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Resonances of positronium complexes
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Resonances of electron-positron complexes are studied by the stochastic variational method combined with
the complex scaling method. Several low-lying resonances in the positronium negative ion are obtained. One
P-state and nineS-state resonances of the positronium molecule are predicted below the Ps(n51)
1Ps(n54) threshold. The structure of some of these resonances is analyzed.
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Recent developments in the use of low-energy posit
beams have led to a growing interest in positronium~Ps!
related investigation such as the Bose-Einstein condensa
of Ps @1# and the spectroscopy of Ps complexes a
positronic atoms@2#. The possibility of using Ps gas is ex
pected to yield direct information on the Ps molecule form
tion.

Among electron-positron complexes@3#, only the positro-
nium negative ion, Ps2, has been experimentally confirme
to date@4# except for the well-known Ps. Despite the the
retical conclusion that the positronium molecule Ps2 forms a
bound system~disregarding the electron-positron pair ann
hilation!, its existence has not yet been experimentally c
firmed. The ground state~g.s.! of Ps2 has attracted continua
theoretical interest, and its energy has been calculated a
rately. Furthermore, it has been confirmed theoretically@5#
that Ps2 has only four bound states, threeLp501 @6#, and
one 12 state@7#. The latest calculation with the stochast
variational method~SVM! indicates that the binding energ
of the g.s. of Ps2 from the dissociation threshold into two P
atoms is 0.435 eV, while the 12 state lies at 4.506 eV abov
that dissociation threshold. The latter was found to be sta
against the autodissociation from the symmetry consid
ation of the system but decays via the pair annihilation
well as the dipole transition to the g.s.

Though there exist only a few bound states in Ps2 and
Ps2, the existence of resonances may be countless. For
ample, in analogy to the Rydberg series@8#, which are
formed by the positron attaching to the H2 ion, Ps2 may
have resonances of the Ps21e1 structure. Since severa
Ps1Ps thresholds are open below the Ps21e1 threshold, it
would, however, be natural to expect that resonances of
Ps-Ps type appear first at low excitation energies instea
the Ps21e1 series. The study of resonances is not only i
portant for the spectroscopy of the Ps complexes but is
interesting theoretically, especially in highly nonadiaba
systems such as Ps2 because it is unknown beforehand whi
degree of freedom is responsible for the resonating motio
such systems. Calculations of theS-state resonance param
eters of Ps2 and Ps2 were done in Refs.@9–11# with the
complex scaling method~CSM! @12#. Most calculations done
so far have limitations in imposing the proper symmetries
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the constituent particles and/or in considering states w
nonzero angular momenta at least in Ps2. This study shows
that the SVM combined with the CSM~SVM1CSM! facili-
tates the calculation of the resonance parameters of m
complex and general systems reliably.

The most standard approach to find a resonance
coupled-channels method, but a generalization of bou
state solutions to resonances has always attracted muc
terest because of its simplicity. The real stabilization meth
@13# and the method of analytic continuation in the coupli
constant@14# are such examples. Predicting the resona
width requires complex energy calculations at some sta
The CSM is widely used for this purpose in atomic@15,16#
and nuclear physics@17#. A complex absorbing potentia
method@18# has recently been proposed. Its application h
so far been limited to simple cases. These methods work
narrow resonances and have been mostly applied to two-
three-body systems because it is hard to obtain precise s
tions even for bound-state solutions beyond the three-b
system. Recently an SVM with correlated Gaussians@19# has
been used successfully in the diverse problems of ma
particle systems. The secret of the accuracy is the use o
correlated basis and the careful optimization of nonlinear
rameters, which characterize the basis states.

In the CSM, the coordinater is rotated asr→reiu by a
transformationU(u). The rotated resonance wave functio
may be expanded in terms of square-integrable basis fu
tions just as a bound-state solution is expanded,

U~u!CR~x!5(
i 51

K
Ci~u!Pc i~x!x, ~1!

wherex5$x1 ,x2 ,•••,xN21% is a set of the relative coordi
nates,P is a projector onto states with proper symmetry, a
x is a spin function. Linear parametersCi(u) are obtained as
the solution of the equation

(
j 51

K
^Pc ixuU~u!HU21~u!uPc jx&Cj~u!

5Eu(
j 51

K
^Pc ixuPc jx&Cj~u!. ~2!

If the solution corresponds to a resonance exactly,
eigenenergyEu should not depend onu but actually depends
f
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slightly on it as well as on what basis elements are e
ployed. Such eigenenergyEu that is stationary with respec
to u has been identified as giving the resonance paramet
similar procedure was employed in Refs.@10,11,15#.

Hylleraas-type functions are frequently used as ba
functions in atomic systems. Correlated Gaussians are
here because they facilitate the calculation of matrix e
ments for larger systems and high angular momenta,
moreover, provide solutions with high accuracy@19#. The
basis functionc i is given as follows:

c i~x!5uv i uLYLM~ v̂ i !expH 2
1

2 (
j ,k51

N21

Ai jk
xj•xkJ , ~3!

where a vectorv i5( j 51
N21ui j

xj is introduced to describe

nonspherical orbital motion@20#. The elementsAi jk
of an

(N21)3(N21) symmetric matrixAi together with the co-
efficientsui j

are variational parameters.

The SVM1CSM procedure is exemplified in Ps2. The
projectorP is just the antisymmetrizer for the two electron
The relative coordinates chosen arex15re

1
22re1 and x2

5 1
2 (re

1
21re1)2re

2
2. The spin function with an electron sin

glet state is chosen to bex5u↑⇑↓&2u↓⇑↑&, where↑ (↓)
denotes the spin-up~spin-down! state of electrons, and⇑
denotes the positron spin-up state. Figure 1 shows the en
(u50) versus the basis dimensionK, which is increased one
by one following the SVM procedure.1Se (3Se) denotes an
S-wave (L50) positive-parity state with an electron singl
~triplet! state. The energy plateaux are seen at, e.g.,E5
20.076 and20.064 atomic units~a.u.! below the Ps(n
52)1e2 threshold. This first step serves to select the ba
set, which is to be used in the expansion~1!. The wave
function C̃R and the energy corresponding to the stabiliz
solution with a large dimension~say,K5400) approximate
those of the resonance well~cf. Table I! if the resonance
width is narrow.

FIG. 1. Trajectories of the Ps2 states with1Se symmetry as a
function of the basis dimension. Each trajectory has a plat
around the resonance energy. Some trajectories are labeled by
sequence numbers.
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The next step is to calculateEu by solving Eq.~2! with
the basis functions found in the first step. Figure 2 displa
the trajectory of the 14th eigenstate in Fig. 1 as a function
u ~in rad! from 0 to 0.4 in steps of 0.01. The variatio
duEu/du becomes a minimum atE5(20.07603,22.1
31025) a.u., which gives the resonance parameter. The
curacy of the calculation has been checked by looking at
stability of the resonance parameters against the increas
the basis dimension.

Table I compares the resonance parameters calculate
the SVM1CSM with those of Ref.@9#. Two resonances be
low the Ps(n52)1e2 threshold and two resonances belo
the Ps(n53)1e2 threshold were obtained. Two of them a
in good agreement with Ref.@9#. Two more resonances hav
been predicted by the present method. A calculation was
tended to the electron-spin triplet statex5u↑⇑↑& as well.
Three resonances were identified as shown in Table I. To
the resonance atER520.062 505 a.u., only 531026 a.u.
below the Ps(n52)1e2 threshold, a careful calculation i
necessary. The level structure has a close similarity to tha
H2 @21#. The two electrons in the triplet state cannot get ve
close to each other, which makes the coupling to continu
states weak. This explains why the width of the triplet res
nance is, in general, smaller than that of the singlet re
nance.

TABLE I. Resonances of Ps2. ER andG denote the resonanc
energy and width. The first four resonances are in1Se, while the last
three in 3Se.

Present Ref.@9#

2ER ~a.u.! G ~a.u.! 2ER ~a.u.! G ~a.u.!

0.0760297 4.23631025 0.0760305~20! 4.275(100)31025

0.063667 8.9931025

0.0353329 7.6831025 0.0353425~50! 7.25(50)31025

0.029845 5.5231025

0.0635373564 8.131029

0.062505 7.431025

0.02935176 2.031025

u
eir

FIG. 2. Trajectories of the Ps2 resonance labeled 14th in Fig.
as a function of the rotation angleu. The vicinity near the stationary
point is magnified on the right.
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Now we look for resonances of Ps2. The Hamiltonian for
Ps2 is invariant with respect to the interchange of the co
dinates of electrons or positrons as well as the charge re
sal, which provides the symmetry for the eigenstate. Th
eight permutations form a group isomorphic to the po
groupD2d @6#, which classifies the eigenstates according
five irreducible representations:A1 , A2 , B1 , B2, andE. The
E representation is two dimensional and gives twofold
generate levels. The projectorP for each irreducible repre
sentation is given as a combination of the permutations@5,6#.
The spins of the electrons and the positrons compatible w
the representation are determined depending on the repre
tation. Ps2 can form a 01 bound state only inA1 , B2, andE
symmetry and a 12 bound state inB2 symmetry.

The relative coordinates for Ps2 are chosen as the H-typ
~Ps-Ps type! coordinates:x15re

1
22re

1
1, x25re

2
22re

2
1, x3

5 1
2 (re

1
21re

1
1)2 1

2 (re
2
21re

2
1). This choice does not imply

however, that Ps-Ps configurations are favored in the ca
lation @19#. The basis function is expressed in terms of on
the relative coordinates. By subtracting the center-of-m
kinetic energy from the Hamiltonian, we can calculate t
intrinsic energy of Ps2.

Nine 01 resonances were confirmed as listed in Table
Figure 3 summarizes the 01 spectrum of Ps2 including the
bound states. The lifetime of these resonances for the a
dissociation decay is in the range of 0.004–0.4 ps, very s
compared with that due to the 2g annihilation, typically of
the order of nanoseconds, which is determined by the qu
tity ^d(re22re1)& @5#. The calculation of Refs.@10,11# as-
sumed the spin-singlet state for the electrons, specified
definite spin for the positrons and imposed no symmetry
tween the electrons and the positrons. This means that
states withA1 , B2, and/orE symmetry were actually consid
ered. A state of Refs.@10,11# is, in general, a mixed state o
A11B21E symmetry. The resonance withER520.3294
andG50.0056 a.u.@11# is probably a mixed state of the tw

TABLE II. Bound states and resonances of Ps2 classified ac-
cording to theD2d group.ER and G denote the resonance energ
and the width for the autodissociation. States with unspecifieG
value correspond to a bound state.

Lp D2d 2ER ~a.u.! G ~a.u.!

01 A1 0.516003789058
0.3294 0.0062
0.2924 0.0039

B2 0.3146733
0.28976 0.00014
0.27935 0.00007

A2 0.27655 0.00031
B1 0.30814 0.00024

0.2736 0.0017
E 0.33027681

0.2939 0.0043
0.2822 0.0017

12 A1 0.287778 0.00005
B2 0.3344082658
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states of the present calculation, that is theA1 resonance at
ER520.3294 a.u. and theE bound state at ER5
20.33027 a.u. This conjecture is consistent with the f
that the width of Ref.@11# is 90% of that of theA1 reso-
nance. A state assigned as a ‘‘resonance’’ atER5
20.313 a.u.@11# probably corresponds to theB2 bound
state at20.314 67 a.u. The 01(B2) state at20.314 67 a.u.
and the 01(E) state at20.330 27 a.u. are both bound@5#.
For example, the former state becomes bound because it
not decay to the Ps(1s)1Ps(1s) channel due to the charg
parity conservation. Reference@6# also predicted the 01(B2)
and 01(E) states as metastable states atER520.314 468 9
and20.330 046 9 a.u., respectively.

In order to clarify the resonance structure, we calcul
the correlation function defined byC(r )5^C̃Rud(xi2r)
3uC̃R&. Using C̃R seems to be a good approximation f
understanding the characteristic feature of the resonance
choosingx1 and x3 for xi , the correlation function is ex-
pected to give information on what Ps states dominate
how much two Ps are separated in the resonance.

Figure 4 compares the correlation functions for the th
01(A1) states: the g.s.~solid line!, two resonances atER5

FIG. 3. 01 spectrum of Ps2 classified according to theD2d

group. Thick solid and thick dashed lines represent bound states
resonances, respectively. Thin dashed lines represent Ps(n51)
1Ps(n) thresholds. The present results are compared with thos
Ref. @11# ~first column!, in which neither the spin of the positron
nor the charge reversal symmetry is however specified.

FIG. 4. Correlation functions of the three 01(A1) states of Ps2.
Left: r corresponds to the distance between the electron and
positron. Right:r corresponds to the distance between the cente
masses of the two electron-positron pairs.
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20.3294~dashed line!, and20.2924 a.u.~dotted line!. The
left panel shows the functionr 2C(r ) for x1. The g.s. has a
peak at about 2a, with a being the Bohr radius. The densit
multiplied by r 2, of the Ps(1s) atom has a peak at 2a, so the
g.s. of Ps2 consists dominantly of the Ps(1s)1Ps(1s) com-
ponent. The lower resonance has two peaks at abouta
and 9.4a, whereas the higher resonance is at about 2.2a and
24.8a, respectively. The larger positions approximately c
respond to the positions of the outermost peak of the 2s and
3s Ps states, 10.5a and 26.1a, respectively. The main com
ponents of the resonances are thus considered Pss)
1Ps(2s) and Ps(1s)1Ps(3s), respectively, but the devia
tion from these indicates mixtures of several components~It
should be noted thatC(r ) does not map thee2-e1 correla-
tion inside one Ps pair, but has several contributions from
e2-e1 pairs belonging to the different Ps pairs.! The right
panel displays ther 2C(r ) for x3, which shows that the rela
tive motion between two Ps atoms has an increasing num
of peaks and an increasing spread of the distribution w
increasing excitation energy.

To corroborate the above arguments, we list in Table
the examples of ‘‘spectroscopic factors’’ for a particular
state, defined bySnl5(m^C̃RuPnlmuC̃R&, where Pnlm
5ucPsnlm

&^cPsnlm
u. Note that (nlSnl51. The spectroscopic

TABLE III. Spectroscopic factors to dominant Ps states.

Ps2 2ER ~a.u.! S1s S2s S2p

01(A1) 0.516 0.739 0.020 0.090
01(A1) 0.329 0.373 0.329 0.092
es
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factor is a measure of the strength distribution to various
states. A similar analysis was made for the g.s. by using
density-matrix formalism@22#. For the g.s. of Ps2 , S1s is
predominantly large~0.739! and otherSnl values are small,
which is consistent with the fact that the dominant comp
nent of the g.s. is Ps(1s)1Ps(1s). For the lowest 01(A1)
resonance, bothS1s andS2s are by far larger than others, s
this resonance is concluded to have Ps(1s)1Ps(2s) struc-
ture.

As an example of a resonance with nonzeroL value,
12(A1) states were considered. As shown in Table II, a v
narrow resonance was found lying between the Ps(n51)
1Ps(n52) and Ps(n51)1Ps(n53) thresholds.

To conclude, an SVM1CSM method was found to be
versatile for studying resonances ofe2-e1 systems. The cal-
culation for Ps2 confirmed the resonances were similar
H2. Nine resonances withLp501 were identified in Ps2.
The structure of the g.s. and two resonances ofA1 symmetry
were analyzed in terms of the correlation function. T
method was successful in predicting theP-state resonance a
well. The SVM with the correlated Gaussian basis, origina
proposed for bound-state problems, works well even for
lecting those basis elements that are needed to describe
nances, and by combining with some suitable methods s
as the CSM it can predict resonances in complex syst
with confidence.
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