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Dispersion theory of meromorphic total reflectivity
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The dispersion theory of meromorphic total reflectivity is considered by dealing with the poles of the
complex reflectivity function in the upper half of the complex angular frequency plane. Modified Kramers-
Kronig relations and corresponding static limit sum rules are derived for the degenerate third-order nonlinear
reflectivity. A high-frequency sum rule is also suggested.
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[. INTRODUCTION which was devoted to the mathematical study of a logarith-
mic kernel in data inversion, confirmed and generalized the
Kramers and Kronid1-3] derived dispersion relations, result of Nashet al. Note that the constant phase angle of
KK relations, which have had many far-reaching conse-Nashet al.is canceled in Ahrenkiel’§13] singly subtractive
guences and applications. The underlying important physicakK analysis of reflectance data, as well as, in the multiply
concept of the existence of the KK relations is causality,subtractive KK analysis of Palmet al. [14] in the case of
which has been clearly pointed out, e.g., in the paper of Tolbdd number of referencganchor”) points.
[4] and later in the study of Remacle and Levirtd. The Sum rules have much importance in linear optical spec-
mathematical concept corresponding to causality is the holatroscopy since they provide the means to estimate the valid-
morphicity of a complex physical function in the upper half ity of the measured data and also the consistency of theoret-
of the complex angular frequency plane, and sufficienical models. Outstanding works of Altareliet al. [15],
asymptotic falloff of the function at high frequencies. TheseAltarelli and Smith[16], Smith and Manogugl7], and King
KK relations provide a basic tool in optical data inversion in[18,19 form the basis of sum rules, which are valid in linear
linear optical spectroscopys]. If we, for instance, measure optical spectroscopy.
the wavelength-dependent light transmission of a transparent The theory of dispersion relations in nonlinear optical
material with the aid of a spectrophotometer, the correspondspectroscopy was investigated a relatively long time ago
ing wavelength-dependent refractive index change can bg0-26, but their experimental validity for nonlinear sus-
calculated using the appropriate KK relatipdl, which ac-  ceptibility was postponed mainly due to experimental com-
tually is a principal-value integral. If the material is opaqueplexities until the work of Kishideet al. [27], who investi-
then the complex refractive index is obtained by a KK phasegated third-harmonic generation from polysilane. The
retrieval procedure, provided that the reflectance is measurgstinciple of causality was at first considered as the necessary
with a reflectometer from a smooth surface of a condensednd sufficient condition for the existence of KK relations
matter. The surface condition is important since Fresnel'salso in nonlinear optics but Kircheva and Hadjichrisf@8]
theory of light reflection is the basis of data analysis. In thehave shown that this is not the case in the four-wave-mixing
case of liquids the measurement is performed using a prismspectroscopy. Nevertheless, the principle of causality is of
reflectometer. course valid also in four-wave-mixing spectroscopy. The in-
The validity of the KK relations for reflectivity has been validity of the KK relations in nonlinear optics was shown
described, e.g., by Velicky7] and Smith[8], and recently by  also for the total susceptibility of the two-level atom treated
Lee [9] for metals, which obey Drude’s dispersion model by Yariv [29]. Moreover, the validity and invalidity of the
[10]. In his elegant paper Lee avoided the principal-valueKK relations in femtosecond spectroscopy was investigated
integral using the dilogarithm functiof®]. Few years ago by Tokunagaet al.[30-32.
Nashet al. [11] paid attention to a feature of a KK relation Peiponen[24], Vartiainen and PeiponefB3], and Pei-
related to a reflectivity in the regime of Drude’s thedhere  ponenet al. [34—-34 studied the dispersion theory of so-
reflectivity means a theoretical quantity whereas reflectancealled meromorphic nonlinear susceptibilities, i.e., suscepti-
means a measured onevhich is frequently used in the de- bilities that are not holomorphic due to singular points both
scription of the permittivity of metals. According to them the in the upper- and lower-half planes. The singular points in
conventional KK relation for phaseretrieval has to be modi-the complex angular frequency space can in the general case
fied by a constant term in cases where the extinction coeffibe poles, zeros, and/or branch points. Usually these are iso-
cient of the medium is different from zero at zero angularlated singularities, but the number of poles can be countably
frequency. The modification stems from the appearance of mfinite, especially in the quantum-mechanical picture. The
pole at zero frequency. Smifl8] has also pointed out the total susceptibility of Yariv is a simple example of a mero-
existence of a branch point of complex reflectivity in the morphic function that has one pole and one zero in the
case of conductors. The paper of Lee and Sindd@],  upper-half plane. Despite the pathological case of a mero-
morphic total susceptibility, phase retrieval is possible, not
by a KK dispersion relation, but by a phase-retrieval proce-
*Electronic address: kai.peiponen@joensuu.fi dure based on the exploitation of the maximum entropy
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model for the modulus of Yariv's complex susceptibility poles simultaneously, i.eQ()=0 andD(—)=0, in the
[35]. This meromorphism of degenerate third-order nonlineaupper- and lower-half planes. In the upper-half plane there
susceptibility appears also in the context of nanocompositeappear first-order poles whereas in the lower-half plane the
[37], which are expected to have importance in the field ofpoles are of third order. This means that this susceptibility is
optoelectronics and spectroscopy of nanostructi88s-44. not a holomorphic but a meromorphic functigg0]. There-
Peiponer{24,47) initiated the study of sum rules for non- fore, we cannot apply the KK relations to such a function
linear susceptibilities followed by Bassani and co-workershecause of the lack of holomorphicity. Usually the contribu-
[25,48-53 and by Chernyak and Mukamgb4]. Recently, tion of the nonlinear response of the system is small com-
Peiponeri55] investigated dispersion relations and sum rulespared with the linear one. Nevertheless, this usually small
for the meromorphic complex refractive index, i.e., an indexnonlinear but meromorphic contribution has drastic conse-
that has linear and nonlinear contribution. quences to the properties of the total susceptibility as can be
As far as we know, neither modified Kramers-Kronig dis- observed, e.g., in the case of Yariv's total susceptibility,
persion relations nor basic sum rules for complex meromorwhich can be expressed as follows:
phic nonlinear normal reflectivity have been presented until

now. Such a theory is expected to have importance in non- wo—cmLiTz’l
linear reflection spectroscopy, especially when involving Xtotall @) =C I : ()]
self-action processes, e.g., in nanocomposites. The investiga- (wp— w)?+| 1+ I_) ng

S,

tion of the dispersion theory of optically nonlinear materials

possessing hanostructures is important because such mat‘WﬁereC is a constantT, the dephasing time, the pump
als.may pr'owde all-optical sywtchmg, ”?Od“'a“”g’ gnd COM-~rradiance, and, the saturation irradiance. Inspection of Eq.
puting deV|Ce$5_6,57_|._ Espemally,_materlals possessing Iarge(s) shows that the total susceptibility has two symmetric
third-order nonlinearity an_d having a quantum wire or OIOtpoles in opposite half planes and in addition one zero in the
structure have a key role in the optoelectronic device develapper-half plane. Hutchingst al. [26] stated in their paper
9'0”?9”- The amin nonllmear opt|c_al hanostructure ENYINECIH, At the KK relations are valid for the total susceptibility of
INg 1S usuallly to fmd quma'l constituents so that the nonIIn'Eq. (3) in the regime of linear optics. This is not quite true
ear absorption of incident light is negligible. Unfortunately, since the total susceptibility of Yariv has no symmetry prop-

this cannot always be achieved and in some cases it is EVedlties either in the nonlinear or in the linear cake 0). That

desirable such as in two—photon absorptlo_n induced WOs to say the real and imaginary parts of Yariv's susceptibility
photon fluorescence from microvolume, which has a gre

L ) 3re not even or odd functions of angular frequency. There-
potential in drug discover}58]. fore, only Hilbert transforms hol@as concerns the complex
causal function and the Hilbert transform, see RBY) for
Il. MEROMORPHIC SUSCEPTIBILITIES the total susceptibility of Yariv. This means the unavoidable

Here we concentrate on the dispersion theory of insulaprmmpal_—value Integration fror'n—.oc to +e, Whereas the
tors. The meromorphic third-order nonlinear susceptibilityKK re'latlons require less restrictive, and physically reason-
[6,59] () is degenerate in the sense that it involves simul-2P!€; integration from zero to infinity.

taneously positive and negative angular frequency variables In the general case we can always express the total mero-
(), i.e., Y= 3 (w,0,— ). The real part of this type of morphic susceptibility of the system as a sum of the holo-

degenerate nonlinear susceptibility is proportional to théﬂorphic linear and the meromorphic nonlinear susceptibility

nonlinear refractive index of a medium, whereas the imagi—as follows:

nary part is proportional to the two-photon absorption coef- — (D )+ @ — o)l 4
ficient[59]. Expressions for the meromorphic nonlinear sus- Xotafl @) =X (@) X 0,0, ), @
ceptibility can be found from Refs[6,52. A simple \wherey™ is the linear susceptibility aniis the intensity of
expression, which is based on the anharmonic oscillatofight. In the following section we consider the meromorphic
model, can be written as follows: complex reflectivity using the general expression of &

A (1) Ill. MODIFIED KRAMERS-KRONIG RELATIONS
D(w)°D(—w) ' FOR MEROMORPHIC NORMAL REFLECTIVITY
AND SUM RULES

whereA is a constant and . . . . L
We restrict our consideration on normal light incidence,

D(0)=wi—w?—ilw. %) §ince the dispersion theory in linear reflection spectroscopy

0 is devoted to such a case. Nevertheless, the present theory
an be generalized also to the case of oblique light incidence
ut it usually involves much more complicated algebra. The
eromorphic complex normal reflectivity is

In Eq. (2) wg is the resonance frequency of an anharmonicg
oscillator andI”" is the damping parameter. Note that in the
classical Drude’s dispersion model for metals, we have to sél

wo=0. If in Egs. (1) and (2) we replace the real angular N e
frequency variable with a complex one, s&y,we observe r(w)= LX‘O‘&'(“’) (5)
that the corresponding nonlinear susceptibility function has 1+ 1+ xiotal @)
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'y

o0 |r(1)(w)|ei¢’(w)
iwr(w’)zPJ —d
ImQ e -
= |r®)(w, 0, — w)|¢@o-)
+ Pf - dw
—® w—w
(3 — i6(Q,0,-Q)
r=(Q,Q,-Q)le I
—2im, Re{' ( ) ,
poles O—ow'
X X
)
/'\ wherew’ is real and the summation is over the poles in the
® > upper-half plane. The symbol P denotes the Cauchy principal
W Ref) value. Note that since the linear reflectivity is holomorphic
£ the contribution of the residue term involves only the non-
linear reflectivity. For the total susceptibility we must require
X X the fundamental symmetry propertiesee Eq.(6) in Ref.
[52]]
FIG. 1. Contour for derivation of modified KK relationsx(
indicates a pole xM(=0)=[xP(w)]*, (8)

where the meromorphic total susceptibility is the one defined (3) 3) N
in Eq. (4). The meromorphism of the total susceptibility in- XV o-w0)=[x(0,0,- )], 9
duces the meromorphism of the complex reflectivity. The

merc_)morphic nature can be observed rathgr easily_for smallhere () denotes complex conjugate. These symmetry re-
nonlinearity by expressing the square roots in &using & |ations express the reality of fields and induce corresponding
binomial expansion. ) symmetry relations for the linear and nonlinear reflectivities
On one hand, for example, in the case of the meromorphigiyen, in Eq.(6). Due to the symmetry relations the real parts
total susceptibility of Eq(3), and at the complex frequency qf the linear and nonlinear reflectivities are even functions,
for which it holds thatyy,= 0, the reflectlw_ty would be real \yhereas the corresponding imaginary parts are odd func-
and equal to 0. In other words such @ahysically unreason- jons, Using this information and Euler’s equation for a polar
able angular frequency would mean total transparency of the, esentation of a complex number we get conventional KK

medium. On the other hand, if the square root in ES).  rgations for the linear reflectivity from Eq7) as follows:
could have the value zero, i.e., if there could be branch

points, then at the complex angular frequency matching the

branch point, the medium would be totally reflecting. Gen- 2 °°a)|r(l)(w)|sin<p(w)
erally speaking in the frame of Ed4), the existence of |f(1)(w')|00590(w')=;|°f o
branch points can be ruled out due to the assumption that
xw,0,—w)l<xV(w), which is valid in usual experi-
ments for real dense media including also nanocomposites.
So we can expect that in most typical cases the meromor- 1 ol (1)

phism of the reflectivity is due only to the poles in both half  |r(W(y")[sing(w’)=— 20 pf [r™(w)|cose(w)
planes. Making such an assumption we can perform complex ™ Jo w’—o'?

contour integration in the upper-half plane as shown in Fig. (11
1. The reflectivity of Eq(5) can be split in to a sum of linear
and nonlinear contributions in the following way:

5 :
(10

0 w’—w'

and the modified KK relations for the nonlinear reflectivity,

Ho)=rMw) +r®(w, o, — )l

3) ’ ro_ ’ AN
= [rD()| 9@+ 1O, 0, — w)|& #@ oo, o, 0’,—w")|cos¢(w’ 0", ~ o)

(6) _E OCw|r(3)(ou,w,—a))|singzﬁ(a),w,—oo)
-+,

w2_w12

dw

which is analogous to E@4). The complex numbers are now

expressed in their polar forms. Then the contour integration, _ r®Q,0,- Q)29
which makes use of Cauchy'’s integral theorgs0] and the —Im;y 2i | Re Q , ,
theorem of residueg61], provides the complex form of the poles @

Hilbert transform as follows: (12
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[r®(w o, —w)lsing(e 0',—o") IrG(Q,Q,—0)eX@-
lim Re{Ziz Re{ — ]zo.
Za)'n °°|r(3)(a),w,—w)|COS¢(w,w,—w) ' 0 poles Q-
D— fo RPNT do (15
r@(0,0, - 0)[eH@0.-0) It is obvious from Eq.(14) that the meromorphicity of the
+ Re{ 2i 2 Re{ el ] reflectivity introduces a residue term, which is a fresh feature
poles O—ow' if we compare to the static nonlinear correction given by

(13) Bassani and Scando[@5] in the context of nonlinear per-
mittivity. The sum rule of Eq(15) is also interesting since
The KK relations of Egs(10) and (11) were already given the limiting process requires the real part of the sum of the
by Smith and ManoguEl7] but the modified relations, Egs. residues to vanish.
(12) and(13), are fresh in the context of nonlinear reflectiv-  The high-frequency limit of the linear reflectivity can be
ity. We remark that in the case of meromorphic total reflec-applied[17] to find out anf-sum rule by applying Eq(10)
tivity there is little use to formulate dispersion relations, suchand the falloff of the linear reflectivity proportional to’ -2,
as those of Smith and Manogli#7] involving powers ofr,  |n the case of meromorphic total reflectivity, the existence of
i.e., r or functions such as'r¥, wherej andk are appro-  anf-sum rule is more problematic due to the residue term in
priate integers. The reason is .thatl)h|gher powers Woul_d INEq. (12), which explicitly falls off proportional tow’ L.
voI;/e products of holomorphic r(_ ) and meromorphic  powever, if we restrict the consideration to the Hilbert trans-
(r®) functions, which usually implies a complex expressionform of the total reflectivity of Eq(7) we may write for the

of the dispersion relations for such functions. third-order reflectivity the following relation:
The conventional procedure in phase-retrieval problems

in optical spectroscopy is to treat the logarithm of the latter

o] 3 —_—
equality in Eq.(6). Unfortunately, then we cannot resolve iwr(s)(w’,w’,—w’)=Pf de
separately the linear and nonlinear parts such as those given - -
in Egs. (10)—(13). Furthermore, we have to remember that
the poles ofr®, which are located in the upper-half plane , r®0,0,-0)
are singular points of the logarithm. This brings additional _2'”%% Re O—o' '

complexity. If the total reflectivity has also complex zeros in
the upper-half plane a term, the so-called BlasdiReprod- (16)
uct that takes into account the complex zeros must be in- . . .
cluded (see also the papers of Your§2] and Lee[63]). Now we can qwte reasonably expec_t that there is no non_l|n-
Such dispersion relations involving the logarithm of the re-a&r reflecfuon of light at eXtFe”?e'y .h'g.h angular frequencies
flectivity would certainly be important when trying to invert (the amP"t“de of .the glectnc field |s.f|n)te|n other words
measured reflectance data. However, we recall that the red? med'!”‘? acts just like vacuo. This means that when
due terms such as those in E¢s2) and (13), which would ~ (€nds to infinity, we can approximate

appear also in the logarithm formalism, are usually compli-

o0 3 —_—
cated since they require the knowledge of the resonance r®(w,0,— o)

points (complex numbepsof the system and involve a com- 0= —w —w do

plex function of a complex angular variable. Evidently inves-

tigations are needed to find out the existence of the disper- ] r®Q,0,-Q)

sion relations concerning the logarithm of the meromorphic _Z'Wrgles Re _—w, ' (17)

reflectivity. Such a topic is beyond the present studies.
Sum rules for the total reflectivity can be found by allow- than we get a sum rule by multiplying the relation of Eq.

ing ' =0 in Egs.(12) and(13). We assume that there is no 17) by o', ie.,

dc phase shift of the electric field at' =0 in the nonlinear

case, analogous to the linear cd8g19]. This means that o

¢(0,0,0)=0. Then we find out two sum rules. One of them f

is a nonlinear correction of the static reflectivity, i.e.,

r®(w,0,—w)do=+2i7 >, Resr®(Q,0,—0)].

—o0 poles

(18)
r®0,00) . . .
Evidently it is possible to separate sum rules both for real
2 (=r®(w,0,—o)|sing(w,w,— ) and imaginary parts in Eq18) but rigorous knowledge of
= ;Pfo o de the complex functionr®(Q,Q, — Q) is then necessary.

— lim Im{ZiE Re

poles

|I'(3)(Q,Q, _Q)|e¢(ﬂ,ﬂ,—ﬂ)
O—ow'

} IV. CONCLUSIONS

In this paper we have presented modified Kramers-Kronig
(14) relations and related static sum rules and a high-frequency

sum rule for the meromorphic nonlinear reflectivity. The

and the other one is as follows: meromorphism of the nonlinear reflectivity stems from the

o' —0
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degenerate nonlinear susceptibility of the medium. Such a The present theory of meromorphic reflectivity is believed
susceptibility, which is related to a self-action process, ha§o have significance in the testing of optical spectra and mod-
poles simultaneously in the upper- and lower-half planes. €ls for the media_ related to dt_agenerate third-order _nonlinear
We derived a sum rule, which gives the correction of theSusceptibility, which appears in the context of nonlinear re-
static nonlinear reflectivity. Other sum rules are related to thdractive index and two-photon absorption. The spectral prop-
residues of the reflectivity. In principle, the real part of Eq_er'ues of nonlinear refractive index have importance, e.g.,

(18) yield m rule. which is anal 0 the aver when developing optoelectronic devices based on the use of
yields a sum rule, ch IS analogous to the ave ag‘?‘lanocomposite structures involving quantum wells, wires

sum rule for the linear refractive index given by Altarelli 5,4 qots. Wavelength-dependent two-photon absorption in

et al.[15]. turn is believed to be of crucial importance in drug discovery
In a more general case of a meromorphic total reflectivitybased on the use of nanoparticles for bioaffinity as§ag

wherein complex zeros of the reflectivity are allowed in theand also in optical monitoring of controlled drug delivery by

upper-half plane, the dispersion relations and sum rules haveanoparticle$64].

to be revised. This means that at least one has to take into

account the Blaschke produpt], which involves informa- ACKNOWLEDGMENT
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