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Photon statistics of a single-atom intracavity system involving electromagnetically
induced transparency
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We explore the photon statistics of light emitted from a system comprising a single four-level atom strongly
coupled to a high-finesse optical cavity mode that is driven by a coherent laser field. In the weak driving
regime this system is found to exhibit a photon blockade effect. For intermediate driving strengths we find a
sudden change in the photon statistics of the light emitted from the cavity. Photon antibunching switches to
photon bunching over a very narrow range of intracavity photon number. It is proven that this sudden change
in photon statistics occurs due to the existence of robust quantum interference of transitions between the
dressed states of the atom-cavity system. Furthermore, it is shown that the strong photon bunching is a
nonclassical effect for certain values of driving field strength, violating classical inequalities for field correla-
tions.
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[. INTRODUCTION meets obstacles in the attempt for implementation in the
many-atom CQED environment. It was shown that this par-
A promising avenue of research in the attempt to buildticular realization of the photon blockade system is not ideal
quantum computers uses large optical nonlinearities to creafer demonstrating photon blockade, because of the strong
essential elements for quantum computation, such as quahnear dispersion of the mediuf,8]. In an attempt to avoid
tum gateg1]. Obtaining large, noiseless nonlinearities is of this difficulty, Rebicet al. [9] proposed a model in which a
course a fundamental goal in the field of nonlinear opticsSingle four-level atom is trapped in a high-finesse microcav-
Technological advances in recent years, for example in caJly: It was shown that this systerftalled the single-atom
ity quantum electrodynamidCQED) [2], and the ability to EIT-Kerr system can act as a near-ideal Kerr optical nonlin-

access and study strongly coupled quantum systems, offer %r"f‘r'ltyb"r ‘ZUCh a s;[ro_r:[lgly couhplead systgn;_, thg eXC|ta_\t|tcms car]:
exciting new era in this field. e labeled as polaritons, which are defined as mixtures o

Attempts to achieve large optical nonlinearities are genergtom-cawty mode excitations. For weak to moderate driving,

ally plagued by a seemingly necessary trade-off betweethe EIT-Kerr system can be approximated by a two-state sys-

. : . Cefem corresponding to the two lowest-lying polariton eigen-
large absorption and the strength of nonlinearity: to obtain Qtates. The transitions to the next set of excited Stéites

strong nonlineari_ty one has to drive the_ atomic system Closgecond manifoll) obtained by introducing a second photon
to resonance, triggering large absorption and, therefore, gom the driving field into the cavity, are highly detuned
strong source of noise. However, it is possible to reducgom the bare-cavity resonance, and therefore cannot be ex-

atomic absorptiorfand hence spontaneous emis$iby uti-  cjted. Hence, in effect, the weakly driven single-atom EIT-
lizing quantum coherence effects in multilevel atoms. In parKerr system acts as an ideal photon blockade device.
ticular, electromagnetically induced transparetEyT) [3] In a further work[10], a Hamiltonian for the effective

was employed by Schmidt and Imantied4] to devise a two-level system was derived using a polariton basis, and it
scheme involving four-level atoms that produces a large Kervas shown that such a Hamiltonian can describe the spectral
nonlinearity with virtually no noise. It was then shown by properties and energy splittingdynamic Stark effegtseen
Imamodu et al.[5] that if such a strong optical Kerr nonlin- in the full model. Furthermore, to explain the properties of
earity is implemented in a CQED setting, then it is possiblethe second-order correlation function, it was shown that the
to realize the effect ophoton blockadein which the atom-  effective two-level system has to be generalized to include
cavity system effectively acts as a turnstile device for singlegwo extra states in the first excitation manifgMti]. If more
photons. The physical explanation of this effect is simplethan one atom is introduced, the situation becomes more
Only the transition between the ground and first excited stateomplicated, since each additional atom introduces extra en-
of the nonlinear atom-cavity system is resonant with theergy levels into the second manifold, some of which are
driving field. Higher states are detuned from resonance by anonnected to the lower levels via transitions that are resonant
amount proportional to the strength of nonlinearity. Tian andwith the cavity mode. However, it was shown by Werner and
Carmichael[6] have also predicted such an effect with almamodu [12] that the introduction of an additional atomic
single two-level atom strongly coupled to the cavity mode. detuning can be used to solve this probla®e also the work
The proposal of Schmidt and Imariog[4], although of Greentreeet al. [13]).
very appealing in its use of EIT to reduce decoherence, In [11], a comparison of the EIT-Kerr scheme and the
extended Jaynes-Cummings scherfiee., the standard
Jaynes-Cummings modgl4] with the effects of losses in-
*Email address: s.rebic@auckland.ac.nz cluded was made in terms of their effectiveness in produc-
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ing a photon blockade. The EIT-Kerr scheme exhibited a (a)
value of g‘(0) (the second-order correlation function at
zero time delay of ;5 that of the corresponding Jaynes- K
Cummings scheme. This was attributed to destructive quan Driving &,
tum interference between certain transition amplitudes. In 4-[( M )] D
particular, with a suitable choice of parameters, probability
amplitudes for transitions from the first excited stétethe @) (7)
first manifold to the two second-manifold eigenstates closest g
to the cavity resonance cancel each other. This leads to er
hanced antibunching of the photons leaving the cavity so tha
@)(0)~0.

g'~(0)

We have remarked that the validity of these results de- (%)
pends on the assumption of weak driving. It is, therefore, of |4)
interest to explore how robust the photon blockade is as the A
driving field strength is increased. We have performed an 1 E— |2)
analysis of the driving field dependence in the EIT-Kerr sys-
tem, and briefly compared the results with those obtained fot
the extended Jaynes-Cummings model. A surprising feature
is found in the EIT-Kerr system, where a sudden change in
the photon statistic.e., of g?(0)] of light emerging from
the cavity occurs at intermediate driving strengths. If plotted
against the mean intracavity photon numlggf)(0) is seen
to undergo a sudden transition, switching rapidly between
antibunching and strong bunching. The exact position of the In)
threshold depends on the characteristic system parameters,
name_ly, the atom.—fleld interaction strength and 1B4T) FIG. 1. (a) Envisaged experimental setup. A single four-level
coupling field Rabi frequency. atom is trapped in an optical cavity with the decay constarhe

In Sec. Il we present our model and the methods of solugayity is driven by a coherent laser field, which couples to the
tion employed. Section Il contains the results of numericalcavity mode with strengti€, . An additional laser with Rabi fre-
simulations for the photon statistics, showing the surprisinguency ). directly couples to the atomic transitioth) Atomic
behavior of the second-order correlations in the regime oknergy-level scheme. The cavity mode drives transitjdns-|2)
intermediate driving. Section IV contains a detailed explanaand|3)— |4), with the respective coupling strengtisandg,. The
tion for the results presented in the preceding section, obwansition|2)«|3) is coupled by a classical field of frequenay
tained by analyzing the density matrix expressed in an apand Rabi frequenc§).. Spontaneous emission rates are denoted by
propriate basis. In Sec. V we present analytical calculations;. Detuningss andA are positive in the shown configuration.
based on the insights gained in Sec. IV.

coupling the transition2)— |3). The cavity driving field is
Il. MODEL characterized through the paramefgy related to the power
' output of the driving laseP via

A. Hamiltonian

2
The driven atom-cavity configuration and the atomic- &= /i 2)
energy level scheme are shown schematically in Fig. 1. The P Ahwca,

Hamiltonian describing the system in the rotating wave and
electric dipole approximations i§=H,+ H,, where, in the WhereT is the cavity mirror transmission coefficient,is the
interaction picture, cavity decay rate, and.,, is the cavity mode frequency.
Damping due to cavity decay and spontaneous emission is
Ho=h8 0oyt hA 044tihgy (aTo— 0p@) TiAO (003 introduced below in the context of the quantum trajectory
. approach15].
—03) Tz (2l o 0uz), (1a Four atomic levels plus the cavity mode span a Hilbert
space of dimension 4N, where N denotes the truncation
Hq=ihEy (a—a'). (1b)  order in a Fock state expansion of the cavity field subspace.
In the absence of driving, Hamiltoniak,, given by Eq.
In these equationsr;; are atomic raising and lowering op- (1a), takes a block-diagonal form, witk blocks on the main
erators(for i #j), and atomic energy-level population opera- diagonal. Each block represents a manifold of eigenstates
tors (for i=j), aanda' are the cavity field annihilation and associated with the appropriate term in the Fock expansion.
creation operators, respectively. Detuninand A are de-  The ground, first, and second manifolds have been analyzed
fined from the relevant atomic energy levels,, are atom-  from the viewpoint of a photon blockade in Ref$,12,13.
field coupling constants for the transitiond)—|2) and  The general structure of the dressed states in an arbitthry
|3)—|4), andQ is the Rabi frequency of a coherent field manifold has been discussed in Rgf0].
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Addition of the driving term(1b) complicates the analy- 12
sis, since the Hamiltonian matrix does not retain the block-
diagonal form. It is possible, however, to re-express the driv-
ing Hamiltonian in terms of polariton operators and effective
Rabi frequencies for transitions between dressed states. Thi
has been done if10], and in the remainder of this paper we
will draw on these results. .

Our analysis of the driven “atom-cavity molecule” will <
proceed in two complementary directions. First, using the %
method of quantum trajectorigd5], we obtain numerical
data. Then, using the formalism of REL0], we construct an
effective Hamiltonian in the polariton basis, which encapsu-
lates the physics sulfficiently to explain the numerical results.

B. Damping: Quantum trajectories

In the quantum trajectories approach, damping enters the
model through collapse operators, with each of these corre-
sponding to one decay channel. In the case under consider- FIG. 2. Second-order correlations at zero time delay against the
ation we require the following four collapse operators: (scaled driving parameter. The inset shows mean intracavity pho-

ton number in the steady state. The dotted line denotes the extended
Ci= Mm, Co=

Y2032, Jaynes-Cummings scheme for which=0.1x, g=6«. Other
curves show the single-atom EIT-Kerr model with=0.1«, g,
Cs= \/%034, C,= Jka, €] =6k, 6=—0.2«¢, A=0.1x. The solid line represents the caQg

o ) =2k; dot-dashed line{).=6«; dashed line().=18«. All curves
wherey, denote spontaneous emission rates into each of thgre obtained by averaging over“ihajectories.

decay channels and is the cavity field decay rate. The

effective Hamiltonian used in the trajectories approach iSg 5 function of driving strength, . It was established ear-
non-Hermitian and takes the form lier [5,9] that this function is a good measure of photon
4 blockade; perfect photon blockade yields perfectly anti-
Heri=H—i >, C{Cy, (4  bunched photons. The steady-state second-order correlation
k=1 function is given by
with H given by Eq.(1).

In deciding on the truncation for the cavity mode Hilbert g@(7)=lim - - .
space, special care must be taken to include a sufficient num- t-=(a'(ta(t))(a'(t+ ra(t+ 7))
ber of states to capture all the relevant dynamics. If an empty
cavity would be driven by an external coherent field corre-Perfect antibunching/photon blockade correspondgity( =
sponding to the parameté}, the amplitude of the intracav- =0)=0; for a coherent fieldg®®(7=0)=1 and for a
ity coherent field would be bunched fieldg®(r=0)>1 [17].

Figure 2 showgy®(r=0) as a function of théscaled
driving parameter for a single-atom EIT-Kerr system, com-

. _ pared with the same quantity calculated for the extended
and 2the expected mean intracavity photon numbey  j5ynes-Cumming$JC) model. The extended JC model is
=|al? Our simulations include driving strengths of up 10 griven on the lower Rabi resonance, as envisaged by Tian
&,=3k, so the truncation is set &t=40. The insetin Fig. 2 ang carmichael6]. In the weak driving regime, simulation
shows that the actual mean intracavity photon number stay§ynfirms earlier results — stronger photon blockade in the
well below its empty cavity counterpart for the given rangeg|T.kerr system. As the driving increases, the extended
of driving, thus justifying the chosen truncation. Jaynes-Cummings model gradually saturates, and the field
correlation asymptotically tends to 1. Naively, one would
expect qualitatively similar behavior in the EIT-Kerr model.
Our simulation, however, shows a vastly different result.
Over a narrow range of driving, the statistics of the field

In this section we present the results of numerical simuchanges from strongly antibunched to strongly bunched, and
lations using the method of quantum trajectofii#s], with  the coherent state valgg®)(0)=1 is approached asymptoti-
results averaged over 10000 trajectories. Values of paraneally from above as, is increased further.
eters chosen for the simulations are consistent with recent Note that the quantity being increased here issbaled
experiments[16], so the scheme presented in this paperdriving parameter, so one may argue that it is the ratio that

(af(Ha'(t+na(t+na(t))

(6)

a=i&,l«k ©)

Ill. NUMERICAL SIMULATIONS
OF PHOTON STATISTICS

should be experimentally viable.
We evaluate the second-order correlation functi&h(0)

determines this behavior, i.e., we may either increase the
driving strength or decrease the cavity decay rate to obtain
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(a) its dynamics. The total density matrix of the system in the
3 steady state can be written in most general terms as

TAReD ','/- - ng Cab|a><b|' (7)

9@ (0)

—
o
\
\

7 ’ where a, b belong to the set of all possible states of the
p 7 system in an arbitrary basis. The natural basis for the simu-
0 == lation is that of the bare states. The cavity mode subspace is
’ ) ’ ’ truncated at 40, making the size pfequal to 16 160. Let
<afa>” T be the transformation that diagonalizes Hamiltonian
(®) i.e., the full Hamiltonian, with driving included. The density
0.1 ' - ™ T matrix can be transformed into a new basis @g,q
=TpT ! and we can look for the nonzero elements of this
i ! matrix. Diagonal elements of the matrix correspond to popu-
0.05} ! ‘ ] lations of the dressed states, while off-diagonal elements cor-
respond to coherences between the dressed states. The results
i ¢ depend on the size of,, i.e., we expect the number of
0 S nonzero elements to increase&sis increased. For a large
0 0.1 02 03 04 0.5 part of the&,, range considered, however, the density matrix
; is dominated by elements corresponding to two particular
<“ a>ss states.
FIG. 3. Second-order correlations at zero time delay against th Figure 4 shows the nonzero malrix elements of density
mean steady state intracavity photon number for a sing%e-gtom E”22trtsxtgtdéa%/;/itlrj1latghoen?;rsgtzgis r?ergaiﬁ/rée%gt]ulr?iﬂge aisgngﬂ(;zder’
Kerr system. Parameters are the same as in Figg) Zhows nor- =(1,1), while the state with the largest positive detuning is

malized correlation function, with the main figure showing the e . .
range where the sudden change can be seen in detail, while the iné’ﬂt (1,j)=(160,160). States with the smallest detuning.,

shows the whole rangéb) shows the unnormalized second-order C(i.oseSt to t_h_e cavity resonancare at the Ce_nter_ of the ma-
correlations. trix, at positions 80 and 81 along the main diagonal. Two

diagonal elements dominate the matrix, and we identify these

the same result. However, to clarify this issue as related t@S being the populations of the Stark-split stggs) (see

the photon statistics, in Fig. 3 we show a parametric plot ofAPPendix A and 10]). Stark-split states are, therefore, found

a second-order correlation function against the expectatioflt the positions 80 and 81 on the main diagonal of the den-
value of the intracavity photon numbéga)ss. Both quan- sity matrix. At positions 79 and 82 are the two states from
tities are now unscaled by any external parameter, and th&€ second manifoldwo-photon excitations closest to the
sudden nature of the switch becomes even more obviou§éSonance. At the positions 78 and 83 are two remaining
showing a phase-transition-like behavior. This can be relategt@tes from the first manifold; at the positions 77 and 84 are
back to Fig. 2. In particular, the transition from antibunching W states from the third manifoldhree-photon excitatiofs

to bunching happens over a range of driving for which theclosest to the resonance, and so on. The states we have just
intracavity photon number stays practically constaete in- identified suffice to indicate the dynamics of the system. Off-

set of Fig. 2, leading to the suddenness of the transition seeifiagonal elements are coherences between the appropriate
in Fig. 3 and the concentration of points around the threshol§ressed states.

region. To further emphasize this, in Fig.(8) we plot the One striking f_eature can be noted immediately from Fig.
“pure” second-order correlation functio(ra*a*aa)ss, which 4. Namely, the first “square” of element$our elements on
also exhibits a threshold like behavior. each sidg encircling the center squarlStark states, X 2)

Another feature of the numerical results is noted. The'€mains much smaller than all of the other accessible states.
bunching-antibunching transition is sharper and the subsdl terms of dressed states, this means that the second-
quent bunching stronger for smallél.. In fact, it is the manifold states remain unpopulated and_the coherences be-
increasing ratiay; /. that really matters. The sharper tran- tween these anq .aII the other states vanish as well. Further-
sitions also occur at smaller values <ﬂfr3>ss- For a de- More, as the driving increases, the statgs Whose'coherences
creasing ratiog; /Q., g®(0) approaches the behavior of Wl_th the Stark states increase to a noticeable size are the
the extended JC model. third-manifold state¢see Fig. 4 fo,=0.0%). As the driv-
ing increases further, the remaining two first-manifold states
(their populations and coherences with the Stark statis®
start to contribute. So, contrary to expectations, the contribu-

We proceed to determine which eigenstates of thdion to the dynamics of the states beyond the effective two-
strongly coupled quantum system contribute significantly tdevel system does not increase according to the smallness of

IV. DENSITY MATRIX TREATMENT
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FIG. 4. Relevant density matrix elements at the different values of driving. Elements of the central suldimagnsion 2X 21) of the
total density matrix (168 160) are shown. In the basis that diagonalizes the Hamiltonian, the chosen submatrix contains elements corre-
sponding to the dressed states closest to the cavity resonance.

their detunings from the bare-cavity frequency. The twobined population of the two inner second-manifold states
least-detuned second-manifold states are in fact essentiallfFig. 5(b), solid ling] vanishes for a large interval of driving,
unpopulated. since the value of~10 ¢ is at the numerical precision
From the above analysis of the density-matrix elementsyalue, and fluctuations are numerical, not physical in nature.
we can deduce the solution to the “photon statistics puzzle'These populations become nonzero at the value of driving
of Figs. 2 and 3. The strong photon antibunching at s@jall ~ strength at whiclg®(0) of Fig. 2 (solid line) peaks. These
is the consequence of the effective two-level system, and hgsdots further justify the discussion of the preceeding para-
been well understood. The sharp risgyf?(0) with increas-  graphs.
ing &, can be attributed to the two-photon transitions needed We proceed with the development of an effective model
to populate the third-manifold states from the first manifold,with relatively few levels, which nevertheless captures most
and then decay back in cascade to the first manifold. Thesef the important features of the dynamics.
two-photon decays cause the sharp increase in the second-
order output field correlations. But, what causes the system
to skip second-manifold states? Again, the answer can be
deduced from the density matrix. Strong coherence between In the formulation of an effective model, we rely on the
the first- and third-manifold states, together with the missingformalism developed in Refl10]. This formalism was very
population in the second-manifold stat@sd vanishing co- successful in the development of an effective two-level
herences associated with these spatesovers the effect of theory and in explaining the fluorescence spectrum. Now we
ElT-type quantum interference between the dressed statesxtend the model and include a total of six dressed states in
This is not surprising, since the quantum interference bethe effective model. These states are shown in Fig. 6.
tween the transitions from the first to the second manifold It should be noted, however, that the dressed states shown
have been already discussed in Héd]. in Fig. 6 do not correspond exactly to the dressed states
These features are shown in Fig. 5, where the relevardiscussed in Sec. IV. Namely, the dressed states of Sec. IV
populations and coherences are shown. Note that the corare often referred to as doubly dressed states, since they di-

V. EFFECTIVE MODEL
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0 (a)

10 | 1 1 T 1

[ FIG. 5. Semilogarithmic plots
r’— of the density-matrix element&)

10 1 7 Plot of the coherences between
J— (+) the first-manifold and third-
) manifold states. Cohereng;’ is
the coherence between the upper
Stark state and lower third-
manifold state. Coherengsg;’ is
10—15 ) 1 ] ! the coherence between the lower
0 0.5 1 1.5 2 2.5 Stark state and upper third-
£ /K, manifold state.(b) Plot of the
fb) populations of the dressed states.
Solid line denotes a sum of popu-
lations in the two relevant states
of the second manifold, dashed
line denotes a sum of populations
in the two far detuned states in the
first manifold, and dot-dashed line
denotes a sum of populations in
the two relevant states of the third
manifold. Parameters are as in

10'20' ! s \ Fig. 2, solid line.
0 0.5 1 1.5 2 2.5
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agonalize the Hamiltonian with driving contributions in- The discussion of Sec. IV is based upon diagonalizing the

cluded. In this section, we will treat driving separatéige total Hamiltonian(including all of the 160 states used for the

[10]), and let the dressed states represent the eigenstatesrafmerical simulation

the interaction Hamiltoniafla) alone. Driving can then be With the effective Hamiltoniari8), we can also write the

included through effective Rabi frequenci€k;, coupling  master equation for an effective density matrix as

dressed statd®;) and|e;). _
The relevant effective non-Hermitian Hamiltonigm- . I

cluding driving and dampings thus 4 Peft= — g(HeffPeff_Pefleff)‘l'Ziz,j SiPeffS'Ta 9)

_ T T T T
Hetr=T€2poP2t i €3p3P3+ 7 €4Pj4Pja+ T €5Pj5Pj5 where S, now denote the polariton collapse operattsse

; S N * o T * Appendix B. The effective density matriye¢; has the di-
+ihQoy(p1—P1) HiR(QTP2— Q1p3) +if(Q55P3 mension 6< 6 — a significant reduction from 160160 used

_lepg)ﬂﬁgm(pm_ Py 170 os(Pas— p;5) to obtain the resul_ts in Sec. V.
From the equations of motion, we can uncover terms that
+i11034(Pas— Pia) + %034 Pas— Pis) — 1T opIPs lead to the effect of quantum interference. For example,
. . _ equations for the populations of the second-manifold states
—ial p*p —iall pr —iall pT p; ;
22212 3333 448j4Fj4 p2> and pa3 depend on the populations,, and pss of the

i t : T : T third-manifold states and treoherencedetween these states
.156Pj5Pys 1A 23poPa~ 17T 5P3Pa pas and ps,, the latter with ratel',s. At the same time,
— 14T 45p]4Pj5— 1T 54p]5Pja (8)  equations forp,, and pss do not depend on the second-
manifold states, nor their mutual coherence. The same holds
Operators pj, are polariton operators defined bhe) for the coherencep,3 and p,5 and their adjoints, the equa-
= pka|ej>. For the statefe,), which are accessible from only tion for p,3 depends opy4, pss, pss, andps,, but not vice
one lower state, the notation has been abbreviated, so, fgfersa. Population of and coherence between the second-
example,p,=p;,. Note also that the indicgsare dummy manifold states is linked to the population of and coherence
indices, i-e-vpkaij:|ek><eI|- Rabi frequencie$);, andQ,;;  between the third-man_ifold states. If this dependence is re-
have a phase term making them purely imaginary, while aljmoved from the equations of motion, i.e., terms dependent
the other Rabi frequencies are real. Damping terms wer€N Pas, Pss. Pas. @ndps, are removed from the equations
discussed in detail ifilO]. It is now possible to formalize the for p,,, p33, p23, andps,, cancellation of the population in
distinction between the two dressed states bases used in thfgee second manifold ceases to occur.
section and in Sec. IV. The basis in which the Hamiltonian The 35 equations of the effective model can, in principle,
(8) is written is defined in Ref.10] and depicted in Fig. 6. be solved analytically in the steady state. However, the re-
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10
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6-
e
elba
4+
—1— |e3)
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: le2)
GO 1.5 3
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FIG. 7. Comparison of the numerical results obtained from the
effective model including three manifolds with the results of nu-
merical simulations including up to eight manifolds. Details are
described in the text. The parameters are the same as for the solid

T |€1> line in Fig. 2.

(a'a)=|woy| 2p11+ W12 2p ot |Wig 2paat (|Wag?
+| W34 ?) pagt (|Wog 2+ [Wag?) psst [ Wi W 003
+ (W2 W35+ W3W35) pgst C.C, (10b

wherew;; =();; /€,, and c.c. stands for complex conjugate.
The results are displayed in Fig. 7. We have compared the
numerical solutions of the effective model with the results of
Y |€0> Sec. lll and found a very good qualitative agreement. We do
find strong bunching and threshold behavior occurring at the
FIG. 6. Schematic depiction of the six states used to formulate&sgme values o, and <aTa>ss_ However, the effective
the effective model. Statg¢s,) and|e,) are the effective two-level mode differs from the full simulations in the size gf)(0)
system from Ref[10]. States|e,) and |e;) are second-manifold 4t jtg peak by approximately a factor of 2. Including more
states closest to the bare-cavity resonance/@jjcand|es) are the  giates in the effective model would yield full agreement with
thirq-man.ift.)ld states closest to the resonance. Arrows represent e{he numerical data. In particular, we found that including two
fective driving. states closest to the resonance from up to eight manifolds
reproduces the numerical data exactly. The reason is that the

sulting expressions are complicated and do not offer S'gn'f'lwo-photon cascade decay responsible for the behavior of

colltons of thess Gquations and check for valiy of thed Q) can result from the decay of the higher states to
offective model Havi(rq1 the solutions for the o ulati)éms an hird-manifold states first, i.e., two-photon cascade can, in
' g Pop he manner of speaking, be driven “from below” and “from

g?nhee;Ieer;gssc’ar%esigﬁt?é?ergeerlsct?gerlg:i'gnoffunCt'on for Zer‘z:)lbove.".Naturally, the decgy of higher-lying states introduqes
more single-photon transitions as well. Therefore, adding
(atataa) = |y 2| Wiz 2paot [Woil 2| Wig 2past [ [Wig?w, 2 ON€ manifold at a time to an effective model reveals that the
increase in the maximum value gf?(0) gradually dimin-
+ | Wag 2| Waal 2+ (WE WS W1 aWast €.C) ] pas ishes with new manifolds added, settling at its maximum
5 5 5 5 - value after the inclusion of the eighth manifold. On the other
+ [l [Wosl* + [W1d *| Wad “+ (WIW3W10W25  end, the effective model of Fig. 6 is the smallest possible
model that (at least qualitatively reproduces the strong
bunching effect in this system.

+c.¢) 1psst (|Wos| "W Wy 3034+ C.C)
[ (IW12 PWo W35+ | W14 *W3Whg

VI. DYNAMICS OF THE FORWARD SCATTERING
+ WIW35W13W3g+ W1pWo WiW3g) past C.C OF LIGHT

(109 : : : ,
To obtain a different and useful perspective on the physi-
and the square of cal processes involved in the changing nature of the statistics
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of light emitted by the coupled atom-cavity system, we can 10 - - - . .
split the field operator into contributions from a coherent

mean amplitude and from an incoherent gaa], gk [—s N
_—— T /' \\
a=a+Aa, (113 s -- v / Y

& 6 ! N
wherea=(a) denotes the coherent amplitude component of = ; Y
the intracavity field, whileAa denotes the incoherent ampli- / v
tude componenfAa)=0, whose emergence is the result of § 4r / N
scattering of the cavity field by the atom. Using this decom- § / \
position, one can rewrite the expression §f)(0) as g 2 / i

S |- .

_(a'a'aa)ss  (:(a*Aatada’)?)g

@)(0)— - e
g'’(0)—1 =
(@'a)Z;  (laf*+(aa'Aa)s)?
12 . . .
4|la|R(Aa"*Aa)4] ' 517 > 23 3
(lal*+(Aa’Aa)s)? pit
t2h 220 + 2 FIG. 8. Contributions to the correlation functia?’(0) from
(Aa’"Aa%)ss— ({(Aa'Aa)s) the incoherent component of the intracavity field. Parameters are
(|a|?>+(AaTAa)gy)? the same as in Fig. 2.
=S(Aa)+T(Aa)+V(Aa), (11D many years. The system usually studied has been the canoni-
N ) +.« _i 2 cal system of quantum optics — a single two-level atom
where :: denotes normal ordering anh'a)ss=|al confined in an optical cavity. Photon statistics in the bad-

+(Aa'Aa)s,. The three terms in this expansion, denoted bycayity limit was thoroughly studied by Rice and Carmichael
S T, andV, have been identified by Carmichd@B] for the [0 "who analyzed the sub-Poissonian statistics and photon
case of a two-level atom. The decompositi@f) shows how  antibhunching in the cavity transmission, for the case of weak
the behavior ofg®(0) for different values of driving field driving. Their analysis was extended by Carmichatlal.

can be interpreted as the effect of self-homodyning betwee[m] to a system containinly two-level atoms. This analysis
the coherent and incoherent components of the intracavity,as further refined by Brechet al.[22]. Clemens and Rice
field [19]. From this viewpoint, it is easy to identif§(Aa) 23] have extended the consideration involving a single atom
as a term describing the squeezing in the field quadrature ify jnclude arbitrary driving field strength and dephasing. In
phase with the driving fieldy(Aa) gives the variance in the hejr analysis, Clemens and Rice pay special attention to
incoherent component, and(Aa) describes intensity- ponclassical effects known as “undershoots” and “over-
amplitude correlations in the incoherent component. Bothshoots”. These are related to the violation of inequalities that
V(Aa) andT(Aa) are determined by the correlations in the hold for classical correlations, in particular violations that
intensity, so the departure from the coherent value of thgccur not in the value of@(7=0), but for certain time
correlation function can be assigned to the effects of squeeze|ays>0. The explanation for the undershoots has been
ing and the effects of intensity correlations. given by Carmichaegt al.[21] in terms of the quantum in-

~ The contributions from the incoherent component of theeference of probability amplitudes and the collapse of the
intracavity field are shown in Fig. 8. The squeezing and inyave function.

tensity correlation parts are shown separately. The antibunch- e requirements for the classicality of the field correla-

ing for weak fields comes from the squeezed fluctuationssons can be derived from the Cauchy-Schwartz inequality

which reduce the contribution from the coherent scattering(see[22] and references thergimnd expressed in terms of
As the driving increases, the squeezing decreases, but th§e second-order correlation function as

variance in intensity fluctuations becomes negative, so the

remaining antibunching comes from the sub-Poissonian in- lg@(r)—1|<|g@®(0)—1]. (12
tensity fluctuations in the incoherent component of the field.

For &,~ «, the squeezing contribution effectively vanishes, Values in excess of those allowed classically are called over-
while T andV become positive and antibunching disappearsshoots, while values below are called undershoots. Over-
Strong bunching clearly originates in the super-Poissoniaghoots have been observed recently by Miedkal. [24].
intensity correlations and the correlation function is domi- In this context, it is of interest to see if the overshoots

nated byV. and/or undershoots can be found in the single-atom EIT-Kerr
system under consideration. Photon antibunching, as an ex-
VIl. NONCLASSICAL BEHAVIOR OF THE CORRELATION ample of nonclassical photon statistics, has already been pre-
FUNCTION dicted [9] and the effective two-level behavior analyzed

[9,12,10. In the present paper, we have shown how the ef-
The presence of nonclassical effects in a driven atomfects of self-homodyning of squeezed dipole radiation yields
cavity system is a topic that has received much attention fophoton antibunching in the low to moderate driving limit. We
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Ep/k =0.95 Ep/k =1.05
1.5 15
N VAN
IC) O
S &)
05 b5
00 5 10 00 5 10 FIG. 9. Second-order correlation functions vs
T [67Y] T [67Y] time delay for different values of driving field
Ele=11 Ep/k =1.75 strength. Shaded areas denote classically allowed
L5 /_/\ values, calculated from Eq12).
6
—~ 1 —
N «N
=05 W =
) 2
0 0
5 10 0 5 10
T[] T [&7]

have also shown that quantum interference between th@vhich for this region of parameters happens after time
probability amplitudes contributes to both strong antibunch~yj*1). Once it returns into a steady state, a few Rabi cycles
ing and strong bunching, for weak and strong driving fields,pass before the next set of collapses occur. The value of
respectively. Given this range of behaviors, we might thereg(?)(0) is determined by the ratio of the number of jumps
fore expect undershoots and overshoots to also occur in thgpwards to number of jumps downwards in photon number,
single-atom EIT-Kerr system under suitable conditions. where a jump upwards suggests that the detection of a pho-

Figure 9 shows correlation functions for several values oton increases the probability of detecting a second photon
driving field strength. The values of driving have been cho-immediately afterwards. Naturally, at the value of driving
sen where nonclassical behavior is expected to be found. Feyhereg(?)(0) peaks(see Fig. 2, collapses are almost exclu-
weak driving, where the antibunching is strong, the delaysively upwards, as illustrated in Fig. 11. Undershoots appear
time dependence of the correlation function is well under-as the consequence of a change in sign that the amplitude
stood in terms of the effective two-level system. The inter-undergoes at the collapf21]. As the system returns towards
esting region is for those values of driving for whighf)(0) it steady state, the polarization becomes close in magnitude
increases through 1, the value for a coherent field. This isind opposite in sign to the driving field, producing a near-
also the region in which the dynamics is well described in
terms of quantum interference and increased incidence of
two-photon emissions.

Not surprisingly, this is also the range of parameters
where the largest violations of classical inequalities occur.
Since the increase in the valuegf)(0) is due to the purely
guantum effect of interference between probability ampli-
tudes, non classical pehawor of the correlatlons can be ex- o 0 40 0 20 100
pected. The explanation of these effects given by Rice and
Carmichael[20] and Carmichaekt al. [21], although in a units of time [x~"]
different context, still holds. As shown in Sec. VI, self-
homodyning of squeezed dipole radiation with the driving
field occurs in the EIT-Kerr system in a similar manner to
that for a two-level atom. An alternative explanation in terms
of quantum interference of the driving field with the atomic
polarization after the collapse of the wave function upon a
photon detection event offers even more insight. This is best 02
understood in the context of the quantum trajectory theory. '} 20 40 60 80 100

This explanation is illustrated in Fig. 10, where single units of time [5~1]
trajectory realizations for the intracavity field and photon
number are plotted. We see that the collapses tend to occur in FIG. 10. Intracavity photon number and field amplitude in a
succession before the system returns (quasi) steady state typical realization of a single quantum trajectory, fy/x=1.

02

-
£ 0
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3 , - - , in the output field for the stronger driving. We have identified
the effect of quantum interference between the dressed states
55t i to be responsible for this sudden change, and presented an
effective model explaining qualitative features of this behav-
ior.
2r 7 Furthermore, we have analyzed contributions from the in-
- coherent scattering to the system dynamics and found that
§1_5- ¥ the strong photon antibunching can be explained in terms of
s

the self-homodyning of the incoherent intracavity component
with the coherent component for weak driving, and in terms
of reduced intensity fluctuations for moderate driving
strengths. Strong bunching is the signature of super-
0.5f . Poissonian intensity fluctuations.

Finally, nonclassical behavior of the correlation function
was found, and the effects of undershoots and overshoots

0 s
0 4. 16 8 10 analyzed.
units of time [k~
FIG. 11. Intracavity photon number in a typical realization of a ACKNOWLEDGMENTS

single quantum trajectory, fa&f,/x=1.75. )
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The overshoots can also be explained in terms of the colci€ty of New Zealand and The University of Auckland Re-
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emitted from the steady-state situation, collapses the wave
function of the system. The subsequent time evolution as the APPENDIX A: STARK SPLITTING OF THE DRESSED
system returns to the steady state determines the photon cor- STATES
relations. For weak driving field, the probability for the sec- ) ) ) . )
ond collapse to occur before the system returns to the steady N this appendix, we briefly review the effect of dynamic
state is extremely small, since it is proportional to the mea tark splitting of dressed states, fully elaborated upon in Ref.
intracavity photon number. For stronger driving fields the[10]. o )
probability for subsequent collapses increases, specifically Dressed states of the Hamiltonidba) contain, among
due to the large correlations between first- and thirg-Others, two states on exact cavity resonance, separated by
manifold states, as shown in Fig. 5. Therefore, the probabileN€rg¥i@cq, - These are the ground state and a state belong-
ity for a second photon detection after some timey * ing to th_e first excitation manifold. In the schemgtlc depic-
increases as well, causing the correlation function overshoofion of Fig. 6, these are denoted {®) and|e,). Driving by
In experiment, such event pairs are the source of delayell® external fields, enters through the effective Rabi fre-

coincidence counts. A third collapse is also likely to OCCUFquencyQOl:é‘p/«/lJrgi/Qﬁ. Resonant coupling of the two
before the steady state is reached. However, the overshoglye|s causes the splitting of the two states into a symmetric

disappeargor significantly decreasgdor all time delayst  and antisymmetric linear combination of the two,

after the first peak. This is expected, since the exact form of

the wave function after the second collapse depends on the _ +

delay time between the second and third photon. Averaging =)= (e} |e1))/\/§ (AL)

over all possible realizations washes out the nonclassical e(/(/ith corresponding energies

fects due to different possible evolutions following the sec-

ond collapse. > 5
A stronger driving field causes more subsequent collapses €+ =205~ (I'o/2)%, (A2)

to occur, and nonclassical correlations are completely

washed out. We find that overshoots and undershoots vanistithere FOZK/(1+gi/Q§) is the decay rate of the excited

at driving strengtht,~ 1.14«. state|e, ). The splitting of energy levels occurs at the thresh-

old values of the driving field,

VIIl. CONCLUSION

Kl2
We have presented an analysis of the properties of the &= 5" (A3)
photon statistics of light emitted by a single-atom intracavity V1+9§/ Qg

EIT-Kerr system. It was found that the statistics change

abruptly as the driving field strength increases. SpecificallyThe two state$y..) are the two states closest to the cavity
strong photon antibunching, dominant in the weak to moderresonance for the range of driving strengths considered in
ate driving regimes, is replaced by a strong photon bunchinghis article.
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APPENDIX B: QUANTUM JUMPS

In this appendix, we discuss jump terms for the effective

master equatiort9). We follow the notation of Carmichael
[15] and rewrite the effective master equati@ in a Lind-

blad form aspes= Lettpers, Where the Liouvillian superop-

erator can be divided into a part describing the free evolutio

between the jumpsf.;i— Sef;, and a part describing the
jumps, Seis. Jump termSgsipess arises from the equivalent
jump term in the full master equation,

Sp=2xkapa’+2y; 01,p0p1+ 2y, T3p0rat 23 T3up0az.
(B1)

Using the methods of Ref10], and consistent with the trun-
cation of the dressed states spé&=in Fig. 6, we can write

PHYSICAL REVIEW A5 063804

o= |1,1%(1,2|+]2,1)(2,2], (B2b)
oa=1,31(1,2]+]2,3)(2,2, (B20)
034=10,3)(0,4]+]1,3)(1,4. (B2d)

It can be deduced from the bare states that the collapse op-

"Lrators can be expressed as linear combinations of the fol-

lowing polariton operators: ax<{pq,P2,P3,P24,
P34,P25,Pasfs 012,034%{P2,P3,P24,P34,P25,Pas, and oz,
ofnt i f i i i SN

{P2P2,P3P3,P4P4,PsPs . P2P3,P3P2, Pj4Pjs5, PjsPjat. Note
that the polariton jump terms arising from the atomic jumps
associated with the operatars, (i.e., proportional toy,)
couple dressed states within the same manifold. This is pos-
sible since the associated atomic transition is not coupled to
the cavity mode, but to the classical fielt., and therefore

the field and atomic collapse operators in terms of the barBIMPs occurring in this atomic decay channel do not switch

states as
a=]0,1)(1,1]+]0,3)(1,3+|0,4)(1,4| + v2(]1,1)(2,1]
+]1,2¢2,2+1,3(2,3) + V3|2,1%(3,1], (B2a)

between the adjacent manifolds.

Using the correspondences above, one can write all of the
jump terms in the polariton basis, thus making the transition
Sp—Setipess- This transformation can be viewed as a rota-
tion of a truncated basis of a superoperator.
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