each other. Hen
the expression of the density matrixr2d may be written in
terms ofl matrices.

r̂2d5
1

d2 (
j 1,j 250

d221

r j 1,j 2l̂ j 1^ l̂ j 2 . ~20!

Similarly, this expression can be generalized to density m
trices ofn qudits, that is,

r̂nd5
1

dn (
j 1, . . . ,jn50

d221

r j 1, . . . ,jnl̂ j 1^ •••^ l̂ jn . ~21!

The tomography on such a state is only restricted by
patience of the experimentalist to determine the expecta
values for the system’s observables,

r j 1, . . . ,jn5^l̂ j 1^ •••^ l̂ jn&. ~22!

There we will required2n21 measurements if we assum
perfect detection. Figure 2 illustrates the scaling catastro
that occurs for multiple parties of higher-dimensional stat
The key concept in both the extension to higher-dimensio
states and to more subsystems is that for each subsystem
need to measure every basis state on every subsyste
every permutation.

However, if some structure is known about the state, th
the number of measurements can be reduced. For examp
we are confident that we are only ever dealing with a p
state then the number of measurements is significantly
duced and the scaling of measurements more so. QST
two qubits normally requires 15 measurements. If we kn
this state is pure this is reduced to 6: 3 on the diagonal;
3 on the antidiagonal.~In the case where we know the sta

FIG. 2. The measurement scaling for tomography onn qudits
results from the necessity to measure every basis state on e
subsystem in every permutation. The measurements scale asd2n

21, whered is theparticle dimension, e.g.,d52 for a qubit andn
is the number of particles.
3-3
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to be, say, one of the Bell states, then this is reduced fur
to just 2.! So in general for pure states we only requ
2(dn21) measurements to reconstruct the density matri

The principle of nonorthogonal-state tomography carr
through to the higher-dimensional cases in exactly the s
way that it does for normal tomography using orthogo
states as do the considerations with respect to errors. Als
detailed discussion regarding the sources of error and t
effect was outlined by Jameset al. @2#, which was derived
for the qubits but is equally valid for qudits by simple su
stitution and appropriate change in the summation range

IV. QUTRITS

As a specific example of how we can implement high
dimension tomography, consider a qutrit (d53)-dimensional
state. We can write this as

r̂35
1

3 (
j 50

8

r j l̂ j , ~23!

where thel̂ j are now the SU~3! generators and an identit
operatorl̂0. For SU~3! the set of generators are
tio
et
ta

n
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er
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l̂15F 0 1 0

1 0 0

0 0 0
G , l̂25F 0 2 i 0

i 0 0

0 0 0
G ,

l̂35F 1 0 0

0 21 0

0 0 0
G , l̂45F 0 0 1

0 0 0

1 0 0
G ,

~24!

l̂55F 0 0 2 i

0 0 0

i 0 0
G , l̂65F 0 0 0

0 0 1

0 1 0
G ,

l̂75F 0 0 0

0 0 2 i

0 i 0
G , l̂85

1

A3 F 1 0 0

0 1 0

0 0 22
G ,

which have been determined using the definitions of E
~16!–~18! and the corresponding elementary matrices of E
~11!.

Once we have the expectation values for these opera
then the density matrix can be reconstructed in the same
that it was done for the qubit in Eq.~3!:
r̂35
1

3 3
11

A3

2
~^l̂8&1A3^l̂3&!

3

2
~^l̂1&2 i ^l̂2&!

3

2
~^l̂4&2 i ^l̂5&!

3

2
~^l̂1&1 i ^l̂2&! 11

A3

2
~^l̂8&2A3^l̂3&!

3

2
~^l̂6&2 i ^l̂7&!

3

2
~^l̂4&1 i ^l̂5&!

3

2
~^l̂6&1 i ^l̂7&! 12A3^l̂8&

4 . ~25!
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The most direct way to do this is to measure the expecta
values for thel̂ operators. However, if this is not possible l
us assume that we can measure some set of basis s
Consider an arbitrary, but complete, set of basis states$uc i&%
with the associated projection operators$m̂ i5uc i&^c i u%.
These can be linearly related, via ad23d2 matrix A, to thel

matrices,m̂ i5( jAi
j l̂ j . We can thus consider measureme

outcomes

ni5N^c i ur̂uc i&

5N Tr@ r̂m̂ i #

~26!

5N(
j 50

8

Ai
j Tr@ r̂l̂ j #

5N(
j 50

8

Ai
j r j ,
n

tes.

t

whereN is again a constant that will be dependent on e
perimental factors such as detection efficiencies. So we
r j5N 21( i 50

8 (Ai
j )21ni , and finally,

r̂35N 21 (
i , j 50

8

~Ai
j !21ni l̂ j . ~27!

In this way the state is reconstructed from the measurem
outcomes in some arbitrary basis and theA matrix that re-
lates the measurement basis to thel matrices. ThisA matrix
will be invertible if a complete set of tomographic measu
ments are made, i.e., if we measure in a complete basis.
A matrix becomes the identity in the case where we use
generators.

Take a physical realization of a qutrit in an linear opti
regime. Figure 3 shows one way in which a qutrit may
realized@11#. The modes correspond to a photon taking t
short medium or long paths of the interferometer. The val
of the reflectivities of the beam splitters are such that an e
3-4
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superposition state is generated. By varying the phasesf1
andf2 a complete basis can be generated,

u0& u1&
u0&1u1&1u2&
u0&1au1&1a2u2& u0&1a2u1&1au2&
u0&1u1&1au2& u0&1au1&1u2&
u0&1u1&1a2u2& u0&1a2u1&1u2&,

wherea5e2p i /3. We can then utilize another three-arm i
terferometer as that shown in Fig. 3 to rotate and perfo
projective measurements on the qutrit. Therefore, one
perform a series of these projective measurements and
the procedure outlined in Eqs.~26! and~27!, reconstruct the
qutrit.

The same procedure applies regardless of the architec
provided we measure a complete set of states. To take
other optical example, orbital angular momentum could
used to realize qutrits~and indeed, qudits!, with holographic
plates generating the qutrit superpositions and hologra
interferometers acting as analyzers.

If we now further extend this to two qutrits, which may b
entangled

r̂235
1

9 (
j ,k

r jkl̂ j ^ l̂k , ~28!

we can consider operators of the forml̂ j ^ l̂k , or linearly
related operators

m̂ i ^ m̂ j5 (
k,l 50

8

Ai j
kll̂k^ l̂ l , ~29!

where thei , j label the rows andk,l the columns of theA
matrix. There will now bed2n21580 measurements to b
made. Therefore, as we did for one qutrit, we can ag
consider the measurement outcomes for states of the
$uc i& ^ uc j&5uc i j &% with the associated projection operato

$m̂ i j 5m̂ i ^ m̂ j5uc i j &^c i j u%.

FIG. 3. A linear optic implementation of a qutrit where th
levels of the system are encoded in the path length traveled.
reflectivities for the beam splittersR are given and the extra beam
splitter in the short arm effectively balances the superposition of
output. Phase elements in two of the arms provide the ability
consider any balanced superposition state in the qutrit space.
01230
n
via

re
n-
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ni j 5N^c i j ur̂uc i j &5N Tr@ r̂~ m̂ i ^ m̂ j !#

5N (
k,l 50

8

Ai j
kl Tr@ r̂l̂k^ l̂ l #5N (

k,l 50

8

Ai j
klr kl . ~30!

So we findr kl5N 21( i , j 50
8 (Ai j

kl)21ni j , and finally,

r̂235N 21 (
i , j ,k,l 50

~Ai j
kl!21ni j l̂k^ l̂ l . ~31!

We can then reconstruct the density matrix for the state us
the experimental measurement outcomesni , j and thisA ma-
trix. Once we have the density matrix for the entangled qu
state we can then consider questions of purity and entan
ment. We refer the reader to Ref.@13#, which gives a thor-
ough exposition with respect to characterizing entang
qutrits that is of relevance to both pure and mixed states

This change of basis is completely general and allows
to consider the reconstruction of any discrete system. We
now use: the generators; any orthonormal physical basis
or, more importantly, in the case where we have limited
cess to the state space, a nonorthogonal basis.

As mentioned previously, there is significant motivatio
to study entangledd-dimensional states and with the reco
struction of the complete density matrix many importa
state characteristics can be determined. In practice, howe
the dimensions will be restricted due to the complexity
implementing the measurements of thed-dimensional state.

In the case of generating a qudits using a linear opt
elements, the number of elements required to generate
hence also measure these higher-dimensional states incr
rapidly. Figure 4 shows the general scaling for a system
generate qudits in a linear optics regime. For this implem
tation the state generation and measurement requiresd2

13d elements for each qudit. The probability of producin

he

e
o

FIG. 4. A state generation, or measurement, scheme for qu
using linear optical elements. The beam splitter reflectivities a
phases are in complete analogy to the description in Fig. 3 for
qutrit generation. For generation and measurement the numbe
elements scale asd213d.
3-5
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these state scales as (1/2)d21 and similarly for its measure
ment. Similar complex issues will be relevant regardless
the architecture.

V. CONCLUSION

We have given a simple yet illustrative account
quantum-state tomography for discrete systems, from
single qubit with an orthonormal measurement basis
multipartite-multidimensional systems with limited access
measurements in the Hilbert space. The specific example
the qutrit highlights the similarities and differences in goi
to higher dimensions whilst constructing an intuitive fram
e,

iat

d

cu
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work for the quantum information experimentalist to wor
Primarily it is hoped that we have made QST relevant a
accessible to a wider cross section of the physics commu
QST can provide a powerful tool for the experimentalist
quantum information science regardless of physical imp
mentation, be it ion trap, quantum dot, flux qubit, or photo
to name but a few.
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