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Two-level atom coupled to a squeezed vacuum inside a coherently driven cavity
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Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701

~Received 8 September 2001; published 5 June 2002!

A single two-level atom in a coherently driven cavity and damped by a broadband squeezed vacuum
centered about the atomic transition frequency is studied. A second-order Fokker-Planck equation for this
system is obtained without using system size expansion. Effects of detunings and cavity decays are also
incorporated in the Fokker-Planck equation. This equation is used to study atomic inversion, fluorescent
spectrum, and the intensity correlations of the transmitted and fluorescent photons in the bad-cavity limit.
Several interesting effects in the atomic inversion, spectrum, and intensity correlations due to the squeezed
vacuum are presented. These results are also compared with an atom that is damped by a thermal reservoir.
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I. INTRODUCTION

With the generation and detection of squeezed light@1–4#
increasing attention is being given to the study of interact
of squeezed light with a two-level atom@5–13#. Gardiner
studied a single two-level atom embedded in a broadb
squeezed vacuum and showed that the two quadratures o
atomic polarization decay at two distinct decay rates that
sensitive to the phase correlations of the squeezed vac
@5#. Carmichaelet al. @6# studied the fluorescent spectrum
an atom immersed in a broadband squeezed vacuum w
the atom is driven by a coherent field. They predicted that
weak driving fields the incoherent spectrum would narrow
the amount of squeezing is increased. In this limit the sp
trum is insensitive to the relative phase between the driv
field and the squeezed vacuum. For strong driving fields
the other hand, the central peak of the Mollow spectrum
broaden or narrow, depending on the relative phase betw
the squeezed vacuum and the driving field. The photon n
ber distribution for this system has been calculated by
gatap and Lawande@7#. Vyas and Singh considered res
nance fluorescence in the weak-field limit when the atom
driven by squeezed light from an optical parametric osci
tor @8#, Lyublinskaya and Vyas considered when the atom
driven by nonclassical light from intracavity second ha
monic generation and a homodyne degenerate parametri
cillator @9#.

Parkins and Gardiner@10# considered a single two-leve
atom in a cavity when the squeezed light is incident up
one of the output mirrors. Rice and Pedrotti@11# placed a
two-level atom coupled to an ordinary vacuum inside a
herently driven optical cavity coupled to a broadba
squeezed reservoir through the output mirror. They fou
that it was possible to overcome the cavity enhancement
of the linewidth. This work was extended by Rice and Ba
@12# to calculate the second order intensity correlation fu
tion g(2)(t) and spectra of the fluorescent light.

In this paper we study a single two-level atom plac
inside a coherently driven cavity where the atom is direc
coupled to a squeezed vacuum but the cavity mode de
into an ordinary vacuum. The squeezed vacuum spectru
1050-2947/2002/65~6!/063808~11!/$20.00 65 0638
n

d
the
re
m

en
r
s
c-
g
n
n
en
-

a-

is
-
s
-
os-

n

-

d
rt

-

y
ys
is

considered to be broadband centered at the atomic trans
frequency. The model proposed here can be implemente
assuming a short cavity, which subtends a large solid ang
the atom. Squeezed modes of the short cavity are dire
coupled to the atom. Another cavity with its axis perpendic
lar to the short cavity is driven by a coherent driving field

We derive an exact Fokker-Planck equation following t
approach of Wang and Vyas@14–16#. An appealing feature
of the Fokker-Planck equation approach is that it allo
quantum-operator averages to be calculated as classica
averages. Thus analogies between classical and qua
fluctuations can be drawn that help in developing an intuit
feeling for quantum fluctuations. The Fokker-Planck equ
tion can be converted into a set of stochastic differen
equations which can be solved numerically and in ma
cases analytically. We study the effects of a squee
vacuum on atomic inversion, the fluorescent spectrum,
the second-order intensity correlation function of the tra
mitted and fluorescent light in the bad-cavity limit. We fin
that in the presence of squeezing the threshold value of
cooperativity parameter for seeing vacuum Rabi splitting c
be lowered. This behavior is phase sensitive and canno
seen if squeezed light is replaced by thermal light. We fi
that the transmitted light can show antibunching even fo
large cooperativity parameter. We explain the behavior
antibunching in terms of self-homodying of coherent a
incoherent components. We also find that, for large value
squeezing, antibunching results due to a reduction in the
tensity fluctuations of the incoherent component. This diff
from the case for small squeezing. For small squeezing a
bunching results from an interference of the coherent co
ponent with the incoherent component.

FIG. 1. Physical scheme.
©2002 The American Physical Society08-1
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In Sec. II we derive a generalized second-order Fokk
Planck equation. By eliminating the cavity mode adiaba
cally we obtain a Fokker-Plank equation in the bad-cav
limit. We then solve the associated Iˆto stochastic differentia
equations for the atomic variables in the steady state. In
III we study the effects of a squeezed vacuum on ato
inversion. Section IV discusses photon statistics of the tra
mitted light. In Secs. V and VI we calculate the spectrum a
the second-order intensity correlation function of the fluor
cent light. Finally, in Sec. VII the main results of the pap
are summarized.
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II. FOKKER-PLANCK EQUATION

We consider a single two-level atom with transition fr
quencyva interacting with a damped cavity mode of res
nance frequencyvc . The atom is coupled to a broadban
squeezed vacuum centered about the atomic resonance
quencyva and the cavity is driven by a classical field o
amplitudee and frequencyvo . An outline of this system is
shown in Fig. 1. The equation of motion for the dens
operator in a frame rotating at the frequency of the drivi
field vo is obtained as
]r̂

]t
52 iDc@ â†â,r̂ #2 iDa@ ŝz ,r̂ #1g@ â†ŝ22âŝ1 ,r̂ #1e@ â†2â,r̂ #1

g

2
~N11!~2ŝ2r̂ ŝ12 ŝ1ŝ2r̂2 r̂ ŝ1ŝ2!

1
g

2
N~2ŝ1r̂ ŝ22 ŝ2ŝ1r̂2 r̂ ŝ2ŝ1!1g~Mŝ1r̂ ŝ11M* ŝ2r̂ ŝ2!1k~2âr̂â†2â†âr̂2 r̂â†â!, ~1!
or

g

d

whereg is the atom-field coupling constant,â andâ† are the
annihilation and creation operators for the cavity mode, a
ŝ1 , ŝ2 , and ŝz are spin-half angular momentum operato
describing the two-level atom and obeying the commutat
relations @ ŝ1,ŝ2#52ŝz and @ ŝ6,ŝz#57 ŝ6 . Dc5vc2vo
andDa5va2vo are, respectively, the cavity and atomic d
tunings from the driving field,g is the atomic decay rate fo
spontaneous emission into an ordinary vacuum, 2k is the
rate at which the cavity is losing photons,N is the mean
photon number of the squeezed reservoir, andM is a param-
eter related to the phase correlations of the squeezed r
voir. They are related to the squeezing parameterr and its
phaseu relative to the driving field byN5sinh2(r) and M
5eiu sinh(r)cosh(r). This choice of phase differs from tha
d

n

er-

used in Refs.@11,12# by p/2. We express the density operat
r̂(t) as @14,17#

r̂~ t !5E P~a,a* ,m,m* ,m!ua&^au

3@2mŝz11/21m ŝ11m* ŝ2#d2ad2mdm, ~2!

whereua& is a coherent state ofâ with eigenvaluea. Here
a, a* , m, m* , andm arec-number variables correspondin
to the operatorsâ, â†, ŝ2 , ŝ1 , andŝz , respectively. Substi-
tuting Eq.~2! into Eq. ~1! and following the procedure use
by Wang and Vyas@14#, we obtain the following Fokker-
Planck equation:
]

]t
P~a,a* ,m,m* ,m!5H 2

]

]a
@gm2~k1 iDc!a1e#2

]

]m F2gma2S g

2
~2N11!1 iDaDm1gm* M G

1
]

]m Fgma* 1
g

2 S ~2N11!m1
1

2D G2
]2

]m]a
gm21

]2

]m]a*
S 1

2
1m2m* m Dg2

]2

]m]a
gS 1

2
1mDmJ

3P~a,a* ,m,m* ,m!1c.c. ~3!
gle
ed

ate
es
This is an exact second-order Fokker-Planck equation
tained by using the mapping scheme defined by Eq.~2! with-
out any system-size expansion or truncation of the resul
equation. The drift terms~terms inside the square bracket!
depend on the degree of squeezing and the relative p
between the squeezed vacuum and the driving field viaM.
The diffusion terms~terms inside parentheses and coe
cients of the second-order derivative terms! are identical to
b-

g

se

-

the diffusion terms in the Fokker-Planck equation of a sin
two-level atom decaying into ordinary vacuum and plac
inside a coherently driven cavity@14#.

In the bad-cavity limit (2k@g), the field variables decay
much faster than the atomic variables. We can then elimin
the field variables adiabatically by setting partial derivativ
with respect toa anda* equal to zero in Eq.~3! leading to
@14,17#
8-2
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aP5
1

k1 iDc
F e1gm1

]

]m
gm22

]

]m*
S 1

2
1m2m* m Dg1

]

]m
gS 1

2
1mDmG . ~4!

On substituting Eq.~4! and its complex conjugate into Eq.~3! and simplifying the resulting expression we obtain Fokk
Planck equation in the bad-cavity limit as

1

g

]P

]t
5H 2

]

]m F2
1

2
@2C12N112dadc1 ida1 idc~2N11!#m1M ~11 idc!m* 1

1

A2
YmG ~11 idc!

21

1
]

]mF 1

2A2
Y~11 idc!m1

1

4
~2C111dc

2!~2m11!1N~11dc
2!mG ~11dc

2!21

1
]2

]m2 FC

2
~2m11!mm* G~11dc

2!211
]2

]m]m*
@Cm~112m22mm* !#~11dc

2!21

2
]2

]m2
@2Cmm2#~11 idc!

212
]2

]m]m FCm

2
@~2m11!224mm* 2 idc~4m221!#G~11dc

2!21J P1c.c., ~5!
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where we have introduced the dimensionless parameter

C5
g2

gk
, Y5

2A2ge

kg
, da5

Da

g/2
5

va2v0

g/2
,

dc5
Dc

k
5

vc2v0

k
. ~6!

Note that the diffusion terms are still independent of t
squeezed vacuum. As a check we note that forN5M50 it
reduces to the Fokker-Planck equation for a single two-le
atom coupled to the ordinary vacuum@14#.

Taking the average value of the atomic variables we ar
at the optical Bloch equations

]

]t
^m&52S ge f f

2
1 iDe f fD ^m&1Mg^m* &2 iVe f f^m&,

~7!

]

]t
^m* &52S ge f f

2
2 iDe f fD ^m* &1M* g^m&1 iVe f f* ^m&,

~8!

]

]t
^m&52ge f fS ^m&1

1

2D1gN1
i

2
~Ve f f^m* &2Ve f f* ^m&!,

~9!

where

ge f f5gS 2N111
2C

11dc
2D ,De f f5

g

2 S da2
2dcC

11dc
2D ,

Ve f f5
igY

A2~11 idc!
. ~10!
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Once again, for the ordinary vacuum (N5uM u50), Eqs.
~7!–~9! reduce to those obtained by Wang and Vyas@15#. It
can be seen that the coupling of the atom to a squee
vacuum enhances the atomic decay rate fromg@112C/(1
1dc

2)# to g@2N1112C/(11dc
2)#, introduces phase sens

tive terms in Eq.~7! and ~8!, and adds a constant term pro
portional to the mean photon number of the squee
vacuum in Eq.~9!. It should be pointed out that, except fo
the phase dependent terms, such terms would also arise w
we consider the coupling of an atom to a finite temperat
thermal reservoir. The results for the atom coupled to a th
mal reservoir can be obtained by substitutingM50.

We introduce the polarization quadratures defined by

^m&5^mx&2 i ^my&, ^m* &5^mx&1 i ^my&. ~11!

Then we can write the optical Bloch equation in the form

]

]t
^mx&52gx^mx&2@ uM ug sin~u!1De f f#^my&

1
gY

A2~11dc
2!

^m&, ~12!

]

]t
^my&52gy^my&2@ uM ug sin~u!2De f f#^my&

1
gYdc

A2~11dc
2!

^m&, ~13!

]

]t
^m&52~gx1gy!^m&2

gY

A2~11dc
2!

@^mx&1dc^my&#

2
g

2 S 11
2C

11dc
2D , ~14!
8-3
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where

gx5
g

2 S 112N22uM u cos~u!1
2C

11dc
2D , ~15!

gy5
g

2 S 112N12uM u cos~u!1
2C

11dc
2D . ~16!

Comparison of Eqs.~12!–~14! with those obtained for reso
nance fluorescence with an injected squeezed vacuum
Rice and Pedrotti@11# we find the following differences
Equations~12!–~14! include the effects of atomic and cavit
detunings on the decay rates of the polarization quadratu
The presence of the factor (11dc

2)21 in the decay ratesgx

and gy reduces the enhancement of spontaneous emis
due to cavity when the cavity mode is detuned with resp
to the driving field. Another difference is that the enhanc
ment of spontaneous emission due to a squeezed vacuu
not affected by the atomic cooperativity parameterC. This,
of course, is a consequence of the direct coupling of the a
to the squeezed vacuum rather than through the lossy ca
mirror, which is the case in resonance fluorescence with
jected squeezed vacuum. Thus for weak atom-cavity c
pling (C,1) the spontaneous emission rate is enhan
much more when the squeezed vacuum is directly couple
the atom than when it is coupled through the mirror.

III. ATOMIC INVERSION

To study the effects of detuning and squeezed vacuum
atomic inversion we solve the optical Bloch equations in
steady statêṁx&5^ṁy&5^ṁ&50. Using this in Eqs.~12!–
~14! and solving for the averages we get

^mx&ss52
gY~ge f f22gN!

A2R $~ge f f22dcDe f f!

12guM u@cos~u!2dc sin~u!#%, ~17!

^my&ss52
gY~ge f f22gN!

A2R $~ge f fdc12De f f!

22guM u@sin~u!1dc cos~u!#%, ~18!

^m&ss52
2~11dc

2!~ge f f22gN!

R

3S ge f f
2

4
1De f f

2 2uM u2g2D . ~19!

Here the denominatorR is given by
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R54~11dc
2!S ge f f

2

4
1De f f

2 2uM u2g2Dge f f

1g2Y2Fge f f12uM ugS 12dc
2

11dc
2D cos~u!

24guM uS dc

11dc
2D sin~u!G . ~20!

Atomic inversion in the steady state is given by Eq.~19!.
For the special case where the atomic and cavity detun
parameters are equal (dc5da), the dependence of atomi
inversion on detuning is shown in Fig. 2. Figure 2~a! shows
inversion when the squeezed vacuum is in phase (u50) with
the coherent excitation. For the ordinary vacuum (r 50) we
see that the inversion has a single peak at zero atomic de
ing and for large detunings it approaches20.5, indicating
that the atom is most likely to be in the ground state@14#. For
nonzero squeezing the overall effect of increasing
squeezing parameterr is to increase atomic inversion fa
away from the resonance. This is because, even when
driving field is detuned from the atom, the atom still sens
the broadband squeezed vacuum. Consequently, asr in-
creases the number of quanta in the squeezed vacuum
creases, resulting in an increase in atomic inversion. In g
eral, foru50 atomic inversion increases monotonically wi
increase in the squeezing parameterr for all values of detun-
ings, and as a function of detuning it shows a single peak
all values ofr.

FIG. 2. The atomic inversion̂ŝz& as a function of atomic de-
tuning parameterda in the weak-field and weak-coupling limit fo
different values of squeezing parameterr, pump parameterY53,
C50.4, dc5da , and~a! u50, ~b! u5p.
8-4
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Figure 2~b! shows inversion when the squeezed vacuum
out of phase with the driving field (u5p). Far away from
the resonance, the behavior of the inversion is similar to
for u50 @Fig. 2~a!#. However, near resonance atomic inve
sion shows interesting features. On-resonance atomic in
sion can fall below its value for the ordinary vacuumr
50). The on-resonance inversion initially decreases asr in-
creases. With further increase inr, it rises above its value fo
the ordinary vacuum. Another interesting feature is that
small values ofr the atomic inversion shows two peaks l
cated symmetrically at nonzero atomic detuning. This beh
ior near resonance is similar to vacuum Rabi splitting. T
presence of squeezed light effectively reduces the thres
value of C for seeing the vacuum Rabi splitting. With in
crease inr the two peaks broaden and eventually disapp
leaving a dip for large values ofr. Thus the peaks seen in th
atomic inversion are phase sensitive as they are not
when the squeezed vacuum is in phase (u50) with the co-
herent excitation. These peaks are also absent when the
decays into a nonzero temperature thermal reservoir.

Figure 3 shows inversion as a function of atomic detun
in the strong-field and strong-coupling limits. In this regim
for r 50 the inversion shows two symmetric peaks as a fu
tion of detuning due to vacuum Rabi splitting, which is
agreement with the results for an atom decaying to the o
nary vacuum@14#. As the squeezing parameterr increases
the two peaks broaden and for large values ofr the peaks
disappear. In Fig. 3~a!, which is for the phaseu50, the
on-resonance inversion monotonically increases with
crease in the squeezing parameterr. On the other hand, the

FIG. 3. The atomic inversion̂ŝz& as a function of atomic de
tuning parameterda in the strong-field and strong-coupling limit fo
different values of squeezing parameterr, pump parameterY513,
C55, dc5da , and~a! u50, ~b! u5p.
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amplitudes of the two peaks first decrease asr increases be-
fore increasing with further increase inr, ultimately rising
above the value for the ordinary vacuum. For very lar
values ofr the peaks disappear. In Fig. 3~b!, which is for u
5p, inversion behaves differently. The on-resonance inv
sion first decreases with increase inr, but then increases asr
increases further and rises above its value for the ordin
vacuum. The amplitudes of the two symmetric peaks
crease monotonically as the squeezing parameterr increases.
Thus when an atom decays to the squeezed vacuum th
version is phase sensitive. This is to be compared with
atom decaying into a nonzero temperature thermal reser
In that case the inversion increases monotonically with
crease in thermal photons and does not display any ph
sensitive features.

IV. PHOTON STATISTICS OF THE TRANSMITTED
LIGHT

The photon statistics of the transmitted light at the out
mirrors are related to the statistics of the cavity mode. T
expectation values of the field variables are calculated
first expressing them in normal order and then replac
them by correspondingc numbers. Thec numbers corre-
sponding to field variables are then expressed in terms
atomic variables. Then field averages are calculated in te
of atomic averages. Using the adiabatic formula given in
~4! we can show that the moments of field operators can
expressed as@14#

^~ â†!pâq&5^~a* !paq&5
ns

(p1q)/2Yp1q22

~12 idc!
p~11 idc!

q

3@2A2CY~p^m* &1q^m&!

14C2pq~112^m&!1Y2#, ~21!

wherens5g2/8g2 is the saturation photon number andY and
C are defined in Eq.~6!. Using Eq.~21! we obtain the steady
state intracavity field amplitude as

X5
^a&

Ans

5
Y

11 idc
@2A2C^m&ss1Y#, ~22!

and the steady-state two-time intensity correlation funct
as

g(2)~0!5
Y2@Y218A2CY^mx&ss116C2~112^m&ss!#

@Y214A2CY^mx&ss14C2~112^m&ss!#
2

,

~23!

where^mx&ss and ^m&ss are given by Eqs.~17! and ~19!.
Figure 4 shows on-resonanceg(2)(0) for the transmitted

light as a function of squeezing parameterr for u50 andp
in the weak-coupling and weak-driving-field limits. Forr
50, g(2)(0) is nearly zero, reflecting maximum antibunc
ing. As r increases,g(2)(0) increases and becomes larg
than unity, reflecting bunching. Asr is increased further
8-5
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g(2)(0) reaches a maximum before decreasing to very sm
values. Thus for very large values ofr the transmitted light
again shows antibunching.

Figure 5 showsg(2)(0) as a function of detuning for sev
eral different values ofr in the weak-coupling and weak
driving-field limits whenu50. Figure 5~a! is plotted fordc
50. In this caseg(2)(0) shows a dip as a function of detun
ing for r 50, so that maximum antibunching is seen on re
nance in agreement with Ref.@14#. As r increases we find
that the on-resonance value ofg(2)(0) increases, indicating

FIG. 4. Second-order intensity correlation functiong(2)(0) of
the transmitted light as a function of squeezing parameterr for u
50 andp. Other parameters for the curves areY50.1, C50.5,
anddc5da50. g(2)(0),1 reflects the nonclassical effect of an
bunching.

FIG. 5. Second-order intensity correlation functiong(2)(0) of
the transmitted light as a function of atomic detuning parameteda

for pumping parameterY50.1, u50, and different values ofr.
Other parameters for the curves are~a! C50.5 anddc50; ~b! C
52 and dc52da . g(2)(0),1 reflects the nonclassical effect o
antibunching.
06380
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increased bunching of transmitted light. For small squeez
g(2)(0) shows a two-peak structure as a function of detuni
As r is increased further we find thatg(2)(0) exhibits a single
peak. It is interesting to note that for sufficiently larg
squeezingg(2)(0) for all values of detuning decreases to
less than unity, reflecting antibunching of the transmitt
light.

Figure 5~b! showsg(2)(0) for dc52da and a larger value
of C than that in Fig. 5~a!. For r 50 we find thatg(2)(0)
shows two dips at nonzero detuning and a peak at zero
tuning. Thus antibunching is seen at nonzero detun
whereas at zero detuning we see bunching. For very sm
increase inr, g(2)(0) increases and antibunching disappe
altogether. Asr increases further,g(2)(0) becomes less tha
unity and shows a single peak as a function of detuni
Thus for very large values ofr the transmitted light shows
antibunching for all values of detuning.

The behavior ofg(2)(0) can be explained in terms o
self-homodyning of coherent and incoherent components
the intracavity field. The intracavity field can be divided in
two parts, coherent and incoherent components, as

â5^â&1Dâ. ~24!

Equation~22! indicates that for nonzero detuning and arb
trary values ofu the intracavity field is not in phase with th
driving field. The relative phasef between the coheren
component and the driving field is given by

tan~f!5
2A2C^my&ss1dc~Y12A2C^mx&ss!

dc2A2C^my&ss2~Y12A2C^mx&ss!
. ~25!

We introduce a field quadrature which is in phase with
driving field as

Â15
1

2
~ âe2 if1â†eif!. ~26!

Using Eqs.~26! and~21!, fluctuations inÂ1 are calculated to
be

^:~DÂ1!2:&5
2C2ns

~11dc
2!

@~11^m&ss!24~^mx&ss
2 1^my&ss

2 !#.

~27!

In terms of the coherent and incoherent components we
rewrite g(2)(0) as

g(2)~0!511G11G21G3 , ~28!

where

G15
4u^â&u2^:DÂ1

2 :&

~ u^â&u21^Dâ†Dâ&!2
, ~29!

G25
2~^â&^Dâ†2Dâ&1c.c.!

~ u^â&u21^Dâ†Dâ&!2
, ~30!
8-6
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TWO-LEVEL ATOM COUPLED TO A SQUEEZED VACUUM . . . PHYSICAL REVIEW A 65 063808
G35
^Dâ†2Dâ2&2^Dâ†Dâ&2

~ u^â&u21^Dâ†Dâ&!2
. ~31!

In Fig. 6 we show on-resonance behavior ofG1 , G2 , G3,
and@g(2)(0)21# for u50 as a function of squeezing param
eter. The other parameters are the same as those for F
Here G1 describes the interference of the coherent com
nent with the fluctuations in the quadratureÂ1 . G1 is less
than zero when the quadratureÂ1 is squeezed. This term i
responsible for antibunching for very small values ofr. As r

increases, squeezing in quadratureÂ1 decreases and there
fore G1 increases. For large values ofr, G1 is positive. The
contribution ofG2 is always positive and therefore reduc
antibunching.G3 is the contribution of intensity fluctuation
in the incoherent component of the field. It becomes nega
for large values ofr, again leading to antibunching. Thu
antibunching of the transmitted light for small values ofr is
due to squeezing in quadratureÂ1, whereas for large value
of r it is due to reduction in intensity fluctuations of th
incoherent component.

V. SPECTRUM OF THE FLUORESCENT LIGHT

Next we calculate the spectrum of the fluorescent lig
The spectrum of the fluorescent light is defined as

S~v!5
1

2pE2`

`

dt exp@ i ~v2va!t#^ŝ1~0!ŝ2~t!&ss

5
1

p
ReF E

0

`

dt exp@ i ~v2va!t#^ŝ1~0!ŝ2~t!&ssG .
~32!

Using the polarization quadratures defined in Eqs.~11!, the
two-time correlation function̂ŝ1(0)ŝ2(t)&ss can be written
as

FIG. 6. G1 , G2 , G3, andg(2)(0)21 of the transmitted light as
functions of squeezing parameterr for u50. Other parameters fo
the curves areY50.1, C50.5, anddc5da50. g(2)(0)21,0 re-
flects the nonclassical effect of antibunching.
06380
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^ ŝ1~0!ŝ2~t!&ss5^ŝx~0!ŝx~t!&ss1^ŝy~0!ŝy~t!&ss

2 i ~^ŝy~0!ŝx~t!&ss2^ ŝx~0!ŝy~t!&ss!.

~33!

The general analytic expressions for the correlations nee
for the spectrum are cumbersome in the presence of detu
and for arbitrary values ofu. Here we present calculations o
the spectrum only for the resonant case (da5dc50) and for
u50 or p. We obtain the correlation needed for calculati
the spectrum by using the quantum regression theorem
initial conditions

^ ŝx~0!2&ss5^ ŝy~0!2&ss51/4,

^ŝx~0!ŝy~0!&ss52^ŝy~0!ŝx~0!&ss5~ i /2!^m&ss,

^ŝx~0!ŝz~0!&ss52^my&ss,

^ ŝy~0!ŝz~0!&ss52^mx&ss. ~34!

We first present results for the spectrum of the fluoresc
light in the weak-driving-field limit Y<Yth , where the
threshold driving fieldYth is given by

Yth5
g02g7

A2g
, ~35!

with

g25
g

2
~112C12N22uM u!,

g15
g

2
~112C12N12uM u!, ~36!

g05g~112C12N!.

Hereg2 corresponds to the threshold driving field for pha
u50 andg1 corresponds to the threshold driving field fo
u5p. We will follow the convention that the upper sig
corresponds to phaseu50 and the lower sign corresponds
phaseu5p. Below threshold all the eigenvaluesl1 , l2, and
l3 given by Eq. ~42! or ~43! are real and we obtain th
following expression for the two-time correlation function

^ŝ1~0!ŝ2~t!&ss5C01C1exp~l1t!1C2exp~l2t!

1C3exp~l3t!, ~37!

where

C05^mx&ss
2 , ~38!

C15~112^m&ss!/4, ~39!

C25
l21g0

l22l3
FC1S 12

2A2~g01l3!

gY
^mx~0!&ssD 2C0G ,

~40!
8-7
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C35
l31g0

l32l2
FC1S 12

2A2~g01l2!

gY
^mx~0!&ssD 2C0G .

~41!

The eigenvaluesl1 , l2, andl3 for u50 are

l152g1 ,

l25
1

2
@2~g01g2!1A~g02g2!222~Yg!2#, ~42!

l35
1

2
@2~g01g2!2A~g02g2!222~Yg!2#,

and foru5p they are

l152g2 ,

l25
1

2
@2~g01g1!1A~g02g1!222~Yg!2#, ~43!

l35
1

2
@2~g01g1!2A~g02g1!222~Yg!2#.

The expectation valueŝmx&ss and^m&ss are found from Eqs.
~17! and ~18! to be

^mx&ss52
g2Y~112C!

A2@~gY!212g0g7#
,

^m&ss52
gg7~112C!

~gY!212g0g7

. ~44!

Employing Eq.~37! in the expression for the spectrum, w
obtain

S~v!5FC0d~v2va!2
C1

p

l1

l1
21~v2va!2

2
C2

p

l2

l2
21~v2va!2

2
C3

p

l3

l3
21~v2va!2G .

~45!

Equation ~45! indicates that in the weak-driving limit th
spectrum is composed of a coherent component given by
d function term and an incoherent component given by
sum of three Lorenzians centered at the atomic resona
frequencyva of widths 2l1 , 2l2, and 2l3, respectively. In
Fig. 7 the incoherent part of the spectrum is shown for d
ferent values of the squeezing parameterr. In general the
effect of the squeezed vacuum is to narrow the width of
spectrum. In the weak-driving limit the spectrum is not ve
sensitive to phase. We have, therefore, shown the curve
only u5p.

In the strong-driving-field limitY.Yth , l2 andl3 given
by Eq. ~42! or ~43! become complex and the spectrum tak
the form
06380
he
e
ce

-

e

for

s

S~v!5FC0d~v2va!2
C1

p

l1

l1
21~v2va!2

2
1

p

CRlR1CI~v2va1l I !

lR
21~v2va1l I !

2

2
1

p

CRlR2CI~v2va2l I !

lR
21~v2va2l I !

2 G ~46!

where

lR52
1

2
~g01g7!, l I5

1

2
A2~gY!22~g02g7!2,

~47!

CR5
1

2
@C12C0#, ~48!

CI52
g01lR

2l I
F ~C12C0!2C1^mx&ss

2A2~g01lR!

gY

3H 11S l I

g01lR
D 2J G . ~49!

The incoherent part of the spectrum is shown in Fig. 8~a! for
u50 and in Fig. 8~b! for u5p for several different values o
the squeezing parameterr. The incoherent part of the spec
trum has three peaks, similar to the Mollow spectrum. T
central peak has full width at half maxima 2ul1u52g6

5g(112C12N62uM u). The other two symmetrical peak
displaced by6l I from the central peak have a width o
2ulRu5(g01g7)5(g/2)@3(112C12N)72uM u#. When
the driving field and the squeezed vacuum are out of ph
(u5p), the width of the central peakg2 decreases as th
degree of squeezingr increases. For strong squeezingr
@1, N.(e2r22)/4 anduM u.e2r /4 so that the width of the
central peak approaches a valueul1u5gC and the width of
the sidebands approachesg(3C1e2r /2) for u5p. Thus in
this regime the central peak becomes narrower, whereas
sidebands become broader and eventually disappear f
very large value ofr. When the driving field is in phase with

FIG. 7. Spectrum of the fluorescent light below threshold
different values ofr, Y50.11, C50.3, andu5p.
8-8
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the squeezed vacuum (u50), the width of the central pea
g1 increases as the degree of squeezing increases. For s
squeezingr @1, the width of the central peak approach
g(C1e2r /2) and the width of the sidebands approach
g(3C1e2r) for u50. Thus for a very large value ofr all
three peaks disappear. In the presence of a thermal rese
the width of the central peak is (g/2)(112C12N) and that
of the sidebands is (g/2)@3(112C12N)#. The spectrum in
the presence of a thermal reservoir does not show phase
sitivity and for a large number of thermal photons all thr
peaks disappear. It is interesting to note that the chang
the width and the location of the peaks due to the squee
reservoir is independent of the cooperativity parame
whereas for the model considered by Rice and Pedrotti@11#
the change in the width and location of the peaks due
squeezing depends on the cooperativity parameter. Th
because the squeezed vacuum is injected into the ca
through the output mirror.

VI. SECOND-ORDER INTENSITY CORRELATION
FUNCTION OF THE FLUORESCENT LIGHT

For completeness, in this section we study the seco
order intensity correlation function of the fluorescent light
both the weak- and strong-driving-field limits. The secon
order intensity correlation function

g(2)~t!5
^ŝ1~0!ŝ1~t!ŝ2~t!ŝ2~0!&ss

^ ŝ1~0!ŝ2~0!&ss
2

~50!

is the probability of detecting a photon at a timet given that
one was detected at time 0. Using the relationŝ1(t) ŝ2(t)
5 1

2 (2ŝz11) we obtain

FIG. 8. Spectrum of the fluorescent light above threshold
different values ofr and forC50.4, Y510; solid liner 50, dashed
line r 50.68 and dotted liner 51.15. ~a! u50, ~b! u5p.
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^ ŝ1~0!ŝ1~t!ŝ2~t!ŝ2~0!&ss5
1

4
@4^ŝ1~0!ŝz~t!ŝ2~0!&ss

12^ŝz~0!&ss11#. ~51!

By expressingŝ1 andŝ2 in terms of the polarization quadra
ture operators one can write

^ŝ1~0!ŝz~t!ŝ2~0!&ss5@^ ŝx~0!ŝz~t!ŝx~0!&ss

1^ŝy~0!ŝz~t!ŝy~0!&ss

2 i ~^ŝx~0!ŝz~t!ŝy~0!&ss

2^ŝy~0!ŝz~t!ŝx~0!&ss!#. ~52!

The correlations in the above expression can be obtaine
using the quantum regression theorem with the initial con
tions

^ŝx~0!ŝz~0!ŝx~0!&ss5^ŝy~0!ŝz~0!ŝy~0!&ss2^m&ss/4,
~53!

^ŝy~0!ŝz~0!ŝx~0!&ss52^ŝx~0!ŝz~0!ŝy~0!&ss5 i /8,
~54!

^ ŝx~0!ŝx~0!ŝx~0!&ss52^ŝy~0!ŝx~0!ŝy~0!&ss5^mx&ss/4,
~55!

^ŝx~0!ŝx~0!ŝy~0!&ss5^ŝy~0!ŝx~0!ŝx~0!&ss5^my&ss/4.
~56!

Using these correlations we find the second-order inten
correlation function for the fluorescent light defined in E
~50! to be

g(2)~t!511
1

~l22l3!

3F H ~g01l3!1
A2gY^mx&ss

~112^m&ss!
J

3exp~l2t!2H ~g01l2!1
A2 gY^mx&ss

~112^m&ss!
J

3exp~l3t!ssG , ~57!

wherel1 , l2, and l3 are given in Eqs.~42! and ~43!. Its
behavior in the weak-driving-field limit is shown in Fig.
for several different values of the squeezing parameterr. It
can be seen that the correlation function vanishes at z
delay @g(2)(0)50# for all values of r indicating that the
probability of detecting two photons simultaneously rema
zero. Fluorescent light is thus always antibunched. This
reflection of the fact that a two-level atom cannot emit two
more photons simultaneously. After each emission the a
returns to the ground state. It must be excited before ano
emission can take place. The effect of the squeezed vac
is observed, however, in the time dependence. Whe

r
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squeezed vacuum is introduced,g(2)(t) approaches unity a
a faster rate than in the case of the ordinary vacuumr
50). This is because the squeezed vacuum enhance
decay of coherence in proportion to the mean photon num
N(r )5sinh2(r). We also find that in the weak-driving-fiel
limit the phase sensitivity ofg(2)(t) is negligible.

In the strong-driving-field limit the eigenvaluesl2 andl3
given in Eqs.~42! and~43! become complex and their imag
nary part leads to an oscillatory behavior forg(2)(t), as it
approaches unity with increasing delayt. For short time de-
lay the behavior is similar to that for the weak driving fiel
This behaviorg(2)(t) is shown in Figs. 10~a! and 10~b! for
u50 andp, respectively. The oscillatory behavior ofg(2)(t)
as a function oft is due to Rabi oscillations of the atom. Th

FIG. 9. Second-order intensity correlation functiong(2)(t) of
the fluorescent light below threshold for different values ofr, C
50.4, u50, andY50.1. g(2)(0),1 reflects the nonclassical effec
of antibunching.

FIG. 10. Second-order intensity correlation functiong(2)(t) of
the fluorescent light above threshold for different values ofr, C
50.4, Y510, and~a! u5p, ~b! u50. g(2)(0),1 reflects the non-
classical effect of antibunching.
06380
the
er

presence of the squeezed vacuum has an effect on the a
tude of these oscillations for bothu50 andp. The ampli-
tude decreases as squeezing increases and eventually th
cillations are washed out for sufficiently large values
squeezing. This behavior is more pronounced when the d
ing field and squeezed vacuum are out of phase than w
they are in phase. We observe a similar damping of osc
tory behavior when the squeezed vacuum is replaced by t
mal light (uM u50). Thus the decrease in the amplitude
the oscillation is due to the mean photon number of the m
that is coupled to the atom. This behavior is qualitative
similar to that reported by Rice and Baird@12# for a single
two-level atom inside a coherently driven cavity with in
jected squeezed vacuum although it differs quantitatively

VII. CONCLUSIONS

We have derived a generalized Fokker-Planck equa
without using the system-size expansion or any trunca
for a single two-level atom placed inside a coherently driv
cavity when the atom is coupled to a broadband squee
vacuum. Our results include atomic and cavity detunings
also atomic and cavity decays. Using this Fokker-Plan
equation we have studied atomic inversion, the fluoresc
spectrum, and the second-order intensity correlation func
of the transmitted and fluorescent light in the bad-cav
limit. For r 50 our results reduce to those for an atom d
caying to the ordinary vacuum@14#.

Mean atomic inversion, in general, increases with incre
ing mean photon number of the squeezed reservoir. This
havior, however, shows phase sensitivity. For example, w
u5p and the cavity mode and the driving field are equa
detuned with respect to the atomic transition frequency,
atomic inversion shows a dip as a function of the detun
due to destructive interference between the driving field a
the squeezed vacuum. As a function of detuning the ato
inversion shows two peaks located symmetrically at nonz
detunings. The presence of the squeezed reservoir effect
reduces the threshold value ofC for seeing the vacuum Rab
splitting. Such phase sensitivity is not seen when the atom
coupled to a thermal reservoir.

When the atom is coupled to the ordinary vacuum, th
on resonance, photon antibunching in the transmitted li
can be observed only for weak driving fields (Y!1) and
small values of the cooperativity parameter (C,1/A2). It is
possible to see antibunching for a large value ofC at nonzero
detunings. Antibunching in all these cases can be explai
in terms of self-homodyning between coherent and incoh
ent component of the intracavity field. The major contrib
tions to the antibunching forr 50 are due to squeezing in th
quadratureÂ1 which is in phase with the driving field. Whe
the ordinary vacuum coupled to the atom is replaced b
squeezed vacuum and the squeezing parameter is smal
find that antibunching decreases and transmitted light
become bunched. This is because squeezing in the qua
ture Â1 decreases. With further increase inr we find that
g(2)(0) decreases and the transmitted light becomes a
bunched. Antibunching for larger is due to a reduction in the
intensity fluctuation of the incoherent component.
8-10
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In the weak-driving-field limit we find a narrowing of th
spectrum with increasing degree of squeezing. In this li
the spectrum and the second-order intensity correlation fu
tion are not strongly phase sensitive. The effect of a squee
vacuum ong(2)(t) is to enhance the rate of its decay. This
due to the increase of the dephasing of the Rabi oscilla
with increasingr. In the strong-driving-field limit we find
phase sensitive behavior for both the spectrum and
second-order intensity correlation function. In this limit th
overall effect of the squeezed vacuum is to increase
width of the spectrum and damp out the amplitude of os
lations in the second-order intensity correlation function. T
widths of the Mollow triplets increase as the degree
.F

e

t.

et
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squeezing increases whenu50. On the other hand, foru
5p, the sidebands are broadened whereas the central
becomes narrower. For the second-order intensity correla
function the amplitude of oscillations damps out faster
u5p than foru50 as the degree of squeezing increases
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