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Suppression of quadratic cascading in four-photon interactions using periodically poled media
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We demonstrate theoretically that periodically poled materials with a suitable poling period can strongly
reduce ally®: x® cascading during¢® third-harmonic generation and optical parametric amplification in
noncentrosymmetric crystals: the calculated reduction is, respectively, 3 and 6 orders of magnitude &fong the
axis of KTIOPQ,. This is then an original and promising way to achieve efficient pure cubic optical frequency
conversion, for the study of three-photon quantum properties.

DOI: 10.1103/PhysRevA.65.063814 PACS nuntber42.65.Ky, 42.70.Mp

Nonlinear optical interactions produce nonclassical states the length of one single domain. A 50% duty cycle is only
of light, such as squeezed states in the case of second-ordgnsidered throughout the present study. The second-order
interactions. Third-order optical parametric interactions havesoefficients x{2( = x) and x{2,=x{2(=x%)) are re-
the specific interest of generating new classes of photomersed everyl, because periodic poling induces a reversal of
states, with novel statistiqd] and nontrivial quantum inter- the Z axis everyd, while {3, = x{%, = {2, (= x57) is left
ference pattern in their Wigner functid@]. The study and unchanged under a domain reversal. Depending on the pe-
manipulation of such states would only be possible throughiiod A, the efficiency of the quadratic cascading interactions
efficient four-wave optical parametric interactions, such avill then be lowered or enhanced, always leaving the cubic
resonant or nonresonant three-photon down-conversioprocess efficiency unaffect¢d]. Note that for the same rea-
Y3 (Bw=w+w+w), for example[2,3]. No experimental Son, QPM for four-wave mixing is not possible with the
demonstration has been achieved up to now, despite sevetafual technique of-axis reversal and may be achieved by
attempts[3]. Due to the very weak amplitude of third-order Modulating the refractive indicdg], which is less efficient
¥ nonlinear coefficients, efficient frequency conversion isthan phase matching. Two examples are considered through-

) ) _ ; i
only possible if the four-wave coupling is phase matched iUt the paper: THG¢ 3(“’+"’+‘°_3“’)' and optical para
tric amplificationy®) (30— w— 0= ).

the nonlinear medium. To the best of our knowledge, phaseme
matched four-wave interactions at wavelengths of interest for
quantum optical experiments have only been reported in THIRD-HARMONIC GENERATION
noncentrosymmetric crystals. In such materigl$) coeffi-

cients are nonzero, so that quadratic interactions can occur; THG x®)(w®+ w®+ w°=3w°) is phase matched along
even if they are not phase matched, they might be mor¢he X axis of KTP for the fundamental wavelengih,
efficient than cubic processes because of the relative ampli= 1620 nm;o and e refer to ordinary and extraordinary po-
tudes of they® andy(®) coefficients. As an example, during larizations, respectively. Among possible cascades, two
third-harmonic generatioifHG) the photons at@ are gen-  dominate: x(w®+ w°=2w°): x?(w®+2w°=3w°) and
erated by direct THGY®)(w+w+w=3w), and by qua- x?(w®+ w®=2w:x?(w’+2w=3w°). A maximum ef-
dratic cascading interactionsy?(w+w=2w):x®(w ficiency of 2.4% was achieved with the cascading ratio
+2w=3w) simultaneously, which is detrimental to the [(x®:x®)/x®1?~13% [8,9]. The complex amplitude of
study of the specifig¢'®) photon correlations. IBBaB,O,,
where the largest THG efficiendy=5%) ever was reported,
guadratic cascading is more efficient than the phase-matched
cubic process] y?: x®/x(®]2~160% [4]. The achieve-
ment of an efficient pure cubic optical parametric interaction
is then still an open issue.

In this paper, we demonstrate that parasitic quadratic in-
teractions can be suppressed by using periodically poled
crystals with the suitable period; this will make phase-
matched purg/® interactions possible in noncentrosymmet-
ric crystals. Such periodic materials have become very popu-
lar in the past 10 years because quasi-phase-matQinll)
leads to efficient three-wave optical parametric interactions
[5]. In contrast, we propose an original use of these materi-
als, in order to make? interactions inefficient. The basic
concept is presented in Fig. 1, which reports the nonlinear
coefficients involved along th¥ axis of a periodically poled FIG. 1. Quadratic and cubic nonlinear coefficients as a function
KTiOPQO, (ppKTP) crystal with the period\ =2d, whered of the propagation distancéin the ppKTP.
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the third-harmonic electric field along the direction of propa-
gation X is deduced from the set of wave equations of the
collinear phase-matched THG under the undepleted pump
approximation8,10]:

X exp — ] AKZEX) + E(w°, 0 E(20°,X)
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IX J k2uXa3 (20) [ E( 01" expl—] AksiicX) @ 009502 04 06 08 10 12
o Propagation distance in the crystal x (mm)
JE(3w° X) 2) . 240 FIG. 2. Third-harmonic intensity generated by the quadratic cas-
X ~]K3,X24 (30){E(0,0E(20°,X) cading processes along the propagation in the crystal for different

poling periods: nonpoled crystéh), d=6 um (b), andd=37 um
(c), \,=1620 nm for all curves.

causeAkgio+ Ak E= AKESE+ AKSE = Akps=0 [8]; the

_ 0-0e 0 _(3)
Xexp(—jAKgeeX)} ] k3, X34 (3w) corresponding intensity,*{3w°,X)*|E®{3w°,X)|?, in-
creases continuously, as shown in Figg)2In the same way,
the intensity generated by the phase-matched cubic process,
e e o o |CUPIY 30, X) | ECUPI{30°,X)|?, increases as a function of
Ko, =7, N, With 77, is the refractive index; the phase | 2. An important point to note is thgr$a*°and x5 have
mismatches of the quadratic processes algw,=w,  Opposite contributions in Ed2), so that the generated total
+ wg) =k,—kp— k., wherek;= ﬂ?u’.ewi /c is the wave-vector third-harmonic electric field is lower than the one in the cu-

: - _ L0 bic process alone.
mcz)dklejlui'o Iioor t-?s phase—matgheq cubic TFM.THG_ Ko ' F%r the ppKTP situation of Fig. 1, the nonlinear coeffi-
—2k,,—k,=0. The refractive indices and nonlinear coeffi- cients appear in systefd) as
cients of KTP are given in Ref8]. The input electric fields
are nil at 20 and 3», and|E(w*®,0)| =v2|E(w°,0)| according
to the considered phase-matched set of polarizations. For a
nonpoled crystal, the analytical integration of Ed) gives
the total effective coefficienis]:

X[E(w®,0)]?E(w®,0)exp — j AkrpcX).

+xiP (w)for 2md=X<(2m+1)d

X P, X)=1 —xiP(epfor (2m+1)d=X=<(2m+2)d,

ij=24 or 33 (3)

Xei(30) = x&i130) — x5 (30)

(2) (3)
. TX24 (3w) X532 (0, X)=+x53(w) VX,
with ngsi3w)=T[HgHG+ HES
where m is an integer, andd(=A/2) is the length of
one domain. The integration of Egél) with coefficients
oo X5 (20) oo XH(20) (3) gives the total field at the third-harmonic pulsation com-
Hshe= 5 rroeo and Hehe= e 1 eee- (2 ing out of the crystal, E®(30°X)=E®={3w° X)
72,8KsHe 7208KsHa

+E®PY(3w°,X).

The analytical calculation of the generated second-
The coherence lengths of the two SHG's alg  pharmonic fields given in the Appendix allows us to under-
=ml|Akgigl=24.6um, and l.=7/|Akgid=14.1um.  stand the role of the poling period. From each relatiam),
The first factor in Eq(2), xof > is responsible for the gen- if the domain lengthA/2 is equal to an odd multiple of the
eration of the third harmonic by the tWO cascadmg Intel‘aC-cons|deredC, the efficiency is maximum, which is the basic
tions E®*{3w°,X), while the second ong,¥, accounts for  principle of QPM[5], and which is not interesting in our
the cubic process generatiiff*"{(3w° X). The cascading case. In contrast, iA/2 is an even multiple of,, the gener-
is constructed all along the propagation in the crystal, beated intensity at @ oscillates as a function of and remains
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TABLE |. Ratio of the cascading over cubic intensitiesand l 3/ 5le
normalized total third-harmonic intensity, both at the exit oflan I e
=1-mm-long sample with the periodl.

-
o
o

d=A/2 (um) 4 6 37 Nonpoled

-
o

© [T T — Ty

r (%) 0.163 1.10  0.0199 12.8
I°(300L) (arb. unity  2.62  2.96  2.49 1.00

-

very low, as for a non-phase-matched interaction in a non-

poled crystal. This is also the caseAf2 is short compared

to I.. The total third-harmonic field is given by relation

(A2). The generated cascading intensity depends on the rela-

tive value of A/2 with respect to both coherence lengths

lo andl,. BecauseAkg (s and AkESS have opposite signs,

the two complex sumS§,_., andS;. ¢ in EQ. (A2) are m-out-

of-phase. As a consequence, i3, x2(2w)Sy.co and

k5, X3 (20)Ss.cc have equal amplitudes, the total field gen- T 30 30 50 60 70 80

erated by the cascaded quadratic processes in nil; this is the domains length d=A/2 (um)

case ford=37 wm which is illustrated in Fig. 2: the intensity

calculated along the direction of propagation in a ppKTP FIG. 3. Ratio of the third-harmonic intensities generated by the

with that poling period remains very low throughout the cascading processes and the cubic one, as a function of the domains

crystal. As discussed above, a second way to suppress tH&9th, calculated at the exit of a 1-mm-long ppKTP crystal, for

quadratic processes is to choasmuch shorter than both A ,=1620 nm.

andl,., as can be seen fat=6 um in Fig. 2. In that case,

the second-order nonlinear coefficients are reversed befotiple of I, or |, whiler is reduced for other particular values

the cascading interactions can experience efficient construef d, e.g.,d=37 um. Nevertheless, the variations pfbe-

tion. come less important whed increases, because the crystal
The reduction of the cascading?® processes also leads tends to a nonpoled one. The main results deduced from Fig.

to a second advantage: becay$g°and 3 have opposite 3 are summarized in Table I: the cascading contributions can

contributions, the suppression of the cascading gives a largée reduced to less than 0.1%, which is three orders of mag-

absolute value fo'5t. The generated third-harmonic inten- hitude lower than for a nonpoled crystal. As an example, for

sity at the exit of the ppKTR(3w°L), is then increased @& 3-mm-long ppKTP with the period =8 um, an incoming

whenever compared to the nonpoled crystal. The values ifindamental intensity of 20 GW/chwill lead to a conver-

Table | show that the enhancement factor may be up to 3. sion efficiency of 9.17%, and a cascading rati©0.164%.
These calculations concern phase-matched THG. If th&uch intensities are easily achieved with picosecond pulses

fundamental wavelength is slightly different from the phase{9], and would be very favorable for the study of specific

matched value, the efficiencies of the cubic interaction andhree-photon quantum correlations.

cascaded quadratic processes are reduced in a similar man-

ner, because\ ko= Aksjict AKsre=Akgict AKses [8]. OPTICAL PARAMETRIC AMPLIFICATION

As a consequence, the spectral acceptance bandwidth calcu-

lated in a ppKTP crystal is equal to the one in a nonpoled The previous phase-matching condition along xkexis

KTP sample,LAN=11nmcm along thex axis for »,  Of KTP also allows us to perform optical parametric ampli-

—1620 nm. For the same reason, the cascading interactiofi€ation (OPA): x*)(3w°— w®— w®=w°). In that case, two

are efficiently reduced over that complete bandwidth. beams are incident on the nonlinear crystal: the pump with
From the previous results, we evaluate the contribution otlectric field|E(3w°,0)|, and the signal fieldE(»®,0)|. The

the cascading processes as |°{3w° L)/1°P(3w°L)  input field atw® is nil. The cubic interaction consists in an

whereL is the crystal length. As can be seen from relationamplification of the signal field ab® and generation of the

(A3), the ratior does not depend on the incident pump in-idler at °, while the pump field at 8° is depleted. The

tensity because the efficiencies of the cascading and cubibifferent interacting electric fields at the exit of the crystal

interactions are both proportional t&(w®,0)I(w°,0). For a are deduced from a set of wave equations very close to

nonpoled sample, relatiofh\5) givesr=12.8% and it does EQq. (1). The generation of the idler field, ab°, is also

not depend on the crystal length. This ratiis plotted in Fig.  possible by the same two cascading quadratic processes,

3 as a function of the period for a 1-mm-long ppKTP  x‘P(8w°— 0®=20°):xP(20w°— w®=0°) and x?(w®

along thex axis. This curve has been smoothed for better+ w®=2w®): x?(30°—20®=w°), and the analysis devel-

clarity, because the infinite sums of rapidly oscillating func-oped for THG may be reproduced in the present case. In

tions in relation(A3) lead to a less continuous shape of thecontrast, the situation is simpler for the amplification of the

curve. As detailed above,is maximum ifd is an odd mul-  signal field atw®, which is mainly associated to a single

0.1

r=Fas¢(3¢o,L)/ FUPi¢(30n, L)

0.01

ndnpoled

-
(-]
]
w

063814-3



J. P. FEVE AND B. BOULANGER PHYSICAL REVIEW A65 063814

hand, they(® interaction is non-phase-matched, so that its
efficiency does not increase with the crystal length, contrary

107 f | to that of they(®) process. Furthermore, the cubic process

10° 1 increases a$?(w®,0), while the efficiency of the quadratic
L 10° 1 interaction depends dr{w®,0). Correspondingly;’ is a de-
2 af M. creasing function of (w®,0)L. However, that ratio remains
¢ 10 ] g%(:n(:) larger than 18 over the entire considered range of the pa-
2 10° £ 3 rameter, which forbids the use of a nonpoled KTP crystal in
3 102 i order to achieve a purely cubic interaction.
E>: . The use of periodically poled crystals also leads to a large
s 10 E modification of the ratia’, as can be seen from the graph
-% 100E (insep in Fig. 4: r’ is maximum for a domains lengtti
510§ (=A/2)=24.6 um, which is equal to the coherence length
S 1072 3 (© of the quadratic procesk,=n/AkS5=24.6um; in con-
¢ 3 trast,d=9 um leads to a strong reduction of, which can

107 F reach six orders of magnitude with respect to the nonpoled

¥t ] crystal. Similar to the case of SHG, a large reduction’ois

0.0 0.2 0.4 0.6 0.8 1.0

obtained withd much shorter thar,. As an example, a
10-mm-long ppKTP crystal with the poling period

FIG. 4. Amplification of a wave of wavelength,=1620 nm (=_2d):18,u,m leaqs to a gairG=9.4% and a quadratic
for a pump wavelength ;=540 nm. Ratio of the quadratic over 'atio r’'=0.1%, for incoming intensities 20 GW/énand 1
cubic contributionsr’, as a function ofl (w®,0)L, for different GWi/cnt at the pump and signal wavelengths,= 1620 and
poling periods: nonpoleda), d=37 um (b), d=9 um (). Inset  A3,=540 nm, respectively.
graph: same ratio, as a function of the domains lert{th A/2), On the other hand, the two cascading quadratic processes
for 1 (w®,0)L=0.5 GW/cm. are involved in the generation of the idler beasfi in the
same interaction. According to the above example of THG,
two ways exist for the reduction of the cascading ratio in that
case: a poling period so that both cascading processes
Sichieve destructive interference, or a very short period. As a
consequence, the suitable poling period should be different
from the optimum one defined for the amplification of the
'signal beam. So, in OPA, the poling period has to be chosen
according to the beam that will be considered for the quan-
. 5 . ' tum measurements, and a simultaneous reduction of the qua-
the signal gain is defined a88=|E*(w"L)/E(*0)*~1.  gratic contributions to both idler and signal beams migqht
In order to calculate the relative contributions of the qua’only be obtained with a very short period. A possible alter-
dratic and cubic interactions, we independently integrate the .\ o approach could use more complicated aperiodic struc-
set of coupled equations with the cubic terms only, which < with a duty cycle different from 50%, which were

gives the emerging signal fief"™w,L). The signal f|(_e|d shown to enable the simultaneous optimization of two inter-
generated inside the crystal by the cubic process is thchtions[ll].

EPIY w8 L) — E(w®0). So the signal field generated inside
the crystal by the quadratic process B e L)
=E"(w®L)—E“"{w®L). The ratio of the quadratic
to cubic contributions is then r’'=|EMY( e L)/
(E®P'{w® L) —E(w®0))|? or equivalentlyr’=|(E®(w®L) Periodically poled KTP crystals specifically affect the ef-
—E%PY 8,L))/(EP{ w8 L) — E(w®,0))|2. ficiency of the quadratic interactions and leave the cubic pro-
An analytical expression of is given in relation(A6) for ~ cess unchanged. With a proper poling period, cascading qua-
the limit of small gain. This equation shows that the incom-dratic contributions during the phase-matched THG are
ing pump intensity has no effect on the ratig because the reduced by three orders of magnitude, and become less than
efficiency of bothy(®) andx(®) interactions is proportional to  0.1%. The benefit is even larger in OPA, where the quadratic
I(3w?,0). However, the crystal length and the incident signalprocess is reduced by six orders of magnitude. The suitable
intensity play a crucial role in that case. The ratiois plot-  poling periods calculated in the present studly=2d)=38,
ted in Fig. 4 as a function df( w®,0)L, which is the relevant A =74 or A=18 um are fully compatible with the usual
parameter according to relatigi6), and to the numerical poling technique. Actually, it has been demonstrated that
integration in the case of larger gain. For a nonpoled KTFKTP can be poled with a period as short/&s3 um, and
crystal,r’ is very large in the case of short crystal or low that homogeneous and regular poling can be achieved with
initial signal intensity, because the quadratic amplification isA =9 wm [12]. This technique should then constitute an
associated to a nonlinear coefficient nine orders of magnieriginal and promising way to achieve efficient pure cubic
tude larger than that of the cubic amplification. On the otheioptical parametric interactions.

1,(0).L (GW/cm)

quadratic parasitic amplificatiog®(3w°— w®=2w°), be-
cause the other quadratic interactions involve weaker field
The total signal electric field at the exit of the crystal,
E'(w®L), is deduced from the numerical integration of the
coupled differential equations, by considering nonlinear co
efficients configuration given in Fig. 1 and with a nil input
electric field at 20°. Similarly to the usual three-wave OPA

CONCLUDING REMARKS
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The calculation of the quadratic contribution to the effi- |E(2w°,X,A)|=ng)((zi)(Zw)E(wO,O)E(we,O)X
ciency of ax® optical parametric oscillator is not in the . ) )
scope of our paper. Nevertheless, it should be noted that in . (mm 2m 1) wX
this case, since the quadratic interactions involve additional Xm;w smc{ 7) sind (T_ E)T
wavelengths with respect to the cubic process, they can be '
made nonresonant with a proper choice of the reflectivities of |E(2w® X,A)|=«$5,x53(20)E(w®0)E(w®0)X
the mirrors, which would certainly reduce their contribution

+o0 r P
whenever compared to the resonant cubic interaction. x > sin mm sind 2_m_ i ”_X
mE—o 2 A ) 2]

(A1)

APPENDIX
with sinc(x) = sin(x)/x.

For the above two SHGsu+ 0w°=20°) and (w°+ »® Replacing these two complex field amplitudes in the last
=2w°%), with the coherence lengtHs=7/|AKk%SY andl,  €quation of systenl), we obtain after a second integration
=ml|AkgSd, respectively, the @° and 20° harmonic fields  g(3,,° x,A)= K3, E(0°,0)[E(w®,0) 1 {xd(3w) X+ y2
generated by a quasi-phase-matched interaction may be ex-
pressed analytically from the equations relative to (B0)[ K3, X57(20) Sp-eo X, A) + K5, X'
JE(2w® X)/dX and JE(2w® X)/dX in system(1), and by (26)Sead X, )]}
expanding relation(3) as a Fourier serig5]. In the unde- e-ee ™

pleted pump approximation, the integration leads to with
|
+ o0 . . 0-e0
_ _(mar\ | exp(jX2mm/A)  exp(jAKgeX) 2m 1
SoedXiA)= 2 (S'”‘{T) j2amiA JAKESS AT,
and
+ oo . . e-e
B ~(mam\ | exp(jX2am/A)  exp(jAkESEX) 2m 1
&*4XJ“‘325w{3m47?J j27miA JAKESE AT, (A2)

The ratio of the intensities generated by the cascaded quadratic processes and the cubic interaction, respectively, is deducec
from the above equation,

r(x,A)= , (A3)

x&?(smlK‘z’wxé?(zmso.eo(x,m+szxéékzmse-ee(x,ml)z
X5 (30)X

In the limit of very large poling periods, i.e., when the ppKTP tends to a nonpoled crystal, the two above sums become

X
So-ed X,A—2)~ —-=5 and Se-ee(XvA_mo)%Fs' (A4)

A SHG SHG

so that the ratio in Eq. (A3) takes the limit value

25 EXE 20) KSR 0)]| 2
Xz (3¢) AkZE2 AKEee
SHG SHG
A 5 : (A5)
X24 (3w)

which is the exactly the value that would be deduced from rela@pn

In the case of optical parametric amplification, assuming small gain and a phase-matched cubic process, a very similar
integration leads to the complex amplitudes of the interacting electric fields. It is then possible to deduce the ratio of the
contributions of the quadratic and cubic interactions to the amplification of the signal beam:

K3 X53(30) X3 (20)|Sp-eo X, M) ) 2

r'(X,A,E(w®0))= @)

A6
X33 (3w)X|E(0®,0)|? (A6)

whereS,_¢o(X,A) is given in Eq.(A2).
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