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Optimal teleportation based on bell measurements
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We study optimal teleportation based on Bell measurements. An explicit expression for the quantum channel
associated with the optimal teleportation with an arbitrary mixed state resource is presented. The optimal
transmission fidelity of the corresponding quantum channel is calculated and shown to be related to the fully
entangled fraction of the quantum resource, rather than the singlet fraction as in the standard teleportation
protocol.
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Quantum teleportation protocols play an important role
quantum information processing. In terms of a classical co
munication channel and a quantum resource~a nonlocal en-
tangled state like an EPR pair of particles!, the teleportation
protocol gives ways to transmit an unknown quantum s
from a sender traditionally named ‘‘Alice’’ to a receive
‘‘Bob’’ who are spatially separated. These teleportation p
cesses can be viewed as quantum channels. The nature
quantum channel is determined by the particular proto
and the state used as a teleportation resource@1–3#. The
standard teleportation protocolT0 proposed in@1# uses Bell
measurements and Pauli rotations. When the maximally
tangled pure stateuF&51/An( i 50

n21u i i & is used as the quan
tum resource, it provides an ideal noiseless quantum cha
LT0

(uF&^Fu)(r)5r. However, in a realistic situation, instead

the pure maximally entangled states, Alice and Bob usu
share a mixed entangled state due to the decoherence.
portation using a mixed state as an entangled resource i
general, equivalent to having a noisy quantum channel.
cently, an explicit expression for the output state of the qu
tum channel associated with the standard teleportation
tocol T0 with an arbitrary mixed state resource has be
obtained@4,5#.

In this paper we consider the following problem. Alic
and Bob previously only share a pair of particles in an ar
trary mixed entangled statex. In order to teleport an un
known state to Bob, Alice first performs a joint Bell me
surement on her particles~particle 1 and particle 2! and gives
her result to Bob by the classical communication chann
Then Bob, instead of thePauli rotation like in the standard
teleportation protocol@1#, tries his best to choose a particul
unitary transformation which depends on the quantum
sourcex, so as to get the maximal transmission fidelity. W
call our teleportation protocol the optimal teleportation bas
on the Bell measurement. We derive an explicit express
for the quantum channel associated with the optimal telep
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tation with an arbitrary mixed state resource. The transm
sion fidelity of the corresponding quantum channel is giv
in terms of the fully entangled fraction of the quantum r
source.

Let $u i &,i 50, . . . ,n21%, n,`, be an orthogonal nor-
malized basis of ann-dimensional Hilbert spaceH. Any lin-
ear operatorA: H→H can be represented by ann3n ma-
trix as follows:

A~ u i &)5 (
j 50

n21

Ai j u j &, Ai j PC.

We shall only consider the following three-tensor Hilbe
space:H^ H^ H where Alice has the first and the secon
Hilbert space, and the third one belongs to Bob. Leth andg
be n3n matrices such thathu j &5u( j 11) modn&, gu j &
5v j u j &, with v5 exp$22ip/n%. We can introducen2 linear-
independentn3n matricesUst5htgs, which satisfy

UstUs8t85vst82ts8Us8t8Ust , tr~Ust!5nds0d t0 . ~1!

One can also check that$Ust% satisfy the condition ofbases
of the unitary operatorsin the sense of@6#, i.e.,

tr~UstUs8t8
†

!5nd tt8dss8 ,

~2!
Ust Ust

† 5I n3n ,

where I n3n is the n3n identity matrix. $Ust% form a com-
plete basis ofn3n matrices, namely, for anyn3n matrix W,
W can be expressed as

W5
1

n (
s,t

tr~Ust
† W!Ust . ~3!

From $Ust% we can introduce the generalized Bell states,

uFst&5~1^ Ust* !uF&5
1

An
(
i , j

~Ust! i j* u i j &,

and uF00&5uF&, ~4!
©2002 The American Physical Society01-1
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uFst& are all maximally entangled states and form a comp
orthogonal normalized basis ofH^ H shared by Alice and
Bob. For any statex shared by Alice and Bob, let us intro
duce thesinglet fraction@2#: F5^FuxuF&. In general, all the
maximally entangled pure states are equivalent touF&:
uCmax&51^UuF&, whereU is a unitary transformation. On
can define thefully entangled fraction@2# of a statex by

F~x!5max$^Fu~1^ U†! x ~1^ U !uF&%,

for all UU†5U†U5I n3n . ~5!

Since the group of unitary transformations inn dimensions is
compact, there exists a unitary matrixWx such that

F~x!5^Fu~1^ Wx
†! x ~1^ Wx!uF&. ~6!

Suppose now Alice and Bob previously shared a pair
particles in an arbitrary mixed entangled statex. To trans-
form an unknown state to Bob, Alice first performs a joi
Bell measurement based on the generalized Bell states
~4! on her parties. According to the measurement result
Alice, Bob chooses particular unitary transformations$Tst%
to act on his particle.

Theorem 1. The teleportation protocol defined by$Tst%,
when used with an arbitrary mixed state with density ma
x as a resource, acts as a quantum channel

L (x)~$T%!~r!5
1

n2 (
s,t

(
s8,t8

^FstuxuFs8t8&

3H(
gb

Tgb
† UstUgb r Ugb

† Us8t8
† TgbJ .

~7!

Proof. The proof can be given in two steps:
Step 1: Pure entangled state as a resource. Each en-

tangled pure stateuC& shared by Alice and Bob has the for

uC&5 (
i , j 50

n21

ai j u i j &, (
i , j 50

n21

uai j u251, ai j PC. ~8!

Let A be then3n matrix with elements (A) i j 5ai j , ai j PC.
Suppose Alice wishes to teleport the unknown pure s
uf&5( i 51

n a i u i &. The initial state Alice and Bob have is the
given by

uf& ^ uC&5 (
i , j ,k50

n21

a iajku i jk & PH^ H^ H. ~9!

To transform the stateuf& to Bob, Alice first performs a joint
Bell measurement based on the generalized Bell states
~4! on her party. After her measurement with outcoming
the stateuFst&, Bob’s particle gets into a~unnormalized!
state

uf&→
1

An
AUstuf&.
01230
e

f

q.
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Once Bob learns from Alice that she has obtained the re
st, he performs on his previously entangled particle~particle
3! a unitary transformationTst . Then the final state become
1/AnTst

† AUstuf&. In terms of the density matrix, the tele
portation based on the unitary matrices$Tst%, with the quan-
tum resource being a pure stateuC&, is a quantum channe
with the output

L (uC&^Cu)~$T%!~r!5
1

n (
st

Tst
† AUst r Ust

† ATst .

Step 2: An arbitrary mixed entangled state as a resourc.
Let x be a mixed state,

x5(
a

pauCa&^Cau, 0<pa<1

and

(
a

pa51, uCa&5(
i , j

ai j
(a)u i j &.

Applying the teleportation protocolT with a mixed statex,
the final state of Bob becomes

L (x)~$T%!~r!5
1

n (
s,t

(
a

paTst
† A(a)Ust r Ust

† ~A(a)!†Tst .

~10!

Since each matrixA(a) can be decomposed in the basis
$Ust% by (A(a)) i j 5(s,tast

(a)(Ust) i j , Eq. ~10! becomes

L (x)~$T%!~r!5
1

n (
s,t

(
s8,t8

S (
a

paast
(a)as8,t8

(a)* D
3(

g,b
Tgb

† UstUgb r Ugb
† Us8t8

† Tgb .

Using the definition of generalized Bell states$uFst&% in Eq.
~4!, after a lengthy calculation, we arrive at

n(
a

paAst
(a)As8,t8

(a)* 5^FstuxuFs8t8&.

Substituting the above results into Eq.~10!, one obtains Eq.
~7!. Using Eq.~2! and the identity

(
s,t

Ust
† AUst5n tr~A!I n3n , for any n3n matrix A,

the trace-preserving property of the quantum channel can
proved by
1-2
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tr@L (x)~$T%!~r!#

5
1

n2 (
s,t

(
s8,t8

^FstuxuFs8t8&

3H(
gb

tr~Ugb
† Us8t8

† UstUgbr!J
5

1

n (
s,t

(
s8,t8

^FstuxuFs8t8&tr~UstUs8t8
†

!tr~r!

5(
s,t

^FstuxuFst&5tr~x!51. j

The fidelity of the teleportation is given by

f ~x!5^f inuL (x)~$T%!~ uf in&^f inu!uf in&, ~11!

averaged over all pure input statesf in .
In order to calculate the transmission fidelity Eq.~11!, we

need an irreduciblen-dimensional representation of the un
tary groupU(n), denoted byG. Let U(g) be the unitary
el
w
ce

01230
matrix representation of the elementg of G. Recalling
Schur’s Lemma, one has the identity

E
G

dg@U†~g! ^ U†~g!# s @U~g! ^ U~g!#5a1I ^ I 1a2P,

~12!

a15
n2 tr~s!2n tr~sP!

n2~n221!
, a25

n2 tr~sP!2n tr~s!

n2~n221!
,

for any operators acting on the tensor space, whereP is the
flip operator such thatPu i j &5u j i &. The invariant~Haar! mea-
suredg on G is normalized by*Gdg51.

Theorem 2. The transmission fidelity of the teleportatio
protocol defined by$Tst% with arbitrary mixed statex as a
resource is given by

f ~x!5
1

n~n11! (
gb

^Fu@1^ ~TgbUgb
† !†#

3x~1^ TgbUgb
† !uF& 1

1

n11
. ~13!

Proof. From Theorem 1 and Eq.~12!, one has
f ~x!5
1

n2 (
s,t

(
s8,t8

^FstuxuFs8t8&(
gb

^f inuTgb
† UstUgbuf in&^f inuUgb

† Us8t8
† Tgbuf in&

5
1

n2 (
s,t

(
s8,t8

^FstuxuFs8t8&(
gb

^f inu ^ ^f inu~Tgb
† UstUgb ^ Ugb

† Us8t8
† Tgb!uf in& ^ uf in&

5
1

n2 (
s,t

(
s8,t8

^FstuxuFs8t8&(
gb

K 00U E
G

dg@U~g!†
^ U~g!†#~Tgb

† UstUgb ^ Ugb
† Us8t8

† Tgb!@U~g! ^ U~g!#U00L
5

1

n3~n11!
(
s,t

(
s8,t8

^FstuxuFs8t8&(
gb

$tr~Tgb
† UstUgb!tr~Ugb

† Us8t8
† Tgb!1tr~Tgb

† UstUgbUgb
† Us8t8

† Tgb!%

5
1

n~n11! (
gb

^Fu~1^ ~TgbUgb
† !†! x ~1^ TgbUgb

† !uF& 1
1

n11
,

where the identity tr12@(A^ B)P#5tr(AB), Eqs.~2! and ~3!
have been used. j

Obviously when the term ^Fu(1^ (TgbUgb
† )†)x(1

^ TgbUgb
† )uF& is maximized, i.e.,TgbUgb

† 5Wx , one gets
the maximal fidelity. Recalling the definition of thefully en-
tangled fractionEqs. ~5! and ~6!, we arrive at our main re-
sult:

Theorem 3. The optimal teleportation based on the B
measurements, when used with an arbitrary mixed state
density matrix x as a resource, acts as a general tra
preserving quantum channel
l
ith
-

LO
(x)~r!5

1

n2 (
s,t

(
s8,t8

^FstuxuFs8t8&

3H(
gb

Ugb
† Wx

†UstUgb r Ugb
† Us8t8

† WxUgbJ .

~14!

The corresponding transmission fidelity is given by
1-3
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f max~x!5
nF~x!

n11
1

1

n11
, ~15!

whereF(x) is the fully entangled fraction Eq.~5! andWx is
the unitary matrix which fulfills such a fully entangled fra
tion Eq. ~6!.

Our results show that the maximum transmission fide
of the teleportation based on the Bell measurement dep
on thefully entangled fractiononly, whereas that of a stan
dard teleportation depends on the singlet fraction@5#. Our
result also agrees with the fidelity formula of the gene
optimal teleportation given by the Horodecki family@7#.

Summarizing, we obtain the explicit expression of t
, a

nt

A

01230
y
ds

l

output state of the optimal teleportation, with arbitrary mix
entangled state as a resource, in terms of some noisy q
tum channel. This allows us to calculate the transmiss
fidelity of the quantum channel. It is shown that the tran
mission fidelity depends only on thefully entangled fraction
of the quantum resource shared by the sender and the
ceiver. The fidelity in our optimal teleportation protocol is
general greater than the one in standard teleportation pr
col @1,4,5#.
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