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Non-Markovian stochastic Schrödinger equations: Generalization to real-valued noise
using quantum-measurement theory
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Do stochastic Schro¨dinger equations, also known as unravelings, have a physical interpretation? In the
Markovian limit, where the systemon averageobeys a master equation, the answer is yes. Markovian sto-
chastic Schro¨dinger equations generate quantum trajectories for the system state conditioned on continuously
monitoring the bath. For a given master equation, there are many different unravelings, corresponding to
different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular
the sort of stochastic Schro¨dinger equation introduced by Strunz, Dio´si, and Gisin@Phys. Rev. Lett.82, 1801
~1999!#. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-
valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the
Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Al-
though we use quantum-measurement theory to define these unravelings, we conclude that the stochastic
evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a
fiction.

DOI: 10.1103/PhysRevA.66.012108 PACS number~s!: 03.65.Yz, 42.50.Lc, 03.65.Ta
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I. INTRODUCTION

In nature, a quantum system is most likely found in
entanglement with at least one other quantum system.
example of this is a two level atom~TLA ! immersed in an
environment of harmonic oscillators~the electromagnetic
field!. This type of quantum system, a small system intera
ing with a larger system~the bath! is called an open quantum
system@1#. The system-bath interaction causes the two s
tems to entangle, resulting in a combined stateuC(t)& whose
evolution can be theoretically determined by the Schro¨dinger
equation. However, due to the many degrees of freedom
the bath, this is generally impractical and it is best to d
scribe the system~TLA ! by the reduced stater red(t). The
evolution ofr red(t) is found by averaging the outer produ
of the Schro¨dinger equation over all the possible bath stat

r red~ t !5Trfield@ uC~ t !&^C~ t !u#. ~1.1!

Under the Born-Markov approximations@2# it is possible
to obtain a closed equation forr red(t). For mathematical con
sistency, this should be of the Lindblad form@3#. If there is a
single Lindblad operatorL̂ ~such as the lowering operator fo
the system! then this is an equation of the form

ṙ red~ t !52 i @Ĥ,r red~ t !#1gD@ L̂#r red~ t !, ~1.2!

whereĤ is the Hamiltonian and

D@ L̂#r red5L̂r redL̂
†2 1

2 L̂†L̂r red2
1
2 r redL̂

†L̂. ~1.3!
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However, this is only an approximation, in the no
Markovian situation in general one cannot solver red(t) or
uC(t)& analytically, sor red(t) is difficult to determine.

A breakthrough in solving this problem was achieved w
the development of non-Markovian stochastic Schro¨dinger
equations~SSEs!. These stochastic differential equations f
a state vector were first introduced for Markovian open qu
tum systems in mathematical physics@4–12# and then inde-
pendently in quantum optics@1,13,14#. This approach has
subsequently been generalized to deal with non-Markov
systems@15–19#. In this paper we will follow the approach
of Diósi, Strunz, and Gisin~DSG! @19–22#. In their ap-
proach, the system state vectorucz(t)& @44# depends upon
some~not necessarily white! noisez(t), which is drawn from
some probability distribution. The SSE has the property t
when the outer product ofucz(t)& is averaged over all the
possiblez(t) one obtainsr red(t). That is,

r red~ t !5E@ ucz~ t !&^cz~ t !u#, ~1.4!

whereE@•••# denotes an ensemble average over all poss
z(t)’s.

In cases where an exact non-Markovian SSE can be
rived, it is also possible to find an exact solution forr red(t)
by other means. A key advantage of non-Markovian SS
lies in the cases where no exact solution is possible. In
case approximations must be made in either approach.
advantage of the SSE approach is that the ensemble ave
r red(t) is, by construction, guaranteed to be a positive ope
tor. This fundamental property of a state matrix is not gu
anteed by other approximate equations forr red(t). This is
true even in the Markov limit; quantum Brownian motion
a case in point@23#. The other advantage of the SSE a
proach in general is that it allows the evolution of large s
tems to be simulated numerically. This was the original m
tivation for their introduction in quantum optics@13,14#.
©2002 The American Physical Society08-1
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Leaving aside the potential usefulness of SSEs, one
ask the question: is there a physical interpretation for
solution of an SSE, or is it simply a numerical tool for fin
ing r red(t)? In the Markovian limit, that is, when the mast
equation has the form Eq.~1.2!, the answer is yes. The solu
tion to the SSE, termed by Carmichael is aquantum trajec-
tory @1#, it can be interpreted as the state of the syst
conditioned on the measurement results obtained by con
ously monitoring the bath@24#. For the Markovian case, dif
ferent sorts of SSEs exist. They may involve jumps or dif
sion, and are termed differentunravelings of the master
equation@1#. These different unravelings correspond to d
ferent detection schemes, such as photon counting@1,13,14#,
homodyne@1,24,25#, and heterodyne@25# detection. Other
generalizations@26–29# have also been investigated.

In this paper we will investigate the question of physic
interpretation ofnon-Markovian diffusive SSEs of Diosi,
Strunz, and Gisin~DSG! @16,19–22#. We will show that
quantum-measurement theory~QMT! does give meaning to
the ucz(t)& at any particular time,t. However, the linking of
the stateucz(t)& at different times to make a trajectory a
pears to be a convenient fiction. We also show that the the
of DSG can be generalized by considering different sorts
measurements~unravelings! on the bath. We use our ap
proach to define two different unravelings. The first results
DSG SSEs, with complex-valued noisez(t). In the Markov-
ian limit this unraveling corresponds to heterodyne detect
The second, which can only be defined for some system-
couplings, has real-valued noise and has homodyne dete
as its Markovian limit.

II. SYSTEM DYNAMICS AND
QUANTUM-MEASUREMENT THEORY

A. Schrödinger equation for the combined system

With \51, a system interacting with a reservoir of ha
monic oscillators has the total Hamiltonian

Ĥ tot5Ĥ01Ĥ1Ĥbath1V̂. ~2.1!

Here the system Hamiltonian has been split intoĤ0 ~the
action of which is described later! and Ĥ ~the remainder!.
The Hamiltonian for the bath is

Ĥbath5(
k

vkâk
†âk , ~2.2!

where k labels the modes of the bath,âk and vk are the
lowering operator and angular frequency of thekth mode,
respectively. We assume the interaction Hamiltonian to h
the form

V̂5 i ~ L̂b̂†2b̂L̂†!, ~2.3!

whereL̂ is a system operator and where we have defined
bath lowering operatorsb̂ as b̂5(kgkâk . That is, the cou-
pling amplitude of thekth mode to the system isgk .

The Schro¨dinger equation for the combined state is
01210
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dtuC~ t !&52 iĤ totuC~ t !&, ~2.4!

which can equivalently be written as

uC~ t !&5U~ t,0!uC~0!&, ~2.5!

whereU(t,0) is called the unitary evolution operator. Defi
ing a unitary evolution operator for the ‘‘free’’ system an
bath as

U0~ t,0!5e2 i (Ĥ01Ĥbath)(t20). ~2.6!

We can write U(t,0) as U(t,0)5U0(t,0)U int(t,0), where
U int(t,0) is the unitary evolution operator that describes
total evolution with the free dynamics removed.

We can then define an interaction picture state as

uC int~ t !&5U int~ t,0!uC~0!&, ~2.7!

which obeys

dtuC int~ t !&52 i @Ĥ int~ t !1V̂int~ t !#uC int~ t !&. ~2.8!

The Hamiltonians in the interaction picture are

Ĥ int~ t !5U0
†~ t,0!ĤU0~ t,0!, ~2.9!

and

V̂int~ t !5 i @ b̂int
† ~ t !L̂ int~ t !2b̂int~ t !L̂ int

† ~ t !#, ~2.10!

where

b̂int~ t !5(
k

gkâke
2 ivkt, ~2.11!

L̂ int~ t !5L̂e2 iv0t. ~2.12!

Here we have finally restrictedĤ0 to be such thatL̂ in the
interaction picture simply rotates in the complex plane
indicated in Eq.~2.12!. The interaction picture can be viewe
as moving the time dependencies due to the free bath
system dynamics from the state to the operators. Unless
erwise stated, the rest of this paper will be in the interact
picture and thus we will drop the subscripts ‘‘int.’’

B. QMT and conditional system states

In open quantum systems a measurement is always
formed on the bath. Due to the entanglement between
bath and the system the measurement on the bath resu
an indirect measurement of the system@30#. The state of the
system after the measurement is dependent on the resu
the measurement, so we call this a conditional system s
To mathematically describe this~for a more detailed descrip
tion see Refs.@26,30,31#! we defineu$qk%& as the arbitrary
basis the measurement is performed in. Note thatu$qk%& does
not necessarily have to be normalized. For our purposes
restrict u$qk%& to be a state in the interaction picture with n
time dependence@it will be U0

†(t,0)u$qk%& in the Schro¨dinger
picture#. A typical example of this is a coherent bath sta
8-2
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This is the state~in the interaction picture! the bath~har-
monic oscillators! has when driven by a classical curre
@32#.

In the basisu$qk%& we can define a probability-operato
measure element, or effect, as

F̂ $qk%5u$qk%&^$qk%u. ~2.13!

Here the subscript$qk% is the result of the measurement. Th
effect is important as it allows one to calculate the proba
ity density of results$qk%,

P~$qk%,t !5^C~ t !uF̂ $qk%uC~ t !&. ~2.14!

If one was only interested in obtaining probabilities, the
fect would be all one would need. However, since we
interested in the state of the system after the measurem
we need to define a set of measurement operators. The
straint the measurement operators must obey isF̂ $qk%

5M̂ $qk%
† M̂ $qk% . For example, we can decompose the m

surement operators as

M̂ $qk%5u$nk%&^$qk%u, ~2.15!

where$nk% is arbitrary, and is the state the bath is left in af
the measurement. Since in most detection situations a m
surement results in annihilating the detected field the m
natural choice for$nk% is the vacuum state$0k%.

In QMT the combined state after a measurement at timt,
which yielded results$qk% is @30,31#

uC$qk%~ t !&5
M̂ $qk%uC~ t !&

AP~$qk%,t !
. ~2.16!

Using Eq. ~2.15!, with nk50 for all k, the combined state
after the measurement isuC$qk%(t)&5u$0k%&uc$qk%(t)&, where

uc$qk%~ t !&5
^$qk%uC~ t !&

AP~$qk%,t !
. ~2.17!

Equation~2.17! is the conditional system state and we s
here directly how the entanglement between the bath and
system results in the system state collapsing upon meas
ment of the bath. One of the properties of this conditio
system state is thatr red(t) @Eq. ~1.1!# can be written as

r red~ t !5E ^$qk%uC~ t !&^C~ t !u$qk%&d$qk%

5E P~$qk%,t !uc$qk%~ t !&^c$qk%~ t !ud$qk%

5E@ uc$qk%~ t !&^c$qk%~ t !u#, ~2.18!

whereE denotes an average over the distributionP($qk%,t).
From Eq.~1.4! we see that the conditional state satisfies
same requirements as a solution of a SSE. This suggests
the time derivative of Eq.~2.17!, if it could be written in
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terms ofuc$qk%(t)&, could be interpreted as a SSE. One pro
lem in determining the time derivative is that Eq.~2.17! in-
volves the probabilityP($qk%,t), which requires knowing
uC(t)&, and, as mentioned earlier, this in general is inde
minable. However, this problem may be overcome using
ear quantum-measurement theory~LQMT!.

LQMT uses the same principles as QMT except we use
ostensible distribution@L($qk%)# in place of the actual prob
ability @26,33#. As its name suggests, the ostensible proba
ity distribution need bear no relation to the actual probabi
distribution. However, it must be a proper probability dist
bution ~non-negative, and integrating to unity!, and must be
nonzero wherever the actual distribution is nonzero. Us
the ostensible probability distribution, the conditioned sy
tem state is

uc̃$qk%~ t !&5
^$qk%uC~ t !&

AL~$qk%!
. ~2.19!

We will call it the linear conditioned system state, becaus
depends linearly on the premeasurement stateuC(t)&, unlike
Eq. ~2.17!. SinceL($qk%) is not equal to the actual probabi
ity, uc̃$qk%(t)& will not be normalized and to signify this we
use a tilde above the state. Note that this notation, follow
our earlier convention@26,28#, is the reverse of that used b
DSG @21#. Because it is unnormalized, the linear condition
system state does not have a clear physical interpreta
However, it still is useful as it is easier to calculate~involv-
ing only linear equations!, and we can write

r red~ t !5E ^$qk%uC~ t !&^C~ t !u$qk%&d$qk%

5E L~$qk%,t !uc̃$qk%~ t !&^c̃$qk%~ t !ud$qk%

5Ẽ@ uc̃$qk%~ t !&^c̃$qk%~ t !u#, ~2.20!

whereẼ denotes an average using the ostensible distribu
L($qk%). The condition for obtaining alinear SSE is we
have to be able to write the time derivative of Eq.~2.19! in
terms of onlyuc̃$qk%(t)&.

A linear SSE is only really useful if it can be transforme
into a nonlinear SSE for the normalized stateuc$qk%(t)&. To
do this one requires that there exists a Girsanov transfor
tion for the variables$qk% @34#. This is a transformation tha
takes into account the relation between the actual probab
and the ostensible probability,

P~$qk%,t !5^c̃$qk%~ t !uc̃$qk%~ t !&L~$qk%!, ~2.21!

which follows from Eqs.~2.19! and ~2.14!. Specifically, the
Girsanov transformation is a time-dependent transforma
that changes the variables$qk% into the variables$qk

L% such
that

L~$qk
L%!d$qk

L%5P~$qk%,t !d$qk%. ~2.22!
8-3
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We can see the usefulness of this transformation as
lows. If we normalize the unnormalized states, but keep
same ostensible distribution, then the ensemble average
not reproducer red(t),

E L~$qk%!

uc̃$qk%u
2

uc̃$qk%~ t !&^c̃$qk%~ t !ud$qk%5” r red~ t !.

~2.23!

However, if $qk% are chosen from the actual distributio
then, of course it does,

E P~$qk%,t !

uc̃$qk%u
2

uc̃$qk%~ t !&^c̃$qk%~ t !ud$qk%5r red~ t !.

~2.24!

Equivalently, using the ostensible distribution for$qk
L%,

E L~$qk
L%!

uc̃$qk%u
2

uc̃$qk%~ t !&^c̃$qk%~ t !ud$qk
L%5r red~ t !.

~2.25!

Note that both$qk% and$qk
L% appear here. This means that

we have a linear SSE, we can derive a nonlinear~‘‘actual’’ !
SSE by normalizing the state

uc$qk%~ t !&5
1

uc̃$qk%u
uc̃$qk%~ t !&, ~2.26!

where

uc̃$qk%u5A^c̃$qk%~ t !uc̃$qk%~ t !& , ~2.27!

but generating the SSE by drawing$qk
L% rather than$qk%

from the ostensible distribution.
Now that we know how to use Eq.~2.26!, we can calcu-

late the time derivative ofuc$qk%(t)& in terms of uc̃$qk%(t)&.
This results in

dtuc$qk%~ t !&5
1

uc̃$qk%u
dtuc̃$qk%~ t !&1uc̃$qk%~ t !&dt

1

uc̃u
,

~2.28!

where

dtuc̃$qk%~ t !&5] tuc̃$qk%~ t !&1(
k

dtqk]qk
uc̃$qk%~ t !&.

~2.29!

Here we have assumed that we can definedtqk so as to
generate aqk(t), which ensures that Eq.~2.22! is always
satisfied. From the above discussion, it is thus apparent
the following three conditions must be satisfied if Eq.~2.28!
is to be a SSE for the system stateuc$qk%(t)&.

~1! It is possible to obtain a linear SSE, that
] tuc̃$qk%(t)&.
01210
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~2! There is a Girsanov transformation$qk
L%→$qk(t)%

such that an equation fordtqk for all k can be found explic-
itly.

~3! Equation ~2.28! can be written in terms of only
uc$qk%(t)&.

If we can satisfy all these conditions then we have a S
that generates a state with a definite physical interpretat
The SSE generates a state at timet, which is of the form of
Eq. ~2.17!. This is clearly the normalized state conditione
on a measurement being performed at timet on the entire
bath, and yielding results$qk%.

It is important to note, however, that the linking of th
states at earlier times to form a trajectory~which is how the
SSE generates the state at timet) appears to be a convenien
fiction. A measurement on the whole bath at timet is clearly
incompatible with a similar measurement at an earlier tim
It is only in the Markovian limit that compatible bath mea
surements can be made, so that the quantum trajectory
whole can be interpreted physically. In other words, the ti
evolution generated by the SSE simply links together hy
thetical conditioned states at different times, with differe
measurement results$qk(t)%. The relation between the re
sults at different times is purely mathematical, not physic
The mathematical relation comes from the time-depend
Girsanov transformation: theqk

L corresponding to theqk(t)
are the same at all times.

III. COHERENT BATH UNRAVELING

A. Coherent noise operator

The first unraveling we consider is that associated w
the bath being projected into a multimode coherent state,
is, u$qk%&5u$ak%& where

u$ak%&5)
k

1

Ap
e2uaku2/2(

nk

ak
nk

Ank!
unk&. ~3.1!

Note that these states are deliberately not normalized, so
the multimode integral of the effectF̂ $ak%5u$ak%&^$ak%u is
unity. We call the resultant unraveling the ‘‘coherent sta
unraveling.’’ For this unraveling we define the noise opera

ẑ~ t !5b̂~ t !eiv0t5(
k

gkâke
2 iVkt, ~3.2!

whereVk5vk2v0. This noise operator has the property

ẑ~ t !u$ak%&5z~ t !u$ak%&, ~3.3!

wherez(t) is the noise function, given by

z~ t !5(
k

gkake
2 iVkt. ~3.4!

An important property of the bath is its correlation: ho
the noise operator~function! at time t is related to that at
time s. This is determined by the commutator~operators! or
8-4
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correlation function~noise functions!. For a non-Hermitian
operator there are two important commutators,

@ ẑ~ t !,ẑ~s!#50, ~3.5!

@ ẑ~ t !,ẑ~s!†#5a~ t2s!, ~3.6!

where, in the notation of DSG,

a~ t2s!5(
k

ugku2e2 iVk(t2s), ~3.7!

which we call the memory function.
The second form of correlation is defined in terms of t

noise functions asE@z(t)z* (s)#. This depends on the prob
ability for obtaining the results$ak% in the measurement a
the two times. In linear QMT, these probabilities are giv
by the ostensible distributionL($ak%), which may be chosen
to be time independent. It is convenient to chooseL($ak%) to
be equal to the actual probability that would arise when
bath is always in the vacuum state. That is,

L~$ak%!5^$0k%u$ak%&^$ak%u$0k%&5p2k expS 2(
k

uaku2D ,

~3.8!

wherek5(k . As will be seen later, this is appropriate if th
bath is initially in this state. The correlation for the noi
functions under this assumption is

Ẽ@z~ t !z* ~s!#5a~ t2s!, ~3.9!

Ẽ@z~ t !z~s!#50. ~3.10!

Note that we have used the notation discussed below
~2.20!. Thus for the special case where the ostensible pr
ability is given by Eq.~3.8!, the memory function is equal to
the correlation of the noise functions.

1. The Markov limit

Since one of our aims is to consider the Markovian lim
of our non-Markovian SSEs~in which one obtains a genuin
quantum trajectory!, the Markov limit of all our main results
will be presented. In the Markov limit the number of mod
become continuous and the coupling constantugku becomes
flat (ugku5g) and equal toAg/2p . This allows us to write

a~ t2s!5
g

2pE0

`

e2 i (v2v0)(t2s)dv5
g

2pE2v0

`

e2 iV(t2s)dV,

~3.11!

and for optical situations~high v0 situations! with little error
this can be written as

a~ t2s!5
g

2pE2`

`

e2 iV(t2s)dV5gd~ t2s!. ~3.12!

Therefore,
01210
e

q.
b-

t

Ẽ@z~ t !z* ~s!#5@ ẑ~ t !,ẑ~s!†#5gd~ t2s!, ~3.13!

Ẽ@z~ t !z~s!#5@ ẑ~ t !,ẑ~s!#50. ~3.14!

This implies that ostensiblyz(t) is a complex Gaussian ran
dom variable~GRV! of mean 0 and varianceg/dt. That is,
z(t)5Ag z(t), where z(t) is the standard complex white
noise function@35#. These are the correct correlation fun
tion for the heterodyne noise functions@26#.

B. The linear stochastic Schro¨dinger equations for the
coherent unraveling

In this section we will derive the linear non-Markovia
SSEs for the ostensible probability introduced above, a
show that in the Markov limits it gives the linear heterody
SSE. We use many of the same techniques as DSG. To
culate the linear SSE we write the Schro¨dinger equation in
terms of the noise operator,ẑ(t),

dtuC~ t !&5$2 iĤ ~ t !1 ẑ†~ t !L̂2 ẑ~ t !L̂†%uC~ t !&.
~3.15!

Then by differentiating Eq.~2.19! with respect to time~with
qk set toak) we obtain

] tuc̃$ak%~ t !&5$2 iĤ ~ t !1z* ~ t !L̂%uc̃$ak%~ t !&

2
^$ak%uẑ~ t !L̂†uC~ t !&

AL~$ak%!
, ~3.16!

asĤ(t) is a system-only operator and^$ak%u is the left eigen-
state ofẑ(t)†. To satisfy the condition for a linear SSE w
must evaluate the last term in this equation in terms
uc̃$ak%(t)&. To do this we use@32#

^$ak%uâkuC~ t !&5S ak

2
1]a

k* D ^$ak%uC~ t !& ~3.17!

and

]a
k*
uc̃$ak%~ t !&5

]a
k* ^$ak%uC~ t !&

AL~$ak%!
1

ak

2
uc̃$ak%~ t !&.

~3.18!

With these two expressions and the definition ofẑ(t),

^$ak%uẑ~ t !uC~ t !&

AL~$ak%!
5(

k
gke

2 iVkt]a
k*
uc̃$ak%~ t !&.

~3.19!

This allows us to write Eq.~3.16! as
8-5
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] tuc̃$ak%~ t !&5H 2 iĤ ~ t !1z* ~ t !L̂

2L̂†(
k

gke
2 iVkt]a

k* J uc̃$ak%~ t !&.

~3.20!

This is a linear equation in terms of$ak%. Note that it is
not really a SSE, as the final term implies that the evolut
of the stateuc̃$ak%(t)& depends not only on itself, but upo

neighboring states with different values of$ak%. That is, we
cannot simply choose~stochastically! a value for$ak% from
the ostensible distribution and then propagate forward
system state using that value. However, we can m
progress towards an equation where we can do this by
writing the partial derivative in terms of a functional deriv
tive. This is done by using the following relation~see, for
example, Ref.@37#!:

]a
k*
5E

0

t d

dz* ~s!

]z* ~s!

]ak*
ds, ~3.21!

where 0 is the initial time. This gives

] tuc̃z~ t !&5H 2 iĤ ~ t !1z* ~ t !L̂2L̂†

3E
0

t

a~ t2s!
d

dz* ~s!
dsJ uc̃z~ t !&, ~3.22!

wherea(t2s) is defined in Eq.~3.7!. By replacing the par-
tial derivatives by the functional derivative we have enforc
the initial conditionuC(0)&5u$0k%&uc(0)&, This is seen as
follows. At t50 the functional derivative term in the abov
equation will have zero contribution, from the definitio
~3.21!. By comparison with the corresponding term
Eq. ~3.20!, it follows that ]a

k*
uc̃$ak%(t)&u t5050 for all k.

From Eq.~2.19! this is only possible if the system and ba
states initially ~at time 0) factorize, and ifL($ak%)
5u^$ak%ucbath&u2. From our choice~3.8! of ostensible prob-
ability, this enforcesucbath&5u$0k%&. This is physically ac-
ceptable as we may assume that at time 0 the system
bath are uncoupled, and the bath is in the vacuum state

Like Eq. ~3.20!, Eq. ~3.22! is not really a SSE because th
functional derivative means that it depends not upon a s
uc̃z(t)& at all times for a single value of the functionz(t), but
rather also upon states for other values of that function. T
is, we cannot stochastically choosez(t) in order to generate
a trajectory independent of other trajectories. Instead, all p
sible trajectories would have to be calculated in parallel. T
means that the amount of calculation involved in solving E
~3.22! would be comparable to that required for direc
solving the Schro¨dinger equation~2.4!. However, in some
circumstance we can make the following ansatz@21#:
01210
n
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d

dz~s!
uc̃z~ t !&5Ôz~ t,s!uc̃z~ t !&, ~3.23!

whereÔz(t,s) is some system operator that is a function ot,
ands, and a functional ofz. With this ansatz the linear SSE
becomes

] tuc̃z~ t !&5H 2 iĤ ~ t !1z* ~ t !L̂2L̂†

3E
0

t

a~ t2s!Ôz~ t,s!dsJ uc̃z~ t !&. ~3.24!

This is now a true SSE, where each trajectory can be evo
independently. It is the same as the linear SSE that D
presented in Refs.@20,21#. Note that it is non-Markovian
because the noisez* (t) is nonwhite, because of the finit
lower limit of the integral, and becauseÔz(t,s) may depend
uponz.

1. The Markov limit

The next question is what is the Markov limit of th
equation? To find this we use the results of Sec. III A and
fact that Ôz(t,t)5L̂ @21#. Applying them to Eq.~3.24! re-
sults in

] tuc̃z~ t !&5H 2 iĤ ~ t !1z* ~ t !L̂2
g

2
L̂†L̂J uc̃z~ t !&,

~3.25!

wherez(t)5Ag z(t). By its method of derivation, this equa
tion is in Stratonovich form@35#. To compare with the stan
dard Markov equations we should convert it to an Itoˆ SSE.
This can be derived by using an arbitrary basis and defin
c j5^ j uc& andL j ,k5^ j uL̂uk&. Then if the Stratonovich form
is

] tc j5aj1bjz* ~ t !, ~3.26!

the Itô form ~which we indicate by use of the infinitesima
rather than the derivatives! is

dc j~ t !5ajdt1bjdz* ~ t !dt1
dt

2 (
l

bl*
]

]c l*
bj .

~3.27!

The final term here is the Itoˆ correction term. Looking at Eq
~3.25! we see that,bj5Ag (kL j ,kck , and since]ck /]c l* is
zero for allk, the correction term for this equation is 0. Thu
the Itô SSE is

duc̃z~ t !&5dtS 2 iĤ ~ t !1L̂z* ~ t !2
g

2
L̂†L̂ D uc̃z~ t !&,

~3.28!

which is the standard linear heterodyne SSE presen
in Ref. @33# as z(t)5Ag z(t)5Ag (j1(t)1 i j2(t)), where
jk(t) are the standard real-valued white-noise terms@35#.
8-6
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C. The actual stochastic Schro¨dinger equations for the
coherent unraveling

In this section we will derive the non-Markovian SSEs f
the actual probability distribution and show that in the Ma
kov limits it gives the the usual heterodyne SSE. Again,
use many of the same techniques as DSG.

As discussed in Sec. II B, to find an actual~i.e., nonlinear!
SSE for the normalized state we need to satisfy three co
tions. The first was to derive a linear SSE, which we did
the preceding section~by making use of an anstaz!. The sec-
ond condition is to find random variables with the actu
probabilities of measurement results. To work out these r
dom variables,$ak% we use the Girsanov transform~2.21! to
find a first-order partial differential equation~PDE! for the
probability, from which the characteristic equation genera
the transformed variables.

To obtain the PDE we differentiate Eq.~2.21!, giving

] tP~$ak%,t !5^c̃$ak%~ t !u] tuc̃$ak%~ t !&L~$ak%!1c.c.
~3.29!

By Eq. ~3.20! the above becomes

] tP~$ak%,t !5H ^c̃$ak%~ t !uL̂uc̃$ak%~ t !&(
k

ak* gk* eiVkt

2(
k

^c̃$ak%~ t !uL̂†]a
k*
uc̃$ak%~ t !&gke

2 iVkt

1c.c.J L~$ak%!. ~3.30!

Using the fact thatuc̃$ak%(t)& is analytical in ak* @so that

]ak
uc̃$ak%(t)&50# @20#, and the product rule for differentia

tion, we can simplify the above to

] tP~$ak%,t !52(
k

gke
2 iVkt]a

k*

3$^c̃$ak%~ t !uL̂†uc̃$ak%~ t !&L~$ak%!%1c.c.

~3.31!

Defining

^L̂†& t5^c$ak%~ t !uL̂†uc$ak%~ t !&5
^c̃$ak%~ t !uL̂†uc̃$ak%~ t !&

^c̃$ak%~ t !uc̃$ak%~ t !&
~3.32!

allows us to write

] tP~$ak%,t !52(
k

gke
2 iVkt]a

k*
$^L̂†& tP~$ak%,t !%1c.c.

~3.33!

This is the PDE for the probability distribution.
At t50, we have from Eq.~2.21! that
01210
-
e

i-

l
n-

s

P~$ak%,0!5^c̃$ak%~0!uc̃$ak%~0!&L~$ak%!. ~3.34!

As noted above, to obtain Eq.~3.22! we had to assume tha
the bath was initially in the vacuum state, uncorrelated w
the system. This enforces the equation of the initial proba
ity distribution to be the ostensible distribution

P~$ak%,0!5L~$ak%!5p2k expS 2(
k

uaku2D .

~3.35!

From this PDE we can find the characteristic equation

dtak* 5gke
2 iVkt^L̂†& t , ~3.36!

which integrates to give

ak* ~ t !5ak* ~0!1E
0

t

gke
2 iVks^L̂†&sds. ~3.37!

The random variableak* (0) is one with probability distribu-
tion ~3.35!. With Eq.~3.37! and our noise function definition
Eq. ~3.4!, we can writez(t) as

z* ~ t !5ak* ~0!gk* eiVkt1E
0

t

a* ~ t2s!^L̂†&sds. ~3.38!

The termak* (0)gk* eiVkt is the noise function one would ob
tain if the bath were assumed to be in the vacuum state. T
is our assumption for the ostensible distribution so we w
label this termzL* (t). This allows us to write

z* ~ t !5zL* ~ t !1E
0

t

a* ~ t2s!^L̂†&sds, ~3.39!

wherezL* (t) obeys the correlations expressed in Eqs.~3.9!
and ~3.10!.

The third condition was to show that we can write E
~2.28! in terms of onlyucz(t)&. To do this we start by calcu
lating dtuc̃z(t)&. Using Eqs.~2.29!, ~3.22!, and~3.21! we get

dtuc̃z~ t !&5H 2 iĤ ~ t !1z* ~ t !L̂2~ L̂†2^L̂†& t!

3E
0

t

a~ t2s!
d

dz* ~s!
dsJ uc̃z~ t !&. ~3.40!

Looking at Eq.~2.28! we see that to obtain the actual SS
we need to calculateuc̃z(t)&dtuc̃$ak%u

21. Using the above,
8-7
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uc̃z~ t !&dt

1

uc̃$ak%u
52

ucz~ t !&

uc̃$ak%u
@^cz~ t !udtuc̃z~ t !&1c.c#

52H z* ~ t !^L̂& t2^cz~ t !u~ L̂†2^L̂†& t!

3
1

uc̃$ak%u
E

0

t

a~ t2s!
d

dz* ~s!
uc̃z~ t !&

3ds1c.cJ ucz~ t !&/2. ~3.41!

Therefore Eq.~2.28! becomes

dtucz~ t !&5$2 iĤ ~ t !1z* ~ t !L̂%ucz~ t !&

2~ L̂†2^L̂†& t!
1

uc̃$ak%u
E

0

t

a~ t2s!

3
d

dz* ~s!
uc̃z~ t !&ds2ucz~ t !&H z* ~ t !^L̂& t

2^cz~ t !u~ L̂†2^L̂†& t!
1

uc̃$ak%u
E

0

t

a~ t2s!

3
d

dz* ~s!
uc̃z~ t !&ds1c.cJ Y 2. ~3.42!

This can be simplified by using the fact that if our SS
has the formdtuc&5(Â1B/21B* /2)uc& then we can define
a stateuf&5exp@*(B2B* )dt/2#uc& ~which is the same stat
as uc&) that gives a equivalent SSE, of formdtuf&5(Â
1B)uf&. Applying this to the above gives

dtucz~ t !&5$2 iĤ ~ t !1z* ~ t !~ L̂2^L̂& t!%ucz~ t !&

2~ L̂†2^L̂†& t!
1

uc̃$ak%u
E

0

t

a~ t2s!

3
d

dz* ~s!
dsuc̃z~ t !&1ucz~ t !&^cz~ t !u

3~ L̂†2^L̂†& t!
1

uc̃$ak%u
E

0

t

a~ t2s!
d

dz* ~s!

3dsuc̃z~ t !&. ~3.43!

This is not yet a SSE as it still containsuc̃z(t)& terms, how-
ever, if we can make the ansatz described by Eq.~3.23! we
can write this as
01210
dtucz~ t !&5F2 iĤ ~ t !1z* ~ t !~ L̂2^L̂& t!

2E
0

t

a~ t2s!$~ L̂†2^L̂†& t!Ôz~ t,s!

2Š~ L̂†2^L̂†& t!Ôz~ t,s!‹t%dsG ucz~ t !&,

~3.44!

which is a genuine SSE. This means that an actual SSE~gen-
erating normalized states with their actual probabilities! can
only be found if we can make the ansatz describe in
~3.23!.

This SSE is the same as that presented in Refs.@21,22#.
As shown here, it gives us the state the system would be
at timet we performed a measurement in the coherent ba
and the result wasz(t) as defined in Eq.~3.39!. Note that this
means that the resultz(t) depends upon the system state
earlier times in the trajectory generated by the above S
We have argued above that this linking of states at differ
times is a convenient fiction, but we see here that it is ma
ematically necessary in order to generate measuremen
sults for a particular time with the actual probability.

1. The Markov limit

Finally, we are again interested in the Markov limit of th
SSE. Taking the Markov limit of the noise function, on
obtains

z* ~ t !5zL* ~ t !1
g

2
^L̂†& t , ~3.45!

wherezL* (t)5Ag z* (t).
To apply the Markov limit to Eq.~3.44! we usea(t2s)

→gd(t2s) andÔz(t,t)5L̂, resulting in

dtucz~ t !&5H 2 iĤ ~ t !

\
1~ L̂2^L̂& t!S z* ~ t !1

g

2
^L̂†& tD

2
g

2
~ L̂†L̂2^L̂†L̂& t!J ucz~ t !&, ~3.46!

which is in Stratonovich form. To convert this to an Itoˆ SSE
we have to calculate the Itoˆ correction term in Eq.~3.27!. For
this equation, the correction term is

dtg

2
@2^L̂†L̂& t1^L̂†& t^L̂& t#ucz~ t !&, ~3.47!

which with Eq.~3.46! results in

dtucz~ t !&5H 2 iĤ ~ t !

\
1~ L̂2^L̂& t!z* ~ t !

2
g

2
~ L̂†L̂2L̂^L̂†& t!J ucz~ t !&. ~3.48!
8-8
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This is the ItôSSE for the actual measurement probabiliti
When we substitute inz* (t) from Eq.~3.45! we get the same
heterodyne SSE as that presented in Refs.@12,25#.

Readers familiar with quantum trajectory theory for h
erodyne detection may be puzzled by the factor of 1/2 m
tiplying the deterministic contribution toz(t). This function
is, according to the above theory, the result of measuring
bath at timet in the coherent state basis. But in the usu
quantum trajectory theory@25# the measured~complex! het-
erodyne current at timet is

I ~ t !5Ag z~ t !1g^L̂& t , ~3.49!

which lacks the 1/2. Where does this discrepancy co
from? To answer this question we have to consider the d
nition of a measurement, and in particular the time of
measurement. In quantum trajectory theory we must cons
the measurement that conditions the state at timet as actually
occurring at a timet1dt @26#. That is, thed-correlated bath
must be given a chance to interact with the system before
measurement is made. By contrast, in the above theory
measurement occurs exactly at timet. For a non-Markovian
bath ~with a finite correlation time! the difference betweent
andt1dt is infinitesimal. However, in the Markov limit, this
infinitesimal difference in measurement time causes the fi
difference betweenz(t) and I (t).

It is easiest to see this using the Heisenberg picture. F
the above theory,

E@z~ t !#5^C~ t !uẑ~ t !uC~ t !&

5^c~0!u^$0k%uU int
† ~ t !ẑ~ t !U int~ t !u$0k%&

5^c~0!u^$0k%uẑH~ t !u$0k%&uc~0!&, ~3.50!

where ẑH(t) is the Heisenberg noise operator. In quantu
trajectory theory the measurement is defined to take p
after the system and bath have interacted for a timedt, so
that

E@ I ~ t !#5^C~ t1dt!uẑ~ t !uC~ t1dt!&

5^c~0!u^$0k%uU int
† ~ t1dt!ẑ~ t !U int~ t1dt!u$0k%&

5^c~0!u^$0k%u Î ~ t !u$0k%&uc~0!&. ~3.51!

Therefore,

Î ~ t !5U int
† ~ t1dt,t !ẑH~ t !U int~ t1dt,t !. ~3.52!

By using standard Heisenberg equations it can be sh
that

Î ~ t !5 ẑH~ t !1E
t

t1dt

a~ t2s!U int
† ~s!L̂U int~s!ds,

~3.53!

which has a Markov limit of the form
01210
.
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Î ~ t !5 ẑH~ t !1
g

2
U int

† ~ t !L̂U int~ t !. ~3.54!

This is the operator form of the heterodyne current, a
shows the extra contribution discussed above. It is simila
easy to show that the Markov form ofẑH(t) is

ẑL~ t !1
g

2
U int

† ~ t !L̂U int~ t !, ~3.55!

where ẑL(t)5(kgkâk(0)e2 iVkt. These relations are analo
gous to the Markovian input-output theory of Gardiner a
Collett @38#. The correspondences are as follows:

ẑL~ t !↔b̂in~ t !, ~3.56!

ẑH~ t !↔b̂~ t !, ~3.57!

Î ~ t !↔b̂out~ t !. ~3.58!

IV. QUADRATURE BATH UNRAVELING

In this section we will present a second unraveling tha
conditioned on real noise and has homodyne detection a
Markov limit.

A. Quadrature noise operator

To obtain a SSE with real noise, it is natural to conside
quadrature noise operator,

ẑ~ t !5b̂~ t !eiv0te2 if1b̂†~ t !e2 iv0teif, ~4.1!

whereb̂(t) is defined in Eq.~2.11! andf is some arbitrary
phase. The noise operator has a two-time commutator

@ ẑ~ t !,ẑ~s!#5a~ t2s!2a* ~ t2s!, ~4.2!

independent off. The phasef defines the measured quadr
ture: anx quadrature measurement occurs whenf is set to
zero, and the conjugate measurement of they-quadrature oc-
curs whenf5p/2. Unless otherwise stated we will setf to
zero.

The basis for the bath measurement isu$qk%& and must
satisfy

ẑ~ t !u$qk%&5z~ t !u$qk%&. ~4.3!

The problem with this noise function is that it is hard~maybe
impossible! to work out a time-independent eigenstateu$qk%&
in the interaction picture. However, we can find the eige
state if we make the assumptions that for every modek there
exists another mode, which we can label2k, such that
V2k52Vk andg2k5gk* . These assumptions simply mea
that the modes coupled to the system come in symme
pairs about the system frequencyv0. Without loss of gener-
ality we can take thegk’s to be real, absorbing any phases
the definitions of the bath operators. With all of these
sumptions we can rewrite Eq.~4.1! as
8-9
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ẑ~ t !5 (
k.0

2gk@X̂k
1 cos~Vkt !1Ŷk

2 sin~Vkt !#. ~4.4!

Here we have introduced the two-mode quadrature opera

X̂k
65~ x̂k6 x̂2k!/A2 , ~4.5!

Ŷk
65~ ŷk6 ŷ2k!/A2 , ~4.6!

wherex̂k and ŷk are the quadratures ofâk ,

âk5~ x̂k1 i ŷ k!/A2 . ~4.7!

These operators have the commutators

@X̂k
2 ,Ŷk

2#5 i , @X̂k
2 ,Ŷk

1#50, ~4.8!

@X̂k
1 ,Ŷk

2#50, @X̂k
1 ,Ŷk

1#5 i . ~4.9!

Since$X̂k
1% and$Ŷk

2% form two mutually commuting sets
of commuting operators, and thus have a common se
eigenstates. Sinceẑ(t) is a linear combination of these op
erators, the eigenstates of$X̂k

1% and$Ŷk
2% are theu$qk%& we

seek. Therefore we can write the two eigenvalue equatio

Ŷk
2u$qk%&5Yk

2u$qk%&, ~4.10!

X̂k
1u$qk%&5Xk

1u$qk%&. ~4.11!

This suggests that we should writeu$qk%& asu$Xk
1 ,Yk

2%&, but
for brevity we will continue to write it asu$qk%&. The form of
the state that satisfies these equations, in theyk basis, for a
particulark is

E dy8

A2p
u~y82Yk

2!/A2 &2ku~y81Yk
2!/A2 &ke

2 iXk
1y8,

~4.12!

while in thexk basis it is

E dx8

A2p
u~Xk

12x8!/A2 &2ku~Xk
11x8!/A2 &ke

iYk
2x8.

~4.13!

Under these assumptions we can show that the mem
functiona(t2s) in Eq. ~3.7! becomes equal to the real fun
tion b(t2s) given by

b~ t2s!52(
k.0

ugku2 cos@Vk~ t2s!#. ~4.14!

Thus the commutator expressed in Eq.~4.2! becomes

@ ẑ~ t !,ẑ~s!#5b~ t2s!2b~ t2s!50. ~4.15!

Moreover, the noise function is
01210
rs

of

s,

ry

z~ t !5 (
k.0

2gk@Xk
1 cos~Vkt !1Yk

2 sin~Vkt !#. ~4.16!

SinceXk
1 andYk

2 are real,z(t) is also.
We can define the correlation function for the noise fun

tions as E@z(t)z(s)#, and again this depends on the probab
ity distribution for the variablesXk

1 andYk
2 . It is again con-

venient to choose the ostensible distribution to be t
corresponding to the bath being in the vacuum state. Exp
itly we then have

L~$Xk ,Yk%!5p2k/2e2(
k.0

(Xk
121Yk

22). ~4.17!

With the usual ostensible distribution the correlation functi
is

Ẽ@z~ t !z~s!#52(
k.0

ugku2 cos@Vk~ t2s!#5b~ t2s!,

~4.18!

while Ẽ@z(t)#50 as before.

1. The Markov limit

The symmetry assumptions we have made in order to
tain this ẑ(t) are compatible with the Markov limit in which
the modes become continuous and the coupling constan
comes flat ink space~which of cause is symmetric aroun
v0). As in the coherent case, the memory functionb(t2s)
in the Markov limit equalsgd(t2s). Therefore in this limit
the noise function is ostensibly given byz(t)5Ag j(t)
wherej(t) is a real-valued Gaussian white-noise term@35#.

B. The linear stochastic Schro¨dinger equation for the
quadrature unraveling

To find the linear non-Markovian SSE we start by app
ing our assumptions to the Schro¨dinger equation for the com
bined state

] tuC~ t !&5H 2 iĤ ~ t !1 (
k.0

gk@ L̂~ âk
†eiVkt1â2k

† e2 iVkt!

2L̂†~ âke
2 iVkt1â2ke

iVkt!#J uC~ t !&. ~4.19!

Now by Eq.~4.4! we can write this as

] tuC~ t !&5H 2 iĤ ~ t !1L̂ ẑ2 (
k.0

gkL̂x~ âke
2 iVkt

1eiVktâ2k!J uC~ t !&, ~4.20!

whereL̂x5(L̂1L̂†). Using definitions~4.5!, ~4.6!, and~4.7!
we rewrite the above equation as
8-10
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NON-MARKOVIAN STOCHASTIC SCHRÖDINGER . . . PHYSICAL REVIEW A66, 012108 ~2002!
] tuC~ t !&5H 2 iĤ ~ t !1 ẑL̂2 (
k.0

gkL̂x@X̂k
1 cos~Vkt !

1 iŶk
1 cos~Vkt !2 iX̂k

2 sin~Vkt !

1Ŷk
2 sin~Vkt !#J uC~ t !&. ~4.21!

As in the coherent case to find a linear SSE we differ
tiate Eq. ~2.19! with respect to time, except that this tim
u$qk%& is given by Eq.~4.13! and the ostensible probability i
given by Eq.~4.17!. Using Eq.~4.21! we obtain

] tuc̃$qk%~ t !&5@2 iĤ ~ t !1z~ t !L̂#uc̃$qk%~ t !&

2 (
k.0

gkL̂xH cos~Vkt !S i
^$qk%uYk

1uC~ t !&

AL~$Xk
1 ,Yk

2%!

1X̂k
1uc̃$qk%~ t !& D 1sin~Vkt !S Ŷk

2uc̃$qk%~ t !&

2 i
^$qk%uXk

2uC~ t !&

AL~$Xk
1 ,Yk

2%!
D J . ~4.22!

The inner products in the above equation can be simplifie

^$qk%uX̂k
2uC~ t !&5 i

]

]Yk
2

^$qk%uC~ t !&, ~4.23!

^$qk%uŶk
1uC~ t !&52 i

]

]Xk
1

^$qk%uC~ t !&, ~4.24!

asX̂k
6 andŶk

6 have the commutators listed in Eqs.~4.8! and
~4.9!.

It can also be shown that

]

]Yk
2

uc̃$qk%~ t !&5
1

AL~$Xk
1 ,Yk

2%!

]

]Yk
2

^$qk%uC~ t !&

1Yk
2uc̃$qk%~ t !&, ~4.25!

]

]Xk
1

uc̃$qk%~ t !&5
1

AL~$Xk
1 ,Yk

2%!

]

]Xk
1

^$qk%uC~ t !&

1Xk
1uc̃$qk%~ t !&, ~4.26!

and using Eqs.~4.23! and ~4.24! with the above two equa
tions we can write the inner products in terms of their co
jugate variables. This allows us to write the linear equat
as
01210
-

to

-
n

] tuc̃$qk%~ t !&5H 2 iĤ ~ t !1z~ t !L̂2 (
k.0

gkL̂xS sin~Vkt !
]

]Yk
2

1cos~Vkt !
]

]Xk
1D J uc̃$qk%~ t !&, ~4.27!

which is a linear equation solely in terms of the paramet
$Xk

1% and$Yk
2%.

As in the coherent case, to make progress towards a g
ine SSE we wish to replace the partial derivatives by a fu
tional derivative with respect to the noise function. To do th
we note that

]

]Xk
1

5E
0

t d

dz~s!

]z~s!

]Xk
1

ds, ~4.28!

]

]Yk
2

5E
0

t d

dz~s!

]z~s!

]Yk
2

ds. ~4.29!

Thus we obtain

] tuc̃z~ t !&5H 2 iĤ ~ t !1z~ t !L̂

2L̂xE
0

t

b~ t2s!
d

dz~s!
dsJ uc̃z~ t !&, ~4.30!

whereb(t2s) is the memory function for the noise. As i
the coherent state case, this enforces an initial vacuum s
for the bath. The final step to obtaining the linear no
Markovian SSE with real noise is to assume that the fu
tional derivative can be replaced by an operator as in
~3.23!. With this ansatz the linear SSE becomes

] tuc̃z~ t !&5S 2 iĤ ~ t !1z~ t !L̂

2L̂xE
0

t

b~ t2s!Ôz~ t,s!dsD uc̃z~ t !&.

~4.31!

1. The Markov limit

Finally, in this subsection we determine the Markov lim
of this equation. Applying the results at the end of Sec. IV
we get

] tuc̃z~ t !&5S 2 iĤ ~ t !1L̂z~ t !2
g

2
L̂xL̂ D uc̃z~ t !&, ~4.32!

as Ôz(t,t)5L̂. This is in Stratonovich from. We transform
this to the Itôform by using the method in Sec. III B 1. In
this case the Itoˆ correction is

dt

2 (
l

S bj

]

]c l
bj1bj*

]

]c l*
bj D 5

gdt

2 (
l ,k,

L j ,lL l ,kck ,

~4.33!
8-11
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and the Itoˆ SSE is

duc̃z~ t !&5dtS 2 iĤ ~ t !

\
1L̂z~ t !2

dtg

2
L̂†L̂ D uc̃z~ t !&,

~4.34!

which is the general linear homodyne SSE@33,26# as z(t)
5Ag j(t).

C. The actual stochastic Schro¨dinger equation for the
quadrature unraveling

As in the coherent case, to find an actual SSE~generating
states with the actual probability! we need to find random
variables with the actual probabilities of measurement res
$qk%. To sort these out we use the Girsanov transform~2.21!
to find a first-order PDE for the probability, from which th
characteristic equation generates the transformed variab

] tP~$Xk
1 ,Yk

2%,t !5@^c̃$qk%~ t !u] tuc̃$qk%~ t !&

1c.c#L~$Xk
1 ,Yk

2%!. ~4.35!

Using Eqs.~4.27! allows us to write

] tP~$Xk
1 ,Yk

2%,t !52 (
k.0

gk

]

]Xk
1

@cos~Vkt !

3^c̃$qk%~ t !uL̂xuc̃$qk%~ t !&L~$Xk
1 ,Yk

2%!#

2 (
k.0

gk

]

]Yk
2

@sin~Vkt !

3^c̃$qk%~ t !uL̂xuc̃$qk%~ t !&L~$Xk
1 ,Yk

2%!#.

~4.36!

This can be simplified to

] tP~$Xk
1 ,Yk

2%,t !52 (
k.0

gk

]

]Xk
1

@cos~Vkt !^L̂x& tP~$qk%,t !#

2 (
k.0

gk

]

]Yk
2

@sin~Vkt !

3^L̂x& tP~$Xk
1 ,Yk

2%,t !#, ~4.37!

where^L̂x& t is defined by Eq.~3.32!.
The characteristic equations are

d

dt
Xk

15cos~Vkt !^L̂x& t , ~4.38!

d

dt
Yk

25sin~Vkt !^L̂x& t . ~4.39!

Integrating these differential equations from time 0 tot we
get
01210
ts

s

Xk
1~ t !5Xk

1~0!1E
0

t

cos~Vks!^L̂x&sds, ~4.40!

Yk
2~ t !5Yk

2~0!1E
0

t

sin~Vks!^L̂x
†&sds. ~4.41!

The distribution forXk
1(0) andYk

2(0) is due to the quantum
initial conditions. As before, the use of the functional deriv
tive in Eq. ~4.30! implies that the initial bath state is
vacuum state. Thus, the randomness inXk

1(0) andYk
2(0) is

that of the ostensible distribution,

P~$Xk
1 ,Yk

2%,0!5L~$Xk
1 ,Yk

2%!

5

expS 2 (
k.0

~Xk
121Yk

22! D
pk/2

. ~4.42!

With the above random variable equations forXk
1(t) and

Yk
2(t) we can write the noise function for the actual pro

ability as

z~ t !5zL~ t !1E
0

t

^L̂x&sb~ t2s!ds, ~4.43!

wherezL(t) is the random variable with statistics determin
by theL($Xk

1 ,Yk
2%) distribution. That is, the correlations o

zL(t) are those ofz(t) in Eq. ~4.18!.
Now we have the correct noise function we can calcul

the actual SSE. As in the coherent case we need] tuc̃z(t)&,
and for this case Eq.~2.29! will be

dtuc̃z~ t !&5H 2 iĤ ~ t !1L̂z~ t !2~ L̂x2^L̂x& t!

3E
0

t

b~ t2s!
d

dz~s!
dsJ uc̃z~ t !&. ~4.44!

Following the same procedure as in the coherent case
obtain

dtucz~ t !&5@2 iĤ ~ t !1~ L̂2^L̂& t!z~ t !#ucz~ t !&2
1

uc̃$qk%~ t !u

3~ L̂x2^L̂x& t!E
0

t

b~ t2s!
d

dz~s!
dsuc̃z~ t !&

1
1

uc̃$qk%~ t !u
^~ L̂x2^L̂x& t!E

0

t

b~ t2s!

3
d

dz~s!
dsuc̃z~ t !&ucz~ t !&. ~4.45!

Again this is not a SSE until we make the ansatz defined
Eq. ~3.23!, which gives
8-12
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dtucz~ t !&5S 2 iĤ ~ t !1~ L̂2^L̂& t!z~ t !2~ L̂x2^L̂x& t!

3E
0

t

b~ t2s!Ôz~ t,s!ds1K ~ L̂x2^L̂x& t!

3E
0

t

b~ t2s!Ôz~ t,s!dsL
t
D ucz~ t !&. ~4.46!

This is the actual SSE for real-valued noise. All of the co
ments regarding the interpretation of the correspond
complex-valued noise SSE~3.44! carry over to this case.

1. The Markov limit

Taking the Markov limit of the actual SSE results in
noise function of the form

z~ t !5zL~ t !1
g

2
^L̂x& t , ~4.47!

wherezf
L(t)5Ag j(t). The actual SSE becomes

dtucz~ t !&5F2 iĤ ~ t !1~ L̂2^L̂& t!S z~ t !1
g

2
^L̂x& tD

2
g

2
~ L̂xL̂2^L̂xL̂& t!G ucz~ t !&. ~4.48!

This is in Stratonovich form, to compare it to the equivale
homodyne SSE we need to convert it to Itoˆ form. The Itô
correction term for this equation is

dt

2 (
l

S bl

]

]c l
bj1bl*

]

]c l*
bj D

5
dtg

2
~ L̂L̂22L̂^L̂& t2^L̂xL̂& t1^L̂x& t^L̂& t

1^L̂& t^L̂& t!ucz~ t !&. ~4.49!

Adding this to the Stratonovich SSE we get the followinĝ
SSE:

ducz~ t !&5dtH 2 iĤ ~ t !1~ L̂2^L̂& t!z~ t !2
g

2
dt~ L̂†L̂2L̂^L̂†& t

1L̂^L̂& t2^L̂& t^L̂& t!J ucz~ t !&. ~4.50!

This is the same as the homodyne SSE presented in R
@25,36# when we substitute in Eq.~4.47! for z(t). As in the
coherent case there will be a difference betweenz(t) and the
homodyne current, which from Ref.@25# is I (t)5Ag j(t)
1g^L̂x& t . This difference again comes down to the fact t
in the quantum trajectory theory the measurement occu
time dt later.
01210
-
g

t

fs.

a

V. A SIMPLE SYSTEM

In this section we apply the above theory to a very sim
non-Markovian system: a TLA coupled linearly and wi
the same strength to two single mode fields~labeled by
k561) that are detuned fromv0 by 6D, respectively.
Without loss of generality, we can take the coupling stren
g15g to be real. Then the memory function becomes

a~ t2s!52g cos@D~ t2s!#. ~5.1!

Note that this memory never decays, indicating that the
namics of the atom is extremely non-Markovian. This is d
ferent from all cases considered by DSG, where the mem
was taken to decay exponentially. It is thus interesting to
how the formalism copes with this extreme case. At the sa
time, the simplicity of the bath~two modes! means that an
exact numerical solution forr red(t) is relatively easy to find.
This allows verification of the validity of the SSEs in repr
ducingr red(t) by ensemble average, for both the linear a
actual~nonlinear! cases.

We would also like to see the different individual beha
ior of the trajectories corresponding to two different me
surements~coherent state and quadrature measuremen!.
This is readily apparent in this system for the initial cond
tion uc(0)&5ue&, where ue& and ub& are the excited and
ground state of the TLA, respectively, so we choose this
all our simulations.

A. Exact solution

To calculate the exactr red(t) we need to solve the Schro¨-
dinger equation, which is displayed in Eq.~2.8!. For this
simple system we assumeĤ50 and

V̂~ t !5geiDt~ â1
†ŝ2â21ŝ†!1ge2 iDt~ â21

† ŝ2â1ŝ†!,
~5.2!

asV15D52V21 andg5g215g1. Here the Lindblad op-
erator L̂5ŝ5ub&^eu. Since initially the field is in the
vacuum state (u01& ^ u021&) then the only nonzero comple
amplitudes inuC(t)& are

uC~ t !&5c1~ t !ub00&1c2~ t !ue00&1c3~ t !ub01&1c4~ t !ub10&,
~5.3!

whereub00& is shorthand forub& ^ u01& ^ u021&, etc. Apply-
ing the above Hamiltonian to this state we get the followi
four differential equations for the complex amplitudes:

ċ1~ t !50, ~5.4!

ċ2~ t !52c3~ t !geiDt2c4~ t !ge2 iDt, ~5.5!

ċ3~ t !5c2~ t !ge2 iDt, ~5.6!

ċ4~ t !5c2~ t !geiDt, ~5.7!

which can be solved numerically. For the initial sta
ue00&, c2(0)51 and the rest are zero. Once we have
amplitudes for all time we knowuC(t)& and by Eq.~1.1! we
8-13
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can then calculater red(t). For the TLA it is convenient to
define the reduced state in terms of a pseudospin ve
(x,y,z) by

r red~ t !5 1
2 @ I 1x~ t !sx1y~ t !sy1z~ t !sz#, ~5.8!

wherex(t), y(t), andz(t) are real parameters that equal t
expected value of the corresponding spin matrix. These
be found from the above complex amplitudes by

I 5uc1~ t !u21uc2~ t !u21uc3~ t !u21uc4~ t !u2, ~5.9!

x~ t !5c2~ t !c1* ~ t !1c2* ~ t !c1~ t !, ~5.10!

y~ t !52 ic2~ t !c1* ~ t !1 ic2* ~ t !c1~ t !, ~5.11!

z~ t !5uc2~ t !u22uc1~ t !u22uc3~ t !u22uc4~ t !u2. ~5.12!

To graphically illustrate the reduced state we numerica
calculated the above real parameters forD52g. The results
are shown in Fig. 1 as a solid line.

B. Coherent unraveling

For the simple system the memory function, Eq.~3.7!, is
given by Eq.~5.1!, and the noise operator for the cohere
unraveling is

ẑ~ t !5gâ1e2 iD(t2s)1gâ21eiD(t2s). ~5.13!

The linear SSE was obtained when we assumed an osten
probability L(a1 ,a21) equal to the vacuum distribution

L~a1 ,a21!5p22e2ua1u22ua21u2. ~5.14!

FIG. 1. This figure depicts the reduced state calculated by th
different methods; the exact solution~solid line!, the ensemble av-
erage of 1000 SSEs for both the linear~dotted line! and actual
~dashed line! SSE for the coherent unraveling. In this figure a
calculations were done using a simple Euler method with a step
of dt50.0001, a detuning ofD52g, and initial system state of the
form uc(0)&5ue&.
01210
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With this probability distribution, we can write the nois
function as a random variable equation of the form

z~ t !5ga1e2 iD(t2s)1ga21eiD(t2s), ~5.15!

wherea1 and a21 are complex GRVs of mean 0 and var
ance 1.

Applying the simple systems dynamics to Eq.~3.22!, we
obtain

] tuc̃z~ t !&5S z* ~ t !ŝ2ŝ†E
0

t

a~ t2s!
d

dz* ~s!
dsD uc̃z~ t !&.

~5.16!

In Sec. III B we made the general ansatz described by
~3.23!. For this simple system the specific ansatz we will u
is

d

dz* ~s!
uc̃z~ t !&5 f ~ t,s!ŝuc̃z~ t !&. ~5.17!

To work out the functionsf (t,s) we use the following con-
sistency condition@21#:

d

dz* ~s!

]

]t
uc̃z~ t !&5

]

]t

d

dz* ~s!
uc̃z~ t !&. ~5.18!

This gives

] t f ~ t,s!ŝuc̃z~ t !&5 f ~ t,s!F~ t !ŝuc̃z~ t !&, ~5.19!

where

F~ t !5E
0

t

a~ t2s! f ~ t,s!ds. ~5.20!

This allows us to write the linear SSE for the coherent u
raveling as

] tuc̃z~ t !&5@z* ~ t !ŝ2ŝ†ŝF~ t !#uc̃z~ t !&. ~5.21!

This is simple to solve numerically, provided we have a s
lution for F(t).

The best way to calculateF(t) is to split it into to two
terms,F(t)5F1(t)1F21(t), where

F1~ t !5E
0

t

ugu2e2 iD(t2s) f ~ t,s!ds5F21* ~ t !. ~5.22!

Differentiating the above equations forF1(t) and F21(t)
and using Eq.~5.19! and the fact thatf (t,t)51 yields

dtF1~ t !5ugu22 iDF1~ t !1F1~ t !F~ t !, ~5.23!

dtF21~ t !5ugu21 iDF21~ t !1F21~ t !F~ t !, ~5.24!

which can be solved numerically. The initial condition
are F(0)5F1(0)5F21(0)50. Writing uc̃z(t)&5Ce(t)ue&
1Cb(t)ub& gives us the following two differential equations

e

ze
8-14
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dtCe~ t !52Ce~ t !F~ t !, ~5.25!

dtCb~ t !5z* ~ t !Cb~ t !. ~5.26!

For an excited-state initial condition these equation can
solve numerically. Note that these solutions will not rema
normalized, and the norm of most of them becomes v
small. This reflects the fact that a typical individual soluti
of this SSE does not correspond to a typical measurem
result. Nevertheless, the ensemble average of the unnor
ized states isr red(t). To show this we simulated 1000 SS
for differentz(t). The results of this simulation are shown
Fig. 1 as a dotted line, where the agreement with the e
solution is good.

The actual SSE for coherent unraveling is found by
plying the above results to Eq.~3.44!. Doing this we obtain

dtucz~ t !&5$~ ŝ2^ŝ& t!z* ~ t !2~ ŝ†2^ŝ†& t!ŝF~ t !

1^~ ŝ†2^ŝ†& t!ŝ& tF~ t !%ucz~ t !&. ~5.27!

The noisez* (t) in this equation is given by

z* ~ t !5zL* ~ t !1E
0

t

a* ~ t2s!^ŝ†&sds, ~5.28!

where zL(t) is the noise function used in the linear cas
With this SSE the two differential equations for the compl
amplitudes become

dtCe~ t !52Ce
2~ t !Cb* ~ t !z* ~ t !1F~ t !Ce~ t !@211uCe~ t !u2

2uCe~ t !u2uCb~ t !u2#, ~5.29!

dtCb~ t !5Ce~ t !@12uCb~ t !u2#z* ~ t !1F~ t !Cb~ t !uCe~ t !u2

3@22uCb~ t !u2#. ~5.30!

The solution to these equations is an actual state, in
sense that it is normalized, and generated with the ac
probabilities. Thus a typical trajectory does give, at any ti
t, a typical state that corresponds to an observer measuri
at that time in the coherent basis. It is thus worth examin
a typical trajectory, which we have plotted in Fig. 2~solid
line!. The normalization of the state is shown to remain eq
to one, within the error introduced by the integration alg
rithm. To show that the ensemble average of these traje
ries is the reduced state, an ensemble average of 1000
was simulated and the results are depicted in Fig. 1~dashed
line!. We see that the actual case is closer to ther red(t) then
the linear case. This is expected as in general the linear
converges slower than the actual SSE, as most of the s
generated from the linear SSE have virtually no contribut
to the mean.

C. Quadrature unraveling

If we apply the theory for the quadrature unraveling
this simple system, the quadrature noise operator, Eq.~4.4!
becomes
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ẑ~ t !52g$X̂1
1 cos@Dt#1Ŷ1

2 sin@Dt#%, ~5.31!

and the quadrature noise function is

z~ t !52g$X1
1 cos@D~ t2s!#1Y1

2 sin@D~ t2s!#%,
~5.32!

which is real. If we choose the ostensible probability to eq
the vacuum probability, then

L~X1
1 ,Y1

2!5p21e2X1
122Y1

22
. ~5.33!

Thus for the linear caseX1
1 andY1

2 are GRVs of mean zero
and variance 1/2.

For this simple system the quadrature linear SSE,
~4.30!, becomes

] tuc̃z~ t !&5S z~ t !ŝ2ŝxE
0

t

b~ t2s!
d

dz~s!
dsD uc̃z~ t !&.

~5.34!

As for the coherent case we can make an ansatz for
functional derivative. We again choose Eq.~5.17!. This al-
lows us to write the quadrature linear SSE as

] tuc̃z~ t !&5@z* ~ t !ŝ2ŝxŝF~ t !#uc̃z~ t !&, ~5.35!

whereF(T) is given by

F~ t !5E
0

t

b~ t2s! f ~ t,s!ds, ~5.36!

andb(t2s)52ugu2 cos@D(t2s)#.
It turns out for this simple systemF(t) is the same for

both the coherent and quadrature unraveling, becausea(t
2s)5b(t2s). KnowingF(t), we get the following two dif-
ferential equations for the state:

FIG. 2. This figure shows a typical trajectory generated by
actual SSE for both the coherent~solid line! and quadrature~dotted
line! unraveling. These were all done with the parameters define
Fig. 1.
8-15
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dtCe~ t !52Ce~ t !F~ t !, ~5.37!

dtCb~ t !5z~ t !Cb~ t !. ~5.38!

These are the same as for the coherent case, except thaz(t)
is generated differently. To show that the ensemble aver
of the solution to the linear SSE for the quadrature unrav
ing converges tor red(t), 1000 trajectories for differentz(t)
were simulated. The results of these simulations are show
Fig. 3 as a dotted line, where it is seen that the ensem
average of the linear SSE does reproduce the exact solu
for r red(t) with little error.

The actual SSE for quadrature unraveling is found by
plying the above results to Eq.~4.46!,

dtucz~ t !&5$~ ŝ2^ŝ& t!z* ~ t !2~ ŝx2^ŝx& t!ŝF~ t !

1^~ ŝx2^ŝx& t!ŝ& tF~ t !%ucz~ t !&. ~5.39!

The noise,z(t) in this equation is given by

z~ t !5zL~ t !1E
0

t

b~ t2s!^ŝx&sds, ~5.40!

where zL(t) is the noise function used in the linear cas
With this SSE the two differential equations for the compl
amplitudes become

dtCe~ t !5F~ t !Ce~ t !@211uCe~ t !u22uCe~ t !u2uCb~ t !u2#

2F~ t !Ce
3~ t !Cb*

2~ t !2Ce
2~ t !Cb* ~ t !z~ t !, ~5.41!

dtCb~ t !5F~ t !Cb~ t !uCe~ t !u2@22uCb~ t !u2#

1F~ t !Cb* ~ t !Ce
2~ t !@12uCb~ t !u2#

1Ce~ t !@12uCb~ t !u2#z~ t !. ~5.42!

FIG. 3. This figure depicts the reduced state calculated by th
different methods; the exact solution~solid line!, the ensemble av-
erage of 1000 SSEs for both the linear~dotted! and actual~dashed!
SSE for the quadrature unraveling. These where all done with
parameters defined in Fig. 1.
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A typical trajectory from the quadrature SSE is illustrat
in Fig. 2 ~dotted line!. Note the feature that clearly distin
guishes it from the coherent trajectory:y is always zero. To
show that the solution of the actual SSE reproduces the
duced state on average, an ensemble of 1000 actual S
was simulated and the results are depicted in Fig. 3~dashed
line!. We see that it reproduces the exact solution, again w
less error than that from the linear SSE.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have explored non-Markovian stocha
Schrödinger equations by furthering the work of Dios
Strunz, and Gisin@16,19–22#. Specifically, we have inter-
preted their results in the framework of quantum
measurement theory. Their SSEs arise as a special case
the measurement basis of the bath is the coherent state
we label it the coherent unraveling. The benefit of using
measurement interpretation is twofold.

First, it allows us a better understanding of the interpre
tion of non-Markovian SSEs. The state at any timet gener-
ated by the SSE can be interpreted as a conditioned sy
state, given a particular result from a particular measurem
on the bath. However, the measurements at different tim
are incompatible, so the linking together of different sta
over time is, we have argued, a convenient fiction. Thus
trajectory generated by a non-Markovian SSE does not h
the same physical status as that generated by a Marko
SSE, where the measurements at different times are com
ible and the states at different times can represent a si
evolving system.

Second, it allows us to generate other sorts of SSEs
responding to different sorts of measurements on the b
~unravelings!. In this paper we presented a second unrav
ing, based on measuring certain quadrature operators on
bath. This gives rise to an SSE only under certain assu
tions to do with the bath frequencies and couplings. T
resultant SSE contains real-valued noise, as opposed to
complex noise in the SSE of DSG. The ability to construc
non-Markovian SSE with real-valued noise is contrary to
expectation expressed by DSG in Ref.@21#.

We have also shown in this paper that the Markov limit
the quadrature and coherent unravelings are homodyne
heterodyne detection, respectively. As noted above, in
Markov limit the SSE generates a true quantum trajectory
a conditioned system state over time. It is interesting that
arises smoothly as the limit of a non-Markovian SSE th
does not have this interpretation. However, as we h
shown, one has to be very careful with the definition of t
time of measurement in order to reconcile this limit with t
usual quantum trajectory theory.

To illustrate our general theory we have applied it to
simple system: a TLA coupled linearly to just two singl
mode fields detuned from the atom by6D. This is an ex-
tremely non-Markovian problem with no finite memory tim
unlike the previous examples considered by DSG. Never
less, the theory is able to describe the evolution of the a
by an SSE. In Fig. 2 we displayed typical non-Markovi
SSEs for both the quadrature and coherent unraveling, an

e

e

8-16



e
E

d.
er
ib
nt

u
e
t

te

e
iv
y

nly

end
the

be
We
s

c

n-
ysi-
n-

in a
per-
h to

NON-MARKOVIAN STOCHASTIC SCHRÖDINGER . . . PHYSICAL REVIEW A66, 012108 ~2002!
Figs. 1 and 3 we showed that on average both SSEs
generate the exact reduced state.

In conclusion, this paper has presented a significant g
eralization of the DSG approach to non-Markovian SS
However, there are still a lot of questions to be answere

First, is it possible within this framework to derive oth
classes of non-Markovian SSEs? In particular, is it poss
to describe an unraveling based on discrete measureme
the bath, say the in number-state basis?

Second, is there a physical system where our theory co
be naturally applied? That is, is there a physical syst
where the bath could be measured in a suitable basis a
arbitrary time so as to produce a pure conditioned sys
state?

Third, what conditions are necessary for one to be abl
find a suitable ansatz for replacing the functional derivat
with an operator? As we have argued, this is necessar
create a genuine SSE. Yu, Dio´si, Gisin, and Strunz have
p

ar

es
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given a general procedure for finding this operator, but o
when the system dynamics are weakly non-Markovian~the
so-called ‘‘post-Markovian’’ approximation! @39,40#. We sus-
pect that the conditions for finding an exact ansatz dep
upon both the nature of the system and its coupling to
bath.

Fourth, can the techniques of non-Markovian SSEs
applied as a numerical tool for studying real systems?
have in mind potentially strongly non-Markovian system
such as an atom laser@41# or photon emission in a photoni
band-gap material@42,43#?

Fifth, and last, is there an alternative framework to sta
dard quantum-measurement theory in which there is a ph
cal interpretation for a trajectory generated by a no
Markovian SSE? That is, can the states at different times
single trajectory generated by the SSE be interpreted as
taining to a single system in some nonstandard approac
quantum measurements? This is a very open question.
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