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Comment on ‘‘Photonic tunneling time in frustrated total internal reflection’’
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This is a comment on Stahlhofen’s paper@Phys. Rev. A62, 012112~2000!#. It is shown by stationary-phase
theory that the Goos-Ha¨nchen shift in frustrated total internal reflection~FTIR! is not independent of the group
delay~or phase time in the literature!. The group delay involves the contribution of Goos-Ha¨nchen shift and is
always larger than zero in FTIR. It is also shown that the group delay in the two-dimensional~2D! optical
FTIR can be written in the same form as that of the group delay in the 1D quantum tunneling in the sense that
the group delay is the derivative of the total phase shift with respect to the angular frequency.

DOI: 10.1103/PhysRevA.65.066101 PACS number~s!: 03.65.Ta, 73.40.Gk, 42.25.Gy
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In a recent paper, Stahlhofen@1# investigated the photonic
tunneling time in frustrated total internal reflection~FTIR!.
Apart from brief discussions on the effect of nonspecu
deformations of the transmitted beam, he concluded, by
ing that the group delay~also known as phase time in th
literature! ‘‘allows for vanishing and negative barrier tra
versal times,’’ that the group delay approach ‘‘is not an a
propriate tool to determine the tunneling time in FTIR.’’ I
addition, he claimed that ‘‘the unphysical prediction of t
phase time is caused by the neglect of the Goos-Ha¨nchen
shift, which provides an independent time scale for the t
neling time in the form of a dwell time.’’

In this note, we will point out by the stationary-pha
theory that the group delay in the two-dimensional~2D!
FTIR involves the contribution of the Goos-Ha¨nchen shift. In
other words, the time scale based on the Goos-Ha¨nchen shift
is not independent of the group delay. The total group de
in FTIR is always larger than zero. At the same time, we w
show that the group delay in the 2D optical FTIR can
written in the same form as that of the group delay in the
quantum tunneling.

As is shown in Fig. 1, two prisms of the same refracti
index n are separated by an air gap of thicknessa. A light
pulse comes from the left to the prism-air interface at
incidence angleu that is beyond the critical angle sin21(1/n).
Without loss of generality, we consider TE polarization. L
the electric field of the Fourier component of the incide
pulse be

EW i~xW !5AejkW•xW ẑ, x,0, ~1!

~the time-dependent convention is chosen to bee2 j vt),
whereA5uAuej a, a is the phase of complex amplitudeA,
kW5(kx ,ky)5(k cosu,ksinu), k5nk0 , k0 is the wave num-
ber of light in vacuum, andv is the angular frequency. Th
total phase of the incident wave being

c i5a1kW•xW2vt,

the locusyi5yi(xi) of the incident pulse is determined@2#
by ]c i /]u50, so that
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yi5xi tanu2
]a/]u

]ky /]u
. ~2!

And the motion equation of the incident pulse is determin
by ]c i /]v50, so that

t i5
]a

]v
1

]kx

]v
xi1

]ky

]v
yi . ~3!

Suppose the electric field of the Fourier component
transmitted pulse is

EW t~xW !5Fejkx(x2a)ejkyyẑ, x.a, ~4!

where F5uFuej g. Then the total phase of the transmitte
wave is

c t5g1kx~x2a!1kyy2vt.

The locusyt5yt(xt) of transmitted pulse is determined b
]c t /]u50 to be

yt5~xt2a!tanu2
]g/]u

]ky /]u
, ~5!

FIG. 1. Schematic diagram of frustrated total internal reflect
of light beam.
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and the motion equation of transmitted pulse is determi
by ]c t /]v50 to be

t t5
]g

]v
1

]kx

]v
~xt2a!1

]ky

]v
yt . ~6!

It is seen from Eqs.~2! and~5! that the lateral shift of trans
mitted pulse atxt5a relative to the incident pulse atxi50 is
given by

s52
]~g2a!/]u

]ky /]u
. ~7!

And the time delay of transmitted pulse at point@a,
2(]g/]u)/(]ky /]u)# relative to the incident pulse at poin
@0, 2(]a/]u)/(]ky /]u)# is given, as can be seen from Eq
~3! and ~6!, by

t5
]~g2a!

]v
1

]ky

]v
s. ~8!

Similarly, let the electric field of the Fourier component
reflected pulse be

EW r~xW !5Be2 jkxxejkyyẑ, x,0, ~9!

whereB5uBuej b. Then the total phase of reflected wave

c r5b2kxx1kyy2vt.

The locusyr5yr(xr) of the reflected pulse is determined b
]c r /]u50 to be

yr52xr tanu2
]b/]u

]ky /]u
, ~10!

and the motion equation of reflected pulse is determined
]c r /]v50 to be

t r5
]b

]v
2

]kx

]v
xr1

]ky

]v
yr . ~11!

According to Eqs.~2! and ~10!, we see that the shift of the
reflected pulse relative to the incident pulse at interfacx
50 is

s852
]~b2a!/]u

]ky /]u
. ~12!

And according to Eqs.~3! and ~11!, the time delay of the
reflected pulse relative to the incident pulse at interfacx
50 is

t85
]~b2a!

]v
1

]ky

]v
s8. ~13!

Denotingg2a by f, which means the phase of the com
plex transmission coefficientf5arg(F/A), we have for the
lateral shift of transmitted pulse
06610
d

y

s52
]f/]u

]ky /]u
. ~14!

It is noted thatf defined above is not the phase shift
transmitted wave at point@a, 2(]g/]u)/(]ky /]u)# relative
to the incident wave at point@0, 2(]a/]u)/(]ky /]u)#. In
fact, such a phase shift is, as can be seen from Eqs.~1! and
~4!,

f t5f1kys.

With this phase shift and noting the fact that the spatial
eral shifts is not an explicit function of angular frequencyv,
the time delay~8! of transmitted pulse can be written as

t5
]f t

]v
. ~15!

The same reasoning will give for the lateral shift and tim
delay of reflected pulse

s852
]f8/]u

]ky /]u
, ~16!

t85
]f r

]v
, ~17!

respectively, wheref85b2a is the phase of complex re
flection coefficient f85arg(B/A), and f r5f81kys8 is
the phase shift of reflected wave at point@0,
2(]b/]u)/(]ky /]u)# relative to the incident wave at poin
@0, 2(]a/]u)/(]ky /]u)#.

From above discussions, we see that in the 2D opt
tunneling, the phase shifts of reflected and transmitted wa
relative to the incident wave depend on their lateral shi
Equations~15! and~17! show that the group time delay is th
partial derivative of the total phase shift with respect to t
angular frequency. Such a conclusion in the 2D optical t
neling situation is the same as in the 1D quantum tunne
situation@3,4#.

In Stahlhofen’s discussions, the group time delay of tra
mitted pulse in 2D situation is defined as

ts5
]f

]v
. ~18!

This definition looks like the same as that of the group de
in the 1D quantum tunneling@3#,

tq5\
]fq

]E
, ~19!

whereE is the energy of the incident particle. But they a
physically different. The group time delay~19! is @3,4# the
derivative of the phase shiftfq across the barrier, wherea
the f in Eq. ~18! is not equal to the phase shiftf t , as
discussed above. Furthermore, the asymptotic behavior ots
in the opaque limita→` is also different from that oftq . In
the 1D quantum tunneling through a square potential bar
1-2
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tq approaches a nonzero constant asa→` @2,3#, while ts
approaches zero in the same limit as was shown by St
hofen.

According to Eq.~8!, the group time delayt consists of
two parts, ts and the lateral-shift contribution,t5ts
1(]ky /]v)s. Althoughts allows for vanishing and negativ
values as is shown by Stahlhofen, the total group delayt is
always larger than zero and is dominated by the lateral-s
contribution in the opaque limit. In fact, detailed calculati
gives, neglecting thev dependence of refractive indexn,

t5
2a

kxv f 2 S ky
2sinh 2ka

2ka
2k0

2 cos 2d cos2d D ~20!

and

~]ky /]v!s

ts
5

ky
2

k2 S sinh 2ka/2ka

cos 2d cos2d
21D , ~21!
06610
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where f 25sinh2ka1sin22d, k5(ky
22k0

2)1/2 is the decaying
constant of the evanescent wave in the air gap, andd
5tan21(k/kx). Since ky.k0 when the incidence angle i
larger than the critical angle sin21(1/n), Eq. ~20! shows that
t is larger than zero. Equation~21! shows that whenka
@1, we haveu(]ky /]v)s/tsu@1. That is to say, the Goos
Hänchen shift plays the main role in the total group delay

At last, let us mention that recent optical experiments p
formed by Wanget al. @5# measured negative group delays
light pulse traveling through an anomalous dispersive m
dium. And the negative group delay of particles pass
through a potential well@6# is tested by a microwave analog
experiment@7#. So the negative feature of group delay m
not deny its applicability.

This work was supported in part by the National Natu
Science Foundation of China~ Grant No. 69877009! and the
Science Foundation of Shanghai Municipal Commission
Science and Technology~Grant No. 99QA14001!.
@1# A.A. Stahlhofen, Phys. Rev. A62, 012112~2000!.
@2# A.M. Steinberg and R.Y. Chiao, Phys. Rev. A49, 3283~1994!.
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