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Time evolution of the Wigner function in the entangled-state representation
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For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state
representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule
for entangled Wigner functions is also obtained.
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As is well known in quantum mechanics that the Wign
function W(x,p) of a quantum state described by a dens
matrix r in one-dimensional case is defined as (\51) @1–4#

W~x,p!5
1

2pE2`

` K x1
v
2UrUx2

v
2L e2 ipvdv, ~1!

where ux& is the eigenvector of the coordinate operatorX1

5(a1
†1a1)/A2 ~or named as the quadrature operator

quantum optics theory!. W(x,p) is a quasidistribution func-
tion in the phase space satisfying@2#

P~p!5E W~x,p!dx, P~x!5
1

2pE W~x,p!dp, ~2!

whereP(x)@P(p)# is proportional to the probability for find
ing the particle atx ~at p in momentum space!—marginal
distribution. Based on Eq.~1!, physicists have developed to
mography theory in quantum mechanics@5,6#. The single-
mode Wigner operator is

D~x,p!5
1

2pE2`

` Ux2
v
2L K x1

v
2Ue2 ipvdv. ~3!

Using the technique of integration within an ordered prod
~IWOP! of operators@7,8# the integration in Eq.~3! can be
performed and the result is an explicit operator@9#

D~x,p!5
1

p
:e2(x2X1)22(p2P1)2

ª

1

p
:e22(a1

†
2a8*)(a12a8):

[D~a8,a8* !, ~4!

wherea85(1/A2)(x1 ip), : : denotes normal ordering. Th
Wigner operator also serves as an integral kernel of the W
rule @10# which is a quantization scheme connecting class
functions with their quantum correspondence operators. S
posing the operator Hamiltonian of a single particle isH1

5P1
2/2m1V(X1), then one can derive the time evolutio

equation of the Wigner function governed byH1 ~after re-
covering\) @3,4#,
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]

]x1
2

dV~x1!

dx1

]

]p1
DW~x,p,t !

5 (
k51

` S \

2D 2k ~21!k

~2k11!!

d2k11V~X1!

dx1
2k11 S ]

]p1
D 2k11

3W~x1 ,p1 ,t !. ~5!

In the classical limit, letting\→0, one obtains the Liouville-
like equation

S ]

]t
1

1

m
p1

]

]x1
2

dV~x1!

dx1

]

]p1
DW~x,p,t !50.

In this work we shall deepen and generalize the Wig
function theory to two-mode entangled systems origina
put forward by Einstein, Podolsky, and Rosen~EPR! @11#. In
particular, we want to derive trace product rule for entang
Wigner functions as well as the time evolution equation
the Wigner function in the two-mode entangled-state rep
sentation. In EPR’s treatment, when two systems are
pared in an entangled state, one of the two canonically c
jugate variables is measured on one system and
entanglement is such that the value for a physical variabl
the another system may be inferred with certainty. In tw
mode systems there are a richer variety of quantum phen
ena since there exists the possibility of quantum entan
ments between the modes. For example, these entanglem
may give rise to two-mode squeezing in a nondegene
parametric amplifier@12#. Because entanglement is no
widely used in quantum teleportation, quantum dense c
ing, the introduction of entangled-state representation is
only just for the convenience of some calculations, but a
for revealing the intrinsic entanglement property inherent
some physical systems. For example, using the entang
state representation for describing an electron moving i
uniform magnetic field@13#, we have pointed out that EPR
entanglement is also involved is such a system. As one
see shortly later from Eqs.~13! and ~16! that since the mar-
ginal distributions of the Wigner function for entangle
states are only meaningful in the entangled stateuh& ~or uj&
state! representation, the equation of motion for the e
tangled Wigner function should also be expressed in the
responding phase space.

In Ref. @14# we have successfully established the s
called entangled Wigner operator for correlated two-bo
systems, based on it, the corresponding Wigner function
©2002 The American Physical Society02-1
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two-body correlated system can be conveniently deriv
This entangled Wigner operator is expressed in so-called
tangled statêhu representation as@14#

D~s,g!5E d2h

p3
us2h&^s1huexp~hg* 2h* g!, ~6!

the corresponding Wigner function for a density matrixr is

Wr~s,g!5E d2h

p3
^s1hurus2h&exp~hg* 2h* g!, ~7!

where

uh&5exp$2 1
2 uhu21ha1

†2h* a2
†1a1

†a2
†%u00&,

h5h11 ih2 ~8!

is the common eigenvector ofX12X2 and P11P2 @15#,
which obeys the eigenvector equations

~X12X2!uh&5A2h1uh&, ~P11P2!uh&5A2h2uh&, ~9!

where Xi5(1/A2)(ai1ai
†), Pi5(1/A2i )(ai2ai

†), the
statesuh& span a complete and orthonormal space

E d2h

p
uh&^hu51, ^huh8&5pd~h2h8!d~h* 2h8* !.

~10!

Using the IWOP technique we have performed the integ
tion in Eq. ~6! and obtained the explicit normally ordere
form of D(s,g),

D~s,g!5p22:exp$2usu22ugu21g~a1
†1a2!1g* ~a2

†1a1!

1s~a1
†2a2!1s* ~a12a2

†!22a1
†a122a2

†a2%:,

~11!

which is just the product of two independent single-mo
Wigner operatorsD(s,g)5D(a,a* )D(b,b* ) provided we
take

g5a1b* , s5a2b* , a5 ~1/A2! ~x11 ip1!,

b5 ~1/A2! ~x21 ip2!. ~12!

We nameD(s,g) in Eq. ~6! as the entangled Wigner oper
tor because performing the integration ofD(s,g) over d2g
leads to the projection operator of the entangled stateuh& and
the marginal distribution in (h1 ,h2) phase space

E d2gD~s,g!5
1

p
uh&^huuh5s ,

K cU E d2gD~s,g!Uc L 5
1

pUc~h!u2uh5s . ~13!

Similarly, we can introduce the common eigenvector ofX1
1X2 andP12P2 @16#,

uj&5exp$2 1
2 uju21ja1

†1j* a2
†2a1

†a2
†%u00&,

j5j11 i j2 , ~14!
06410
d.
n-

-

e

which obeys another pair of eigenvector equations

~X11X2!uj&5A2j1uj&, ~P12P2!uj&5A2j2uj&. ~15!

Performing the integration ofD(s,g) over d2s yields

E d2sD~s,g!5
1

p
uj&^juuj5g ,

K cU E d2sD~s,g!Uc L 5
1

pUc~j!u2uj5g , ~16!

which is the marginal distribution in (j1 ,j2) phase space
uc(j)u2uj5g @ uc(h)u2uh5s# is proportional to the probability
for finding the two particles that possess relative moment
A2j2 ~total momentumA2h2) and simultaneously center-of
mass positionj1 /A2 ~relative positionA2h1). The introduc-
tion of the entangled Wigner operator also brings much c
venience for calculating the Wigner function of som
entangled states. For example, using Eqs.~6! and ~10! the
Wigner function of the entangled stateuh& itself can be im-
mediately derived, i.e.,

^huD~s,g!uh&

5E d2h8

p3
^hus2h8&^s1h8uh&exp~h8g* 2h8*g!

5~2p!21d„A2h12~x12x2!…d„A2h22~p11p2!….

~17!

For the two-mode squeezed vacuum stateSu00&, S is the
two-mode squeezing operator that has a neat form in the^hu
representation@17#,

S5exp@2l~a1
†a2

†2a1a2!#5gE d2h

p
ugh&^hu, g5el,

~18!

using Eqs.~6! and~12! we immediately get the Wigner func
tion

WC~s,g![^00uS†D~s,g!Su00&

5
g2

p2
exp@2 usu2/g2 2g2ugu2#. ~19!

We now examine the following expression composed
integrating two Wigner functions

4p2E d2sd2gWr1
~s,g!Wr2

~s,g!. ~20!

Substituting Eq.~7! into Eq.~20! and using Eq.~10! we have
2-2
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4p2E d2sd2gWr1
~s,g!Wr2

~s,g!

54E d2sd2gE d2h

p
^s1hur1us2h&ehg* 2h* g

3E d2h8

p3
^s1h8ur2us2h8&eh8g* 2h8*g

54E d2sE d2h

p2
^s1hur1us2h&^s2hur2us1h&.

~21!

Let s1h5t, s2h5l, then Eq.~21! becomes

@Eq. ~21!#5E d2tE d2l

p2
^tur1ul&^lur2ut&

5E d2t

p
^tur1r2ut&5Tr~r1r2!, ~22!

where bothul& and ut& are uh&-typeentangled states. Henc
we have

Tr~r1r2!54p2E d2sd2gWr1
~s,g!Wr2

~s,g!, ~23!

this is the trace product rule for entangled Wigner functio
Especially, whenr15uc&^cu andr25uf&^fu are both two-
mode correlated pure states, we have~after recovering\)

Tr~r1r2!5u^cuf&u25U E d2h

p
c* ~h!f~h!U2

54p2\2E d2sd2gWuc&~s,g!Wuf&~s,g!, ~24!

which means the transition amplitudêcuf& can be ex-
pressed by the product of two states’ Wigner function in
grated over the phase space. O’Connell and Wigner first
pressed the inner product of two quantum states as
overlap between two ordinary Wigner functions in ordina
phase space@18#. Further, in Eq.~23! whenr15r2[r, due
to pure state’s Tr(r2)<1, we obtain the relation for en
tangled Wigner function

4p2\2<1/E d2sd2gWr
2~s,g!. ~25!

We now turn to the following question. Corresponding to t
entangled Wigner operator~Wigner function! what is its time
evolution equation when the Hamiltonian of two-body cor
lated system is

H5 P1
2/2m1 1 P2

2/2m2 1U~X12X2!, ~26!

where the potential just depends on the relative distanc
the two particles. By introducing the reduced mass and t
mass M5m11m2 , m5(m1m2)/M , and the mass-weigh
relative momentumPr5m2P12m1P2, and the relative coor-
dinate xr5X12X2, wherem i5mi /M , we can convert Eq
~26! to

H5 P2/2M 1 Pr
2/2m 1U~xr !, P5P11P2 . ~27!
06410
.

-
x-
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-
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From the Heisenberg equation (]/]t)r52 i @H,r# (\51),
we see

]

]t
^s1hurus2h&

52 i ^s1hu„P2/2M1Pr
2/2m 1U~xr !…rus2h&

1 i ^s1hur„P2/2M1Pr
2/2m1U~xr !…us2h&. ~28!

To simplify Eq. ~28! we must knoŵ huPr , for this purpose
we appeal to the Schmidt decomposition ofuh& @19# in the
momentum eigenstate space

uh&5e2 ih1h2E
2`

`

dpup1A2h2&1^ u2p&2e2 iA2h1p. ~29!

It then follows from Eq.~29! andm21m151 that

Pr uh&5e2 ih1h2E
2`

`

dp@m2~p1A2h2!1m1p#up1A2h2&1

^ u2p&2e2 iA2h1p

5F i
]

]~A2h1!
2

1

A2
~m12m2!h2G uh&. ~30!

As a result of Eqs.~30! and ~9! we have

^s1hu ~P2/2M ! 5~s21h2!2/M ^s1hu,

^s1hu~Pr
2/2m!5~1/4m!@ i ]/]~s11h1!

1~m12m2!~s21h2!#2^s1hu. ~31!

On the other hand, usings1h5t, s2h5l, we have
]/](s16h1)5(1/2)(]/]s16]/]h1), using this and Eqs
~10!, ~30!, and~31! we rewrite Eq.~28! as

i
]

]t
^s1hurus2h&

5H 4s2h2

M
1

s2h2

m
~m12m2!22

1

4m

]

]s1

]

]h1

1
i ~m12m2!

2m S s2

]

]s1
1h2

]

]h1
D1U@A2~s11h1!#

2U@A2~s12h1!#J ^s1hurus2h&, ~32!

where 4/M1(1/m)(m12m2)251/m and

U„A2~s11h1!…2U„A2~s12h1!…

52(
k50

`
1

~2k11!!

]2k11U@A2s1#

]~A2s1!2k11
~A2h1!2k11[A.

~33!

Substituting Eqs.~32! and ~33! into

]

]t
Wr~s,g,t !5

]

]tE d2h

p3
^s1hurus2h&exp~hg* 2h* g!,

~34!

and performing the integration by parts we obtain
2-3
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i
]

]t
Wr~s,g!5E d2h

p3
e2i (h2g12h1g2)H s2h2

m
2

1

4m

]

]s1

]

]h1
1

i ~m12m2!

2m S s2

]

]s1
1h2

]

]h1
D1AJ ^s1hurus2h&

5H 2
i

2m
s2

]

]g1
2

ig2

2m

]

]s1
1

i ~m12m2!

2m S s2

]

]s1
1g2

]

]g1
D

12(
k50

`
1

~2k11!!

]2k11U@A2s1#

]~A2s1!2k11 S i ]

]~A2g2!
D 2k11J E d2h

p3
e2i (h2g12h1g2)^s1hurus2h&. ~35!
he
n

e

s
re-

for
tion.
lso
Note that if one wants to discuss the classical limit of t
time evolution equation of the entangled Wigner functio
one should write Eq.~33! as

A52(
k50

`
\2k11

~2k11!!

]2k11U~A2s1!

]~A2s1!2k11 SA2h1

\ D 2k11

, ~36!

and at the same time changee2i (h2g12h1g2) in Eq. ~35! to
e2i (h2g12h1g2)/\). Therefore the equation of motion for th
entangled Wigner function is

H ]

]t
1

1

2m
@s22~m12m2!g2#

]

]g1
1

1

2m
@g22~m1

2m2!s2#
]

]s1
22

]U@A2s1#

]~A2s1!
S ]

]~A2g2!
D J Wr~s,g,t !

5 (
k51

`
2~21!k

~2k11!!

]2k11U@A2s1#

]~A2s1!2k11 S ]

]~A2g2!
D 2k11

3Wr~s,g,t !. ~37!

In order to see the physical meaning of Eq.~37! more clearly,
from Eq. ~12! we notice g5a1b* 5g11 ig2 , g1

5(1/A2)(x11x2), g25(1/A2)(p12p2), s5a2b* 5s1

1 is2 , s15(1/A2)(x12x2), s25(1/A2)(p11p2), thus
06410
, ~1/2m! @s22~m12m2!g2#5
1

A2
S p1

m1
1

p2

m2
D ,

~1/2m! @g22~m12m2!s2#5 ~1/A2! ~p1/m12p2/m2!.
~38!

Hence Eq.~37! is equal to

H ]

]t
1

1

A2
S p1

m1
1

p2

m2
D ]

]g1
1

1

A2
S p1

m1
2

p2

m2
D ]

]s1

22
]U@A2s1#

]~A2s1!
S ]

]~A2g2!
D J Wr~s,g,t !

5 (
k51

`
2~21!k

~2k11!!

]2k11U@A2s1#

]~A2s1!2k11 S ]

]~A2g2!
D 2k11

3Wr~s,g,t !, ~39!

which is comparable with Eq.~5!. From Eq.~39! we see that
this equation is expressed with (1/A2)(x11x2),(1/A2)(x1
2x2), and (1/A2)(p12p2), corresponding to center-of-mas
coordinate, relative coordinate, and relative momentum,
spectively, which is as expected.

In summary, we have derived the equation of motion
the Wigner operator in the entangled-state representa
The trace product rule for entangled Wigner functions is a
obtained.
-
5
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