PHYSICAL REVIEW A, VOLUME 65, 063808
Two-level atom coupled to a squeezed vacuum inside a coherently driven cavity
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A single two-level atom in a coherently driven cavity and damped by a broadband squeezed vacuum
centered about the atomic transition frequency is studied. A second-order Fokker-Planck equation for this
system is obtained without using system size expansion. Effects of detunings and cavity decays are also
incorporated in the Fokker-Planck equation. This equation is used to study atomic inversion, fluorescent
spectrum, and the intensity correlations of the transmitted and fluorescent photons in the bad-cavity limit.
Several interesting effects in the atomic inversion, spectrum, and intensity correlations due to the squeezed
vacuum are presented. These results are also compared with an atom that is damped by a thermal reservoir.
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I. INTRODUCTION considered to be broadband centered at the atomic transition
frequency. The model proposed here can be implemented by
With the generation and detection of squeezed light4] ~ assuming a short cavity, which subtends a Iarge solid angle at
increasing attention is being given to the study of interactiorfh® atom. Squeezed modes of the short cavity are directly
of squeezed light with a two-level atofs—13. Gardiner coupled to the atom. A.noth.er cavity with its axis pgrpendlcu-
studied a single two-level atom embedded in a broadbant" [0 the short cavity is driven by a coherent driving field.
squeezed vacuum and showed that the two quadratures of the W& derive an exact Fokker-Planck equation following the
atomic polarization decay at two distinct decay rates that ar8PProach of Wang and Vydd4-16. An appealing feature
sensitive to the phase correlations of the squeezed vacuum the Fokker-Planck equation approach is that it E.IHOW.S
[5]. Carmichaekt al.[6] studied the fluorescent spectrum of quantum-operator averages to be calculatgd as classical-like
an atom immersed in a broadband squeezed vacuum wh erages. Thus analogies betweep classma}I and .q”"?‘T“”m
the atom is driven by a coherent field. They predicted that fo luctuations can be drawn that help in developing an intuitive

weak driving fields the incoherent spectrum would narrow ag_eelmg fo[) quantum fléjc_tuatlons. Thfe Fokﬁer-l?lag%k equ_a]
the amount of squeezing is increased. In this limit the spect—'On can be converted into a set of stochastic differentia
quations which can be solved numerically and in many

trum is insensitive to the relative phase between the drivin% Wtically, W dv the eff ¢ q

field and the squeezed vacuum. For strong driving fields, off>€S analytically. We study the eflects of a squeeze

the other hand, the central peak of the Mollow spectrum ca acuum on atomic inversion, the fluorescent spectrum, and
e second-order intensity correlation function of the trans-

broaden or narrow, depending on the relative phase betwedft S N :
the squeezed vacuum and the driving field. The photon nurTf—mtte_d and fluorescent light in t_he bad-cavity limit. We find
ber distribution for this system has been calculated by Jal'at in the presence of squeezing the threshold value of the

gatap and Lawandg7]. Was and Singh considered reso- cooperativity parameter for seeing vacuum Rabi splitting can

nance fluorescence in the weak-field limit when the atom ié’e Iov.\:cered. Thiz ?euayior isl phadsi serr:sitivel ?ng cs\r/m?'t ge
driven by squeezed light from an optical parametric oscilla-3€€N I squeezed light Is replaced by thermal light. We fin
hat the transmitted light can show antibunching even for a

tor [8], Lyublinskaya and Was considered when the atom i - Wi lain the behavi ¢
driven by nonclassical light from intracavity second har-'a/9€ cooperativity parameter. We explain the behavior o

monic generation and a homodyne degenerate parametric Q@ntibunching in terms of self-homodying of coherent and
cillator [9]. incoherent components. We also find that, for large values of

squeezing, antibunching results due to a reduction in the in-
riensity fluctuations of the incoherent component. This differs

rom the case for small squeezing. For small squeezing anti-
bunching results from an interference of the coherent com-
ponent with the incoherent component.

Parkins and Gardindrl0] considered a single two-level
atom in a cavity when the squeezed light is incident upo
one of the output mirrors. Rice and Pedrdittil] placed a
two-level atom coupled to an ordinary vacuum inside a co
herently driven optical cavity coupled to a broadband
squeezed reservoir through the output mirror. They found
that it was possible to overcome the cavity enhancement part
of the linewidth. This work was extended by Rice and Baird
[12] to calculate the second order intensity correlation func-
tion g‘®)(7) and spectra of the fluorescent light.

In this paper we study a single two-level atom placed
inside a coherently driven cavity where the atom is directly
coupled to a squeezed vacuum but the cavity mode decays
into an ordinary vacuum. The squeezed vacuum spectrum is FIG. 1. Physical scheme.

Squeezed Vacnum

1050-2947/2002/66)/06380811)/$20.00 65 063808-1 ©2002 The American Physical Society



DANIEL ERENSO AND REETA VYAS PHYSICAL REVIEW A65 063808

In Sec. Il we derive a generalized second-order Fokker- Il. FOKKER-PLANCK EQUATION
Planck equation. By eliminating the cavity mode adiabati- . . . .
cally we obtain a Fokker-Plank equation in the bad-cavity we con§|der a :'slnglef two-level atom W'th transition fre-
limit. We then solve the associatet Istochastic differential dUENCYwa interacting with a damped cavity mode of reso-
equations for the atomic variables in the steady state. In Sefance frequency,.. The atom is coupled to a broadband
Il we study the effects of a squeezed vacuum on atomisaueezed vacuum centered about the atomic resonance fre-
inversion. Section IV discusses photon statistics of the translUency w, and the cavity is driven by a classical field of
mitted light. In Secs. V and VI we calculate the spectrum anc@mplitudee and frequencyw, . An outline of this system is
the second-order intensity correlation function of the fluoresshown in Fig. 1. The equation of motion for the density
cent light. Finally, in Sec. VII the main results of the paperoperator in a frame rotating at the frequency of the driving
are summarized. field w, is obtained as

—r = ~iAda'ap]-idgls; pl+gla’s —as, pl+efa’-apl+ §<N+1><2%,E>§+—é+é75—5§+é,>

+%N(2§+ﬁ§_—§_é+f)—f)é_é+)+ y(Ms, ps, +M*s_ps_)+«(2apa’—a'ap—pa'a), (1)

whereg is the atom-field coupling constarat,anda’ are the ~ used in Refs[11,12 by 7/2. We express the density operator
annihilation and creation operators for the cavity mode, angh(t) as[14,17]

s., s_, ands, are spin-half angular momentum operators
describing the two-level atom and obeying the commutation
relations [s;, S_]1=2s, and [S. S,]=F5.. Ac=w— w,
andA,=w,— 0, are, respectively, the cavity and atomic de-
tunings from the driving fieldy is the atomic decay rate for
spontaneous emission into an ordinary vacuum,i® the .
rate at which the cavity is losing photor, is the mean Where|a) is a coherent state @f with eigenvaluex. Here
photon number of the squeezed reservoir, khi$ a param- @, a*, p, u*, andmarec-number variables corresponding
eter related to the phase correlations of the squeezed reséo-the operators, a', s_, s, ands,, respectively. Substi-
voir. They are related to the squeezing parametaend its  tuting Eq.(2) into Eq. (1) and following the procedure used
phased relative to the driving field byN = sink?(r) and M by Wang and Wag14], we obtain the following Fokker-
=e’sinh{)cosh(). This choice of phase differs from that Planck equation:

,3(t)=f Pla,a*,u,u*,m)|a)(«|

X[2ms,+1/2+ us, + p*s_]d2ad?udm, (2)

P P P y
— * * ={ — — — i - I i *
mP(a,a S, M) [ 0a[g,u (k+iAy)a+ €] aﬂ[nga (2(2N+1)+|Aa)/¢+7,u M}

1
gua* +% (2N+21)m+ >

4+
am

92 2, 92 1+ . 92 1+
(“7/,Lr7a’g'u duda* 2 m=u"p)9 ﬁm(?ag 2 m/w

XP(a,a*,w,u*,m)y+c.c. ©)

This is an exact second-order Fokker-Planck equation okthe diffusion terms in the Fokker-Planck equation of a single
tained by using the mapping scheme defined by(Eqwith-  two-level atom decaying into ordinary vacuum and placed
out any system-size expansion or truncation of the resultingnside a coherently driven cavify14].

equation. The drift termgterms inside the square bracKets In the bad-cavity limit (2> v), the field variables decay
depend on the degree of squeezing and the relative phaseuch faster than the atomic variables. We can then eliminate
between the squeezed vacuum and the driving fieldMia the field variables adiabatically by setting partial derivatives
The diffusion terms(terms inside parentheses and coeffi-with respect tow anda* equal to zero in Eq(3) leading to
cients of the second-order derivative tejrase identical to [14,17]
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1

P=——
“« Kk+iA. €

miwi. (4)

P P £ e oty
Ll AL LAt b

On substituting Eq(4) and its complex conjugate into E(B) and simplifying the resulting expression we obtain Fokker-
Planck equation in the bad-cavity limit as

1P al 1 1
—_ = - | —— _ i H : * B H -1
e { ™ 5[2C+2N+1- 6,0+ 3,+18:(2N+ 1) Jut+M(L+i 50 +\/§Ym(1+|5c)

— i\((1+i5) +1(2c+1+52)(2m+1)+N(1+52)m (1+6%)71

Jm 2\/5 c/ M 4 c c c

# [C 2

+—[—(2m+l),u,u* (1+6%) 1+ [Cm(1+2m—2upu*)](1+6%) 1
om?| 2 Apwdpu*
52 92

——[2Cmu?(1+i8) -
I

{7”“[(2m+ 1)2—4pp* —id,(4m?—1)]|(1+ 5§)1] P+c.c., (5

amau

where we have introduced the dimensionless parameters Once again, for the ordinary vacuunN£|M|=0), Egs.
(7)—(9) reduce to those obtained by Wang and &S] It

g2 Zﬁge A, w,—wg can be seen that the coupling of the atom to a squeezed
C= yr Y= Ky 0a= 772: yi2 vacuum enhances the atomic decay rate frgrhi+2C/(1
+6%)] to y[2N+1+2C/(1+ 62)], introduces phase sensi-
Ay we—wy tive _terms in Eq(7) and(8), and adds a constant term pro-
5C=7— Pt (6) portional to the mean photon number of the squeezed

vacuum in Eq.(9). It should be pointed out that, except for

Note that the diffusion terms are still independent of thethe phase dependent terms, such terms would also arise when

. we consider the coupling of an atom to a finite temperature
squeezed vacuum. As a check we note thatNerM =0 it Ping P

q 1o the Fokker-Planck tion f ale two-l ﬁnhermal reservoir. The results for the atom coupled to a ther-
reduces to the Fokker-rlanck equation for a Single tWo-IeVef, | yaseryoir can be obtained by substitutivig=0.
atom coupled to the ordinary vacuyrmi].

. . . . We introduce the polarization quadratures defined b
Taking the average value of the atomic variables we arrive P d y

at the optical Bloch equations (m)y=(mx) =iy, (w*)=(mo+i{uy). (11
%(,u)= —(ye”JrlAeff ()4 Moyl ) — 1 Qg ), Then we can write the optical Bloch equation in the form
" G (0= = 1)~ (MY SIN0) + Aol pay)
(M y=- (ye” i eff)w )M () +i1Qg(m), — T _(m), (12)
®) ((1+ 8%)
9 1 d .
E<m>:_7eff(<m>+ +yN+ 5 (Qeff<l’«> Qg m)), E(:U“y>:_'}’y</~Ly>_[|M|75|r‘(0)_Aeff]</'Ly>
9
where \/—(1+52 ™ 9
T NI W [y 4 U J 1Al
Yett=7Y 1+—5§ Beft=5| %a 1+—5§ * E(m>=—(yx+yy)<m>—m[<ﬂx>+5c<ﬂy>]
__ Y42
21480 1o 2<1+ 1+52) e
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where
71 14 2N—2|M| cog 6) + 2C (15)
== - co ,
T2 1+ 82
4 1+2N+2|M| cog 6) + 2C (16)
== co )
w72 1+ 82

Comparison of Eqs(12)—(14) with those obtained for reso-
nance fluorescence with an injected squeezed vacuum by
Rice and Pedrott{11] we find the following differences.
Equations(12)—(14) include the effects of atomic and cavity
detunings on the decay rates of the polarization quadratures.
The presence of the factor {H&E)*l in the decay ratey,

and vy, reduces the enhancement of spontaneous emission
due to cavity when the cavity mode is detuned with respect
to the driving field. Another difference is that the enhance-
ment of spontaneous emission due to a squeezed vacuum is
not affected by the atomic cooperativity parameferThis,

of course, is a consequence of the direct coupling of the atom
to the squeezed vacuum rather than through the lossy cavity FIG. 2. The atomic inversiofs,) as a function of atomic de-
mirror, which is the case in resonance fluorescence with intuning parametes, in the weak-field and weak-coupling limit for
jected squeezed vacuum. Thus for weak atom-cavity coudifferent values of squeezing parametepump parametey =3,
pling (C<1) the spontaneous emission rate is enhance@=0.4, 5.=6,, and(a) =0, (b) 6=.

much more when the squeezed vacuum is directly coupled to

the atom than when it is coupled through the mirror. ysz
e
R=4(1+ &) T+Aéff—|M|272) Yers
I1l. ATOMIC INVERSION 2
+92Y? yerrt2|M > |cog 6
To study the effects of detuning and squeezed vacuum on 4 verrt2IMly 1+ 5@) <)
atomic inversion we solve the optical Bloch equations in the
steady staté u,) = (u,)=(m)=0. Using this in Eqs(12)— B S | .
(14) and solving for the averages we get 4yIM| 2 sin(6) |. (20
YY(Yets— 2¥YN) Atomic inversion in the steady state is given by EtP).
(Hx)ss= — T{('yeff_25cAeff) For the special case where the atomic and cavity detuning
parameters are equab{=d,), the dependence of atomic
+27y|M|[cog ) — &, sin(6) ]}, (17) inversion on detuning is shown in Fig. 2. Figur&@2shows

inversion when the squeezed vacuum is in phase() with
the coherent excitation. For the ordinary vacuursQ) we

YY (Yeti—2¥N) see that the inversion has a single peak at zero atomic detun-
<My>ss:_T{('yeff‘SC+ 2A¢¢f) ing and for large detunings it approache®.5, indicating
that the atom is most likely to be in the ground s{dt4]. For
—2y|M|[sin(8) + 8, cog H)]}, (18) nonzero squeezing the overall effect of increasing the

squeezing parameter is to increase atomic inversion far
away from the resonance. This is because, even when the

2(1+ 82)(yer— 2yN) driving field is detuned from the atom, the atom still senses
(M)ss=— R the broadband squeezed vacuum. Consequently;, &s
creases the number of quanta in the squeezed vacuum in-
Y4 ) ) creases, resulting in an increase in atomic inversion. In gen-
4 +AG— IM[Fy7 ). (19 eral, for =0 atomic inversion increases monotonically with

increase in the squeezing parametéor all values of detun-
ings, and as a function of detuning it shows a single peak for
Here the denominatdR is given by all values offr.
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0.0 - - - amplitudes of the two peaks first decrease axreases be-
fore increasing with further increase m ultimately rising
above the value for the ordinary vacuum. For very large
values ofr the peaks disappear. In Fig(b3, which is for 6

=1, inversion behaves differently. The on-resonance inver-
sion first decreases with increaserjrbut then increases as
increases further and rises above its value for the ordinary
vacuum. The amplitudes of the two symmetric peaks in-
crease monotonically as the squeezing paranmeatereases.
Thus when an atom decays to the squeezed vacuum the in-
version is phase sensitive. This is to be compared with an
atom decaying into a nonzero temperature thermal reservoir.
In that case the inversion increases monotonically with in-
crease in thermal photons and does not display any phase
sensitive features.

IV. PHOTON STATISTICS OF THE TRANSMITTED
LIGHT

The photon statistics of the transmitted light at the output
mirrors are related to the statistics of the cavity mode. The
expectation values of the field variables are calculated by
first expressing them in normal order and then replacing
. them by corresponding numbers. Thec numbers corre-

FIG. 3. The atomic inversiogs,) as a function of atomic de- sponding to field variables are then expressed in terms of
tuning parameted, in the strong-field and strong-coupling limit for atomic variables. Then field averages are calculated in terms
different values of squeezing parametepump paramete¥ =13,  of atomic averages. Using the adiabatic formula given in Eq.
C=5, 6:=6,, and(a) 6=0, (b) 6= . (4) we can show that the moments of field operators can be
expressed agl4]

Figure Zb) shows inversion when the squeezed vacuum is

out of phase with the driving fieldd= ). Far away from DAY /(PG n Pt a2ypta-2

the resonance, the behavior of the inversion is similar to that ((@)HPah)=((a*)Pa)= (110071 +15."

for #=0 [Fig. 2(a)]. However, near resonance atomic inver- ¢ ¢

sion shows interesting features. On-resonance atomic inver- X[2V2CY(p(u* ) +a(u))

sion can fall below its value for the ordinary vacuum ( 5 5

=0). The on-resonance inversion initially decreases ias +4C%pq(1+2(m))+ Y], (21

creases. With further increaserinit rises above its value for

the ordinary vacuum. Another interesting feature is that forvherens=y*/8g? is the saturation photon number a¥i@nd
small values ofr the atomic inversion shows two peaks lo- C are defined in E(6). Using Eq.(21) we obtain the steady
cated symmetrically at nonzero atomic detuning. This behavstate intracavity field amplitude as

ior near resonance is similar to vacuum Rabi splitting. The

presence of squeezed light effectively reduces the threshold _ @_ Y
value of C for seeing the vacuum Rabi splitting. With in- X= \/n_s_1+i5c[2\/ic<’u>ss+ Y1, (22

crease inr the two peaks broaden and eventually disappear
leaving a dip for large values of Thus the peaks seen inthe 5 the steady-state two-time intensity correlation function
atomic inversion are phase sensitive as they are not seep
when the squeezed vacuum is in phage=(Q) with the co-
herent excitation. These peaks are also absent when the atom
decays into a nonzero temperature thermal reservoir. (2)(0) = YZ[Y2+8\/§CY<“X>33+ 16C%(1+2(m)sd)]

Figure 3 shows inversion as a function of atomic detuning [Y2+4\2CY{ py) s+ 4C3(1+2(m)g9) ]2
in the strong-field and strong-coupling limits. In this regime (23
for r=0 the inversion shows two symmetric peaks as a func-
tion of detuning due to vacuum Rabi splitting, which is in where{u,)ss and(m)ss are given by Eqs(17) and(19).
agreement with the results for an atom decaying to the ordi- Figure 4 shows on-resonang&’(0) for the transmitted
nary vacuum[14]. As the squeezing parameterincreases light as a function of squeezing parametdor 6=0 and
the two peaks broaden and for large values dfie peaks in the weak-coupling and weak-driving-field limits. For
disappear. In Fig. @), which is for the phase#=0, the =0, g®(0) is nearly zero, reflecting maximum antibunch-
on-resonance inversion monotonically increases with ining. As r increasesg®(0) increases and becomes larger
crease in the squeezing paramete©n the other hand, the than unity, reflecting bunching. As is increased further
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' ' ' increased bunching of transmitted light. For small squeezing
L 0=0 g®(0) shows a two-peak structure as a function of detuning.
4ri\ o=z 1 Asr is increased further we find thgt?)(0) exhibits a single
peak. It is interesting to note that for sufficiently large
squeezingy®(0) for all values of detuning decreases to be
less than unity, reflecting antibunching of the transmitted
2H N . light.
° Figure §b) showsg®(0) for .= — 5, and a larger value
of C than that in Fig. &). Forr=0 we find thatg(®(0)
shows two dips at nonzero detuning and a peak at zero de-
, , tuning. Thus antibunching is seen at nonzero detuning,
0.25 0-5rO 0.75 1.00 whereas at zero detuning we see bunching. For very small
increase irr, g?(0) increases and antibunching disappears
FIG. 4. Second-order intensity correlation functigi’(0) of  altogether. Ag increases furtheg(?(0) becomes less than
the transmitted light as a function of squeezing paramefer ¢  unity and shows a single peak as a function of detuning.
=0 andw. Other parameters for the curves afe-0.1, C=0.5,  Thus for very large values af the transmitted light shows
and 8,= 8,=0. g®(0)<1 reflects the nonclassical effect of anti- antibunching for all values of detuning.
bunching. The behavior ofg®(0) can be explained in terms of
self-homodyning of coherent and incoherent components of
g(z)(o) reaches a maximum before decreasing to very Sma]:he intraC&Vity field. The i.ntracaVity field can be divided into
values. Thus for very large values othe transmitted light ~two parts, coherent and incoherent components, as
again shows antibunching. L .
Figure 5 showgy(?)(0) as a function of detuning for sev- a=(a)+Aa. (24)
eral different values of in the weak-coupling and weak- ) o ) _
driving-field limits wheng=0. Figure %a) is plotted fors, ~ Eduation(22) indicates that for nonzero detuning and arbi-
=0. In this casey®(0) shows a dip as a function of detun- trary vall_Jes of the intracavity field is not in phase with the
ing for r =0, so that maximum antibunching is seen on resodriving field. The relative phasg between the coherent
nance in agreement with Reffl4]. As r increases we find component and the driving field is given by

that the on-resonance value gf)(0) increases, indicating
tar( ¢) = 2 \/§C<:U’y>ss+ oc(Y+2 \/§C<Mx>ss)

20 —— 8:2\2C(puy)ss— (Y +22C(uy)s9)
r=002—"" \ @

g?0)

(29

We introduce a field quadrature which is in phase with the

15 driving field as
1.0°F ~ 10
A1=§(ae""’+ a'el?). (26)
05} .
Using Eqgs.(26) and(21), fluctuations inA; are calculated to

§ be
= . A \2. 2C2n3 2 2

155 <-(AA1) ->: (1+5(2:)[(1+<m>ss)_4(<Mx>ss+<:“y>ss)]-

(27)

In terms of the coherent and incoherent components we can
rewrite g‘?)(0) as

0.5}

9?(0)=1+G;+G,+Gg;, (29

0.0 —
where

SN2/ A A2
FIG. 5. Second-order intensity correlation functigff)(0) of Al(a)l*(:AAL)

=— =%, 29
the transmitted light as a function of atomic detuning paraméter ! (|<a>|2+<AaTAa>)2 @9
for pumping parametel=0.1, #=0, and different values of.
Other parameters for the curves de C=0.5 andé.=0; (b) C 2 2424 2
+cC.C.
=2 and §,=—6,. g®@(0)<1 reflects the nonclassical effect of 2—2(<a><Aa Aa)+c.c) (30)

antibunching. - (I(ay|?+(AaTAa))?
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4 T T

<§+(0)§—(T)>ss: <§x(0)gx( T)>ss+<§y(0)éy( ™))ss

—1((5/(0)5( 7)) ss— (5(0)8,(7))s9)-
(33

The general analytic expressions for the correlations needed
for the spectrum are cumbersome in the presence of detuning
and for arbitrary values of. Here we present calculations of
the spectrum only for the resonant cagg= 6.=0) and for

6=0 or 7. We obtain the correlation needed for calculating
the spectrum by using the quantum regression theorem with

0.0 0.1 ; 02 03 initial conditions
FIG. 6. G;, G,, G3, andg®(0)—1 of the transmitted light as <§X(o)2>ssz<§y(o)2>ssz 1/4,
functions of squeezing parametefor =0. Other parameters for
= = =5.20. q@(0)— i A A .~ . )
the curves ar&/=0.1, C=0.5, andé.= 6,=0. g**/(0)—1<0 re <Sx(o)sy(o)>ss: _<Sy(0)sx(0)>ss:(|/2)<m>ss:

flects the nonclassical effect of antibunching.

~(Aa'?A82%) - (AaTAR)? (5x(0)8:(0))s5= ~{y)ss,

(@) (dataay? & (8(0)80)ss= — {)ss: (3
We first present results for the spectrum of the fluorescent
In Fig. 6 we show on-resonance behavior®f, G,, Gs, light in the weak-driving-field limitY<Y,,, where the

and[g‘®(0)— 1] for =0 as a function of squeezing param- threshold driving fieldyy, is given by

eter. The other parameters are the same as those for Fig. 4.

Here G, describes the interference of the coherent compo- Y= Yo~ V= , (35)
nent with the fluctuations in the quadratubg. G, is less \/57

than zero when the quadratubg is squeezed. This term is
responsible for antibunching for very small valueg ofAs r
increases, squeezing in quadratére decreases and there- v
fore G, increases. For large values QfG; is positive. The 7—25(1+20+2N_2|M D,
contribution ofG, is always positive and therefore reduces

antibunchingGs; is the contribution of intensity fluctuations

with

Y
in the incoherent component of the field. It becomes negative 7+ =5(1+2C+2N+2[M]), (36)
for large values ofr, again leading to antibunching. Thus
antibunching of the transmitted light for small valuesra$ yo=y(1+2C+2N).

due to squeezing in quadratulg, whereas for large values
of r it is due to reduction in intensity fluctuations of the Herey_ corresponds to the threshold driving field for phase
incoherent component. #=0 andy, corresponds to the threshold driving field for
6=. We will follow the convention that the upper sign
corresponds to phage=0 and the lower sign corresponds to
V. SPECTRUM OF THE FLUORESCENT LIGHT phased= 7. Below threshold all the eigenvalugs, \,, and

Next we calculate the spectrum of the fluorescent lightMs diven by Eq.(42) or (43) are real and we obtain the

The spectrum of the fluorescent light is defined as following expression for the two-time correlation function:
. (51(0)S-(7)ss= Co+ C1XPN17) + CoXPN,7)
S(w)= Ef_mdrexm(w— 04) 7)(5+(0)S_(7))ss +Caexp(\37), (37
1 . where
=—R f drexdi(w—wy) T S 0)§_(T) .
ar { 0 F{ a ]< +( >SS C0:<Mx>§s, (38)
(32 Cy=(1+2(m)o)/4, (39
Using the polarization quadratures defined in Ed4), the Aty ol 2\/5( Yot \3) 0 ¢
two-time correlation functiofs, (0)s_(7))ss can be written DV W yY {1(0))ss| = Col,
as (40)
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Nat 7o 2\2(y0+ ) o3 ' ‘ '
Ca 3, cl(l—me(o»ss ~Co. 2
(41) i
0.2 1
The eigenvaluea , \,, and\; for =0 are
Sl
)\1: Y+ (g*
0.1 4
1 2 2
Na=5[=(vot v+ (%= y)*-2(Y)7], (42)
0.0 basammmimi i s S
1 -5.0 -2.5 0.0 25 5.0
Na=35[~(vo+7-)= (v~ y-)7=2(Y7)?], (-0 by
FIG. 7. Spectrum of the fluorescent light below threshold for
and for 6= = they are different values of, Y=0.11,C=0.3, andd= .
S S(0)=| Codlw—wg) = = 2
w)= w—wWy)— —— 4
. 2 2 T T\ (00,
Na=5[=(vo+ v+ (vo—v)?=2(Y)7], (43)

1 CR)\R+C|(w—wa+)\|)
T A3+ (0—w,+\))?

1
)\325[_(3’0"‘ y)—V(vo—v+)*=2(Yy)?].
1 CrAp=Cilo—wa— )

The expectation valugg,)ss and({m)ss are found from Egs. T A2t (w—wy—\)2 (46)
(17) and (18) to be R a o
) where
(1) vY(1+2C)
Mx)ss™ — > ) 1 1
+ _
V2L + 25075] A== 5 (Yot y2), M=5V2(9) 7= (%= v5)?
yy=(1+2C) (47
(Mhggm — == (44
(YY) +2y0y= 1
. . . CRZE[Cl_CO]y (48)
Employing Eq.(37) in the expression for the spectrum, we
obtain \ 23 re)
Yot ARr Yot Ar
sorl st uy G N Ci== x| (C1=Co~Culmdes——
w)= wW—Wy)— ——
0 2 m )\i-i—(w—wa)z A 2
X111+ ] . (49
C, A2 Cs A3 Yo AR
TN+ (0—0,)? T M+ (0—0,)?] The incoherent part of the spectrum is shown in Fig) 8or

(45) #=0 and in Fig. &) for = & for several different values of
the squeezing parameterThe incoherent part of the spec-
Equation (45) indicates that in the weak-driving limit the trum has three peaks, similar to the Mollow spectrum. The
spectrum is composed of a coherent component given by theentral peak has full width at half maxima\2|=2y.
& function term and an incoherent component given by the= y(1+2C+2N=2|M|). The other two symmetrical peaks
sum of three Lorenzians centered at the atomic resonanalisplaced by+\, from the central peak have a width of
frequencyw, of widths 2\1, 2\,, and 2\ 5, respectively. In  2|\g|=(yo+ ¥=) = (¥/2)[3(1+2C+2N)¥2|M|]. When
Fig. 7 the incoherent part of the spectrum is shown for dif-the driving field and the squeezed vacuum are out of phase
ferent values of the squeezing parameatein general the (6=m), the width of the central peal_ decreases as the
effect of the squeezed vacuum is to narrow the width of thalegree of squeezing increases. For strong squeezing
spectrum. In the weak-driving limit the spectrum is not very>1, N=(e? —2)/4 and|M|=¢e?'/4 so that the width of the
sensitive to phase. We have, therefore, shown the curves faentral peak approaches a valug|=yC and the width of
only 6= . the sidebands approache$3C+e?'/2) for §=. Thus in
In the strong-driving-field limity>Y,, N\, and\3 given this regime the central peak becomes narrower, whereas the
by Eq.(42) or (43) become complex and the spectrum takessidebands become broader and eventually disappear for a
the form very large value of. When the driving field is in phase with
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T T T T T T

“ “ “ R 1 R R R
(84(0)8:(7)5-(7)5-(0))55= 7 [4(5:(0)5,()S_(0))ss
+2(5,(0))ss+1]. (51

By expressing. ands_ in terms of the polarization quadra-
ture operators one can write

S

5 (5:(0)8,(7)5_(0))5s=[(54(0)5,( 7)5¢(0) )55
+(5,(0)5,(7)S(0))ss
—1((5¢(0)5,(7)5,(0))ss

—(5,(0)5,(1)8,(0))s9]. (52)

The correlations in the above expression can be obtained by
using the quantum regression theorem with the initial condi-
tions

- )y

FIG. 8. Spectrum of the fluorescent light above threshold for “ ~ “ ~ ~ ~
different values of and forC=0.4, Y= 10; solid liner =0, dashed (54(0)8,(0)8,(0))ss=(5y(0)5,(0)8,(0) ) ss— (M) s /4,
line r=0.68 and dotted line=1.15.(a) =0, (b) = . (53

the squeezed vacuun®£0), the width of the central peak (5(0)5(0)8(0))s5= = (5x(0)5(0)3,(0)) 5= 178,

v, increases as the degree of squeezing increases. For strong
squeezingr>1, the width of the central peak approaches 2 - 2 _ 2 2 _
y(C+e%/2) and the width of the sidebands approaches (5¢0)5(0)$(0))ss= <SV(O)SX(O)SV(O)>SS_<MX>SS/?5’5)
¥(3C+e?") for #=0. Thus for a very large value aof all
three peaks disappear. In the presence of a thermal reservoir
the width of the central peak isy(2)(1+2C+ 2N) and that

of the sidebands isy/2)[ 3(1+2C+2N)]. The spectrum in

the presence of a thermal reservoir does not show phase seising these correlations we find the second-order intensity
sitivity and for a large number of thermal photons all threecorrelation function for the fluorescent light defined in Eq.
peaks disappear. It is interesting to note that the change i50) to be

the width and the location of the peaks due to the squeezed
reservoir is independent of the cooperativity parameter,
whereas for the model considered by Rice and Pedrttii

the change in the width and location of the peaks due to

(54)

(54(0)5,(0)5,(0))s5=(S(0)Sx(0)54(0)) ss= { y) s d4-

(2)( )= -
g(7) 1+(7\2_)\3)

squeezing depends on the cooperativity parameter. This is N \/§7Y</-Lx>ss
because the squeezed vacuum is injected into the cavity X1 (votAg)+ (1+2(m)sy
through the output mirror. P
2yY
X exp(\,7) — («y0+)\2)+&x>ss
(1+2(m)sy)
VI. SECOND-ORDER INTENSITY CORRELATION
FUNCTION OF THE FLUORESCENT LIGHT
. . . Xexp(A37)ss|, (57)
For completeness, in this section we study the second-

order intensity correlation function of the fluorescent light in
both the weak- and strong-driving-field limits. The second-
order intensity correlation function

where\ 1, \,, and\5 are given in Egs(42) and (43). Its
behavior in the weak-driving-field limit is shown in Fig. 9
for several different values of the squeezing parametér

can be seen that the correlation function vanishes at zero

S Ma (E (n delay [g‘?(0)=0] for all values ofr indicating that the
s (0)s s_(7)s_(0
g(2)(T):< +{ )f(T)A () 2( Vs (50) probability of detecting two photons simultaneously remains
(54+(0)s-(0))ss zero. Fluorescent light is thus always antibunched. This is a

reflection of the fact that a two-level atom cannot emit two or

. . . N more photons simultaneously. After each emission the atom
is the probability of detecting a photon at a t"f'g'vef' that returns to the ground state. It must be excited before another
one was detected at time 0. Using the relaor{7)s_(7)  emission can take place. The effect of the squeezed vacuum
=1(2s,+1) we obtain is observed, however, in the time dependence. When a
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' ' ' presence of the squeezed vacuum has an effect on the ampli-
tude of these oscillations for bot#=0 and . The ampli-
tude decreases as squeezing increases and eventually the os-
cillations are washed out for sufficiently large values of
squeezing. This behavior is more pronounced when the driv-
ing field and squeezed vacuum are out of phase than when
they are in phase. We observe a similar damping of oscilla-
tory behavior when the squeezed vacuum is replaced by ther-
mal light (M|=0). Thus the decrease in the amplitude of
the oscillation is due to the mean photon number of the mode
that is coupled to the atom. This behavior is qualitatively
similar to that reported by Rice and Baif2] for a single
two-level atom inside a coherently driven cavity with in-
jected squeezed vacuum although it differs quantitatively.

FIG. 9. Second-order intensity correlation functigft)(7) of
the fluorescent light below threshold for different valuesrpfC
=0.4, =0, andY=0.1. g®@(0)<1 reflects the nonclassical effect

of antibunching. VIl. CONCLUSIONS

We have derived a generalized Fokker-Planck equation
squeezed vacuum is introducegi?)(7) approaches unity at without using the system-size expansion or any truncation
a faster rate than in the case of the ordinary vacuum (for a single two-level atom placed inside a coherently driven
=0). This is because the squeezed vacuum enhances thavity when the atom is coupled to a broadband squeezed
decay of coherence in proportion to the mean photon numbaracuum. Our results include atomic and cavity detunings and
N(r)=sink(r). We also find that in the weak-driving-field also atomic and cavity decays. Using this Fokker-Planck
limit the phase sensitivity o§‘®)(7) is negligible. equation we have studied atomic inversion, the fluorescent

In the strong-driving-field limit the eigenvaluas and\;  spectrum, and the second-order intensity correlation function
given in Egs(42) and(43) become complex and their imagi- of the transmitted and fluorescent light in the bad-cavity
nary part leads to an oscillatory behavior fg)(7), as it  limit. For r=0 our results reduce to those for an atom de-
approaches unity with increasing delayFor short time de- caying to the ordinary vacuuifri4].
lay the behavior is similar to that for the weak driving field. = Mean atomic inversion, in general, increases with increas-
This behaviorg®)(7) is shown in Figs. 1@&) and 1@b) for ~ ing mean photon number of the squeezed reservoir. This be-
6=0 andm, respectively. The oscillatory behaviorg®)(7)  havior, however, shows phase sensitivity. For example, when
as a function ofr is due to Rabi oscillations of the atom. The 6= and the cavity mode and the driving field are equally
detuned with respect to the atomic transition frequency, the
atomic inversion shows a dip as a function of the detuning
@ due to destructive interference between the driving field and
] the squeezed vacuum. As a function of detuning the atomic
inversion shows two peaks located symmetrically at nonzero
detunings. The presence of the squeezed reservoir effectively
reduces the threshold value Gffor seeing the vacuum Rabi
splitting. Such phase sensitivity is not seen when the atom is
coupled to a thermal reservoir.
r=11% When the atom is coupled to the ordinary vacuum, then,
on resonance, photon antibunching in the transmitted light
can be observed only for weak driving field¥<€1) and
small values of the cooperativity paramet@<(1/,/2). It is
possible to see antibunching for a large valu€aft nonzero
detunings. Antibunching in all these cases can be explained
in terms of self-homodyning between coherent and incoher-
ent component of the intracavity field. The major contribu-
tions to the antibunching far=0 are due to squeezing in the

quadraturéd; which is in phase with the driving field. When

: r=0 the ordinary vacuum coupled to the atom is replaced by a
095 05 10 15 2.0 squeezed vacuum and the squeezing parameter is small, we
find that antibunching decreases and transmitted light can
T become bunched. This is because squeezing in the quadra-

FIG. 10. Second-order intensity correlation functig®(r) of ~ ture A; decreases. With further increase rinve find that
the fluorescent light above threshold for different values,o6  9)(0) decreases and the transmitted light becomes anti-
=0.4,Y=10, and(a) 6=, (b) 6=0. g?(0)<1 reflects the non- bunched. Antibunching for largeis due to a reduction in the
classical effect of antibunching. intensity fluctuation of the incoherent component.
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In the weak-driving-field limit we find a narrowing of the squeezing increases whet=0. On the other hand, fo#
spectrum with increasing degree of squeezing. In this limit= 7, the sidebands are broadened whereas the central peak
the spectrum and the second-order intensity correlation fundsecomes narrower. For the second-order intensity correlation
tion are not strongly phase sensitive. The effect of a squeezeddnction the amplitude of oscillations damps out faster for
vacuum org‘?(7) is to enhance the rate of its decay. This is 6= 7 than for §=0 as the degree of squeezing increases.
due to the increase of the dephasing of the Rabi oscillation
with increasingr. In the strong-driving-field limit we find
phase sensitive behavior for both the spectrum and the
second-order intensity correlation function. In this limit the  The authors would like to thank Dr. Surendra Singh for
overall effect of the squeezed vacuum is to increase thenany helpful discussions. This work was supported in part
width of the spectrum and damp out the amplitude of oscil-by the Office of Naval Research and the Arkansas Science
lations in the second-order intensity correlation function. Theand Technology Authority. D.E. acknowledges support from
widths of the Mollow triplets increase as the degree ofthe ICSC World Laboratory.
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