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Time evolution of the Wigner function in the entangled-state representation
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For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state
representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule
for entangled Wigner functions is also obtained.
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As is well known in quantum mechanics that the Wigner/ 9 1 g dV(xy) o
function W(x,p) of a quantum state described by a density(ﬁ+ Epl(}T_ dx 5) W(x,p,t)
matrix p in one-dimensional case is defined &s=<(1) [1—4] ! rooH
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W(x,p)=%J’:<x+% X— E>e‘ip”du, (1)

=(al+a;)/\2 (or named as the quadrature operator inlik€ equation
quantum optics theojyW(x,p) is a quasidistribution func- ( g 1 9 dV(xy)

1%
tion in the phase space satisfyifi2] E’L Eplﬁ_ dx J)W(x,p,t)=0.
1 1 1

1 In this work we shall deepen and generalize the Wigner
P(p)=fW(x,p)dx, P(X):EJ' W(x,p)dp, (2)  fynction theory to two-mode entangled systems originally
put forward by Einstein, Podolsky, and Rog&PR) [11]. In
particular, we want to derive trace product rule for entangled
whereP(x)[ P(p)] is proportional to the probability for find- Wigner functions as well as the time evolution equation of
ing the particle atx (at p in momentum spage-marginal  the Wigner function in the two-mode entangled-state repre-
distribution. Based on Eq1), physicists have developed to- sentation. In EPR’s treatment, when two systems are pre-
mography theory in quantum mechanié6]. The single- pared in an entangled state, one of the two canonically con-
mode Wigner operator is jugate variables is measured on one system and the
entanglement is such that the value for a physical variable in
1% 1%
X—5 X+ 5

the another system may be inferred with certainty. In two-
e~ iPrdy. 3 mode systems there are a richer variety of quantum phenom-
Using the technique of integration within an ordered produc
(IWOP) of operatord7,8] the integration in Eq(3) can be

ena since there exists the possibility of quantum entangle-
performed and the result is an explicit operd@f

ments between the modes. For example, these entanglements
may give rise to two-mode squeezing in a nondegenerate
parametric amplifier[12]. Because entanglement is now
widely used in quantum teleportation, quantum dense cod-
ing, the introduction of entangled-state representation is not
only just for the convenience of some calculations, but also
1 o L for revealing the intrinsic entanglement property inherent to
A(x,p)=—:e bX)T Ry =€ 2@ e D, some physical systems. For example, using the entangled-
state representation for describing an electron moving in a
=A(a’,a'™*), (4  uniform magnetic field 13], we have pointed out that EPR
entanglement is also involved is such a system. As one can
see shortly later from Eq$13) and(16) that since the mar-
wherea’ = (1/y2)(x+ip), : : denotes normal ordering. The ginal distributions of the Wigner function for entangled
Wigner operator also serves as an integral kernel of the WeMtates are only meaningful in the entangled stafe(or |£)
rule [10] which is a quantization scheme connecting classicastate representation, the equation of motion for the en-
functions with their quantum correspondence operators. Supangled Wigner function should also be expressed in the cor-
posing the operator Hamiltonian of a single particleHg  responding phase space.
=P2/2m+V(X,), then one can derive the time evolution In Ref. [14] we have successfully established the so-
equation of the Wigner function governed bi, (after re- called entangled Wigner operator for correlated two-body
covering#) [3,4], systems, based on it, the corresponding Wigner function of
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two-body correlated system can be conveniently derivedwhich obeys another pair of eigenvector equations
This entangled Wigner operator is expressed in so-called en-

tangled staté 5| representation gs4]
d27] * *
Moy)= | —lo=uXot+lexdny* =7*y), (©

the corresponding Wigner function for a density majiis

d?y
Wp(cr,y):f?(ﬁ nlplo—nexpdny* —7*y), (7

where
| 7)=exp{— 3| 5|?+ nal— »* aj+alal}|00),
n=n1+in; (8)

is the common eigenvector of;—X, and P;+ P, [15],
which obeys the eigenvector equations

Xy =X my=N2m|n), (Pi+P)m)=\2m,7), (9

where X;=(12)(a;+a'), Pi=(1/\2i)(aj—a]), the
states| ) span a complete and orthonormal space
2

d ,
J Tn|77><77|=11 (nln"y=md(n—2n")8(n*—7n*).
(10

Using the IWOP technique we have performed the integra-
tion in Eq. (6) and obtained the explicit normally ordered

form of A(a,7),
A(o,y)=m"2exp{—|o|*~|yI>+ y(aj+a,) + y* (aj+ay)
+o(al—a,) +o*(a;—a}) —2ala; —2ala,):,
(17)

(X1 +X)|E)=V2&1]€),  (P1—P)|&)=12&|¢). (19

Performing the integration ok (o, 7y) overd?c yields

1
J’ dza'A(a',)/): ;|§><§||§=7’

1
<¢’fd20A(017)¢>:;‘¢(§)|2|§=y1 (16)

which is the marginal distribution in&g,¢,) phase space.

| ()12 =, [|¥(m)|?],=,]is proportional to the probability
for finding the two particles that possess relative momentum
J2¢, (total momentumy27,) and simultaneously center-of-
mass positiorf; /2 (relative positiony27,). The introduc-
tion of the entangled Wigner operator also brings much con-
venience for calculating the Wigner function of some
entangled states. For example, using Eg$.and (10) the
Wigner function of the entangled statg) itself can be im-
mediately derived, i.e.,

(nlA(o,y)|7)

2. 1
U ,
=f = (mlo—n" Yo+ 7' |mexpn y*—n*y)

=(2m) " 28(\2 1 — (x1—X%2)) 8(N2 7= (P1+ P2))-
(17)

For the two-mode squeezed vacuum stg@0), S is the
two-mode squeezing operator that has a neat form i #he

which is just the product of two independent single-moderepresentatiofil7],

Wigner operatord\ (o, y) =A(a,a*)A(B,B*) provided we

take
y=a+B*, a= (1IN2) (x,+ipy),

B=(1/\2) (x,+ipy). (12)

o=a—B*,

We nameA (o, v) in Eq. (6) as the entangled Wigner opera-

tor because performing the integration ®fo,y) overd?y
leads to the projection operator of the entangled s$tatend
the marginal distribution in %, 7,) phase space

f d?yA(o 7)=i|77><71|| -
)= o

1
<:,//f dz‘yA(O',’)’)’l//>:;‘l//(77)|2|7]U' 13

Similarly, we can introduce the common eigenvectoXgf

+X, andP,— P, [16],
|&)=exp{— 3| &2+ £al+ £+ a}—alal}| 00),

E=¢&+ié,, (14

d277
S=exp[—)\(a1a£—a1a2)]=gfT|gn><nl, g=e",
(18)

using Egs(6) and(12) we immediately get the Wigner func-
tion

Wiy (o,7)=(00S"A (7, 7)S/00)
2

g
==exd—|o]?g’—g’[y’]. (19
T

We now examine the following expression composed by
integrating two Wigner functions

4w2f d20'd27Wpl(a',y)Wp2(a',y). (20

Substituting Eq(7) into Eq.(20) and using Eq(10) we have
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N From the Heisenberg equatiod/gt)p=—i[H,p] (A=1),
4w jd od®yW, (o,7)W, (7,7) we see
J

d? - _ _

:4J dz"dzyf o+ alprlo—nyer =7 g\t Aelo=m)

d2' , , =—i{o+7|(PY2M+ P2 + U(X,))p|lo— 7)
+ 9 —p\e? Y Yy
f ot lpelo=a) +io+ glp(PU2M + P22+ U(x)|lo— 7). (28

_a[ ¢ d?y . B B . To simplify Eq.(28) we must know 7| P, , for this purpose
- o ?<" nlpilo—n) (o= nlpalotn). we appeal to the Schmidt decomposition| g [19] in the
momentum eigenstate space

(21) .
Let o+ p=7, o— 5=\, then Eq.(21) becomes |n>=e_i”1’72f dp|p+\V27,)1®|—p)e 2P, (29)
d2\
[Eq. (21)]=f dsz ?(T|Pl|)\><)\|P2|T> It then follows from Eq.(29) and u,+ u,=1 that
d2r Pr|77>=e_i’””2f dpl 2P+ 272) + papll P+ V27201
:f?<T|P1P2|T>:Tr(P1P2), (22 o

® | _ p>2e—i V2Zmp
where both\) and|7) are|»)-typeentangled states. Hence
we have

Tr(plp2)24ﬂ-2f dza'dzprl(O',y)sz((r,y), (23)

9 1
= Iﬁ(\/zﬂl) \/E(Ml H2) 72

As a result of Eqs(30) and(9) we have
this is the trace product rule for entangled Wigner function. (o+ 7| (P22M) = (054 1) M {0+ 7],

Especially, wherp,=|#)(¢| andp,=|¢){ ¢| are both two- 9 _ .
mode correlated pure states, we haatter recoveringi) (a+n|(PY2p)=(1/4p)[idld(a1+ 1)
+(p1— ) (oot 7)o+ 7. (3D

d27] 2
Tr(p1p2) = (4| $)|*= thﬂ*(n)cﬁ(n)
On the other hand, using+ =7, o— 7=\, we have

P ald(a1= 1) =(12)(d/do1*=dlIn,), using this and Egs.
=4mh J d“od“yW (o, y)W 4 (a,y), (24 (10), (30), and(31) we rewrite Eq.(28) as

| 7). (30)

. d
which means the transition amplitudes|¢) can be ex- IE<U+ nlplo—n)
pressed by the product of two states’ Wigner function inte-

grated over the phase space. O’Connell and Wigner first ex- doymy 07 , 1 4 9
pressed the inner product of two quantum states as the ~ |7 + “ (1= o) —mr'la—m
overlap between two ordinary Wigner functions in ordinary
phase spacgl8]. Further, in Eq.(23) whenp,;=p,=p, due (1= m2) d
to pure state’s Tig?)<1, we obtain the relation for en- T 2u U2r,l+’72(9_7]l +U[V2(o1+ 71)]
tangled Wigner function
Am2h2< 1/f d2od?yW(a, 7). (25) —U[V2(o1— 71)]{(o+ nlplo—n), (32

2_
We now turn to the following question. Corresponding to theWhere 4M+(1/u) (1~ u2)*=1/u and
entangled Wigner operatéWigner function what is its ime ~ U(v2(o1+ 71))—U(J2(a1— 71))
evolution equation when the Hamiltonian of two-body corre- " i1
lated system is S 1 P IU[V204]

H= P2/2m, + P3/2m, + U(X;—X,), (26) k=0 (2k+1)! g(\20,)%+1

(V2p,) 2 i=A,

where the potential just depends on the relative distance of (33
the two particles. By introducing the reduced mass and totagypstituting Eqs(32) and (33) into

massM=m;+m,, w=(mym,)/M, and the mass-weight PR

relative momentuni, = u,P1— u1P», and the relative coor-  Z\y (o~ t)= — a7 o+ o— ndex "
dinate x,=X;— X,, where u;=m;/M, we can convert Eq. dt o7 D= 5 w3 (ot nlplo=njexeny* =" y),
(26) to (34)

H=P%2M + P{/2p +U(x,), P=P1+P,. (27)  and performing the integration by parts we obtain
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J d’y o2 19 9 i(py— ) J
— = | —L2i(n2v1—m172) S R L B o — |+ + _
1= Wy(0,7) 5 € [ PR TR 2n | T2gg. T 2G| TA (o+7lplo—mn)
B S A b 7 AL 7 Sl ) DN i)
21720y, 2w doy 2u 7250, 2oy,
- 1 ﬁZkHU[\/Eo'l] id )ZKH d’y .
+2 —— 2= my) (g + o—7n). (35
& @D a2 ) ) (o hole=1)
|
Note that if one wants to discuss the classical limit of the 1/(p p
time evolution equation of the entangled Wigner function, (1/2,u)[02—(M1—,u2)72]=—(—1+ —2)
one should write Eq(33) as J2imy my

* ﬁ2k+l (92k+1U 20
AZZE (\/— 1)

K=o (2k+1)! a( \/50-1)2k+1

(| 2L (1120) [ y2— (11— p2) 02]= (1/N2) (py/my—po/my).
h 1) - (36) %9

Hence Eq(37) is equal to

and at the same time changé(72v1~772) in Eq. (35) to d 1[py pz| @ 1/p1 p2) @
e (mv1=m»2/hy Therefore the equation of motion for the B\my  mylay, 2im m,

J— + _—
ot \/5 (70'1
entangled Wigner function is

J 1 g 1 —Zau[ﬁgl]( ’ )]W(U,%t)
gzl ) valg o= o(\2a1) L2y )] "
g _dUN20,][ o :i 22(k—1)"| aZkHU[Ei]( ’ )Zkﬂ
~moaly 2 Bon (ﬁ( \/572)) W, (0, 7) =12k g(\20y) I(\N2,)
XW,(a,7.1), (39)

© . k 2k+1 2k+1
=> 2(-1) < IU[V20y] ( J ) which is comparable with Ed5). From Eq.(39) we see that

=1 (2k+D)! 5202 | a(\2ys) this equation is expressed with (®)(x;+X,),(1/2)(X;
W ( ¢ 3 —X5), and (14/2)(p1— p.), corresponding to center-of-mass
p(0,7,0). (37 coordinate, relative coordinate, and relative momentum, re-
spectively, which is as expected.
In order to see the physical meaning of E8j7) more clearly, In summary, we have derived the equation of motion for

from Eq. (120 we notice y=a+pB*=vy1+iy,, v1  the Wigner operator in the entangled-state representation.
=(IN2)(X1+X2), ¥2=(1N2)(p1—Ps), o=a—p*=0, The trace product rule for entangled Wigner functions is also
+ioy, o1=(IN2)(X1—X5), o2=(1\2)(p1+p,), thus obtained.
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