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Non-Markovian stochastic Schralinger equations: Generalization to real-valued noise
using quantum-measurement theory
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Do stochastic Schoinger equations, also known as unravelings, have a physical interpretation? In the
Markovian limit, where the systeran averageobeys a master equation, the answer is yes. Markovian sto-
chastic Schrdinger equations generate quantum trajectories for the system state conditioned on continuously
monitoring the bath. For a given master equation, there are many different unravelings, corresponding to
different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular
the sort of stochastic Schitmger equation introduced by Strunz, Bipand GisinPhys. Rev. Lett82, 1801
(1999]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-
valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the
Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Al-
though we use quantum-measurement theory to define these unravelings, we conclude that the stochastic
evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a
fiction.
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I. INTRODUCTION However, this is only an approximation, in the non-
Markovian situation in general one cannot sopg{t) or
In nature, a quantum system is most likely found in an|W(t)) analytically, sop(t) is difficult to determine.
entanglement with at least one other quantum system. An A breakthrough in solving this problem was achieved with
example of this is a two level atofTLA) immersed in an the development of non-Markovian stochastic Sdimger
environment of harmonic oscillatoréhe electromagnetic equationSSE$. These stochastic differential equations for
field). This type of quantum system, a small system interacta state vector were first introduced for Markovian open quan-
ing with a larger systertthe bath is called an open quantum tum systems in mathematical phys[és-12] and then inde-
system[1]. The system-bath interaction causes the two syspendently in quantum opticgl,13,14. This approach has
tems to entangle, resulting in a combined stdtét)) whose subsequently been generalized to deal with non-Markovian
evolution can be theoretically determined by the Sdiwger ~ systemq15-19. In this paper we will follow the approach
equation. However, due to the many degrees of freedom aff Diosi, Strunz, and GisinDSG) [19-22. In their ap-
the bath, this is generally impractical and it is best to deproach, the system state vectar,(t)) [44] depends upon
scribe the systeniTLA) by the reduced statp,{t). The  some(not necessarily whijenoisez(t), which is drawn from
evolution of p(t) is found by averaging the outer product some probability distribution. The SSE has the property that
of the Schrdinger equation over all the possible bath statesywhen the outer product dfi,(t)) is averaged over all the
possiblez(t) one obtaing(t). That is,

Pred 1) = T | ¥ (1) )W (D)]]. ()
Pred ) =E[| (1)) (D[], (1.9

Under the Born-Markov approximatiofg] it is possible
to obtain a closed equation fpf(t). For mathematical con- whereE[ - - - ] denotes an ensemble average over all possible
sistency, this should be of the Lindblad fof@l. If there isa  z(t)’s.

single Lindblad operatdr (such as the lowering operator for ~ In cases where an exact non-Markovian SSE can be de-

the systemthen this is an equation of the form rived, it is also possible to find an exact solution fogLt)
by other means. A key advantage of non-Markovian SSEs

. A N lies in the cases where no exact solution is possible. In this
Predt) = —i[H,pred ) ]+ ¥D[L]pred ), (1.0 case approximations must be made in either approach. The
advantage of the SSE approach is that the ensemble average
predt) is, by construction, guaranteed to be a positive opera-
tor. This fundamental property of a state matrix is not guar-
. o o R anteed by other approximate equations far{t). This is
DIL]pre=Lpred "= 3L Lprea— 3pred- L. (1.3 true even in the Markov limit; quantum Brownian motion is

a case in poinf23]. The other advantage of the SSE ap-

proach in general is that it allows the evolution of large sys-
*Electronic address: j.gambetta@gu.edu.au tems to be simulated numerically. This was the original mo-
"Electronic address: h.wiseman@gu.edu.au tivation for their introduction in quantum opti¢43,14.

whereH is the Hamiltonian and
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Leaving aside the potential usefulness of SSEs, one may d ()= —iA [P (t)) (2.4
ask the question: is there a physical interpretation for the { ot ’
solution of an SSE, or is it simply a numerical tool for find- which can equivalently be written as
ing predt)? In the Markovian limit, that is, when the master
equation has the form E@l.2), the answer is yes. The solu- |W(1))=U(1,0[¥(0)), (2.9
tion to the SSE, termed by Carmichael igj@antum trajec- i ) , i
tory [1], it can be interpreted as the state of the SystenA_(vhereU(_t,O) is called the unitary evolutu?‘n op”erator. Defin-
conditioned on the measurement results obtained by contind?9 @ unitary evolution operator for the *free” system and
ously monitoring the bath?4]. For the Markovian case, dif- ath as
ferent sorts of SSEs exist. They may involve jumps or diffu- iR +h _
sion, and are termed differeninravelingsof the master Uo(t,0)=e (o™ Hoa(170), (2.6

equation[1]. These different unravelings corresp_ond to dif- We can write U(t,0) as U(t,0)=Uo(t,0)U,(t,0), where
ferent detection schemes, such as photon Cou'.ﬁm@’lzl’ Uin(t,0) is the unitary evolution operator that describes the
homodyne[1,24,29, and heterodyn¢25] detection. Other o1 eyolution with the free dynamics removed.

general_ization$26—29]_ h_ave a!so been invest_igated. . We can then define an interaction picture state as
In this paper we will investigate the question of physical

interpretation ofnon-Markoviandiffusive SSEs of Diosi, | W) =Uin(1,0| ¥ (0)), 2.7
Strunz, and Gisin(DSG) [16,19-22. We will show that

quantum-measurement thedi®MT) does give meaning to which obeys

the|y,(t)) at any particular timet. However, the linking of . .

the state y,(t)) at different times to make a trajectory ap- A Wind()) = —i[Hin( 1) + Vi O] Vi), (2.8)
pears to be a convenient fiction. We also show that the theor;
of DSG can be generalized by considering different sorts o
measurementgunraveling$ on the bath. We use our ap-
proach to define two different unravelings. The first results in
DSG SSEs, with complex-valued noizf). In the Markov-

ian limit this unraveling corresponds to heterodyne detection.
The second, which can only be defined for some system-bath i _irpt T _h it

couplings, has real-valued noise and has homodyne detection Vind(1) = 1[bjn( D) Lin(t) = bin( ) Lind(1) ], (2.10
as its Markovian limit. where

he Hamiltonians in the interaction picture are

Hin() =UJ(t,00HU(t,0), 2.9

Il. SYSTEM DYNAMICS AND N 2 oo
QUANTUM-MEASUREMENT THEORY Dini( ) Zkgkake ' 219

A. Schrodinger equation for the combined system “ PO
) . . . . Lind(t)=Le oo, (2.12
With =1, a system interacting with a reservoir of har-

monic oscillators has the total Hamiltonian Here we have finally restricteH, to be such that in the

interaction picture simply rotates in the complex plane as
indicated in Eq(2.12). The interaction picture can be viewed
o o as moving the time dependencies due to the free bath and
Here the system Hamiltonian has been split iftg (the  gystem dynamics from the state to the operators. Unless oth-
action of which is described lateend H (the remainder  erwise stated, the rest of this paper will be in the interaction
The Hamiltonian for the bath is picture and thus we will drop the subscripts “int.”

Hio=Ho+ H + Hpaut V. (2.1

Hpar= Ek: wyajay, (2.2) B. QMT and conditional system states

In open quantum systems a measurement is always per-
~ formed on the bath. Due to the entanglement between the
wherek labels the modes of the bath, and wy aré the  poih anq the system the measurement on the bath resuits in
lowering operator and angular frequency of kié mode, o, jngirect measurement of the systf80]. The state of the
respectively. We assume the interaction Hamiltonian to ha"gystem after the measurement is dependent on the results of
the form the measurement, so we call this a conditional system state.
A aan an To mathematically describe thifr a more detailed descrip-
V=i(Lb"-bL"), (23 tion see Refs[26,30,31) we define|{q,}) as the arbitrary
. basis the measurement is performed in. Note [tftag) does
whereL is a system operator and where we have defined thaot necessarily have to be normalized. For our purposes we
bath lowering operatorb asb=3,g,a,. That is, the cou- restrict|{q,}) to be a state in the interaction picture with no
pling amplitude of thekth mode to the system ig. time dependencgt will be U{(t,0)|{q,}) in the Schrdinger
The Schrdinger equation for the combined state is picture]. A typical example of this is a coherent bath state.
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This is the statgin the interaction pictupethe bath(har-  terms of| z,b{qk}(t», could be interpreted as a SSE. One prob-
monic oscillators has when driven by a classical current |em in determining the time derivative is that E§.17) in-

[32]. _ _ B volves the probabilityP({q},t), which requires knowing
In the basis{{ay}) we can define a probability-operator- |y (t)), and, as mentioned earlier, this in general is indeter-
measure element, or effect, as minable. However, this problem may be overcome using lin-
. ear quantum-measurement theQ@MT).
F{qk}: {ah) {ai!- (2.13 LQMT uses the same principles as QMT except we use an

) ) ostensible distributiopA ({qg,})] in place of the actual prob-
Here the subscrigtoy; is the result of the measurement. The gpility [26,33. As its name suggests, the ostensible probabil-
effect is important as it allows one to calculate the probabilsty gistribution need bear no relation to the actual probability

ity density of resultgqy}, distribution. However, it must be a proper probability distri-
. bution (non-negative, and integrating to unityand must be
P({ai, ) =(W(D[F gy (1)). (2149 nonzero wherever the actual distribution is nonzero. Using

) ] o the ostensible probability distribution, the conditioned sys-
If one was only interested in obtaining probabilities, the ef-tem state is

fect would be all one would need. However, since we are

interested in the state of the system after the measurement, ~ g P (t))
we need to define a set of measurement operators. The con- |iag(D) = W : (2.19
k

straint the measurement operators must obeylfﬁk}
- M?qk}m{qk}' For example, we can decompose the meaWe will call it the linear conditioned system state, because it

surement operators as depends Iinearly on the premeasurement $thi@) ), unlike _
Eqg.(2.17. SinceA({q,}) is not equal to the actual probabil-
I\7I{qk}=|{nk}><{qk}|, (2.15 ity |z,b{qk}(t)> will not be normalized and to signify this we

use a tilde above the state. Note that this notation, following
where{n} is arbitrary, and is the state the bath is left in afterour earlier conventiofi26,28, is the reverse of that used by
the measurement. Since in most detection situations a me®SG[21]. Because it is unnormalized, the linear conditioned
surement results in annihilating the detected field the mosgystem state does not have a clear physical interpretation.
natural choice fofn,} is the vacuum statg0,}. However, it still is useful as it is easier to calculdbevolv-
In QMT the combined state after a measurement at time ing only linear equations and we can write
which yielded result§q,} is [30,31

1, [ (0) ped)= | (adl¥ @)W {addfad
|\I’{qk}(t)>=m . (2.16

- [ 103010y 0 gy 0]
Using Eq.(2.15, with n,=0 for all k, the combined state
after the measurement|i¥ g ,(t)) = [{0})| ¢/1q,4(1)), where =E[|l~ﬂ{qk}(t)><l~ﬁ{qk}(t)|]. (2.20

W(t ~
|$h1qa(D)= <{qk}|—()> _ (2.17  whereE denotes an average using the ostensible distribution
VP({aeht) A({a,}). The condition for obtaining dinear SSE is we

. . . have to be able to write the time derivative of E8.19 in
Equation(2.17) is the conditional system state and we see

here directly how the entanglement between the bath and thtS”"S_ of only| w{f*k}(t»' o

system results in the system state collapsing upon measure- A linear SSE is only really useful |_f it can be transformed

ment of the bath. One of the properties of this conditionalNto @ nonlinear SSE for the normalized stae,(t)). To

system state is that.(t) [Eqg. (1.1)] can be written as do this one requires that there exists a Girsanov transforma-
tion for the variablegq,} [34]. This is a transformation that

kes i he relation b h | probabili
prdt)= [ (aIF T Ol ke o account e relton between the actual probatilty
- f POy (D) gy (D d{ai P{aih )= (POl dgy()A{ad), (22D
:E[|¢{qk}(t)><¢{qk}(t)|]- (2.18  Wwhich follows from Eqgs.(2.19 and(2.14). Specifically, the

Girsanov transformation is a time-dependent transformation

whereE denotes an average over the distributf{q,},t).  that changes the variablég,} into the variablegq} such
From Eq.(1.4) we see that the conditional state satisfies thethat

same requirements as a solution of a SSE. This suggests that N A

the time derivative of Eq(2.17), if it could be written in A({a Hd{ae}=P{aw},t)d{ay}- (2.22
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We can see the usefulness of this transformation as fol- (2) There is a Girsanov transformatigfm } —{q.(t)}
lows. If we normalize the unnormalized states, but keep thguch that an equation fat,q, for all k can be found explic-
same ostensible distribution, then the ensemble average witly.

not reproducepo(t), (3) Equation (2.28 can be written in terms of only
da) | 1aa (1))
Ak If we can satisfy all these conditions then we have a SSE
t d + t). ; - o ;
f | {qk}|2 ll’lj{qk}( )><l’/j{qk} ) e # pred V) that generates a state with a definite physical interpretation.

(2.23 The SSE generates a state at tipevhich is of the form of
Eq. (2.17. This is clearly the normalized state conditioned
However, if {q,} are chosen from the actual distribution on a measurement being performed at titmen the entire

then, of course it does, bath, and yielding resultg,}.
It is important to note, however, that the linking of the
({awht) states at earlier times to form a trajectdwhich is how the
f |¢ |2 |‘/’{qk}(t)><‘/’{qk}(t)|d{Qk} Predt)- SSE generates the state at tihe@ppears to be a convenient
{a fiction. A measurement on the whole bath at tihig clearly

(2.24 incompatible with a similar measurement at an earlier time.

It is only in the Markovian limit that compatible bath mea-

surements can be made, so that the quantum trajectory as a

{QK}) ~ thilet'can be int?r%r%te?hphéssicl:zally. InI o'lthir vt[/ord?hthehtime
evolution generated by the simply links together hypo-

f | |2 |I/l{Qk}(t)><l/j{qk} |d{qk} Pred ). thetical conditioned states at different times, with different
(2.25 measurement resulfg,(t)}. The relation between the re-

sults at different times is purely mathematical, not physical.

Note that bot{q,} and{gj} appear here. This means that if The mathematical relation comes from the time- -dependent

we have a linear SSE, we can derive a nonling¢actual”)  Girsanov transformation: the)' corresponding to the(t)

Equivalently, using the ostensible distribution fay;},

SSE by normalizing the state are the same at all times.

| (D)= =[Py (D), (2.26 IIl. COHERENT BATH UNRAVELING

k. k-
[ {qk}| A. Coherent noise operator
where The first unraveling we consider is that associated with
the bath being projected into a multimode coherent state, that
| ¢{qk}| B \/< lﬂ{qk}(t)l lﬂ{qk}(t)> s (227) IS, |{qk}> = |{ak}> where
Nk

but generating the SSE by drawidg;} rather than{q,} Ha =11 ie—|ak\2/22 A Ine) 3.1)
from the ostensible distribution. k K A m /Ny K- ’

Now that we know how to use E@2.26), we can calcu-
late the time derivative o|f¢{qk}(t)> in terms of|l~/,{qk}(t)>_ Note that these states are deliberately not normalized, so that
This results in the multimode integral of the effecff{ak}=|{ak}><{ak}| is

unity. We call the resultant unraveling the “coherent state
unraveling.” For this unraveling we define the noise operator

dil g (1)) = | |ol |w{qk}<t>>+|¢{qk}<t>>dt|~| ,
oyt
k (2.28 2(t) = B(t)ei @ot= Ek gkéke_i“kt, (3.2
where
whereQ = w,— wq. This noise operator has the property
dt|'p{qk}(t»:‘?tlw{qk}(t»"'zk dtqkaqk| ‘/’{qk}(t)>- i(t)l{ak})=z(t)|{ak}), (3.3)

(2.29

Here we have assumed that we can defilpg, so as to

generate a,(t), which ensures that Eq2.22 is always _

satisfied. From the above discussion, it is thus apparent that Z(t)ZEK gae (3.9
the following three conditions must be satisfied if £E2.28

IS to be a SSE for the system st;huqq (). An important property of the bath is its correlation: how
(1) It is possible to obtain a linear SSE, that is, the noise operatoffunction) at timet is related to that at
3t|l//{qk}(t)> time s. This is determined by the commutat@perators or

wherez(t) is the noise function, given by
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correlation function(noise functions For a non-Hermitian E[z(t)z*(s)]=[2(t) %(S)T]: yé(t—s) (3.13
operator there are two important commutators, ’ '

[2(1),2(s)]=0, (3.5 El[z(t)z(s)]=[2(1),2(s)]=0. (3.14
[2(1),2(s)T 1= a(t—s), (3.6)  This implies that ostensibly(t) is a complex Gaussian ran-

_ _ dom variable(GRV) of mean 0 and variance/dt. That is,
where, in the notation of DSG, z(t)=/y £(t), where {(t) is the standard complex white-
noise function[35]. These are the correct correlation func-

a(t—s)zE |92 19Kt (3.7) tion for the heterodyne noise functiofi6].
k

B. The linear stochastic Schralinger equations for the

which we call the memory function. .
coherent unraveling

The second form of correlation is defined in terms of the
noise functions a&[ z(t)z* (s)]. This depends on the prob- In this section we will derive the linear non-Markovian
ability for obtaining the result$a,} in the measurement at SSEs for the ostensible probability introduced above, and
the two times. In linear QMT, these probabilities are givenshow that in the Markov limits it gives the linear heterodyne
by the ostensible distributioh ({a,}), which may be chosen SSE. We use many of the same techniques as DSG. To cal-
to be time independent. It is convenient to chodgéa,}) to  culate the linear SSE we write the Sctireger equation in
be equal to the actual probability that would arise when theerms of the noise operata(t),
bath is always in the vacuum state. That is,

d ¥ (t))y={—iH(t)+Z" () L—z(t)LT} ¥ (1)).
— — K 2 (313

A({ad) = ({ot{ad) ({at{od) == exp( —g |ay )
(3.9 Then by differentiating Eq2.19 with respect to timéwith

. o o gk set toa,) we obtain
wherex=2 . As will be seen later, this is appropriate if the

bath is initially in this state. The correlation for the noise

functions under this assumption is ‘9t|‘~ﬁ{ak}(t)>:{_“:'(t)*”z*(t)t}ﬁlf{ak}(t))
E[2(t)2*(s)]=a(t—s), (3.9 ~{adlzl v ) | (3.16
~ VA(ah)
E[z(t)z(s)]=0. (3.10

Note that we have used the notation discussed below E&SH(t) 's a system-only operator akly| is the left eigen-

. N . . .
(2.20. Thus for the special case where the ostensible prob2tate ofz(t)". To satisfy the condition for a linear SSE we
ability is given by Eq.(3.8), the memory function is equal to must evaluate the last term in this equation in terms of

the correlation of the noise functions. ITﬂ{ak}(t)). To do this we us¢32]
1. The Markov limit a,

Since one of our aims is to consider the Markovian limit {adladv)=| 5 +dq |({ad[¥(t) 3.1
of our non-Markovian SSEGn which one obtains a genuine
guantum trajectory the Markov limit of all our main results d
will be presented. In the Markov limit the number of modes?"
become continuous and the coupling constagt becomes
flat (Jg,/=g) and equal to|y/27 . This allows us to write dax({a| ¥ (1) 4

aatﬁp{ak}(t»: k—/— + ?kﬁb{ak}(t»'
a(t—s)= ljwe‘i(“"woﬂt‘s)dw: T |7 eatago Aiad) 3.1
2w Jo 27 ) g : (3.18

(3.1

and for optical situationghigh wg situation$ with little error
this can be written as

With these two expressions and the definitiorfz(ﬂ),

{adlz(t)|w(t)) ~ ~
w =E gke lﬂkt&a*hﬂ{a }(t)>'
a(t—s)= %J%e"“(‘*)d(}: yd(t—s). (3.12 VA{ag) k o 219
Therefore, This allows us to write Eq(3.16 as
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- . . P i -
I Pray (D) =1 —iH(O) +z* ()L 52—(5)|¢z(t)>20z(t,5)|¢z(t)>. (3.23
_{t e 1%y LT ). whereO,(t,s) is some system operator that is a functio,of
Ek: 9 o (1¥1ag (V) ands, and a functional of. With this ansatz the linear SSE
(3.20 becomes
This is a linear equation in terms 6&,}. Note that it is ﬁt|:j/z(t)>:[ —iH®+z*()L-L"

not really a SSE, as the final term implies that the evolution
of the state|z~p{ak}(t)> depends not only on itself, but upon

neighboring states with different values {&,}. That is, we
cannot simply chooséstochastically a value for{a,} from
the ostensible distribution and then propagate forward thd his is now a true SSE, where each trajectory can be evolved
system state using that value. However, we can maké&dependently. It is the same as the linear SSE that DSG
progress towards an equation where we can do this by rdresented in Refg.20,21. Note that it is non-Markovian
writing the partial derivative in terms of a functional deriva- because the noiseg” (t) is nonwhite, because of the finite
tive. This is done by using the following relatidsee, for  lower limit of the integral, and becau€,(t,s) may depend

t ~ ~
X foa(t— s)Oz(t,s)ds] |, (1)). (3.24

example, Ref[37]): uponz.
5 ft 8 9z*(s) 3.2 1. The Markov limit

* = S, . ian i i L ;

% Josz*(s) gar The next question is what is the Markov limit of this

equation? To find this we use the results of Sec. lll A and the

_ S o fact thatO,(t,t)=L [21]. Applying them to Eq.(3.29 re-
where 0 is the initial time. This gives sults in

atlfvz<t>>=[—iﬂ<t>+z*<t>£—m 1)) = —iH<t>+z*<t>£—%£TE]|Tﬂz(t>>,
(3.29

t S - _ . R . i

XJ a(t—s) - dst[,(1), (3.22 vyherez_(t)— ﬁg(t).. By its method of denvauop, this equa

0 5z%(s) tion is in Stratonovich forni35]. To compare with the stan-
dard Markov equations we should convert it to an $8E.

wherea(t—s) is defined in Eq(3.7). By replacing the par- This (_:an be derived b){ using an a_lrbitrary basis gnd defining
tial derivatives by the functional derivative we have enforced?; = (il#) andL; = (j|L[k). Then if the Stratonovich form

the initial condition| W (0))=|{0,})|#(0)), This is seen as IS
follows. At t=0 the functional derivative term in the above

— . Lk
equation will have zero contribution, from the definition dpi=a; b l* (1), (3.26

(3.21. By comparison with the corresponding term in y,o 1 form (which we indicate by use of the infinitesimals
Eq. (3.20, it follows that dax|iay(1))|i-0=0 for all k. rather than the derivativess

From Eq.(2.19 this is only possible if the system and bath

states initially (at time 0) factorize, and ifA({ay}) . dt . 0
=|{{aw}| ¥pary|?. From our choice3.8) of ostensible prob- dy(t) =a;dt+b;dZ* (dt+ 2 2| bj Ebj-
ability, this enforced ¢, =|{0k}). This is physically ac- ! (3.27

ceptable as we may assume that at time O the system and

bath are uncoupled, and the bath is in the vacuum state. The final term here is the ltoorrection term. Looking at Eq.
Like Eq. (3.20, Eq.(3.22 is not really a SSE because the (325 we see thath; = \/;Ekl—j Wi, and sincedy, [ ayy is

functional derivative means that it depends not upon a statgero for allk, the correction term for this equation is 0. Thus

|4,(t)) at all times for a single value of the functiaft), but  the Ito SSE is

rather also upon states for other values of that function. That

is, we cannot stochastically choos) in order to generate ~ A - Yoin |~

a trajectory independent of other trajectories. Instead, all pos- dle())=dt| —iH(t)+Lz" (1)~ ELTL) [41),

sible trajectories would have to be calculated in parallel. This (3.28

means that the amount of calculation involved in solving Eq.

(3.22 would be comparable to that required for directly which is the standard linear heterodyne SSE presented

solving the Schrdinger equation(2.4). However, in some in Ref. [33] as Z(t) =y L(t) =y (£1(1) +i&x(1)), where

circumstance we can make the following and&t]: £(1) are the standard real-valued white-noise tef8%.
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P({a},0) = (¥ay(0)|day(0)A{a}). (334

In this section we will derive the non-Markovian SSEs for )
the actual probability distribution and show that in the Mar-AS noted above, to obtain E¢B.22 we had to assume that

kov limits it gives the the usual heterodyne SSE. Again, wetne bath was initially in the vacuum state, uncorrelated with
use many of the same techniques as DSG. f[he system. This enforces the equation (_)f th_e initial probabil-
As discussed in Sec. I B, to find an actiiaé., nonlinear ity distribution to be the ostensible distribution

SSE for the normalized state we need to satisfy three condi-
tions. The first was to derive a linear SSE, which we did in
the preceding sectiofby making use of an anstaZlhe sec-
ond condition is to find random variables with the actual
probabilities of measurement results. To work out these ran-

P{a,.0=A({ap)=7"" exp( —Ek: |ak|2> :
(3.39

dom variables{a,} we use the Girsanov transfor(@.21) to
find a first-order partial differential equatidi®DE) for the

From this PDE we can find the characteristic equations

probability, from which the characteristic equation generates

the transformed variables.
To obtain the PDE we differentiate E(.21), giving

dP{ah,t) = (ay (D] 0] Prag (D) A{ard) +c.c.
(3.29
By Eq. (3.20 the above becomes
atP<{ak},t>={<Tp{ak}(t>|tlizf{ak}(t>>§ aggie' ™
_EK @{ak}('fﬂ|A-Tt9a*|;|Tﬁ{ak}(t))le_iQkt
+c.c.} AHa}). (3.30

Using the fact thaﬂfb{ak}(t» is analytical ina} [so that

diay = gee 'YL, (3.36
which integrates to give
t . ~
a’,z(t)za’k‘(O)Jrfogke*'QkS(LT)Sds. (3.37)

The random variable; (0) is one with probability distribu-
tion (3.35. With Eq.(3.37) and our noise function definition,
Eq. (3.4), we can writez(t) as

Z*(t)=a} (0)g} &'+ Jta* (t—s)(LT)ds. (3.38
0

The termaj (0)g; '™ is the noise function one would ob-

Ja | P1ag(1))=0] [20], and the product rule for differentia- tain if the bath were assumed to be in the vacuum state. This

tion, we can simplify the above to
HP({ad, == 2 g™ Mo

X {<~1//{ak}(t) | |:T|l~//{ak}(t)>/\({ak})}+ c.c.
(3.3)

Defining

(ag (DL ey (1)

(B1a (D day ()
(3.32

<|:T>t:<¢{ak}(t)| I:T| ‘/’{ak}(t)>:

allows us to write

#P{ad,t==2 ge Mo {(L)P({ad,n}+cc.
(3.33

This is the PDE for the probability distribution.
At t=0, we have from Eq(2.21) that

is our assumption for the ostensible distribution so we will
label this termz} (t). This allows us to write

z*(t):z;(t)+f;a*(t—s)@*)Sds, (3.39

where z} (t) obeys the correlations expressed in E@s9)
and(3.10.

The third condition was to show that we can write Eg.
(2.28 in terms of only| ¢,(t)). To do this we start by calcu-

lating d,|,(t)). Using Eqs(2.29, (3.22, and(3.21) we get

dtIT/fz(t)>=| —iA®)+zr (L— (LT (LM

ft o dst |9y 3.4
X Ooz(t—s) 52 (9) s{|,(1)). (3.40

Looking at Eq.(2.28 we see that to obtain the actual SSE
we need to calculathy,(t))dy| syl *. Using the above,
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(1)

[(,(D)]dy] d,(1)) +c.C]
|(/f{ak}|

[d,()) ==
) t|¢{ak}|

—[z*<t><E>t—<¢Z<t)|(£*—<£f>t>

|{a}|f alt=s) —— *( [9.40)

X ds+ c.c} [ ,(1))12. (3.41)
Therefore Eq(2.28 becomes
Al (1) ={ =R () + 2* (O L}y (1))
—(LT—=(LM, )|~{ak}|fta(t—s)
—Iwz(t»[z*(t)(i)t

— (P OILT= (LT )=
| {ak}|

J:a(t—s)

o -
52 (9) |¢Z(t)>ds+c.c} / 2. (3.42

X
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dtlwz(t»:{—iH(t>+z*<t>(E—<£>t>
- [ att-si@ =@ n00uts)
0

—((LT=(LT)O,(t,9))}ds||y1)),

(3.449

which is a genuine SSE. This means that an actual @8&-
erating normalized states with their actual probabiljtiesn
only be found if we can make the ansatz describe in Eq.
(3.23.

This SSE is the same as that presented in Refs22.
As shown here, it gives us the state the system would be in if
at timet we performed a measurement in the coherent basis,
and the result wag(t) as defined in Eq3.39. Note that this
means that the resut(t) depends upon the system state at
earlier times in the trajectory generated by the above SSE.
We have argued above that this linking of states at different
times is a convenient fiction, but we see here that it is math-
ematically necessary in order to generate measurement re-
sults for a particular time with the actual probability.

1. The Markov limit

Finally, we are again interested in the Markov limit of this
SSE. Taking the Markov limit of the noise function, one
obtains

2 () =Z5 () + 2(LTY,,

5 ( (3.4

This can be simplified by using the fact that if our SSEwherez} (t) = Jy £ (1).

has the fornd,| ) = (A+ B/2+ B*/2)| ) then we can define

To apply the Markov limit to Eq(3.44) we usea(t—5s)

a state| ¢)=exq [(B—B*)dt/2]|¢) (which is the same state — y&(t—s) andO,(t,t)=L, resulting in

as |¢)) that gives a equivalent SSE, of forah|¢)=(A
+B)|¢). Applying this to the above gives

<£—<E>t>}|¢z(t)>
t
f a(t—s)

5 -
Xz (g A PAOIHLO) (W1

dy (1)) ={—iH (1) +2* (1)

"=
| {ak}|

X (LT—(LH—= t—s
o |iagl 0" 8z* (s)

(3.43

X ds| ().

This is not yet a SSE as it still contai||17$z(t)) terms, how-
ever, if we can make the ansatz described by B3 we
can write this as

—iH(t
dt|¢z(t>>={ i

(D[ 20+ 2T

Y agn PO
- §<L*L—<L*L>o] |4(1)), (3.48
which is in Stratonovich form. To convert this to an BSE

we have to calculate the’lmrrection term in Eq(3.27). For
this equation, the correction term is

dt R A
S0 ED ), @47
which with Eq.(3.46 results in
—iFH{) ..
dt|¢/z(t)>:[ 7 +(L=(L)oz" (V)
~2 (- £<U>t>}|¢z<t)>. (3.48
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This is the 1foSSE for the actual measurement probabilities. . . y .
When we substitute ia* (t) from Eq.(3.45 we get the same 1(t)=2z4(t) + EUiLt(t)LUim(t)- (3.59
heterodyne SSE as that presented in Réf2,25.

Readers familiar with quantum trajectory theory for het-Thjs is the operator form of the heterodyne current, and
erodyne detection may be puzzled by the factor of 1/2 mulshows the extra contribution discussed above. It is similarly

tiplying the deterministic contribution te(t). This function easy to show that the Markov form af(t) is
is, according to the above theory, the result of measuring the

bath at timet in the coherent state basis. But in the usual ~ Y oo
quantum trajectory theorj25] the measuredcomplex het- z)(t)+ EUint(t)LUim(t), (3.59
erodyne current at timeis

where z, (t) = 2,g,2,(0)e ™!, These relations are analo-

(1) =y £(t)+ ¥(L)x, (349 gyous to the Markovian input-output theory of Gardiner and

. o Collett [38]. The correspondences are as follows:
which lacks the 1/2. Where does this discrepancy come

from? To answer this question we have to consider the defi- Zy (D)= bin(1), (3.56
nition of a measurement, and in particular the time of the
measurement. In quantum trajectory theory we must consider 24(D)—b(t) (3.57

the measurement that conditions the state at tiageactually
occurring at a time+dt [26]. That is, thes-correlated bath
must be given a chance to interact with the system before the
measurement is made. By contrast, in the above theory the
measurement occurs exactly at timd=or a non-Markovian IV. QUADRATURE BATH UNRAVELING
bath (with a finite correlation timgthe difference between
andt+dt is infinitesimal. However, in the Markov limit, this
infinitesimal difference in measurement time causes the finit
difference between(t) andl(t).

It is easiest to see this using the Heisenberg picture. From
the above theory,

1(t) Doy ). (3.58

In this section we will present a second unraveling that is
conditioned on real noise and has homodyne detection as its
frarkov limit.

A. Quadrature noise operator
To obtain a SSE with real noise, it is natural to consider a
E[z(t)]1=(W¥()|z(t)| ¥ (1)) quadrature noise operator,
=(W(O)[ ({0 U Z(H)Uin( {0k} 2()=b(t)e'o'e ! *+bl(De e, (4.1

=(p(0) ({0} Zu (1) [{O})| (0)), (3.50  whereb(t) is defined in Eq(2.11) and ¢ is some arbitrary
phase. The noise operator has a two-time commutator

where z,(t) is the Heisenberg noise operator. In quantum

trajectory theory the measurement is defined to take place [2(1),2(s)]= a(t—s)—a* (t—s9), (4.2)
after the system and bath have interacted for a titheso . i
that independent ofp. The phaseb defines the measured quadra-

ture: anx quadrature measurement occurs wlfis set to
zero, and the conjugate measurement ofytggiadrature oc-
curs wheng= 7/2. Unless otherwise stated we will sétto

=(p(0)[({0 U (t+dt)Z(t)Ujry(t+dt)|{0 Z€ero.
(OO Uind 2O Uind IO The basis for the bath measurement{ig,}) and must

=(p(O)|({0HT(D) {0} | (0)). (3.5)  satisfy
Therefore, z(t) [{ah) =z [{a})- 4.3

The problem with this noise function is that it is hdardaybe
impossiblé to work out a time-independent eigenstH®g,})
in the interaction picture. However, we can find the eigen-
By using standard Heisenberg equations it can be showsgtate if we make the assumptions that for every mothere
that exists another mode, which we can labek, such that
et Q_ =—-Qyandg_,=g; . These assumptions simply mean
Ty =5 _ T, that the modes coupled to the system come in symmetric
H(H)=2(0)F ft a(t=8)Ujp(s)LUin(s)ds, pairs about the system frequeney. Without loss of gener-
(3.53 ality we can take th@,’s to be real, absorbing any phases in
the definitions of the bath operators. With all of these as-
which has a Markov limit of the form sumptions we can rewrite E¢4.1) as

E[1(t)]=(¥(t+dt)|z(t)| ¥ (t+dt))

T(t)=Ul(t+dt,t)Zy (1)Ut +dt,t). (3.52
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JAY GAMBETTA AND H. M. WISEMAN

i(t)=k20 29X} cog Qt) + Y, sinQt)]. (4.9

PHYSICAL REVIEW A 66, 012108 (2002

z(t)=k>0 29 Xy cogQt)+ Y, sin(Q,t)]. (4.16

Here we have introduced the two-mode quadrature operato§mcexk+ andY; are realz(t) is also.

Xy =t X2, 4.5
Y=y -0/i2, (4.6

wherex, andy, are the quadratures aof,
A= (Xt iy1)/V2 (4.7

These operators have the commutators
[X Yel=i [X YT=0, (4.8
[Xc . Yi1=0, [X¢ . Y<]=i. (4.9

Since{X; } and{Y, } form two mutually commuting sets

We can define the correlation function for the noise func-
tions as Ez(t)z(s)], and again this depends on the probabil-
ity distribution for the variableX,” andY, . It is again con-
venient to choose the ostensible distribution to be that
corresponding to the bath being in the vacuum state. Explic-
itly we then have

AQX Vi) =7 % 2 A (419

With the usual ostensible distribution the correlation function
is

E[z<t>z<s>]=2go |92 cog Qy(t—5)]=B(t—5),
(4.18

of commuting operators, and thus have a common set of
eigenstates. Sincy(t) is a linear combination of these op- while E[z(t)]=0 as before.

erators, the eigenstates o, } and{Y, } are the|{q.}) we

seek. Therefore we can write the two eigenvalue equations,

?k’ Hah) =Y {ad),

)Aq {ah) = X|<+|{Qk}>-

This suggests that we should write,}) as|{X ,Y,}), but
for brevity we will continue to write it ag{q,}). The form of
the state that satisfies these equations, inythbasis, for a
particulark is

(4.10
(4.11)

dy’ ot
f JTy_w|<y'—Y;)/@_kl(y'+Y;>/ﬁ>ke"xky,

(4.12

while in thex, basis it is

dx’ o
| T 06 e
(4.13

1. The Markov limit

The symmetry assumptions we have made in order to ob-

tain thisi(t) are compatible with the Markov limit in which

the modes become continuous and the coupling constant be-
comes flat ink space(which of cause is symmetric around
wg). As in the coherent case, the memory funct@ft — s)

in the Markov limit equalsyd(t—s). Therefore in this limit

the noise function is ostensibly given ()= 1y &(t)
where&(t) is a real-valued Gaussian white-noise tg386].

B. The linear stochastic Schralinger equation for the
guadrature unraveling

To find the linear non-Markovian SSE we start by apply-
ing our assumptions to the Schlinger equation for the com-
bined state

&I*I'(t»:{ —iIAM+ X gdl(aje+al e

~LT(ae '+ é_kei“kt)]] (1)), (419

Under these assumptions we can show that the memory
function a(t—s) in Eq. (3.7) becomes equal to the real func- Now by Eq.(4.4) we can write this as

tion B(t—s) given by

B(t—s)=2k§0|gk|2comk<t—s>]. (4.14

Thus the commutator expressed in E42) becomes

[2(1),2(s)]=B(t—s)— B(t—s)=0.

Moreover, the noise function is

(4.19

oW (t))= [ —iH(t)+Lz— kEo gkf_x(ékefiﬂkt
+eiﬂkték)] [P (1)), (4.20

whereL, = (L+LT). Using definitions(4.5), (4.6), and(4.7)
we rewrite the above equation as

012108-10
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at|‘1’(t)>:

—iA(t)+zL— 2, gl [X. cog Q)
k>0
+iYy cod Qut) —iX, sin(Q,t)

+Yy sin(th)]J |W(1)). (4.21)

As in the coherent case to find a linear SSE we differen-

PHYSICAL REVIEW A66, 012108 (2002

~ LY ~ o~ . (9
| ¢{qk}(t)>:| —iH (t)+2(t)|-—k§>:0 gk'—x( sin(Qyt) E

J ~
+cog Qi) E) ] [ a0 (D), (4.27)

which is a linear equation solely in terms of the parameters
{X ) and{Y,}.
As in the coherent case, to make progress towards a genu-

tiate Eq.(2.19 with respect to time, except that this time jhe SSE we wish to replace the partial derivatives by a func-
{aw}) is given by Eq(4.13 and the ostensible probability is tjonal derivative with respect to the noise function. To do this

given by Eq.(4.17). Using Eq.(4.21) we obtain

A i (D) =[ —TH () +2()L][P1q (1))

({ad Y 1w (D)

A i)

— > gLy cog Q)
k>0

?I: |Tﬁ{qk}(t)>

+>“<:|Tp{qk}<t>>) +sin( Q)

Qe [ v)
VA{X .Y h)

} . (4.22

The inner products in the above equation can be simplified to

Had X W) =i ——({ad v (), (423
Y

d
Xy

HadlVi vty =—i—{ad|¥ ), (4.29

asX; andY, have the commutators listed in Eq4.8) and
(4.9.
It can also be shown that

J
Iy

J
JAQXS Y D aYe {a| P (1))

+Yi [P (D),

|thq (D)=

(4.295

J -~ 1 J
Z = v
X |¥aa (D) AT D oxe {a (1)

+xk+|~llf{qk}(t)>a (4.26)

and using Eqs(4.23 and (4.24 with the above two equa-
tions we can write the inner products in terms of their con-
jugate variables. This allows us to write the linear equation 2

as

we note that

d _jt 5 9z(s)
ax; Jooz(s) ax;

ds, (4.28

d _ft 5 az(s)OI 429
o, Josz(s) gy, °F '

Thus we obtain

&tlsz(t>>=[ —iFA W +z(H)L

. [t o ~
- fooﬁ(t—s)%ds}lwz(t)), (4.30

where B(t—s) is the memory function for the noise. As in
the coherent state case, this enforces an initial vacuum state
for the bath. The final step to obtaining the linear non-
Markovian SSE with real noise is to assume that the func-
tional derivative can be replaced by an operator as in Eq.
(3.23. With this ansatz the linear SSE becomes

AP (D)=] —iH () +2z(t)L

~ t ~ ~
—fo B(t=35)O4(t,s)ds|[4(1)).
0
(4.3)

1. The Markov limit

Finally, in this subsection we determine the Markov limit
of this equation. Applying the results at the end of Sec. IV A,
we get

[U,(1)), (4.32

atlaz<t>>=(—iﬂ<t>+£z<t>— L

as O,(t,t)=L. This is in Stratonovich from. We transform
this to the Ifoform by using the method in Sec. llIB 1. In
this case the ft@orrection is

dt d dJ ydt
: (bja_lmbj—’—brﬁb]):T;k, Lj,lLl,kl//k!

| (4.33
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and the IfoSSE is

—iH(t) . dty...| -
5 +L2(t)—TLT|— [, (1)),
(4.39

which is the general linear homodyne SE£E3,26 as z(t)
=y &)

d| (1)) =dt

C. The actual stochastic Schrdinger equation for the
quadrature unraveling

As in the coherent case, to find an actual S§&nerating

states with the actual probabiltyve need to find random
variables with the actual probabilities of measurement results

{q}. To sort these out we use the Girsanov transf@ral)

to find a first-order PDE for the probability, from which the
characteristic equation generates the transformed variables

HPHUXE Y b =[P g (D] 4] g, (D)
+e.cAXS Y. (4.35

Using Eqs.(4.27) allows us to write

a
Xy

HPAXE Y b= —go g ——[cog Q1)

X (P DI L rg g (DYAEX Y, D]
S G [sin Q)

— —| Sl
k>ngaY|; n(Qy

X (P (DL g g (OYAEXE YD,
(4.36

This can be simplified to

1%

o [cog Qt)(Ly)P({aitt)]

HPUXE Y hh= —go Ok

J
— > ge——[sin(Q)
k>0 (7Yk

X(LPEX YD, (4.37)
where(L,), is defined by Eq(3.32.
The characteristic equations are
d R
axk* =cog Qyt){Ly):, (4.39
d | R
— Y =sin(Qt){Ly):. (4.39

dt

Integrating these differential equations from time Ot twe
get

PHYSICAL REVIEW A 66, 012108 (2002

t ~
x;(t)zx;(0)+f0 cog O s)(L,)¢ds, (4.40

Y (H)=Y, (0)+ fot sifQs)(Lhds. (4.4

The distribution forX, (0) andY, (0) is due to the quantum
initial conditions. As before, the use of the functional deriva-
tive in Eq. (4.30 implies that the initial bath state is a
vacuum state. Thus, the randomnesXjn(0) andY, (0) is
that of the ostensible distribution,

PUX Y hO=A{X Y D)

exp( — > (XF2+Y?)
_ k>0 (4-423
77_/</2 ' :

With the above random variable equations ¥gr(t) and
Y\ (t) we can write the noise function for the actual prob-
ability as

t ~
Z(t) =z, (1) + fO<Lx>sB(t—S)dS, (4.43

wherez, (t) is the random variable with statistics determined
by the A({X; ,Y, }) distribution. That is, the correlations of
z,(t) are those ofz(t) in Eq. (4.18.

Now we have the correct noise function we can calculate

the actual SSE. As in the coherent case we nghfl,(t)),
and for this case Eq(2.29 will be

dtlTﬂz(t>>=[ —iH () +Lz(t)— (Ly— (L))

t 6 ~
x | =9 s sl 0. (444

Following the same procedure as in the coherent case we
obtain

dt|wz<t)>:[—iﬂ<t>+<£—<£>t>z<t>]|wz<t>>—m
{qk}

R . t o ~
XL (80 | Bt gy ATt

. t
+=———((Ly—= (Lo | B(t—s)
lw{qk}ml( (b fo

é ~
X 520s) 48 () 42(). (4.45

Again this is not a SSE until we make the ansatz defined in
Eq. (3.23, which gives
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V. A SIMPLE SYSTEM

d (0)=| —iA ) +(L—(L)pz(t)— (L= (L))

In this section we apply the above theory to a very simple
non-Markovian system: a TLA coupled linearly and with
b A ~ e the same strength to two single mode fieldsbeled by

xfoﬁ(t S)OZ(t’S)dS+<(LX (L) k==x1) that are detuned fronwy, by *A, respectively.
Without loss of generality, we can take the coupling strength

t R _ .
x foﬁ(t—s)oz(t,s)ds> )|¢’z(t)>- (4.46 g,=g to be real. Then the memory function becomes

t a(t—s)=2gcogA(t—s)]. (5.0

This is the act_ual SSE f_or real-val_ued noise. All of the COmM-Note that this memory never decays, indicating that the dy-
ments regarding the interpretation of the correspondinghamics of the atom is extremely non-Markovian. This is dif-

complex-valued noise SSE.44) carry over to this case.  ferent from all cases considered by DSG, where the memory
was taken to decay exponentially. It is thus interesting to see
1. The Markov limit how the formalism copes with this extreme case. At the same
Taking the Markov limit of the actual SSE results in a time, the simplicity of the batlitwo modes means that an
noise function of the form exact numerical solution fgu,.(t) is relatively easy to find.

This allows verification of the validity of the SSEs in repro-
y . ducing pe{t) by ensemble average, for both the linear and
z(t)=2MNt) + §<LX>“ (4.47  actual(nonlineaj cases.

We would also like to see the different individual behav-
ior of the trajectories corresponding to two different mea-
surements(coherent state and quadrature measurements
This is readily apparent in this system for the initial condi-

0 roe Ye tion |¢(0))=|e), where |e) and |b) are the excited and
dt"’/IZ(t»_[ HO+(L <L>t)(z(t)+ 2<Lx>t) groul]d staite |0f>the TLA,| r>espect|ivgly, so we choose this for
all our simulations.

wherezj(t) =y £(t). The actual SSE becomes

~S(EL~(TL)0 40, (.49

A. Exact solution

This is in Stratonovich form, to compare it to the equivalent di To calcula’Fe the ﬁ?(z:]qi.re‘)(;? wle nedeq tOESOhée tpe S(r:]hro
homodyne SSE we need to convert it to ftom. The Ifo inger equation, which is displayed in E(.8). For this

correction term for this equation is simple system we assunie=0 and
” J 5 V(t)=gé*ialo—a_jo")+ge @’ ,o0—a;o"),
_ — b 4+b*—D. (5.2
5 Z (b|(wlbj+b, pr bJ>

as()=A=-Q_, andg=g_,=0;. Here the Lindblad op-
dty .. NS PPN ~ ~ erator L=o=|b){e|. Since initially the field is in the
=X EE 2L (D (L) (LD o= [b)(el y

2 vacuum state|0,)®|0_,)) then the only nonzero complex
o amplitudes in W (t)) are
+H(L)L)o (1)) (4.49
| W (1)) =c1(t)|b00) + c,(t)|€00) + c5(t)|bOL) + c4(t)|b10),
Adding this to the Stratonovich SSE we get the following Ito (5.3

SSE: where|b00) is shorthand fotb)®|0,)®|0_,), etc. Apply-

ing the above Hamiltonian to this state we get the following
d|<ﬂz(t)>=dt( A+ (L—(D)pz(t)— gdt(f_*ﬂ— [(it, four differential equations for the complex amplitudes:

ci()=0, (5.4
LD O] 190, @50 | _ |
I Cot)=—ca(t)ge—cyhge Y, (55
This is the same as the hqmodyne SSE presentt_ad in Refs. ca(t)=c,(t)ge 2, (5.6)
[25,36 when we substitute in Eq4.47) for z(t). As in the
coherent case there will be a difference betwe@h and the 64(t) =c,(t)gedt, (5.7

homodyne current, which from Ref25] is 1(t) =y &(t)

+(L,),. This difference again comes down to the fact thewhich can be solved numerically. For the initial state
in the quantum trajectory theory the measurement occurs [@00), c¢,(0)=1 and the rest are zero. Once we have the
time dt later. amplitudes for all time we knoy¥ (t)) and by Eq.(1.1) we
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1 g ; g g With this probability distribution, we can write the noise
% 0 : : § : function as a random variable equation of the form
e e 1A= A(t-9)
-10 P 4 5 5 10 z(t)=gae +ga_,€e , (5.15
5 wherea; anda_,; are complex GRVs of mean 0 and vari-
>0 ance 1.
Applying the simple systems dynamics to Kg§.22), we
obtain

1)
07* (

ds) [d,(1)).
s)
(5.1

In Sec. lllB we made the general ansatz described by Eg.
(3.23. For this simple system the specific ansatz we will use

- A N t
aliy=| 2 He—ot Joau—s)

4 6 8 )
time (g) IS
FIG. 1. This figure depicts the reduced state calculated by three S L
different methods; the exact soluti¢solid line), the ensemble av- | ih,(1))="1(t,8)a|,(1)). (5.17
erage of 1000 SSEs for both the line@otted ling and actual 8z* (s)

(dashed ling SSE for the coherent unraveling. In this figure all

calculations were done using a simple Euler method with a step siz&0 Work out the functiong(t,s) we use the following con-
of dt=0.0001, a detuning of = 2g, and initial system state of the Sistency conditiorj21]:

form [4(0))=|e).

5 0~ J &5 -
can then calculatgt). For the TLA it is convenient to 57*(s) EW’Z(U): at 87*(s) [42(1)). (518
define the reduced state in terms of a pseudospin vector
(x,y,2) by This gives
prea()=z[1+x()oty(t)oy+z(t)o,], (5.9 af(1,8) 0| g (1)) =F(1,5)F () o|g(1)),  (5.19
wherex(t), y(t), andz(t) are real parameters that equal the where
expected value of the corresponding spin matrix. These can
be found from the above complex amplitudes by t
F(t)= | a(t—s)f(t,s)ds. (5.20
0

I=|cy(t) |2+ ]ca(t)2+|ca(t)*+]ca(D)]?, (5.9

This allows us to write the linear SSE for the coherent un-
X(t)=cy(t)cy (1) +c3 (t)cq(t), (5.10 raveling as

y(t)=—ic,(t)ci () +ick (t)cy (), (5.11 a0y =[2"(o—a aF()]|P(). (5.2D

2(t)=|co(1) 2= ey () [2=|cs(t) 2= |ca(D) ]2 (5.12 This is simple to solve numerically, provided we have a so-
lution for F(t).
To graphically illustrate the reduced state we numerically The best way to calculatg(t) is to split it into to two
calculated the above real parameters/for 2g. The results  terms,F(t)=F,(t) +F_(t), where
are shown in Fig. 1 as a solid line.

t )
Fl(t)zf |g|2e "At"9f(t,5)ds=F* (). (5.22
B. Coherent unraveling 0

~ For the simple system the memory function, &8,7), is  Differentiating the above equations fét;(t) and F_y(t)
given by Eq.(5.1), and the noise operator for the coherentand using Eq(5.19 and the fact thaf(t,t)=1 yields
unraveling is

. . . diF (D) =[gl2=iAF () +F(DF (D),  (5.23
z(t)=ga,e 2t +ga 279, (5.13
_ _ _ dF-1(H)=[gl>+IAF_y() +F_y(OF (1), (5.24
The linear SSE was obtained when we assumed an ostensible

probability A (a;,a_4) equal to the vacuum distribution which can be solved numerically. The initial conditions
, , are F(0)=F,(0)=F_;(0)=0. Writing [#,(t))=Cq(t)|€)
A(ay,a_q)=m2e lal"~la-al", (5.14  +Cy(t)|b) gives us the following two differential equations:
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diCe(t)=—Ce()F(1), (5.29

diCp(t) =Z* (1) Cp(1). (5.26

For an excited-state initial condition these equation can be
solve numerically. Note that these solutions will not remain = o
normalized, and the norm of most of them becomes very
small. This reflects the fact that a typical individual solution
of this SSE does not correspond to a typical measuremen o o
result. Nevertheless, the ensemble average of the unnorma N OF A oAy L0
ized states ip(t). To show this we simulated 1000 SSE

-1

" ; : ; ;

for differentz(t). The results of this simulation are shown in = { 5452 2 4 6 8 10
Fig. 1 as a dotted line, where the agreement with the exacg 5 5 5
solution is good. S
The actual SSE for coherent unraveling is found by ap- 1
plying the above results to E¢3.44). Doing this we obtain 0
dy '//z(t)>:{(<}_<<}>t)2*(t)_(‘}T_<&T>t)(}F(t) FIG. 2. This figure shows a typical trajectory generated by the
~ L actual SSE for both the coheresblid line) and quadraturédotted
+{(aT= (o) o) F (1)} gy(1)). (5.27 line) unraveling. These were all done with the parameters defined in
Fig. 1.

The noisez* (t) in this equation is given by
2(t)=2g{X; cogAt]+Y; siMAt]}, (5.30)

t
*t=*t+f*t— o')ds, 5.2 . o
Z W)=z oa (t=s)(o)ds (.28 and the quadrature noise function is

where z,(t) is the noise function used in the linear case. 2(t)=2g{X] cogA(t—s)]+Y; siMA(t-s9)]},
With this SSE the two differential equations for the complex (5.32
amplitudes become

P which is real. If we choose the ostensible probability to equal

d,Co(t) = — C2(1)CE (1)Z* (1) + F (1) Co(t)[ — 1+ | Co(1)|2 the vacuum probability, then
—[Ce(O?Cu())?], (5.29 AXE Y = te X P Ye?, (5.33

d,Cp(t) =Co(t)[1—|Cp(1)|2]2* (t) + F(t)Cp(1)| Co(t)|? Thus for the linear cas¥; andY; are GRVs of mean zero

_ 2 and variance 1/2.
X[2=]Cy(1)]7]. (5.30 For this simple system the quadrature linear SSE, Eq.
The solution to these equations is an actual state, in thg"g@’ becomes
sense that it is normalized, and generated with the actual 5 ot 5 5
probabilities. Thus a typical trajectory does give, at any time ;| ,(t)) = z(t)a—oxj B(t—s) ds||i,(t)).
i g 0 oz(s)
t, a typical state that corresponds to an observer measuring it
at that time in the coherent basis. It is thus worth examining (5.34

a typical trajectory, which we have plotted in Fig.(®olid
. ) . . s for the coherent case we can make an ansatz for the
line). The normalization of the state is shown to remain equa X R - .

unctional derivative. We again choose H§.17). This al-

to one, within the error introduced by the integration algo—IOWS us 1o write the quadrature linear SSE as
rithm. To show that the ensemble average of these trajecto- q
ries is the reduced state, an ensemble average of 1000 SSE ~ kA~ ~

was simulated and the results are depicted in Fitdakhed W P0)=[Z" (o= 0FO][¢t), (539
line). We see that the actual case is closer toghgt) then .

the linear case. This is expected as in general the linear Ss\@ereF(T) 's given by

converges slower than the actual SSE, as most of the states ¢

generated from the linear SSE have virtually no contribution F(t)=f B(t—s)f(t,s)ds, (5.3
to the mean. 0

and B(t—s) =2|g|? cogA(t—9)].
It turns out for this simple systerR(t) is the same for
If we apply the theory for the quadrature unraveling toboth the coherent and quadrature unraveling, becaifse
this simple system, the quadrature noise operator,(£¢) —s)=pB(t—s). Knowing F(t), we get the following two dif-
becomes ferential equations for the state:

C. Quadrature unraveling
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1 ! g g ! A typical trajectory from the quadrature SSE is illustrated
< 0 ‘ : : : in Fig. 2 (dotted ling. Note the feature that clearly distin-
: : ' guishes it from the coherent trajectonyis always zero. To
“To > a 6 8 10 show that the solution of the actual SSE reproduces the re-
1 3 ; ; T duced state on average, an ensemble of 1000 actual SSEs
-0 i : : ‘: was simulated and the results are depicted in Figla&hed
‘ é é ; line). We see that it reproduces the exact solution, again with
o > ' ' ' less error than that from the linear SSE.
1 .
N O V1. DISCUSSION AND CONCLUSIONS
1_10 2 . In"this paper we have explored non-Markovian stochastic
e B 3 _ T Schralinger equations by furthering the work of Diosi,
g 1 s Strunz, and Gisif16,19-23. Specifically, we have inter-
0.9 ; : : ; preted their results in the framework of quantum-
o 2 4 6 8 10 measurement theory. Their SSEs arise as a special case when
time (g) the measurement basis of the bath is the coherent states, so

we label it the coherent unraveling. The benefit of using the

FIG. 3. This figure depicts the reduced state calculated by thre . S
g P y measurement interpretation is twofold.

different methods; the exact soluti¢solid line), the ensemble av-

erage of 1000 SSEs for both the lindelotted and actualdashedl . First, it allows us a better understanding of thg interpreta-
SSE for the quadrature unraveling. These where all done with thH0n Of non-Markovian SSEs. The state at any titrgener-
parameters defined in Fig. 1. ated by the SSE can be interpreted as a conditioned system
state, given a particular result from a particular measurement
d,Ce(t) = — Co(t)F(1), (537 ©On the bath. However, the measurements at different times
are incompatible, so the linking together of different states
d,Cp(t) =2(t)Cy(1). (5.39  over time is, we have argued, a convenient fiction. Thus the

trajectory generated by a non-Markovian SSE does not have
These are the same as for the coherent case, excep(that the same physical status as that generated by a Markovian
is generated differently. To show that the ensemble averageSE, where the measurements at different times are compat-
of the solution to the linear SSE for the quadrature unravelible and the states at different times can represent a single
ing converges te.4(t), 1000 trajectories for differers(t) evolving system.
were simulated. The results of these simulations are shown in Second, it allows us to generate other sorts of SSEs cor-
Fig. 3 as a dotted line, where it is seen that the ensembleesponding to different sorts of measurements on the bath
average of the linear SSE does reproduce the exact solutiddnravelings. In this paper we presented a second unravel-

for predt) with little error. ing, based on measuring certain quadrature operators on the
The actual SSE for quadrature unraveling is found by apbath. This gives rise to an SSE only under certain assump-
plying the above results to E¢4.46), tions to do with the bath frequencies and couplings. The
resultant SSE contains real-valued noise, as opposed to the
dif (1) ={(0— () Z* (1) = (a5~ (T)) oF (1) complex noise in the SSE of DSG. The ability to construct a

A o non-Markovian SSE with real-valued noise is contrary to the
+{(ax— (o)) o) F (O} (1)). (5.39  expectation expressed by DSG in Rfl].
We have also shown in this paper that the Markov limit of

The noisez(t) in this equation is given by the quadrature and coherent unravelings are homodyne and
heterodyne detection, respectively. As noted above, in this
_ RV Markov limit the SSE generates a true quantum trajectory for
2=z, + JO’B(t s){ox)sds, (5.40 a conditioned system state over time. It is interesting that this

arises smoothly as the limit of a non-Markovian SSE that
where z,(t) is the noise function used in the linear case.does not have this interpretation. However, as we have
With this SSE the two differential equations for the complexshown, one has to be very careful with the definition of the

amplitudes become time of measurement in order to reconcile this limit with the
usual quantum trajectory theory.
diCe(t) =F(t)Ce(t)[ — 1+[Ce(t)|*— |Ce(t)[?|Cp(1)[*] To illustrate our general theory we have applied it to a

simple system: a TLA coupled linearly to just two single-
mode fields detuned from the atom hyA. This is an ex-
tremely non-Markovian problem with no finite memory time,
unlike the previous examples considered by DSG. Neverthe-

—F()CAHCEA) - CAHCE(Dz(t), (5.4D

diCp(1)=F (1) Cp(t)|Ce(t)[[ 2~ |Cp(t)|?]

+F(H)CE(D)CAD[1—|Cp(1)?] less, the theory is able to describe the evolution of the atom
by an SSE. In Fig. 2 we displayed typical non-Markovian
+ Co(H)[1—|Cp(1)]|2]2(1). (5.42 SSEs for both the quadrature and coherent unraveling, and in
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Figs. 1 and 3 we showed that on average both SSEs dgiven a general procedure for finding this operator, but only
generate the exact reduced state. when the system dynamics are weakly non-Marko\te
In conclusion, this paper has presented a significant gerso-called “post-Markovian” approximation39,40. We sus-
eralization of the DSG approach to non-Markovian SSE pect that the conditions for finding an exact ansatz depend
However, there are still a lot of questions to be answered. upon both the nature of the system and its coupling to the
First, is it possible within this framework to derive other bath.
classes of non-Markovian SSEs? In particular, is it possible Fourth, can the techniques of non-Markovian SSEs be
to describe an unraveling based on discrete measurement applied as a numerical tool for studying real systems? We
the bath, say the in number-state basis? have in mind potentially strongly non-Markovian systems
Second, is there a physical system where our theory coulduch as an atom laspt1] or photon emission in a photonic
be naturally applied? That is, is there a physical systenband-gap materigk2,43?
where the bath could be measured in a suitable basis at an Fifth, and last, is there an alternative framework to stan-
arbitrary time so as to produce a pure conditioned systerdard quantum-measurement theory in which there is a physi-
state? cal interpretation for a trajectory generated by a non-
Third, what conditions are necessary for one to be able tdlarkovian SSE? That is, can the states at different times in a
find a suitable ansatz for replacing the functional derivativesingle trajectory generated by the SSE be interpreted as per-
with an operator? As we have argued, this is necessary t@ining to a single system in some nonstandard approach to
create a genuine SSE. Yu, Bip Gisin, and Strunz have quantum measurements? This is a very open question.
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