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Photon statistics of a single-atom intracavity system involving electromagnetically
induced transparency

S. Rebić,* A. S. Parkins, and S. M. Tan
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 14 January 2002; published 30 May 2002!

We explore the photon statistics of light emitted from a system comprising a single four-level atom strongly
coupled to a high-finesse optical cavity mode that is driven by a coherent laser field. In the weak driving
regime this system is found to exhibit a photon blockade effect. For intermediate driving strengths we find a
sudden change in the photon statistics of the light emitted from the cavity. Photon antibunching switches to
photon bunching over a very narrow range of intracavity photon number. It is proven that this sudden change
in photon statistics occurs due to the existence of robust quantum interference of transitions between the
dressed states of the atom-cavity system. Furthermore, it is shown that the strong photon bunching is a
nonclassical effect for certain values of driving field strength, violating classical inequalities for field correla-
tions.
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I. INTRODUCTION

A promising avenue of research in the attempt to bu
quantum computers uses large optical nonlinearities to cr
essential elements for quantum computation, such as q
tum gates@1#. Obtaining large, noiseless nonlinearities is
course a fundamental goal in the field of nonlinear opti
Technological advances in recent years, for example in c
ity quantum electrodynamics~CQED! @2#, and the ability to
access and study strongly coupled quantum systems, offe
exciting new era in this field.

Attempts to achieve large optical nonlinearities are gen
ally plagued by a seemingly necessary trade-off betw
large absorption and the strength of nonlinearity: to obtai
strong nonlinearity one has to drive the atomic system cl
to resonance, triggering large absorption and, therefor
strong source of noise. However, it is possible to red
atomic absorption~and hence spontaneous emission! by uti-
lizing quantum coherence effects in multilevel atoms. In p
ticular, electromagnetically induced transparency~EIT! @3#
was employed by Schmidt and Imamog˘lu @4# to devise a
scheme involving four-level atoms that produces a large K
nonlinearity with virtually no noise. It was then shown b
Imamoğlu et al. @5# that if such a strong optical Kerr nonlin
earity is implemented in a CQED setting, then it is possi
to realize the effect ofphoton blockade, in which the atom-
cavity system effectively acts as a turnstile device for sin
photons. The physical explanation of this effect is simp
Only the transition between the ground and first excited s
of the nonlinear atom-cavity system is resonant with
driving field. Higher states are detuned from resonance b
amount proportional to the strength of nonlinearity. Tian a
Carmichael@6# have also predicted such an effect with
single two-level atom strongly coupled to the cavity mod

The proposal of Schmidt and Imamog˘lu @4#, although
very appealing in its use of EIT to reduce decoheren
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meets obstacles in the attempt for implementation in
many-atom CQED environment. It was shown that this p
ticular realization of the photon blockade system is not id
for demonstrating photon blockade, because of the str
linear dispersion of the medium@7,8#. In an attempt to avoid
this difficulty, Rebićet al. @9# proposed a model in which a
single four-level atom is trapped in a high-finesse microc
ity. It was shown that this system~called the single-atom
EIT-Kerr system! can act as a near-ideal Kerr optical nonli
earity. In such a strongly coupled system, the excitations
be labeled as polaritons, which are defined as mixtures
atom-cavity mode excitations. For weak to moderate drivi
the EIT-Kerr system can be approximated by a two-state s
tem, corresponding to the two lowest-lying polariton eige
states. The transitions to the next set of excited states~the
second manifold!, obtained by introducing a second photo
from the driving field into the cavity, are highly detune
from the bare-cavity resonance, and therefore cannot be
cited. Hence, in effect, the weakly driven single-atom E
Kerr system acts as an ideal photon blockade device.

In a further work @10#, a Hamiltonian for the effective
two-level system was derived using a polariton basis, an
was shown that such a Hamiltonian can describe the spe
properties and energy splittings~dynamic Stark effect! seen
in the full model. Furthermore, to explain the properties
the second-order correlation function, it was shown that
effective two-level system has to be generalized to inclu
two extra states in the first excitation manifold@11#. If more
than one atom is introduced, the situation becomes m
complicated, since each additional atom introduces extra
ergy levels into the second manifold, some of which a
connected to the lower levels via transitions that are reson
with the cavity mode. However, it was shown by Werner a
Imamoğlu @12# that the introduction of an additional atom
detuning can be used to solve this problem~see also the work
of Greentreeet al. @13#!.

In @11#, a comparison of the EIT-Kerr scheme and t
extended Jaynes-Cummings scheme~i.e., the standard
Jaynes-Cummings model@14# with the effects of losses in
cluded! was made in terms of their effectiveness in produ
©2002 The American Physical Society04-1



at
s-
a
I

lit

es
e

th

de
, o
th
a

ys
f

tu

te

e
th
te

lu
ca
in
o

na
o
a
on

ic
Th
n

-
a-
d

ld

.
n is
ry

ert

ce.

tes
ion.
zed

el

the

by
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ing a photon blockade. The EIT-Kerr scheme exhibited
value of g(2)(0) ~the second-order correlation function
zero time delay! of 1

40 that of the corresponding Jayne
Cummings scheme. This was attributed to destructive qu
tum interference between certain transition amplitudes.
particular, with a suitable choice of parameters, probabi
amplitudes for transitions from the first excited state~in the
first manifold! to the two second-manifold eigenstates clos
to the cavity resonance cancel each other. This leads to
hanced antibunching of the photons leaving the cavity so
g(2)(0)'0.

We have remarked that the validity of these results
pends on the assumption of weak driving. It is, therefore
interest to explore how robust the photon blockade is as
driving field strength is increased. We have performed
analysis of the driving field dependence in the EIT-Kerr s
tem, and briefly compared the results with those obtained
the extended Jaynes-Cummings model. A surprising fea
is found in the EIT-Kerr system, where a sudden change
the photon statistics@i.e., of g(2)(0)# of light emerging from
the cavity occurs at intermediate driving strengths. If plot
against the mean intracavity photon number,g(2)(0) is seen
to undergo a sudden transition, switching rapidly betwe
antibunching and strong bunching. The exact position of
threshold depends on the characteristic system parame
namely, the atom-field interaction strength and the~EIT!
coupling field Rabi frequency.

In Sec. II we present our model and the methods of so
tion employed. Section III contains the results of numeri
simulations for the photon statistics, showing the surpris
behavior of the second-order correlations in the regime
intermediate driving. Section IV contains a detailed expla
tion for the results presented in the preceding section,
tained by analyzing the density matrix expressed in an
propriate basis. In Sec. V we present analytical calculati
based on the insights gained in Sec. IV.

II. MODEL

A. Hamiltonian

The driven atom-cavity configuration and the atom
energy level scheme are shown schematically in Fig. 1.
Hamiltonian describing the system in the rotating wave a
electric dipole approximations isH5H01Hd , where, in the
interaction picture,

H05\d s221\D s441 i\g1 ~a†s122s21a!1 i\Vc ~s23

2s32!1 i\g2 ~a†s342s43a!, ~1a!

Hd5 i\Ep ~a2a†!. ~1b!

In these equations,s i j are atomic raising and lowering op
erators~for iÞ j ), and atomic energy-level population oper
tors ~for i 5 j ), a anda† are the cavity field annihilation an
creation operators, respectively. Detuningsd and D are de-
fined from the relevant atomic energy levels,g1,2 are atom-
field coupling constants for the transitionsu1&→u2& and
u3&→u4&, andVc is the Rabi frequency of a coherent fie
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coupling the transitionu2&→u3&. The cavity driving field is
characterized through the parameterEp , related to the power
output of the driving laserP via

Ep5A PkT2

4\vcav
, ~2!

whereT is the cavity mirror transmission coefficient,k is the
cavity decay rate, andvcav is the cavity mode frequency
Damping due to cavity decay and spontaneous emissio
introduced below in the context of the quantum trajecto
approach@15#.

Four atomic levels plus the cavity mode span a Hilb
space of dimension 43N, whereN denotes the truncation
order in a Fock state expansion of the cavity field subspa
In the absence of driving, HamiltonianH0, given by Eq.
~1a!, takes a block-diagonal form, withN blocks on the main
diagonal. Each block represents a manifold of eigensta
associated with the appropriate term in the Fock expans
The ground, first, and second manifolds have been analy
from the viewpoint of a photon blockade in Refs.@9,12,13#.
The general structure of the dressed states in an arbitrarynth
manifold has been discussed in Ref.@10#.

FIG. 1. ~a! Envisaged experimental setup. A single four-lev
atom is trapped in an optical cavity with the decay constantk. The
cavity is driven by a coherent laser field, which couples to
cavity mode with strengthEp . An additional laser with Rabi fre-
quencyVc directly couples to the atomic transition.~b! Atomic
energy-level scheme. The cavity mode drives transitionsu1&→u2&
andu3&→u4&, with the respective coupling strengthsg1 andg2. The
transitionu2&↔u3& is coupled by a classical field of frequencyvc

and Rabi frequencyVc . Spontaneous emission rates are denoted
g j . Detuningsd andD are positive in the shown configuration.
4-2
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PHOTON STATISTICS OF A SINGLE-ATOM . . . PHYSICAL REVIEW A65 063804
Addition of the driving term~1b! complicates the analy
sis, since the Hamiltonian matrix does not retain the blo
diagonal form. It is possible, however, to re-express the d
ing Hamiltonian in terms of polariton operators and effect
Rabi frequencies for transitions between dressed states.
has been done in@10#, and in the remainder of this paper w
will draw on these results.

Our analysis of the driven ‘‘atom-cavity molecule’’ wil
proceed in two complementary directions. First, using
method of quantum trajectories@15#, we obtain numerical
data. Then, using the formalism of Ref.@10#, we construct an
effective Hamiltonian in the polariton basis, which encap
lates the physics sufficiently to explain the numerical resu

B. Damping: Quantum trajectories

In the quantum trajectories approach, damping enters
model through collapse operators, with each of these co
sponding to one decay channel. In the case under cons
ation we require the following four collapse operators:

C15Ag1s12, C25Ag2s32,

C35Ag3s34, C45Aka, ~3!

wheregk denote spontaneous emission rates into each o
decay channels andk is the cavity field decay rate. Th
effective Hamiltonian used in the trajectories approach
non-Hermitian and takes the form

He f f5H2 i (
k51

4

Ck
†Ck , ~4!

with H given by Eq.~1!.
In deciding on the truncation for the cavity mode Hilbe

space, special care must be taken to include a sufficient n
ber of states to capture all the relevant dynamics. If an em
cavity would be driven by an external coherent field cor
sponding to the parameterEp , the amplitude of the intracav
ity coherent field would be

a5 iEp /k ~5!

and the expected mean intracavity photon number^n&
5uau2. Our simulations include driving strengths of up
Ep53k, so the truncation is set atN540. The inset in Fig. 2
shows that the actual mean intracavity photon number s
well below its empty cavity counterpart for the given ran
of driving, thus justifying the chosen truncation.

III. NUMERICAL SIMULATIONS
OF PHOTON STATISTICS

In this section we present the results of numerical sim
lations using the method of quantum trajectories@15#, with
results averaged over 10 000 trajectories. Values of par
eters chosen for the simulations are consistent with re
experiments@16#, so the scheme presented in this pap
should be experimentally viable.

We evaluate the second-order correlation functiong(2)(0)
06380
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as a function of driving strengthEp . It was established ear
lier @5,9# that this function is a good measure of phot
blockade; perfect photon blockade yields perfectly an
bunched photons. The steady-state second-order correl
function is given by

g(2)~t!5 lim
t→`

^a†~ t !a†~ t1t!a~ t1t!a~ t !&

^a†~ t !a~ t !&^a†~ t1t!a~ t1t!&
. ~6!

Perfect antibunching/photon blockade corresponds tog(2)(t
50)50; for a coherent fieldg(2)(t50)51 and for a
bunched fieldg(2)(t50).1 @17#.

Figure 2 showsg(2)(t50) as a function of the~scaled!
driving parameter for a single-atom EIT-Kerr system, co
pared with the same quantity calculated for the exten
Jaynes-Cummings~JC! model. The extended JC model
driven on the lower Rabi resonance, as envisaged by T
and Carmichael@6#. In the weak driving regime, simulation
confirms earlier results — stronger photon blockade in
EIT-Kerr system. As the driving increases, the extend
Jaynes-Cummings model gradually saturates, and the
correlation asymptotically tends to 1. Naively, one wou
expect qualitatively similar behavior in the EIT-Kerr mode
Our simulation, however, shows a vastly different resu
Over a narrow range of driving, the statistics of the fie
changes from strongly antibunched to strongly bunched,
the coherent state valueg(2)(0)51 is approached asymptot
cally from above asEp is increased further.

Note that the quantity being increased here is thescaled
driving parameter, so one may argue that it is the ratio t
determines this behavior, i.e., we may either increase
driving strength or decrease the cavity decay rate to ob

FIG. 2. Second-order correlations at zero time delay against
~scaled! driving parameter. The inset shows mean intracavity p
ton number in the steady state. The dotted line denotes the exte
Jaynes-Cummings scheme for whichg50.1k, g56k. Other
curves show the single-atom EIT-Kerr model withg j50.1k, gl

56k, d520.2k, D50.1k. The solid line represents the caseVc

52k; dot-dashed line,Vc56k; dashed line,Vc518k. All curves
are obtained by averaging over 104 trajectories.
4-3
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S. REBIĆ, A. S. PARKINS, AND S. M. TAN PHYSICAL REVIEW A65 063804
the same result. However, to clarify this issue as related
the photon statistics, in Fig. 3 we show a parametric plo
a second-order correlation function against the expecta
value of the intracavity photon number,^a†a&ss. Both quan-
tities are now unscaled by any external parameter, and
sudden nature of the switch becomes even more obvi
showing a phase-transition-like behavior. This can be rela
back to Fig. 2. In particular, the transition from antibunchi
to bunching happens over a range of driving for which
intracavity photon number stays practically constant~see in-
set of Fig. 2!, leading to the suddenness of the transition s
in Fig. 3 and the concentration of points around the thresh
region. To further emphasize this, in Fig. 3~b! we plot the
‘‘pure’’ second-order correlation function̂a†a†aa&ss, which
also exhibits a threshold like behavior.

Another feature of the numerical results is noted. T
bunching-antibunching transition is sharper and the sub
quent bunching stronger for smallerVc . In fact, it is the
increasing ratiog1 /Vc that really matters. The sharper tra
sitions also occur at smaller values of^a†a&ss. For a de-
creasing ratiog1 /Vc , g(2)(0) approaches the behavior o
the extended JC model.

IV. DENSITY MATRIX TREATMENT

We proceed to determine which eigenstates of
strongly coupled quantum system contribute significantly

FIG. 3. Second-order correlations at zero time delay against
mean steady state intracavity photon number for a single-atom
Kerr system. Parameters are the same as in Fig. 2.~a! shows nor-
malized correlation function, with the main figure showing t
range where the sudden change can be seen in detail, while the
shows the whole range.~b! shows the unnormalized second-ord
correlations.
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its dynamics. The total density matrix of the system in t
steady state can be written in most general terms as

r5(
a,b

cabua&^bu, ~7!

where a, b belong to the set of all possible states of t
system in an arbitrary basis. The natural basis for the sim
lation is that of the bare states. The cavity mode subspac
truncated at 40, making the size ofr equal to 1603160. Let
T be the transformation that diagonalizes Hamiltonian~1!,
i.e., the full Hamiltonian, with driving included. The densit
matrix can be transformed into a new basis asrdiag
5TrT21 and we can look for the nonzero elements of th
matrix. Diagonal elements of the matrix correspond to po
lations of the dressed states, while off-diagonal elements
respond to coherences between the dressed states. The r
depend on the size ofEp , i.e., we expect the number o
nonzero elements to increase asEp is increased. For a large
part of theEp range considered, however, the density mat
is dominated by elements corresponding to two particu
states.

Figure 4 shows the nonzero matrix elements of den
matrix rdiag . Diagonal states are sorted in increasing ord
the state with the largest negative detuning is at (i , j )
5(1,1), while the state with the largest positive detuning
at (i , j )5(160,160). States with the smallest detuning~i.e.,
closest to the cavity resonance! are at the center of the ma
trix, at positions 80 and 81 along the main diagonal. T
diagonal elements dominate the matrix, and we identify th
as being the populations of the Stark-split statesuc6& ~see
Appendix A and@10#!. Stark-split states are, therefore, foun
at the positions 80 and 81 on the main diagonal of the d
sity matrix. At positions 79 and 82 are the two states fro
the second manifold~two-photon excitations!, closest to the
resonance. At the positions 78 and 83 are two remain
states from the first manifold; at the positions 77 and 84
two states from the third manifold~three-photon excitations!,
closest to the resonance, and so on. The states we have
identified suffice to indicate the dynamics of the system. O
diagonal elements are coherences between the approp
dressed states.

One striking feature can be noted immediately from F
4. Namely, the first ‘‘square’’ of elements~four elements on
each side! encircling the center square~Stark states, 232)
remains much smaller than all of the other accessible sta
In terms of dressed states, this means that the sec
manifold states remain unpopulated and the coherences
tween these and all the other states vanish as well. Furt
more, as the driving increases, the states whose cohere
with the Stark states increase to a noticeable size are
third-manifold states~see Fig. 4 forEp50.09k). As the driv-
ing increases further, the remaining two first-manifold sta
~their populations and coherences with the Stark states! also
start to contribute. So, contrary to expectations, the contri
tion to the dynamics of the states beyond the effective tw
level system does not increase according to the smallnes

e
T-

set
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FIG. 4. Relevant density matrix elements at the different values of driving. Elements of the central submatrix~dimension 21321) of the
total density matrix (1603160) are shown. In the basis that diagonalizes the Hamiltonian, the chosen submatrix contains elemen
sponding to the dressed states closest to the cavity resonance.
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their detunings from the bare-cavity frequency. The t
least-detuned second-manifold states are in fact essen
unpopulated.

From the above analysis of the density-matrix eleme
we can deduce the solution to the ‘‘photon statistics puzz
of Figs. 2 and 3. The strong photon antibunching at smalEp
is the consequence of the effective two-level system, and
been well understood. The sharp rise ing(2)(0) with increas-
ing Ep can be attributed to the two-photon transitions nee
to populate the third-manifold states from the first manifo
and then decay back in cascade to the first manifold. Th
two-photon decays cause the sharp increase in the sec
order output field correlations. But, what causes the sys
to skip second-manifold states? Again, the answer can
deduced from the density matrix. Strong coherence betw
the first- and third-manifold states, together with the miss
population in the second-manifold states~and vanishing co-
herences associated with these states! uncovers the effect o
EIT-type quantum interference between the dressed st
This is not surprising, since the quantum interference
tween the transitions from the first to the second manif
have been already discussed in Ref.@11#.

These features are shown in Fig. 5, where the relev
populations and coherences are shown. Note that the c
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bined population of the two inner second-manifold sta
@Fig. 5~b!, solid line# vanishes for a large interval of driving
since the value of;10216 is at the numerical precision
value, and fluctuations are numerical, not physical in natu
These populations become nonzero at the value of driv
strength at whichg(2)(0) of Fig. 2 ~solid line! peaks. These
plots further justify the discussion of the preceeding pa
graphs.

We proceed with the development of an effective mo
with relatively few levels, which nevertheless captures m
of the important features of the dynamics.

V. EFFECTIVE MODEL

In the formulation of an effective model, we rely on th
formalism developed in Ref.@10#. This formalism was very
successful in the development of an effective two-le
theory and in explaining the fluorescence spectrum. Now
extend the model and include a total of six dressed state
the effective model. These states are shown in Fig. 6.

It should be noted, however, that the dressed states sh
in Fig. 6 do not correspond exactly to the dressed sta
discussed in Sec. IV. Namely, the dressed states of Sec
are often referred to as doubly dressed states, since the
4-5
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FIG. 5. Semilogarithmic plots
of the density-matrix elements.~a!
Plot of the coherences betwee
the first-manifold and third-
manifold states. Coherencer14

(1) is
the coherence between the upp
Stark state and lower third
manifold state. Coherencer15

(2) is
the coherence between the low
Stark state and upper third
manifold state. ~b! Plot of the
populations of the dressed state
Solid line denotes a sum of popu
lations in the two relevant state
of the second manifold, dashe
line denotes a sum of population
in the two far detuned states in th
first manifold, and dot-dashed line
denotes a sum of populations i
the two relevant states of the thir
manifold. Parameters are as i
Fig. 2, solid line.
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agonalize the Hamiltonian with driving contributions in
cluded. In this section, we will treat driving separately~see
@10#!, and let the dressed states represent the eigenstat
the interaction Hamiltonian~1a! alone. Driving can then be
included through effective Rabi frequenciesV i j , coupling
dressed statesuei& and uej&.

The relevant effective non-Hermitian Hamiltonian~in-
cluding driving and damping! is thus

He f f5\e2p2
†p21\e3p3

†p31\e4pj 4
† pj 41\e5pj 5

† pj 5

1 i\V01~p12p1
†!1 i\~V12* p22V12p2

†!1 i\~V13* p3

2V13p3
†!1 i\V24~p242p24

† !1 i\V25~p252p25
† !

1 i\V34~p342p34
† !1 i\V35~p352p35

† !2 i\G0p1
†p1

2 i\G22p2
†p22 i\G33p3

†p32 i\G44pj 4
† pj 4

2 i\G55pj 5
† pj 52 i\G23p2

†p32 i\G32p3
†p2

2 i\G45pj 4
† pj 52 i\G54pj 5

† pj 4 . ~8!

Operators pjk are polariton operators defined byuek&
5pjk

† uej&. For the statesuek&, which are accessible from onl
one lower state, the notation has been abbreviated, so
example,p2[p12. Note also that the indicesj are dummy
indices, i.e.,pjk

† pjl 5uek&^el u. Rabi frequenciesV12 andV13

have a phase term making them purely imaginary, while
the other Rabi frequencies are real. Damping terms w
discussed in detail in@10#. It is now possible to formalize the
distinction between the two dressed states bases used in
section and in Sec. IV. The basis in which the Hamilton
~8! is written is defined in Ref.@10# and depicted in Fig. 6
06380
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The discussion of Sec. IV is based upon diagonalizing
total Hamiltonian~including all of the 160 states used for th
numerical simulation!.

With the effective Hamiltonian~8!, we can also write the
master equation for an effective density matrix as

ṙe f f52
i

\
~He f fre f f2re f fH e f f

† !12(
i , j

Sire f fSj
† , ~9!

where Sk now denote the polariton collapse operators~see
Appendix B!. The effective density matrixre f f has the di-
mension 636 — a significant reduction from 1603160 used
to obtain the results in Sec. IV.

From the equations of motion, we can uncover terms t
lead to the effect of quantum interference. For examp
equations for the populations of the second-manifold sta
r22 and r33 depend on the populationsr44 and r55 of the
third-manifold states and thecoherencesbetween these state
r45 and r54, the latter with rateG45. At the same time,
equations forr44 and r55 do not depend on the second
manifold states, nor their mutual coherence. The same h
for the coherencesr23 andr45 and their adjoints, the equa
tion for r23 depends onr44, r55, r45, andr54, but not vice
versa. Population of and coherence between the sec
manifold states is linked to the population of and cohere
between the third-manifold states. If this dependence is
moved from the equations of motion, i.e., terms depend
on r44, r55, r45, andr54 are removed from the equation
for ṙ22, ṙ33, ṙ23, andṙ32, cancellation of the population in
the second manifold ceases to occur.

The 35 equations of the effective model can, in princip
be solved analytically in the steady state. However, the
4-6
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sulting expressions are complicated and do not offer sign
cant physical insight, so we have opted to perform numer
solutions of these equations and check for validity of
effective model. Having the solutions for the populations a
coherences, the second-order correlation function for z
time delay can be calculated as the ratio of

^a†a†aa&5uw01u2uw12u2r221uw01u2uw13u2r331@ uw12u2uw24u2

1uw13u2uw34u21~w12* w24* w13w341c.c.!#r44

1@ uw12u2uw25u21uw13u2uw35u21~w13* w35* w12w25

1c.c.!#r551~ uw01u2w12w13r341c.c.!

1@~ uw12u2w24w25* 1uw13u2w34w35*

1w12* w25* w13w341w12w24w13* w35* !r451c.c.#

~10a!

and the square of

FIG. 6. Schematic depiction of the six states used to formu
the effective model. Statesue0& andue1& are the effective two-leve
system from Ref.@10#. Statesue2& and ue3& are second-manifold
states closest to the bare-cavity resonance, andue4& andue5& are the
third-manifold states closest to the resonance. Arrows represen
fective driving.
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^a†a&5uw01u2r111uw12u2r221uw13u2r331~ uw24u2

1uw34u2!r441~ uw25u21uw35u2!r551@w12w13* r23

1~w24w25* 1w34w35* !r451c.c.#, ~10b!

wherewi j 5V i j /Ep , and c.c. stands for complex conjugat
The results are displayed in Fig. 7. We have compared

numerical solutions of the effective model with the results
Sec. III and found a very good qualitative agreement. We
find strong bunching and threshold behavior occurring at
same values ofEp and ^a†a&ss. However, the effective
model differs from the full simulations in the size ofg(2)(0)
at its peak by approximately a factor of 2. Including mo
states in the effective model would yield full agreement w
the numerical data. In particular, we found that including tw
states closest to the resonance from up to eight manif
reproduces the numerical data exactly. The reason is tha
two-photon cascade decay responsible for the behavio
g(2)(0) can result from the decay of the higher states
third-manifold states first, i.e., two-photon cascade can
the manner of speaking, be driven ‘‘from below’’ and ‘‘from
above.’’ Naturally, the decay of higher-lying states introduc
more single-photon transitions as well. Therefore, add
one manifold at a time to an effective model reveals that
increase in the maximum value ofg(2)(0) gradually dimin-
ishes with new manifolds added, settling at its maximu
value after the inclusion of the eighth manifold. On the oth
end, the effective model of Fig. 6 is the smallest possi
model that ~at least qualitatively! reproduces the strong
bunching effect in this system.

VI. DYNAMICS OF THE FORWARD SCATTERING
OF LIGHT

To obtain a different and useful perspective on the phy
cal processes involved in the changing nature of the statis

te

ef-

FIG. 7. Comparison of the numerical results obtained from
effective model including three manifolds with the results of n
merical simulations including up to eight manifolds. Details a
described in the text. The parameters are the same as for the
line in Fig. 2.
4-7
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of light emitted by the coupled atom-cavity system, we c
split the field operator into contributions from a cohere
mean amplitude and from an incoherent part@18#,

a5a1Da, ~11a!

wherea[^a& denotes the coherent amplitude componen
the intracavity field, whileDa denotes the incoherent ampl
tude component̂Da&50, whose emergence is the result
scattering of the cavity field by the atom. Using this deco
position, one can rewrite the expression forg(2)(0) as

g(2)~0!215
^a†a†aa&ss

^a†a&ss
2

5
^:~a* Da1aDa†!2:&ss

~ uau21^Da†Da&ss!
2

1
4uauRe@^Da†2Da&ss#

~ uau21^Da†Da&ss!
2

1
^Da†2Da2&ss2~^Da†Da&ss!

2

~ uau21^Da†Da&ss!
2

5S~Da!1T~Da!1V~Da!, ~11b!

where :: denotes normal ordering and̂a†a&ss5uau2
1^Da†Da&ss. The three terms in this expansion, denoted
S, T, andV, have been identified by Carmichael@18# for the
case of a two-level atom. The decomposition~11! shows how
the behavior ofg(2)(0) for different values of driving field
can be interpreted as the effect of self-homodyning betw
the coherent and incoherent components of the intraca
field @19#. From this viewpoint, it is easy to identifyS(Da)
as a term describing the squeezing in the field quadratur
phase with the driving field,V(Da) gives the variance in the
incoherent component, andT(Da) describes intensity-
amplitude correlations in the incoherent component. B
V(Da) andT(Da) are determined by the correlations in th
intensity, so the departure from the coherent value of
correlation function can be assigned to the effects of squ
ing and the effects of intensity correlations.

The contributions from the incoherent component of
intracavity field are shown in Fig. 8. The squeezing and
tensity correlation parts are shown separately. The antibu
ing for weak fields comes from the squeezed fluctuatio
which reduce the contribution from the coherent scatteri
As the driving increases, the squeezing decreases, bu
variance in intensity fluctuations becomes negative, so
remaining antibunching comes from the sub-Poissonian
tensity fluctuations in the incoherent component of the fie
For Ep;k, the squeezing contribution effectively vanishe
while T andV become positive and antibunching disappea
Strong bunching clearly originates in the super-Poisson
intensity correlations and the correlation function is dom
nated byV.

VII. NONCLASSICAL BEHAVIOR OF THE CORRELATION
FUNCTION

The presence of nonclassical effects in a driven ato
cavity system is a topic that has received much attention
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many years. The system usually studied has been the can
cal system of quantum optics — a single two-level ato
confined in an optical cavity. Photon statistics in the ba
cavity limit was thoroughly studied by Rice and Carmicha
@20#, who analyzed the sub-Poissonian statistics and pho
antibunching in the cavity transmission, for the case of we
driving. Their analysis was extended by Carmichaelet al.
@21# to a system containingN two-level atoms. This analysis
was further refined by Brechaet al. @22#. Clemens and Rice
@23# have extended the consideration involving a single at
to include arbitrary driving field strength and dephasing.
their analysis, Clemens and Rice pay special attention
nonclassical effects known as ‘‘undershoots’’ and ‘‘ove
shoots’’. These are related to the violation of inequalities t
hold for classical correlations, in particular violations th
occur not in the value ofg(2)(t50), but for certain time
delayst.0. The explanation for the undershoots has be
given by Carmichaelet al. @21# in terms of the quantum in-
terference of probability amplitudes and the collapse of
wave function.

The requirements for the classicality of the field corre
tions can be derived from the Cauchy-Schwartz inequa
~see@22# and references therein! and expressed in terms o
the second-order correlation function as

ug(2)~t!21u<ug(2)~0!21u. ~12!

Values in excess of those allowed classically are called o
shoots, while values below are called undershoots. O
shoots have been observed recently by Mielkeet al. @24#.

In this context, it is of interest to see if the overshoo
and/or undershoots can be found in the single-atom EIT-K
system under consideration. Photon antibunching, as an
ample of nonclassical photon statistics, has already been
dicted @9# and the effective two-level behavior analyze
@9,12,10#. In the present paper, we have shown how the
fects of self-homodyning of squeezed dipole radiation yie
photon antibunching in the low to moderate driving limit. W

FIG. 8. Contributions to the correlation functiong(2)(0) from
the incoherent component of the intracavity field. Parameters
the same as in Fig. 2.
4-8
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FIG. 9. Second-order correlation functions v
time delay for different values of driving field
strength. Shaded areas denote classically allow
values, calculated from Eq.~12!.
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have also shown that quantum interference between
probability amplitudes contributes to both strong antibun
ing and strong bunching, for weak and strong driving fiel
respectively. Given this range of behaviors, we might the
fore expect undershoots and overshoots to also occur in
single-atom EIT-Kerr system under suitable conditions.

Figure 9 shows correlation functions for several values
driving field strength. The values of driving have been ch
sen where nonclassical behavior is expected to be found.
weak driving, where the antibunching is strong, the del
time dependence of the correlation function is well und
stood in terms of the effective two-level system. The int
esting region is for those values of driving for whichg(2)(0)
increases through 1, the value for a coherent field. Thi
also the region in which the dynamics is well described
terms of quantum interference and increased incidence
two-photon emissions.

Not surprisingly, this is also the range of paramet
where the largest violations of classical inequalities occ
Since the increase in the value ofg(2)(0) is due to the purely
quantum effect of interference between probability amp
tudes, non classical behavior of the correlations can be
pected. The explanation of these effects given by Rice
Carmichael@20# and Carmichaelet al. @21#, although in a
different context, still holds. As shown in Sec. VI, se
homodyning of squeezed dipole radiation with the drivi
field occurs in the EIT-Kerr system in a similar manner
that for a two-level atom. An alternative explanation in term
of quantum interference of the driving field with the atom
polarization after the collapse of the wave function upon
photon detection event offers even more insight. This is b
understood in the context of the quantum trajectory theo

This explanation is illustrated in Fig. 10, where sing
trajectory realizations for the intracavity field and phot
number are plotted. We see that the collapses tend to occ
succession before the system returns to a~quasi-! steady state
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~which for this region of parameters happens after ti
g j

21). Once it returns into a steady state, a few Rabi cyc
pass before the next set of collapses occur. The value
g(2)(0) is determined by the ratio of the number of jum
upwards to number of jumps downwards in photon numb
where a jump upwards suggests that the detection of a p
ton increases the probability of detecting a second pho
immediately afterwards. Naturally, at the value of drivin
whereg(2)(0) peaks~see Fig. 2!, collapses are almost exclu
sively upwards, as illustrated in Fig. 11. Undershoots app
as the consequence of a change in sign that the ampli
undergoes at the collapse@21#. As the system returns toward
its steady state, the polarization becomes close in magni
and opposite in sign to the driving field, producing a ne

FIG. 10. Intracavity photon number and field amplitude in
typical realization of a single quantum trajectory, forEp /k51.
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zero mean intracavity field, leading to the reduced detec
probability for a second photon.

The overshoots can also be explained in terms of the
lapses of the wave function. The detection of the first phot
emitted from the steady-state situation, collapses the w
function of the system. The subsequent time evolution as
system returns to the steady state determines the photon
relations. For weak driving field, the probability for the se
ond collapse to occur before the system returns to the ste
state is extremely small, since it is proportional to the me
intracavity photon number. For stronger driving fields t
probability for subsequent collapses increases, specific
due to the large correlations between first- and thi
manifold states, as shown in Fig. 5. Therefore, the proba
ity for a second photon detection after some timet,g21

increases as well, causing the correlation function oversh
In experiment, such event pairs are the source of dela
coincidence counts. A third collapse is also likely to occ
before the steady state is reached. However, the overs
disappears~or significantly decreases! for all time delayst
after the first peak. This is expected, since the exact form
the wave function after the second collapse depends on
delay time between the second and third photon. Averag
over all possible realizations washes out the nonclassica
fects due to different possible evolutions following the se
ond collapse.

A stronger driving field causes more subsequent collap
to occur, and nonclassical correlations are comple
washed out. We find that overshoots and undershoots va
at driving strengthEp'1.14k.

VIII. CONCLUSION

We have presented an analysis of the properties of
photon statistics of light emitted by a single-atom intracav
EIT-Kerr system. It was found that the statistics chan
abruptly as the driving field strength increases. Specifica
strong photon antibunching, dominant in the weak to mod
ate driving regimes, is replaced by a strong photon bunch

FIG. 11. Intracavity photon number in a typical realization o
single quantum trajectory, forEp /k51.75.
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in the output field for the stronger driving. We have identifi
the effect of quantum interference between the dressed s
to be responsible for this sudden change, and presente
effective model explaining qualitative features of this beha
ior.

Furthermore, we have analyzed contributions from the
coherent scattering to the system dynamics and found
the strong photon antibunching can be explained in term
the self-homodyning of the incoherent intracavity compon
with the coherent component for weak driving, and in ter
of reduced intensity fluctuations for moderate drivin
strengths. Strong bunching is the signature of sup
Poissonian intensity fluctuations.

Finally, nonclassical behavior of the correlation functio
was found, and the effects of undershoots and oversh
analyzed.
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APPENDIX A: STARK SPLITTING OF THE DRESSED
STATES

In this appendix, we briefly review the effect of dynam
Stark splitting of dressed states, fully elaborated upon in R
@10#.

Dressed states of the Hamiltonian~1a! contain, among
others, two states on exact cavity resonance, separate
energy\vcav . These are the ground state and a state belo
ing to the first excitation manifold. In the schematic dep
tion of Fig. 6, these are denoted byue0& andue1&. Driving by
the external fieldEp enters through the effective Rabi fre

quencyV015Ep /A11g1
2/Vc

2. Resonant coupling of the two
levels causes the splitting of the two states into a symme
and antisymmetric linear combination of the two,

uc6&5~ ue0&6ue1&)/A2 ~A1!

with corresponding energies

e656AV01
2 2~G0/2!2, ~A2!

where G05k/(11g1
2/Vc

2) is the decay rate of the excite
stateue1&. The splitting of energy levels occurs at the thres
old values of the driving field,

Ep5
k/2

A11g1
2/Vc

2
. ~A3!

The two statesuc6& are the two states closest to the cav
resonance for the range of driving strengths considered
this article.
4-10
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APPENDIX B: QUANTUM JUMPS

In this appendix, we discuss jump terms for the effect
master equation~9!. We follow the notation of Carmichae
@15# and rewrite the effective master equation~9! in a Lind-
blad form asṙe f f5Le f fre f f , where the Liouvillian superop
erator can be divided into a part describing the free evolu
between the jumps,Le f f2Se f f , and a part describing th
jumps,Se f f . Jump termSe f fre f f arises from the equivalen
jump term in the full master equation,

Sr52k ara†12g1 s12rs2112g2 s32rs2312g3 s34rs43.

~B1!

Using the methods of Ref.@10#, and consistent with the trun
cation of the dressed states space~as in Fig. 6!, we can write
the field and atomic collapse operators in terms of the b
states as

a5u0,1&^1,1u1u0,3&^1,3u1u0,4&^1,4u1A2~ u1,1&^2,1u

1u1,2&^2,2u1u1,3&^2,3u!1A3u2,1&^3,1u, ~B2a!
s.

.

B:
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s125u1,1&^1,2u1u2,1&^2,2u, ~B2b!

s325u1,3&^1,2u1u2,3&^2,2u, ~B2c!

s345u0,3&^0,4u1u1,3&^1,4u. ~B2d!

It can be deduced from the bare states that the collapse
erators can be expressed as linear combinations of the
lowing polariton operators: a}$p1 ,p2 ,p3 ,p24,
p34,p25,p35%, s12,s34}$p2 ,p3 ,p24,p34,p25,p35%, and s32

}$p2
†p2 ,p3

†p3 ,p4
†p4 ,p5

†p5 ,p2
†p3 ,p3

†p2 ,pj 4
† pj 5 ,pj 5

† pj 4%. Note
that the polariton jump terms arising from the atomic jum
associated with the operators32 ~i.e., proportional tog2)
couple dressed states within the same manifold. This is p
sible since the associated atomic transition is not couple
the cavity mode, but to the classical fieldVc , and therefore
jumps occurring in this atomic decay channel do not swi
between the adjacent manifolds.

Using the correspondences above, one can write all of
jump terms in the polariton basis, thus making the transit
Sr→Se f fre f f . This transformation can be viewed as a ro
tion of a truncated basis of a superoperator.
nt,
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@10# S. Rebić, A.S. Parkins, and S.M. Tan, Phys. Rev. A,65,
043806~2002!.
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