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Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quan-
tum device. It allows the complete reconstruction of the state produced from a given input into the device.
From this reconstructed density matrix, relevant quantum information quantities such as the degree of entangle-
ment and entropy can be calculated. Generally, orthogonal measurements have been discussed for this tomog-
raphic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes.
First, we show how nonorthogonal measurements allow the reconstruction of the state of the system provided
the measurements span the Hilbert space. We then detail how quantum-state tomography can be performed for
multiqudits with a specific example illustrating how to achieve this in one- and two-qutrit systems.
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I. INTRODUCTION [7,8] and the need to characterize these larger quantum
states. The second point provides a much larger cross section
With increasing interest in quantum computing, cryptog-of the physics community with the possibility of performing
raphy, and communication, it is of paramount importanceQST.
that there exist means of benchmarking quantum information
experiments. A singularly useful tool in this regard is Il. 1 QUBIT
guantum-state tomograpH@ST), which provides a means

O:Ofggé/urricrzrﬂzglﬁ'?ﬁet:t;“?e?os'rg :gzturg(e f:;):a? gtﬁaen‘lger;e sing the group theoretical definition of them as generators.
P y P 9 his is not crucial, though facilitates the procedure of going

|dent|qal states and perform a Series c_)f measurements 99 higher dimensions with more subsystems without confus-
complimentary aspects of the state within an ensemble. Th

concept is not new, with the first such techniques developeI g notation changes. Hence, we can write a complete Her-
by Stokes[1] to determine the polarization state of a light ltian operator basis for the qubit space:

To start with, we will first introduce the Pauli operators

beam. Recently, Jame al. [2] gave an extensive analysis 1 0 0 1

of qubit systems specifically focusing on polarization en- |E)§O: } X=N\,= }

tangled qubits, building on earlier experimental wgBk but 01 10

more generally for any number of qubits. We also refer the _ (1)
reader to Leonhardt's bodi] that gives an introduction to v=4 _[0 _'} 7% _[1 0

some of the concepts and experimental techniques of tomog- Tt ol o -1

raphy relating to continuous variable systems in modern
quantum optics. corresponding to the 22 identity operatoi, and the gen-

It is our a}im here to expand on the work of Jareesll.in . otors of the sE) groupf\j . j=1,2,3. The reason for de-
two ways: first, to detail how to perform QST on systems of D .
n qudits; second, to show how to perform QST when acces oting t_hese WIthh W'" becomg apparent as we go to higher
to a full range of single qubit rotations and hence the stat '|tmen5|to.ns. For a single qubit we can always write the den-
space is restricted. The first point is also motivated with reSity matrix-as
spect to fundamental questions regarding nonlocality in 1.3
higher dimension§5,6] as well as quantum information pro- pr== E r N r eRe. )
cessing with improved security for quantum key distribution 25

As the generators of SQ) are all traceless operators, the
*Electronic address: Robert. Thew@physics.unige.ch normalization of the density matrix, requiresr, set to one,
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[ a) [ b) at orthogonal points on the characteristic sph¢fFar in-
i stancgH), |D), and|L) in Fig. 1] In many practical situa-
A A tions the method of achieving these measurements could be a
|D> - H Y H . . .
single qubit rotation followed by a measurement |@),
I (10 Sy it more explicitly, single qubit rotation would be necessary

lo) l-. ) from |0)+[1) and |0)+i[1) to |0). One could envisage
many practical situations where it is difficult to perform
FIG. 1. Schematic of measurements on the characteristic sphef@€se large single qubit rotations to t state. Does this

(e.g., Poincarer Bloch) for qubit quantum-state tomography (& mean that state tomography cannot be performed? The an-

an orthogonal set of0), |D), and|L) is shown while in(b) a  swer is no, state tomography can also be performed if one

nonorthogonal sg0), |6, ), and|¢, ) is shown. has access only to a small solid angle on the characteristic
sphere. For ideal measurements, one still needs to make a set

leaving the other parameters_, 5 constrained only by of three measurements that project of@ip and

ri+r5+ri<1. The termsr; can be determined from the

expectation value of the operators such that=(A;) |0+>=i[cose|0)+sin0|1)] 5)
=Tr[poA;]. Thus the single qubit density matrix has the V2
form
1 o
1 1+(Ry) (R)—i(Ry) |¢+)=—=[cos¢|0)+ising|1)], (6)
b ®) V2

275~ LA ~ .
2L(A)+i(ky)  1-(Ry) .
where 0, ¢ can be small. Thus, we only require a small per-
Theoretically, only three measurements are required to definlrbation about some accessible point on the characteristic
the qubit density matrix. The fourth measuremepis prac-  SPheresee Fig. 1b)]. This observation is likely to be impor-

tically necessary, as it allows renormalization of the counf@nt In experiments where qubit rotation is more demanding

statistics to compensate for various experimental biases. Tﬁ%i?errr?seasurement in the logical basis, such as flux qubit

experimental data and the calculation of the expectation vaf®
Naturally, as the measurement axes tend further away

ues(Xj) may lead to negative eigenvalues for the densitys,m orthogonal, the uncertainties for a fixed number of

matrix even though Tp,]=1. This is due to the intrinsic measurements will grow accordingly, or alternatively,

uncertainty in experiments, however, the mathematical exachieving a target uncertainty in the state reconstruction will

preSSior(Z) allows such nonphySical Stateﬂithout the con- require a |arger number of measuremd:ﬂb_

straint ri+r5+r3=<1). By using a maximally likelihood Consider arbitrary statds,) such that a projection mea-

technique[ 2], a physical density matrix can be derived. surement is represented By,=|,)(,|. The count statis-
We note that though the SB) generators described above yics arise from a series of these measurements. Correspond-

do not correspond to any physical state, we can always writg,qy the average counts from a series of measurements will

these operators in conjunction with the identityas a linear  pe

combination of physical basis state-density operators. In spin

systems this Pauli group provides a perfectly reasonable set nyzj\/(z/;,,|[)|</fv>, (7)

of observables, however, in optics this is not the case. In

optics a more common example could be the polarizatiovhere'is a constant that will be dependent on experimental

basis, factors such as detection efficiencies. The measured counts
n, are statistically independent Poissonian random variables
[HY(H|=3[No+A3]|V)(V|=2[Ao—A3], and hence we assume that they will satisfy
4 el
ID)(D| =3[R+ RaJ|L)(L|=3[Ro+ Rol, oMo =000 ®

This now allows us to consider how these statistics will vary

where, in the computational bas|#))=[0), |V)=[1), |D) with respect to the nonorthogonal measurements.

=[|0)+[1)I/+2, and|L)=[|0)+i|1)]/y2. The three or- The difference in count statistics when measuring with

thogonal measurements afid), |D) and [L) [depicted in yhogonal states and when using nonorthogonal states will

Fig. 1] Regardless of what orthogonal measurements W@g proportional to the overlap of the two stafé6]. We now

choose, we can always wrikg = >, a;pi for some other set denote the measurement statistics resulting from projecting

of operatorsp,. State tomography may then be performedonto one of a set of nonorthogonal states$) asn,. Hence

by measuring the expectation vaILg§=(ﬁk)=Tr[f)2;)k]. we find that the counts fo_r nonorthog(_)nal measurements are
related to the orthogonal in the following manner:

_ _ =N Ko X lplg)=nl(wlel? (9
In the state tomography that has been previously dis-
cussed, we had assumed that we could measure observableith the errors appropriately scaled and given by

Nonorthogonal-state tomography
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n >

n,o

on’éon’ _#"2 (10 gl !
Kl Els > {hnohss . ohn}
Z

yr3 j1 ;\« i3

The counts and the errors all revert to the orthogonal case a-g i ]{MM} Bae ot}
) |?—1. ] — .
Particle D lon (d) and Number of Operatlons (d2n), (jt+«<sdne {1,2,...,4d})

IIl. GENERALIZATION TO QUDITS FIG. 2. The measurement scaling for tomographynoqudits

results from the necessity to measure every basis state on every
subsystem in every permutation. The measurements scaté"as
—1, whered is theparticle dimensione.g.,d=2 for a qubit anch

is the number of particles.

We introduced the qubit tomography in terms of the
SU(2) generators. Let us now consider a state witlevels.
First, we prepare the generators for 8)(systems and
thereby construct the density matrices for a qudit system
[12]. For convenience we use the SU algebra but we wil
denote the algebra ford&xdimensional system as St(. The
generators of SUW{) group may be conveniently constructed
by the elementary matrices ofl dimension, {e}‘|k,j
=1,... d}. The elementary matrices are given by

LI'his pq is a density matrix of dimensiod, a qudit, and the
coefficientry is one for the normalization. The condition
T p2l=1 requiresE?i’llrjzsd(d—l)lz.

Now let us extend these resultsrajudits. It was shown
that for multiple qubits we only had to consider a space of
1<v,u<d, (1) operators defined by the tensor product of the generators,

SU(2)®SU(2)® - - - ®SU(2), where we have included
which are matrices with one matrix element equal to unity(the normalized identity matrjxwith the normal SU(2) gen-
and all others equal to zero. These matrices satisfy the conerators[2]. For two qudits, a density matrix,q, which has
mutation relation dimensiond?, can be expanded similarly. All combinations

- i « of the tensor products of the matrices(complimented with
[ej.er]=di e~ ey 12\, \j1®\ |, are linearly independent to each other. Hence,
the expression of the density matiixy may be written in
terms of A matrices.

Of=el'+el, (13 a2-1
P2d=" JZ 1112)\11‘3’)\12 (20)

k —
(ej),uv_ 51}]‘S

ko

There ared(d—1) traceless matrices

B;(:—i(elk—e{(), 1<k<j=d, (14

which are the off-diagonal generators of the 8Y@roup.  Similarly, this expression can be generalized to density ma-
We add thed—1 traceless matrices trices ofn qudits, that is,

r__
=N r(r+1

as the diagonal generators and obtain a totadf 1 gen-
erators. SlLIZ) generators are, for instance, given @s
=0z=e;+67,Y=p;=—i(e;—€}),Z=n=e1—e3}.

We now define the. matrices, this is how we labeled the
Pauli matrices in Eq(1),

d?2-1

n 1 “ “
(15 Pndzﬁjl Zjnzor]‘l ..... inNj1® - ®Njn. (21)

r
j_ralftl
2 ej rer 1

The tomography on such a state is only restricted by the
patience of the experimentalist to determine the expectation
values for the system’s observables,

M, jn=(Nj1® - - ®Njn). (22)

Nj-1p+20-0= O, 18 There we will required?"— i
quir 1 measurements if we assume
o _ ok 1 perfect detection. Figure 2 illustrates the scaling catastrophe
(-12+2k-1= By A7 that occurs for multiple parties of higher-dimensional states.
_ -1 The key concept in both the extension to higher-dimensional
Nj2—1= 7)1, (18) states and to more subsystems is that for each subsystem we

need to measure every basis state on every subsystem in
every permutation.

However, if some structure is known about the state, then
the number of measurements can be reduced. For example, if
we are confident that we are only ever dealing with a pure
state then the number of measurements is significantly re-
duced and the scaling of measurements more so. QST for

which, as shown previously, produce theY,Z operators of
the SU2) group and so on for higher dimensions. In con-
junction with a scaledi-dimensional identity operator these
form a complete Hermitian operator basis.

It is then straightforward from Eq2) to see that a density
matrix pq can be a linear combination of the generators as

d2—1 two qubits normally requires 15 measurements. If we know
E 2 (19) this state is pure this is reduced to 6: 3 on the diagonal; and
d <o 3 on the antidiagonalln the case where we know the state
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to be, say, one of the Bell states, then this is reduced further 1 0 0 —-i O
to just 2) So in general for pure states we only require - -
2(d"—1) measurements to reconstruct the density matrix. M= 100 =11 00y,
The principle of nonorthogonal-state tomography carries 0 0 0O 0 O
through to the higher-dimensional cases in exactly the same
way that it does for normal tomography using orthogonal 1 0 O 0 01
states as do the considerations with respect to errors. Also, a Re=| 0 -1 0f, R,= 0 ’
detailed discussion regarding the sources of error and their
effect was outlined by Jamest al. [2], which was derived 0 0 0 100
for the qubits but is equally valid for qudits by simple sub- 0 0 _i 0 0 0o (24)
stitution and appropriate change in the summation ranges.
As=|0 0 0, \¢= [ 0 1] ,
IV. QUTRITS i 0 0 010
As a specific example of how we can implement higher- 0 0 O 1 0 O
dimension tomography, consider a qutdt= 3)-dimensional f-lo o —i N _i 0 0
state. We can write this as [ _ ' 8™ 3 '
O i O 0 -2
1% 23) which have been determined using the definitions of Egs.
3% (16)—(18) and the corresponding elementary matrices of Eq.

(11).
Once we have the expectation values for these operators
where thek; are now the S(B) generators and an identity then the density matrix can be reconstructed in the same way
operator\ o. For SU?3) the set of generators are that it was done for the qubit in E¢3):

l+\/7§(<;‘8>+\/§<f\3>) §(<f\1>—i(xz)) §(<X4>—i<f\5>)

w0

1 3 . A R . 3 . N
P3=3 §(<)\1>+|(7\2>) 1+7(<7\8>_\/§<)\3>) §(<A6>_'<)\7>) : (29

((Ae)+i(A7)) 1—3(Rg)

N w

3 . A
§(<)\4>+'<)\5>)

The most direct way to do this is to measure the expectatiowhere A/ is again a constant that will be dependent on ex-
values for the\ operators. However, if this is not possible let Perimental factors such as detection efficiencies. So we find
us assume that we can measure some set of basis states= N 'SE_o(A)~In;, and finally,

Consider an arbitrary, but complete, set of basis stdtz$}

with the associated projection operatofs,;=|;)(#i|}.

These can be linearly related, vialax d? matrix A, to the\ 1”2_: (AD) "I\ (27)
matrices, ;= 3;A/\;. We can thus consider measurement
outcomes

In this way the state is reconstructed from the measurement
outcomes in some arbitrary basis and thenatrix that re-

=M |13| ) lates the measurement basis to kheatrices. ThisA matrix
- will be invertible if a complete set of tomographic measure-
=N Trlpui] ments are made, i.e., if we measure in a complete basis. The
(26) A matrix becomes the identity in the case where we use the
8 generators.
:/\[E Tl’[p)\ ] 'I_'ake a_physical realization of a_qutrit_ in an Iine_ar optics
j=0 regime. Figure 3 shows one way in which a qutrit may be
8 realized[11]. The modes correspond to a photon taking the
=NE Alr. short medium or long paths of the interferometer. The values
iy PR .
j=o0 of the reflectivities of the beam splitters are such that an even
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superposition state is generated. By varying the phéses ni =N [l i V=N T (i ® )]
and ¢, a complete basis can be generated, Y 8” ' ! ‘8
|0> ‘1> :Nkzo A:(JI Tr[;))A\k®7A\|]=NkZO A:(jlrk| . (30)
|0)+11)+2) T e
|0)+ | 1)+ a?2) |0)+ a?|1) + a[2)
|0)+ 1)+ a|2) |0)+ 1) +|2) So we findr=N"1=,_o(Af) "*n;;, and finally,
|0)+1)+ a?(2) 0)+ a?[1) +2),
. D= N1 kKN=10 Y o £
where a=e?""3, We can then utilize another three-arm in- pas=N i'j%‘;o (A) MA@\ (3D

terferometer as that shown in Fig. 3 to rotate and perform
projective measurements on the qutrit. Therefore, one can . . .
perform a series of these projective measurements and, viyfe can then reconstruct the density matrix for thg state using
the procedure outlined in Eq&26) and(27), reconstruct the the experimental measurement outcomgsand thisA ma-
quirit. trix. Once we have the density matrix for the entangled quitrit
The same procedure applies regardless of the architectufé@t€ We can then consider questions of purity and entangle-
provided we measure a complete set of states. To take afi€nt. We refer the reader to R¢L.3], which gives a thor-
other optical example, orbital angular momentum could be?Ugh exposition with respect to characterizing entangled
used to realize qutrit@nd indeed, qudijswith holographic qutrits that is of reIevanqe to both pure and mixed states.
plates generating the qutrit superpositions and holographic 1his change of basis is completely general and allows us

interferometers acting as analyzers. to consider the reconstruction of any discrete system. We can
If we now further extend this to two quirits, which may be NOW Use: the generators; any orthonormal physical basis set;
entangled or, more importantly, in the case where we have limited ac-

cess to the state space, a nonorthogonal basis.
As mentioned previously, there is significant motivation
. rjk)(j@)xk, (28)  to study entangled-dimensional states and with the recon-
Ik struction of the complete density matrix many important
state characteristics can be determined. In practice, however,
we can consider operators of the foﬁﬁ]@f\k, or linearly  the dimensions will be restricted due to the complexity in

[T

P23=

related operators implementing the measurements of thelimensional state.
In the case of generating a qudits using a linear optical
8 elements, the number of elements required to generate and
Ri® K| =k|20 AN@N (290  hence also measure these higher-dimensional states increases

rapidly. Figure 4 shows the general scaling for a system to
o generate qudits in a linear optics regime. For this implemen-
where thei,j label the rows and,| the columns of theA  tation the state generation and measurement requifes

matrix. There will now bed?"—1=80 measurements to be +3d elements for each qudit. The probability of producing
made. Therefore, as we did for one qutrit, we can again

consider the measurement outcomes for states of the form o
{lyy®|yjy=1i;)} with the associated projection operators P

{/:\Lij:lli®:&j:|¢ij><¢ij|}- N ezP

4] R=1/2 ¢\

- R=2/3 :

R=1/2 > X $\__ HA

R=(d-3)/d

— R=1/2 1 d-3'
=D\ R=(d-2>//d I I
l\ R=1/2
A

R=1/2 47 """"" v’D\

R=(d-1)/d

R=2/3

X X X
FIG. 3. A linear optic implementation of a qutrit where the

levels of the system are encoded in the path length traveled. The FIG. 4. A state generation, or measurement, scheme for qudits
reflectivities for the beam splitte® are given and the extra beam using linear optical elements. The beam splitter reflectivities and

splitter in the short arm effectively balances the superposition of the@phases are in complete analogy to the description in Fig. 3 for the
output. Phase elements in two of the arms provide the ability taqutrit generation. For generation and measurement the number of
consider any balanced superposition state in the qutrit space. elements scale &+ 3d.

012303-5



THEW et al. PHYSICAL REVIEW A 66, 012303 (2002

these state scales as (12} and similarly for its measure- work for the quantum information experimentalist to work.
ment. Similar complex issues will be relevant regardless oPrimarily it is hoped that we have made QST relevant and
the architecture. accessible to a wider cross section of the physics community.
QST can provide a powerful tool for the experimentalist in
V. CONCLUSION quantum information science regardless of physical imple-

) ) ) ) mentation, be it ion trap, quantum dot, flux qubit, or photon,
We have given a simple yet illustrative account of {5 name but a few.

guantum-state tomography for discrete systems, from a
single qubit with an orthonormal measurement basis to
multipartite-multidimensional systems with limited access to

measurements in the Hilbert space. The specific example for
the qutrit highlights the similarities and differences in going R.T.T. would like to thank J. Altepeter for fruitful discus-
to higher dimensions whilst constructing an intuitive frame-sions.
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