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Dispersion theory of meromorphic total reflectivity
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The dispersion theory of meromorphic total reflectivity is considered by dealing with the poles of the
complex reflectivity function in the upper half of the complex angular frequency plane. Modified Kramers-
Kronig relations and corresponding static limit sum rules are derived for the degenerate third-order nonlinear
reflectivity. A high-frequency sum rule is also suggested.
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I. INTRODUCTION

Kramers and Kronig@1–3# derived dispersion relations
KK relations, which have had many far-reaching con
quences and applications. The underlying important phys
concept of the existence of the KK relations is causal
which has been clearly pointed out, e.g., in the paper of T
@4# and later in the study of Remacle and Levine@5#. The
mathematical concept corresponding to causality is the h
morphicity of a complex physical function in the upper ha
of the complex angular frequency plane, and suffici
asymptotic falloff of the function at high frequencies. The
KK relations provide a basic tool in optical data inversion
linear optical spectroscopy@6#. If we, for instance, measur
the wavelength-dependent light transmission of a transpa
material with the aid of a spectrophotometer, the correspo
ing wavelength-dependent refractive index change can
calculated using the appropriate KK relation@6#, which ac-
tually is a principal-value integral. If the material is opaq
then the complex refractive index is obtained by a KK pha
retrieval procedure, provided that the reflectance is meas
with a reflectometer from a smooth surface of a conden
matter. The surface condition is important since Fresn
theory of light reflection is the basis of data analysis. In
case of liquids the measurement is performed using a p
reflectometer.

The validity of the KK relations for reflectivity has bee
described, e.g., by Velicky@7# and Smith@8#, and recently by
Lee @9# for metals, which obey Drude’s dispersion mod
@10#. In his elegant paper Lee avoided the principal-va
integral using the dilogarithm function@9#. Few years ago
Nashet al. @11# paid attention to a feature of a KK relatio
related to a reflectivity in the regime of Drude’s theory~here
reflectivity means a theoretical quantity whereas reflecta
means a measured one!, which is frequently used in the de
scription of the permittivity of metals. According to them th
conventional KK relation for phaseretrieval has to be mo
fied by a constant term in cases where the extinction co
cient of the medium is different from zero at zero angu
frequency. The modification stems from the appearance
pole at zero frequency. Smith@8# has also pointed out th
existence of a branch point of complex reflectivity in t
case of conductors. The paper of Lee and Sindoni@12#,
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which was devoted to the mathematical study of a logar
mic kernel in data inversion, confirmed and generalized
result of Nashet al. Note that the constant phase angle
Nashet al. is canceled in Ahrenkiel’s@13# singly subtractive
KK analysis of reflectance data, as well as, in the multip
subtractive KK analysis of Palmeret al. @14# in the case of
odd number of reference~‘‘anchor’’ ! points.

Sum rules have much importance in linear optical sp
troscopy since they provide the means to estimate the va
ity of the measured data and also the consistency of theo
ical models. Outstanding works of Altarelliet al. @15#,
Altarelli and Smith@16#, Smith and Manogue@17#, and King
@18,19# form the basis of sum rules, which are valid in line
optical spectroscopy.

The theory of dispersion relations in nonlinear optic
spectroscopy was investigated a relatively long time a
@20–26#, but their experimental validity for nonlinear sus
ceptibility was postponed mainly due to experimental co
plexities until the work of Kishidaet al. @27#, who investi-
gated third-harmonic generation from polysilane. T
principle of causality was at first considered as the neces
and sufficient condition for the existence of KK relation
also in nonlinear optics but Kircheva and Hadjichristov@28#
have shown that this is not the case in the four-wave-mix
spectroscopy. Nevertheless, the principle of causality is
course valid also in four-wave-mixing spectroscopy. The
validity of the KK relations in nonlinear optics was show
also for the total susceptibility of the two-level atom treat
by Yariv @29#. Moreover, the validity and invalidity of the
KK relations in femtosecond spectroscopy was investiga
by Tokunagaet al. @30–32#.

Peiponen@24#, Vartiainen and Peiponen@33#, and Pei-
ponen et al. @34–36# studied the dispersion theory of so
called meromorphic nonlinear susceptibilities, i.e., susce
bilities that are not holomorphic due to singular points bo
in the upper- and lower-half planes. The singular points
the complex angular frequency space can in the general
be poles, zeros, and/or branch points. Usually these are
lated singularities, but the number of poles can be counta
infinite, especially in the quantum-mechanical picture. T
total susceptibility of Yariv is a simple example of a mer
morphic function that has one pole and one zero in
upper-half plane. Despite the pathological case of a me
morphic total susceptibility, phase retrieval is possible,
by a KK dispersion relation, but by a phase-retrieval pro
dure based on the exploitation of the maximum entro
©2002 The American Physical Society10-1
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model for the modulus of Yariv’s complex susceptibili
@35#. This meromorphism of degenerate third-order nonlin
susceptibility appears also in the context of nanocompos
@37#, which are expected to have importance in the field
optoelectronics and spectroscopy of nanostructures@38–46#.

Peiponen@24,47# initiated the study of sum rules for non
linear susceptibilities followed by Bassani and co-work
@25,48–53# and by Chernyak and Mukamel@54#. Recently,
Peiponen@55# investigated dispersion relations and sum ru
for the meromorphic complex refractive index, i.e., an ind
that has linear and nonlinear contribution.

As far as we know, neither modified Kramers-Kronig d
persion relations nor basic sum rules for complex merom
phic nonlinear normal reflectivity have been presented u
now. Such a theory is expected to have importance in n
linear reflection spectroscopy, especially when involvi
self-action processes, e.g., in nanocomposites. The inves
tion of the dispersion theory of optically nonlinear materia
possessing nanostructures is important because such m
als may provide all-optical switching, modulating, and co
puting devices@56,57#. Especially, materials possessing lar
third-order nonlinearity and having a quantum wire or d
structure have a key role in the optoelectronic device de
opment. The aim in nonlinear optical nanostructure engin
ing is usually to find optimal constituents so that the nonl
ear absorption of incident light is negligible. Unfortunate
this cannot always be achieved and in some cases it is
desirable such as in two-photon absorption induced t
photon fluorescence from microvolume, which has a gr
potential in drug discovery@58#.

II. MEROMORPHIC SUSCEPTIBILITIES

Here we concentrate on the dispersion theory of insu
tors. The meromorphic third-order nonlinear susceptibi
@6,59# (x (3)) is degenerate in the sense that it involves sim
taneously positive and negative angular frequency varia
(v), i.e., x (3)5x (3)(v,v,2v). The real part of this type o
degenerate nonlinear susceptibility is proportional to
nonlinear refractive index of a medium, whereas the ima
nary part is proportional to the two-photon absorption co
ficient @59#. Expressions for the meromorphic nonlinear su
ceptibility can be found from Refs.@6,52#. A simple
expression, which is based on the anharmonic oscilla
model, can be written as follows:

x (3)~v,v,2v!5
A

D~v!3D~2v!
, ~1!

whereA is a constant and

D~v!5v0
22v22 iGv. ~2!

In Eq. ~2! v0 is the resonance frequency of an anharmo
oscillator andG is the damping parameter. Note that in t
classical Drude’s dispersion model for metals, we have to
v050. If in Eqs. ~1! and ~2! we replace the real angula
frequency variable with a complex one, say,V we observe
that the corresponding nonlinear susceptibility function h
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poles simultaneously, i.e.,D(V)50 andD(2V)50, in the
upper- and lower-half planes. In the upper-half plane th
appear first-order poles whereas in the lower-half plane
poles are of third order. This means that this susceptibility
not a holomorphic but a meromorphic function@60#. There-
fore, we cannot apply the KK relations to such a functi
because of the lack of holomorphicity. Usually the contrib
tion of the nonlinear response of the system is small co
pared with the linear one. Nevertheless, this usually sm
nonlinear but meromorphic contribution has drastic con
quences to the properties of the total susceptibility as can
observed, e.g., in the case of Yariv’s total susceptibil
which can be expressed as follows:

x total~v!5C
v02v1 iT2

21

~v02v!21S 11
I

I s
DT2

22

, ~3!

where C is a constant,T2 the dephasing time,I the pump
irradiance, andI s the saturation irradiance. Inspection of E
~3! shows that the total susceptibility has two symmet
poles in opposite half planes and in addition one zero in
upper-half plane. Hutchingset al. @26# stated in their paper
that the KK relations are valid for the total susceptibility
Eq. ~3! in the regime of linear optics. This is not quite tru
since the total susceptibility of Yariv has no symmetry pro
erties either in the nonlinear or in the linear case (I 50). That
is to say the real and imaginary parts of Yariv’s susceptibi
are not even or odd functions of angular frequency. The
fore, only Hilbert transforms hold~as concerns the comple
causal function and the Hilbert transform, see Ref.@5#! for
the total susceptibility of Yariv. This means the unavoidab
principal-value integration from2` to 1`, whereas the
KK relations require less restrictive, and physically reaso
able, integration from zero to infinity.

In the general case we can always express the total m
morphic susceptibility of the system as a sum of the ho
morphic linear and the meromorphic nonlinear susceptibi
as follows:

x total~v!5x (1)~v!1x (3)~v,v,2v!I , ~4!

wherex (1) is the linear susceptibility andI is the intensity of
light. In the following section we consider the meromorph
complex reflectivity using the general expression of Eq.~4!.

III. MODIFIED KRAMERS-KRONIG RELATIONS
FOR MEROMORPHIC NORMAL REFLECTIVITY

AND SUM RULES

We restrict our consideration on normal light incidenc
since the dispersion theory in linear reflection spectrosc
is devoted to such a case. Nevertheless, the present th
can be generalized also to the case of oblique light incide
but it usually involves much more complicated algebra. T
meromorphic complex normal reflectivity is

r ~v!5
12A11x total~v!

11A11x total~v!
, ~5!
0-2
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DISPERSION THEORY OF MEROMORPHIC TOTAL . . . PHYSICAL REVIEW A 65 063810
where the meromorphic total susceptibility is the one defin
in Eq. ~4!. The meromorphism of the total susceptibility in
duces the meromorphism of the complex reflectivity. T
meromorphic nature can be observed rather easily for s
nonlinearity by expressing the square roots in Eq.~5! using a
binomial expansion.

On one hand, for example, in the case of the meromorp
total susceptibility of Eq.~3!, and at the complex frequenc
for which it holds thatx total50, the reflectivity would be rea
and equal to 0. In other words such an~physically unreason-
able! angular frequency would mean total transparency of
medium. On the other hand, if the square root in Eq.~5!
could have the value zero, i.e., if there could be bran
points, then at the complex angular frequency matching
branch point, the medium would be totally reflecting. Ge
erally speaking in the frame of Eq.~4!, the existence of
branch points can be ruled out due to the assumption
x (3)(v,v,2v)I !x (1)(v), which is valid in usual experi-
ments for real dense media including also nanocompos
So we can expect that in most typical cases the merom
phism of the reflectivity is due only to the poles in both h
planes. Making such an assumption we can perform com
contour integration in the upper-half plane as shown in F
1. The reflectivity of Eq.~5! can be split in to a sum of linea
and nonlinear contributions in the following way:

r ~v!5r (1)~v!1r (3)~v,v,2v!I

5ur (1)~v!ueiw(v)1ur (3)~v,v,2v!ueif(v,v,2v)I ,

~6!

which is analogous to Eq.~4!. The complex numbers are no
expressed in their polar forms. Then the contour integrat
which makes use of Cauchy’s integral theorem@60# and the
theorem of residues@61#, provides the complex form of the
Hilbert transform as follows:

FIG. 1. Contour for derivation of modified KK relations (3
indicates a pole!.
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ipr ~v8!5PE
2`

` ur (1)~v!ueiw(v)

v2v8
dv

1PE
2`

` ur (3)~v,v,2v!ueif(v,v,2v)I

v2v8
dv

22ip (
poles

ResF ur (3)~V,V,2V!ueif(V,V,2V)I

V2v8
G ,

~7!

wherev8 is real and the summation is over the poles in t
upper-half plane. The symbol P denotes the Cauchy princ
value. Note that since the linear reflectivity is holomorph
the contribution of the residue term involves only the no
linear reflectivity. For the total susceptibility we must requi
the fundamental symmetry properties@see Eq.~6! in Ref.
@52##

x (1)~2v!5@x (1)~v!#* , ~8!

x (3)~2v,2v,v!5@x (3)~v,v,2v!#* , ~9!

where (* ) denotes complex conjugate. These symmetry
lations express the reality of fields and induce correspond
symmetry relations for the linear and nonlinear reflectivit
given in Eq.~6!. Due to the symmetry relations the real pa
of the linear and nonlinear reflectivities are even functio
whereas the corresponding imaginary parts are odd fu
tions. Using this information and Euler’s equation for a po
presentation of a complex number we get conventional
relations for the linear reflectivity from Eq.~7! as follows:

ur (1)~v8!ucosw~v8!5
2

p
PE

0

`vur (1)~v!usinw~v!

v22v82
v,

~10!

ur (1)~v8!usinw~v8!52
2v8

p
PE

0

` ur (1)~v!ucosw~v!

v22v82
dv

~11!

and the modified KK relations for the nonlinear reflectivit

ur (3)~v8,v8,2v8!ucosf~v8,v8,2v8!

5
2

p
PE

0

`vur (3)~v,v,2v!usinf~v,v,2v!

v22v82
dv

2ImH 2i (
poles

ResF ur (3)~V,V,2V!uef(V,V,2V)

V2v8
G J ,

~12!
0-3
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ur (3)~v8,v8,2v8!usinf~v8,v8,2v8!

52
2v8

p
PE

0

` ur (3)~v,v,2v!ucosf~v,v,2v!

v22v82
dv

1ReH 2i (
poles

ResF ur (3)~V,V,2V!uef(V,V,2V)

V2v8
G J .

~13!

The KK relations of Eqs.~10! and ~11! were already given
by Smith and Manogue@17# but the modified relations, Eqs
~12! and~13!, are fresh in the context of nonlinear reflecti
ity. We remark that in the case of meromorphic total refle
tivity there is little use to formulate dispersion relations, su
as those of Smith and Manogue@17# involving powers ofr,
i.e., r k or functions such asv j r k, wherej and k are appro-
priate integers. The reason is that higher powers would
volve products of holomorphic (r (1)) and meromorphic
(r (3)) functions, which usually implies a complex expressi
of the dispersion relations for such functions.

The conventional procedure in phase-retrieval proble
in optical spectroscopy is to treat the logarithm of the lat
equality in Eq.~6!. Unfortunately, then we cannot resolv
separately the linear and nonlinear parts such as those g
in Eqs. ~10!–~13!. Furthermore, we have to remember th
the poles ofr (3), which are located in the upper-half plan
are singular points of the logarithm. This brings addition
complexity. If the total reflectivity has also complex zeros
the upper-half plane a term, the so-called Blaschke@4# prod-
uct that takes into account the complex zeros must be
cluded ~see also the papers of Young@62# and Lee@63#!.
Such dispersion relations involving the logarithm of the
flectivity would certainly be important when trying to inve
measured reflectance data. However, we recall that the
due terms such as those in Eqs.~12! and ~13!, which would
appear also in the logarithm formalism, are usually com
cated since they require the knowledge of the resona
points~complex numbers! of the system and involve a com
plex function of a complex angular variable. Evidently inve
tigations are needed to find out the existence of the dis
sion relations concerning the logarithm of the meromorp
reflectivity. Such a topic is beyond the present studies.

Sum rules for the total reflectivity can be found by allow
ing v850 in Eqs.~12! and~13!. We assume that there is n
dc phase shift of the electric field atv850 in the nonlinear
case, analogous to the linear case@8,19#. This means that
f(0,0,0)50. Then we find out two sum rules. One of the
is a nonlinear correction of the static reflectivity, i.e.,

ur (3)~0,0,0!u

5
2

p
PE

0

` ur (3)~v,v,2v!usinf~v,v,2v!

v
dv

2 lim
v8→0

ImH 2i (
poles

ResF ur (3)~V,V,2V!uef(V,V,2V)

V2v8
G J

~14!

and the other one is as follows:
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ResF ur (3)~V,V,2V!uef(V,V,2V)

V2v8
G J 50.

~15!

It is obvious from Eq.~14! that the meromorphicity of the
reflectivity introduces a residue term, which is a fresh feat
if we compare to the static nonlinear correction given
Bassani and Scandolo@25# in the context of nonlinear per
mittivity. The sum rule of Eq.~15! is also interesting since
the limiting process requires the real part of the sum of
residues to vanish.

The high-frequency limit of the linear reflectivity can b
applied@17# to find out anf-sum rule by applying Eq.~10!
and the falloff of the linear reflectivity proportional tov822.
In the case of meromorphic total reflectivity, the existence
an f-sum rule is more problematic due to the residue term
Eq. ~12!, which explicitly falls off proportional tov821.
However, if we restrict the consideration to the Hilbert tran
form of the total reflectivity of Eq.~7! we may write for the
third-order reflectivity the following relation:

ipr (3)~v8,v8,2v8!5PE
2`

` r (3)~v,v,2v!

v2v8
dv

22ip (
poles

ResF r (3)~V,V,2V!

V2v8
G .

~16!

Now we can quite reasonably expect that there is no non
ear reflection of light at extremely high angular frequenc
~the amplitude of the electric field is finite!. In other words
the medium acts just like vacuo. This means that whenv8
tends to infinity, we can approximate

0←E
2`

` r (3)~v,v,2v!

2v8
dv

22ip (
poles

ResF r (3)~V,V,2V!

2v8
G . ~17!

Then we get a sum rule by multiplying the relation of E
~17! by v8, i.e.,

E
2`

`

r (3)~v,v,2v!dv512ip (
poles

Res@r (3)~V,V,2V!#.

~18!

Evidently it is possible to separate sum rules both for r
and imaginary parts in Eq.~18! but rigorous knowledge of
the complex functionr (3)(V,V,2V) is then necessary.

IV. CONCLUSIONS

In this paper we have presented modified Kramers-Kro
relations and related static sum rules and a high-freque
sum rule for the meromorphic nonlinear reflectivity. Th
meromorphism of the nonlinear reflectivity stems from t
0-4
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degenerate nonlinear susceptibility of the medium. Suc
susceptibility, which is related to a self-action process,
poles simultaneously in the upper- and lower-half planes

We derived a sum rule, which gives the correction of t
static nonlinear reflectivity. Other sum rules are related to
residues of the reflectivity. In principle, the real part of E
~18! yields a sum rule, which is analogous to the avera
sum rule for the linear refractive index given by Altare
et al. @15#.

In a more general case of a meromorphic total reflectiv
wherein complex zeros of the reflectivity are allowed in t
upper-half plane, the dispersion relations and sum rules h
to be revised. This means that at least one has to take
account the Blaschke product@4#, which involves informa-
tion about symmetric zeros. However, such a case is bey
the present study.
s
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The present theory of meromorphic reflectivity is believ
to have significance in the testing of optical spectra and m
els for the media related to degenerate third-order nonlin
susceptibility, which appears in the context of nonlinear
fractive index and two-photon absorption. The spectral pr
erties of nonlinear refractive index have importance, e
when developing optoelectronic devices based on the us
nanocomposite structures involving quantum wells, wi
and dots. Wavelength-dependent two-photon absorption
turn is believed to be of crucial importance in drug discove
based on the use of nanoparticles for bioaffinity assays@58#,
and also in optical monitoring of controlled drug delivery b
nanoparticles@64#.
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