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Suppression of quadratic cascading in four-photon interactions using periodically poled media

J. P. Fe`ve and B. Boulanger
Laboratoire de Spectrome´trie Physique, 140 Avenue de la Physique, Boıˆte Postale 87, 38402 St. Martin d’Heres Cedex, France

~Received 29 November 2001; revised manuscript received 27 February 2002; published 17 June 2002!

We demonstrate theoretically that periodically poled materials with a suitable poling period can strongly
reduce allx (2):x (2) cascading duringx (3) third-harmonic generation and optical parametric amplification in
noncentrosymmetric crystals: the calculated reduction is, respectively, 3 and 6 orders of magnitude along theX
axis of KTiOPO4 . This is then an original and promising way to achieve efficient pure cubic optical frequency
conversion, for the study of three-photon quantum properties.
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Nonlinear optical interactions produce nonclassical sta
of light, such as squeezed states in the case of second-
interactions. Third-order optical parametric interactions ha
the specific interest of generating new classes of pho
states, with novel statistics@1# and nontrivial quantum inter
ference pattern in their Wigner function@2#. The study and
manipulation of such states would only be possible throu
efficient four-wave optical parametric interactions, such
resonant or nonresonant three-photon down-conver
x (3)(3v5v1v1v), for example@2,3#. No experimental
demonstration has been achieved up to now, despite se
attempts@3#. Due to the very weak amplitude of third-orde
x (3) nonlinear coefficients, efficient frequency conversion
only possible if the four-wave coupling is phase matched
the nonlinear medium. To the best of our knowledge, pha
matched four-wave interactions at wavelengths of interest
quantum optical experiments have only been reported
noncentrosymmetric crystals. In such materials,x (2) coeffi-
cients are nonzero, so that quadratic interactions can oc
even if they are not phase matched, they might be m
efficient than cubic processes because of the relative am
tudes of thex (2) andx (3) coefficients. As an example, durin
third-harmonic generation~THG! the photons at 3v are gen-
erated by direct THG,x (3)(v1v1v53v), and by qua-
dratic cascading interactions,x (2)(v1v52v):x (2)(v
12v53v) simultaneously, which is detrimental to th
study of the specificx (3) photon correlations. InbBaB2O4,
where the largest THG efficiency~'5%! ever was reported
quadratic cascading is more efficient than the phase-mat
cubic process:@x (2):x (2)/x (3)#2'160% @4#. The achieve-
ment of an efficient pure cubic optical parametric interact
is then still an open issue.

In this paper, we demonstrate that parasitic quadratic
teractions can be suppressed by using periodically po
crystals with the suitable period; this will make phas
matched purex (3) interactions possible in noncentrosymme
ric crystals. Such periodic materials have become very po
lar in the past 10 years because quasi-phase-matching~QPM!
leads to efficient three-wave optical parametric interacti
@5#. In contrast, we propose an original use of these mat
als, in order to makex (2) interactions inefficient. The basi
concept is presented in Fig. 1, which reports the nonlin
coefficients involved along theX axis of a periodically poled
KTiOPO4 ~ppKTP! crystal with the periodL52d, whered
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is the length of one single domain. A 50% duty cycle is on
considered throughout the present study. The second-o
coefficients xzzz

(2)(5x33
(2)) and xyyz

(2) 5xyzy
(2) (5x24

(2)) are re-
versed everyd, because periodic poling induces a reversal
the Z axis everyd, while xyyzz

(3) 5xyzyz
(3) 5xyzzy

(3) (5x24
(3)) is left

unchanged under a domain reversal. Depending on the
riod L, the efficiency of the quadratic cascading interactio
will then be lowered or enhanced, always leaving the cu
process efficiency unaffected@6#. Note that for the same rea
son, QPM for four-wave mixing is not possible with th
usual technique ofZ-axis reversal and may be achieved
modulating the refractive indices@7#, which is less efficient
than phase matching. Two examples are considered thro
out the paper: THGx (3)(v1v1v53v), and optical para-
metric amplificationx (3)(3v2v2v5v).

THIRD-HARMONIC GENERATION

THG x (3)(ve1ve1vo53vo) is phase matched alon
the X axis of KTP for the fundamental wavelengthlv

51620 nm;o ande refer to ordinary and extraordinary po
larizations, respectively. Among possible cascades,
dominate: x (2)(ve1vo52vo):x (2)(ve12vo53vo) and
x (2)(ve1ve52ve):x (2)(vo12ve53vo). A maximum ef-
ficiency of 2.4% was achieved with the cascading ra
@(x (2):x (2))/x (3)#2'13% @8,9#. The complex amplitude of

FIG. 1. Quadratic and cubic nonlinear coefficients as a funct
of the propagation distanceX in the ppKTP.
©2002 The American Physical Society14-1
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J. P. FÈVE AND B. BOULANGER PHYSICAL REVIEW A65 063814
the third-harmonic electric field along the direction of prop
gation X is deduced from the set of wave equations of
collinear phase-matched THG under the undepleted pu
approximation@8,10#:

]E~ve,X!

]X
'

]E~vo,X!

]X
'0,

]E~2vo,X!

]X
' j k2v

o x24
~2!~2v!E~vo,0!E~ve,0!

3exp~2 j DkSHG
o-eoX!,

~1!

]E~2ve,X!

]X
' j k2v

e x33
~2!~2v!@E~ve,0!#2 exp~2 j DkSHG

e-eeX!,

]E~3vo,X!

]X
' j k3v

o x24
~2!~3v!$E~ve,0!E~2vo,X!

3exp~2 j DkSFG
o-eoX!1E~vo,0!E~2ve,X!

3exp~2 j DkSFG
o-oeX!%1 j k3v

o x24
~3!~3v!

3@E~ve,0!#2E~vo,0!exp~2 j DkTHGX!.

kv i

o,e5p/hv i

o,elv i
with hv i

o,e is the refractive index; the phas

mismatches of the quadratic processes areDk(va5vb

1vc)5ka2kb2kc , whereki5hv i

o,ev i /c is the wave-vector

modulus. For the phase-matched cubic THG,DkTHG5k3v
o

22kv
e 2kv

o 50. The refractive indices and nonlinear coef
cients of KTP are given in Ref.@8#. The input electric fields
are nil at 2v and 3v, anduE(ve,0)u5&uE(vo,0)u according
to the considered phase-matched set of polarizations. F
nonpoled crystal, the analytical integration of Eq.~1! gives
the total effective coefficient@8#:

xeff
tot~3v!5xeff

casc~3v!2x24
~3!~3v!

with xeff
casc~3v!5

px24
~2!~3v!

l2v
@HSHG

o-eo1HSHG
e-ee#

HSHG
o-eo5

x24
~2!~2v!

h2v
o DkSHG

o-eo and HSHG
e-ee5

x33
~2!~2v!

h2v
e DkSHG

e-ee. ~2!

The coherence lengths of the two SHG’s arel o

5p/uDkSHG
o-eou524.6mm, and l e5p/uDkSHG

e-eeu514.1mm.
The first factor in Eq.~2!, xeff

casc, is responsible for the gen
eration of the third harmonic by the two cascading inter
tionsEcasc(3vo,X), while the second one,x24

(3) , accounts for
the cubic process generatingEcubic(3vo,X). The cascading
is constructed all along the propagation in the crystal,
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causeDkSHG
o-eo1DkSFG

o-eo5DkSHG
e-ee1DkSFG

o-oe5DkTHG50 @8#; the
corresponding intensity,I casc(3vo,X)}uEcasc(3vo,X)u2, in-
creases continuously, as shown in Fig. 2~a!. In the same way,
the intensity generated by the phase-matched cubic proc
I cubic(3vo,X)}uEcubic(3vo,X)u2, increases as a function o
L2. An important point to note is thatxeff

casc and x24
(3) have

opposite contributions in Eq.~2!, so that the generated tota
third-harmonic electric field is lower than the one in the c
bic process alone.

For the ppKTP situation of Fig. 1, the nonlinear coef
cients appear in system~1! as

x i j
~2!~v l ,X!5H 1x i j

~2!~v l !for 2md<X<~2m11!d

2x i j
~2!~v l !for ~2m11!d<X<~2m12!d,

i j 524 or 33 ~3!

x33
~3!~v l ,X!51x33

~3!~v l ! ;X,

where m is an integer, andd(5L/2) is the length of
one domain. The integration of Eqs.~1! with coefficients
~3! gives the total field at the third-harmonic pulsation co
ing out of the crystal, Etot(3vo,X)5Ecasc(3vo,X)
1Ecubic(3vo,X).

The analytical calculation of the generated seco
harmonic fields given in the Appendix allows us to unde
stand the role of the poling period. From each relation~A1!,
if the domain lengthL/2 is equal to an odd multiple of the
consideredl c , the efficiency is maximum, which is the bas
principle of QPM @5#, and which is not interesting in ou
case. In contrast, ifL/2 is an even multiple ofl c , the gener-
ated intensity at 2v oscillates as a function ofX and remains

FIG. 2. Third-harmonic intensity generated by the quadratic c
cading processes along the propagation in the crystal for diffe
poling periods: nonpoled crystal~a!, d56 mm ~b!, andd537mm
~c!, lv51620 nm for all curves.
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SUPPRESSION OF QUADRATIC CASCADING IN FOUR- . . . PHYSICAL REVIEW A 65 063814
very low, as for a non-phase-matched interaction in a n
poled crystal. This is also the case ifL/2 is short compared
to l c . The total third-harmonic field is given by relatio
~A2!. The generated cascading intensity depends on the
tive value of L/2 with respect to both coherence lengt
l e and l o . BecauseDkSHG

o-oe and DkSHG
e-ee have opposite signs

the two complex sumsSo-eo andSe-ee in Eq. ~A2! arep-out-
of-phase. As a consequence, ifk2v

o x24
(2)(2v)So-eo and

k2v
e x33

(2)(2v)Se-ee have equal amplitudes, the total field ge
erated by the cascaded quadratic processes in nil; this is
case ford537mm which is illustrated in Fig. 2: the intensit
calculated along the direction of propagation in a ppK
with that poling period remains very low throughout th
crystal. As discussed above, a second way to suppress
quadratic processes is to choosed much shorter than bothl o
and l e , as can be seen ford56 mm in Fig. 2. In that case
the second-order nonlinear coefficients are reversed be
the cascading interactions can experience efficient cons
tion.

The reduction of the cascadingx (2) processes also lead
to a second advantage: becausexeff

cascandx24
(3) have opposite

contributions, the suppression of the cascading gives a la
absolute value forxeff

tot . The generated third-harmonic inten
sity at the exit of the ppKTP,I tot(3vo,L), is then increased
whenever compared to the nonpoled crystal. The value
Table I show that the enhancement factor may be up to

These calculations concern phase-matched THG. If
fundamental wavelength is slightly different from the pha
matched value, the efficiencies of the cubic interaction a
cascaded quadratic processes are reduced in a similar
ner, becauseDkTHG5DkSHG

o-eo1DkSFG
o-eo5DkSHG

e-ee1DkSFG
o-oe @8#.

As a consequence, the spectral acceptance bandwidth c
lated in a ppKTP crystal is equal to the one in a nonpo
KTP sample, LDl511 nm cm along thex axis for lv

51620 nm. For the same reason, the cascading interac
are efficiently reduced over that complete bandwidth.

From the previous results, we evaluate the contribution
the cascading processes asr 5I casc(3vo,L)/I cubic(3vo,L)
whereL is the crystal length. As can be seen from relati
~A3!, the ratior does not depend on the incident pump
tensity because the efficiencies of the cascading and c
interactions are both proportional toI 2(ve,0)I (vo,0). For a
nonpoled sample, relation~A5! gives r 512.8% and it does
not depend on the crystal length. This ratior is plotted in Fig.
3 as a function of the periodL for a 1-mm-long ppKTP
along thex axis. This curve has been smoothed for bet
clarity, because the infinite sums of rapidly oscillating fun
tions in relation~A3! lead to a less continuous shape of t
curve. As detailed above,r is maximum ifd is an odd mul-

TABLE I. Ratio of the cascading over cubic intensities,r, and
normalized total third-harmonic intensity, both at the exit of anL
51-mm-long sample with the periodL.

d5L/2 ~mm! 4 6 37 Nonpoled

r ~%! 0.163 1.10 0.0199 12.8
I tot(3vo,L) ~arb. units! 2.62 2.96 2.49 1.00
06381
-

la-

he

the

re
c-

er

in

e
-
d
an-

cu-
d

ns

f

ic

r
-

tiple of l o or l e , while r is reduced for other particular value
of d, e.g.,d537mm. Nevertheless, the variations ofr be-
come less important whend increases, because the crys
tends to a nonpoled one. The main results deduced from
3 are summarized in Table I: the cascading contributions
be reduced to less than 0.1%, which is three orders of m
nitude lower than for a nonpoled crystal. As an example,
a 3-mm-long ppKTP with the periodL58 mm, an incoming
fundamental intensity of 20 GW/cm2 will lead to a conver-
sion efficiency of 9.17%, and a cascading ratior 50.164%.
Such intensities are easily achieved with picosecond pu
@9#, and would be very favorable for the study of speci
three-photon quantum correlations.

OPTICAL PARAMETRIC AMPLIFICATION

The previous phase-matching condition along thex-axis
of KTP also allows us to perform optical parametric amp
fication ~OPA!: x (3)(3vo2ve2ve5vo). In that case, two
beams are incident on the nonlinear crystal: the pump w
electric fielduE(3vo,0)u, and the signal fielduE(ve,0)u. The
input field atvo is nil. The cubic interaction consists in a
amplification of the signal field atve and generation of the
idler at vo, while the pump field at 3vo is depleted. The
different interacting electric fields at the exit of the crys
are deduced from a set of wave equations very close
Eq. ~1!. The generation of the idler field, atvo, is also
possible by the same two cascading quadratic proces
x (2)(3vo2ve52vo):x (2)(2vo2ve5vo) and x (2)(ve

1ve52ve):x (2)(3vo22ve5vo), and the analysis devel
oped for THG may be reproduced in the present case
contrast, the situation is simpler for the amplification of t
signal field atve, which is mainly associated to a sing

FIG. 3. Ratio of the third-harmonic intensities generated by
cascading processes and the cubic one, as a function of the dom
length, calculated at the exit of a 1-mm-long ppKTP crystal,
lv51620 nm.
4-3
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J. P. FÈVE AND B. BOULANGER PHYSICAL REVIEW A65 063814
quadratic parasitic amplificationx (2)(3vo2ve52vo), be-
cause the other quadratic interactions involve weaker fie
The total signal electric field at the exit of the crysta
Etot(ve,L), is deduced from the numerical integration of t
coupled differential equations, by considering nonlinear
efficients configuration given in Fig. 1 and with a nil inp
electric field at 2vo. Similarly to the usual three-wave OPA
the signal gain is defined asG5uEtot(ve,L)/E(ve,0)u221.
In order to calculate the relative contributions of the qu
dratic and cubic interactions, we independently integrate
set of coupled equations with the cubic terms only, wh
gives the emerging signal fieldEcubic(ve,L). The signal field
generated inside the crystal by the cubic process is t
Ecubic(ve,L)2E(ve,0). So the signal field generated insid
the crystal by the quadratic process isEquadr(ve,L)
5Etot(ve,L)2Ecubic(ve,L). The ratio of the quadratic
to cubic contributions is then r 85uEquadr(ve,L)/
(Ecubic(ve,L)2E(ve,0))u2 or equivalently r 85u(Etot(ve,L)
2Ecubic(ve,L))/(Ecubic(ve,L)2E(ve,0))u2.

An analytical expression ofr 8 is given in relation~A6! for
the limit of small gain. This equation shows that the inco
ing pump intensity has no effect on the ratior 8, because the
efficiency of bothx (2) andx (3) interactions is proportional to
I (3vo,0). However, the crystal length and the incident sig
intensity play a crucial role in that case. The ratior 8 is plot-
ted in Fig. 4 as a function ofI (ve,0)L, which is the relevant
parameter according to relation~A6!, and to the numerica
integration in the case of larger gain. For a nonpoled K
crystal, r 8 is very large in the case of short crystal or lo
initial signal intensity, because the quadratic amplification
associated to a nonlinear coefficient nine orders of ma
tude larger than that of the cubic amplification. On the ot

FIG. 4. Amplification of a wave of wavelengthlv51620 nm
for a pump wavelengthl3v5540 nm. Ratio of the quadratic ove
cubic contributions,r 8, as a function ofI (ve,0)L, for different
poling periods: nonpoled~a!, d537mm ~b!, d59 mm ~c!. Inset
graph: same ratio, as a function of the domains lengthd(5L/2),
for I (ve,0)L50.5 GW/cm.
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hand, thex (2) interaction is non-phase-matched, so that
efficiency does not increase with the crystal length, contr
to that of thex (3) process. Furthermore, the cubic proce
increases asI 2(ve,0), while the efficiency of the quadrati
interaction depends onI (ve,0). Correspondingly,r 8 is a de-
creasing function ofI (ve,0)L. However, that ratio remains
larger than 103 over the entire considered range of the p
rameter, which forbids the use of a nonpoled KTP crysta
order to achieve a purely cubic interaction.

The use of periodically poled crystals also leads to a la
modification of the ratior 8, as can be seen from the grap
~inset! in Fig. 4: r 8 is maximum for a domains lengthd
(5L/2)524.6mm, which is equal to the coherence leng
of the quadratic processl o5p/DkSFG

o-eo524.6mm; in con-
trast,d59 mm leads to a strong reduction ofr 8, which can
reach six orders of magnitude with respect to the nonpo
crystal. Similar to the case of SHG, a large reduction ofr 8 is
obtained withd much shorter thanl o . As an example, a
10-mm-long ppKTP crystal with the poling periodL
(52d)518mm leads to a gainG59.4% and a quadratic
ratio r 850.1%, for incoming intensities 20 GW/cm2 and 1
GW/cm2 at the pump and signal wavelengths,lv51620 and
l3v5540 nm, respectively.

On the other hand, the two cascading quadratic proce
are involved in the generation of the idler beamvo in the
same interaction. According to the above example of TH
two ways exist for the reduction of the cascading ratio in t
case: a poling period so that both cascading proce
achieve destructive interference, or a very short period. A
consequence, the suitable poling period should be diffe
from the optimum one defined for the amplification of th
signal beam. So, in OPA, the poling period has to be cho
according to the beam that will be considered for the qu
tum measurements, and a simultaneous reduction of the
dratic contributions to both idler and signal beams mig
only be obtained with a very short period. A possible alt
native approach could use more complicated aperiodic st
tures with a duty cycle different from 50%, which wer
shown to enable the simultaneous optimization of two int
actions@11#.

CONCLUDING REMARKS

Periodically poled KTP crystals specifically affect the e
ficiency of the quadratic interactions and leave the cubic p
cess unchanged. With a proper poling period, cascading
dratic contributions during the phase-matched THG
reduced by three orders of magnitude, and become less
0.1%. The benefit is even larger in OPA, where the quadr
process is reduced by six orders of magnitude. The suita
poling periods calculated in the present study,L(52d)58,
L574 or L518mm are fully compatible with the usua
poling technique. Actually, it has been demonstrated t
KTP can be poled with a period as short asL53 mm, and
that homogeneous and regular poling can be achieved
L59 mm @12#. This technique should then constitute a
original and promising way to achieve efficient pure cub
optical parametric interactions.
4-4
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The calculation of the quadratic contribution to the ef
ciency of ax (3) optical parametric oscillator is not in th
scope of our paper. Nevertheless, it should be noted tha
this case, since the quadratic interactions involve additio
wavelengths with respect to the cubic process, they can
made nonresonant with a proper choice of the reflectivitie
the mirrors, which would certainly reduce their contributio
whenever compared to the resonant cubic interaction.

APPENDIX

For the above two SHGs (ve1vo52vo) and (ve1ve

52ve), with the coherence lengthsl o5p/uDkSHG
o-eou and l e

5p/uDkSHG
e-eeu, respectively, the 2vo and 2ve harmonic fields

generated by a quasi-phase-matched interaction may be
pressed analytically from the equations relative
]E(2vo,X)/]X and ]E(2ve,X)/]X in system~1!, and by
expanding relation~3! as a Fourier series@5#. In the unde-
pleted pump approximation, the integration leads to
06381
in
al
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f

ex-

uE~2vo,X,L!u5k2v
o x24

~2!~2v!E~vo,0!E~ve,0!X

3 (
m52`

1`

sincS mp

2 D sincF S 2m

L
2

1

l o
D pX

2 G
uE~2ve,X,L!u5k2v

e x33
~2!~2v!E~ve,0!E~ve,0!X

3 (
m52`

1`

sincS mp

2 D sincF S 2m

L
2

1

l e
D pX

2 G
~A1!

with sinc(x)5sin(x)/x.
Replacing these two complex field amplitudes in the l

equation of system~1!, we obtain after a second integratio

E~3vo,X,L!5k3v
o E~vo,0!@E~ve,o!#2$x24

~3!~3v!X1x24
~2!

(3v!@k2v
o x24

~2!~2v!So-eo~X,L!1k2v
e x33

~2!

(2v!Se-ee~X,L!] %

with
s deduced

me

y similar
of the
So-eo~X,L!5 (
m52`

1` H sincS mp

2 D Fexp~ jX2pm/L!

j 2pm/L
2

exp~ j DkSHG
o-eoX!

j DkSHG
o-eo G Y FpS 2m

L
2

1

l o
D G J

and

Se-ee~X,L!5 (
m52`

1` H sincS mp

2 D Fexp~ jX2pm/L!

j 2pm/L
2

exp~ j DkSHG
e-eeX!

j DkSHG
e-ee G Y FpS 2m

L
2

1

l e
D G J ~A2!

The ratio of the intensities generated by the cascaded quadratic processes and the cubic interaction, respectively, i
from the above equation,

r ~X,L!5S x24
~2!~3v!uk2v

o x24
~2!~2v!So-eo~X,L!1k2v

e x33
~2!~2v!Se-ee~X,L!u

x24
~3!~3v!X D 2

, ~A3!

In the limit of very large poling periods, i.e., when the ppKTP tends to a nonpoled crystal, the two above sums beco

So-eo~X,L→`!'
X

DkSHG
o-eo and Se-ee~X,L→`!'

X

DkSHG
e-ee, ~A4!

so that the ratior in Eq. ~A3! takes the limit value

r ~X,L→`!→S x24
~2!~3v!Fk2v

o x24
~2!~2v!

DkSHG
o-eo 1

k2v
e x33

~2!~2v!

DkSHG
e-ee G

x24
~3!~3v!

D 2

, ~A5!

which is the exactly the value that would be deduced from relation~2!.
In the case of optical parametric amplification, assuming small gain and a phase-matched cubic process, a ver

integration leads to the complex amplitudes of the interacting electric fields. It is then possible to deduce the ratio
contributions of the quadratic and cubic interactions to the amplification of the signal beam:

r 8~X,L,E~ve,0!!5S k2v
o x24

~2!~3v!x24
~2!~2v!uSo-eo~X,L!u

x24
~3!~3v!XuE~ve,0!u2 D 2

, ~A6!

whereSo-eo(X,L) is given in Eq.~A2!.
4-5
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