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Mirror quiescence and high-sensitivity position measurements with feedback
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We present a detailed study of how phase-sensitive feedback schemes can be used to improve the perfor-
mance of optomechanical devices. Considering the case of a cavity mode coupled to an oscillating mirror by
the radiation pressure, we show how feedback can be used to reduce the position noise spectrum of the mirror,
cool it to its quantum ground state, or achieve position squeezing. Then, we show that even though feedback
is not able to improve the sensitivity of stationary position spectral measurements, it is possible to design a
nonstationary strategy able to increase this sensitivity.
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[. INTRODUCTION continuously “kicks” the mirror in order to put it in its equi-
librium position. This proposal has been experimentally re-
Mirrors play a crucial role in a variety of precision mea- alized in Ref[11], using the “cold damping” techniquigl 4],
surements such as gravitational wave detectidh and  which amounts to applying a viscous feedback force to the
atomic force microscope$2]. In these applications one oscillating mirror. In the experimental studies of optom-
needs a very high resolution for position measurements andechanical systems performed up to now, the effects of quan-
good control of the various noise sources, because one hastiam noise are blurred by thermal noise and the experimental
detect the effect of a very weak forf&,4]. As shown by the results can be well explained in classical tertese, for ex-
pioneering work of Braginsky5], even though all classical ample,[15]). However, developing a fully quantum descrip-
noise sources had been minimized, the detection of gravitaion of the system in the presence of feedback is of funda-
tional waves would be ultimately determined by quantummental importance for two main reasons. First of all it allows
fluctuations and the Heisenberg uncertainty principle. Quanto establish the conditions under which the effects of quan-
tum noise in interferometers has two fundamental sourcesum noise in optomechanical systems become visible and
the photon shot noise of the laser beam, prevailing at lovexperimentally detectable. We have recently shown in Ref.
laser intensity, and the fluctuations of the mirror position dug 16] that there is an appreciable difference between the clas-
to radiation pressure, which is proportional to the incidentsical and quantum description of feedback already at liquid
laser power. This radiation pressure noise is the so-calleHle temperatures. Moreover, a completely quantum treatment
“back-action noise” arising from the fact that intensity fluc- allows one to establish the ultimate limits of the proposed
tuations affect the momentum fluctuations of the mirror,feedback schemes, as, for example, the possibility to reach
which are then fed back into the position by the dynamics othe ground-state cooling of a mechanical, macroscopic de-
the mirror. The two quantum noises are minimized at argree of freedom. In Ref.12], a quantum treatment of sto-
optimal, intermediate, laser power, yielding the so-calledchastic cooling feedback has been already presented, based,
standard quantum limit(SQL) [3,6]. Real devices con- however, on a master-equation description which is not valid
structed up to now are still far from the standard quantumat very low temperaturd4.7]. A consistent quantum descrip-
limit because quantum noise is much smaller than that ofion of both stochastic cooling and cold damping feedback
classical origin, which is essentially given by thermal noise.schemes, valid at all temperatures, has been presented in
In fact, present interferometric gravitational wave detectorg16], and recently a discussion of the quantum limits of cold
are limited by the Brownian motion of the suspended mirrorsdamping has been presented #8]. The present paper will
[7], which can be decomposed into suspension and internaixtend and generalize the results[16,18, allowing us to
(i.e., of internal acoustic modethermal noise. Therefore it make a detailed comparison of the two feedback schemes,
is very important to establish the experimental limitationsand to establish all their potential applications. In particular,
determined by the thermal noise, and recent experimentwe shall see that both schemes can achieve ground-state
[8,9] go in this direction. cooling of an oscillating mode of the mirror, and that, in an
Recently, Ref.[10] reported the first experimental evi- appropriate limit, the “stochastic cooling” feedback of Ref.
dence of the reduction of thermal noise by means of th¢12], can even break the standard quantum limit, achieving
radiation pressure of an appropriately modulated laser lighsteady-state position squeezing. The experimental realization
incident on the back of the mirrdrl1l]. The method was of these quantum limits in optomechanical systems is ex-
based on a phase-sensitive feedback control proposed in Réfemely difficult, but the feedback methods described in this
[12]: detect the mirror displacement through a homodynepaper may be useful also for microelectromechanical sys-
measurement, and then use the output photocurrent to realitems, where the search for quantum effects in mechanical
a real-time reduction of the mirror fluctuations. The proposedystems is also very actiyéd9,20.
scheme is a sort of continuous version of the stochastic cool- Thermal noise reduction is important, but is not the only
ing technigue used in acceleratpts$], because the feedback relevant aspect. What is more important, especially for gravi-
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Local oscillator This optomechanical system can represent one arm of an
T interferometer able to detect weak forces as those associated
with gravitational wave$1], or an atomic force microscope
@ & Cavity i [2]. The detection of very weak forces requires having quan-
H | tum limited devices, whose sensitivity is ultimately deter-
Movable mined by the quantum fluctuations. For this reason we shall
Mifor describe the mirror as a singlguantummechanical har-
i monic oscillator with massn and frequencyw,,. Experi-
[ mentally, the mirror motion is the result of the excitation of
Detection Feedback many vibrational modes, including internal acoustic modes.
The description of the mirror as a single oscillator is, how-
To spectrum ever, a good approximation when frequencies are limited to a
analyzsr bandwidth including a single mechanical resonance, by us-

FIG. 1. Schematic description of the system. The cavity mode igng' for example, a l_aandpass_filter in the detectic_Jn I
driven by the laser which, thanks to the beam splitter, provides also The optomechanical coupling between the mirror and the

the local oscillator for the homodyne measurement. The signal i§aVity field is realized by the radiation pressure. The electro-
then fed back to the mirror motion. magnetic field exerts a force on the movable mirror which is

proportional to the intensity of the field, which, at the same

tational wave detectiofil], or for metrology applications time. is phase shifted byk?}, wherek is the wave vector and
[20], is to improve the sensitivity, i.e., the signal-to-noised iS the mirror displacement from the equilibrium position.
ratio (SNR) of position measuremenfd]. Both the stochas- In the adiabatic limit in which the mirror frequency_ is much
tic cooling scheme of Ref12] and the cold damping scheme Smaller than the cavity-free spectral rangL (L is the
of Ref. [11] cool the mirror by overdamping it, thereby Cavity length [24], one can focus on one cavity mode only
strongly decreasing its mechanical susceptibility at resoP&cause photon scattering into other modes can be neglected,
nance. Cooling is therefore achieved through the suppressidi'd one has the following Hamiltonid@5):
of the resonance peak in the noise power spectrum. This
suggests that both feedback schemes cannot be directly ap- H=%wb'b+hwn(P?+Q?%)—2:Gb'bQ
plied to improve the sensitivity for the detection of weak . e o
forces, because the strong reduction of the mechanical sus- +ihE(ble w0 —be“oh), @)
ceptibility at resonance means that the mirror does not re-
spond both to the noise and to the signal. We shall see thathereb is the cavity mode annihilation operator with optical
this is true only in stationary conditions, i.e., we shall provefrequencye., andE describes the coherent input field with
that thestationaryspectral SNR is never improved by feed- frequencywy~ w, driving the cavity. MoreoverQ andP are
back. However, as we have recently shown[16], it is  the dimensionless position and momentum operator of
possible to use feedback with an approprintestationary the  movable mirror, with [Q,P]=i/2, and G
strategy, able to increase significantly the SNR for the detec= (w./L) VA/2mw, is the coupling constant. Since we shall
tion of impulsive classical forces acting on the oscillator. focus on the quantum and thermal noise of the system, we
Here we shall extend the results [df6] by adopting a gen- shall neglect all the technical sources of noise, i.e., we shall
eral description of nonstationary spectral measurements. assume that the driving laser is stabilized in intensity and
The outline of the paper is as follows. In Sec. Il we de-frequency. This means neglecting all the fluctuations of the
scribe the model and derive the appropriate quantum Langeomplex parameteE. Including these supplementary noise
vin equations. In Sec. Il we describe the stochastic coolingources is, however, quite straightforward and a detailed cal-
feedback scheme of R¢fL2] and the cold damping feedback culation of their effect is shown in Ref26]. Moreover, re-
using the quantum Langevin theory developed[24,22, cent experiments have shown that classical laser noise can be
and we make a detailed comparison of the two schemes. Imade negligible in the relevant frequency rariged]. The
Sec. IV we analyze the stationary state of the oscillatingadiabatic regimev,<c/2L we have assumed in E(L) im-
mirror, and we determine the conditions under which feedplies o, <w., and therefore the generation of photons due
back can be used to achieve ground-state cooling or positioto the Casimir effect, and also retardation and Doppler ef-
squeezing. In Sec. V we present a general description dicts are completely negligible.
nonstationary spectral measurement and we discuss the sta-The dynamics of the system is not only determined by the
tionary limit in particular. Section VI describes how the sen-Hamiltonian interactior{1), but also by the dissipative inter-
sitivity of position measurements can be improved by usingaction with external degrees of freedom. The cavity mode is
feedback in a nonstationary way, and Sec. VIl is for conclud-damped due to the photon leakage through the mirrors that
ing remarks. couple the cavity mode with the continuum of the outside
electromagnetic modes. For simplicity we assume that the
movable mirror has perfect reflectivity and that transmission
takes place through the other, “fixed,” mirror only. We indi-
The system studied in the present paper consists of a ce@ate the photon decay rate at the fixed mirrorjgy Then,
herently driven optical cavity with a moving mirr¢Fig. 1).  the quantityE is related to the input laser power by E

Il. THE MODEL
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=g y./fhwy. The mechanical oscillator, which may repre- with a master-equation approach, because it is vatidll

sent not only the center-of-mass degree of freedom of théemperaturesind it does not need any high-temperature limit

mirror, but also a torsional degree of freedom afdihoran  [17].

internal acoustic mode as i8], undergoes Brownian motion In standard interferometric applications, the driving field

caused by the uncontrolled coupling with other internal ands very intense. Under this condition, the system is charac-

external modes at thermal equilibrium. terized by a semiclassical steady state with the internal cavity
The dynamics of the system can be described by the folmode in a coherent stalg), and a new equilibrium position

lowing set of coupled quantum Langevin equatid@.E)  for the mirror, displaced bys|B|% w,, with respect to that

(in the interaction picture with respect tavyb'b): with no driving field. The steady-state amplitude is given by

the solution of the nonlinear equation

Q(t)=wnP(1), (2a) c
. + B: 2 3 (6)
P(t)= — &mQ(t) + W)~ ymP(1) + Gb'(1)b(1), (2b) Y 4 i iwg—2i = | B2
2 ®m
b(t)= —(iwc—iwo-i- % b(t)+2iGQ(t)b(t)+E which is obtained by taking the expectation values of Egs.
(2), factorizing them and setting all the time derivatives to
+\yebin(t) (20  Zero. Equation6) shows a bistable behavior that has been

experimentally observed if80]. Under these semiclassical

whereb;, () is the input noise operat$27] associated with conditions, the dynamics is well described by linearizing the
the vacuum fluctuations of the continuum of modes outsidéLE (2) around the steady state. If we now rename with

the cavity, having the following correlation functions: Q(t) andb(t) the operators describing the quantum fluctua-
tions around the classical steady state, we get

b (t)bi (t"))=(bl (t)b: (t'))=0, :
< m(t) |n(t )> < In(t) In(t )> 0 (38) Q(t):(vmp(t)- (78)

T Y .
(bin(D)bip(t"))=o(t—t"). (3b) P(t) = — 0nQ(t) — ymP(t)+ GA[b(1) +bT(t) ]+ W(t),

Furthermore W(t) is the Brownian noise operator defined (7b)

consistently with quantum mechanids/]. It has the follow-

ing correlation functions: b(t)=— % +iA) b(t)+2iG BQ(t) + Vycbiy(t), (70

WMt = x ﬂ{]_-r(t_tr)ﬂj:i(t_tr)}, (4)  Where we have chosen the phase of the cavity mode field so
Wm

2w that 3 is real and
where 2G* |
A=wc—wy——p ®
Wm
w ®
Fi(t)= fo do o cog “’t)COtr( 2kBT)' (38 s the cavity mode detuning. We shall consider from now on

A =0, which corresponds to the most common experimental
o situation, and which can always be achieved by appropriately
}'i(t):—f dw o sin(wt), (5b) adjusting the driving field frequencw,. In this case the
0 dynamics becomes simpler, and, introducing the field phase
quadrature Y(t)=i(b'(t)—b(t))/2 and field amplitude
with T the bath temperaturey,, the mechanical decay rate, quadratureX(t)=[b(t)+b'(t)]/2, one has that only the
kg the Boltzmann constant, ang the frequency cutoff of phase quadraturé(t) is affected by the mirror position fluc-
the reservoir spectrum. The antisymmetric pdfit, of EQ.  tuationsQ(t), while the amplitude field quadratudé(t) is
(4) is a direct consequence of the commutation relations fopot. In fact, the linearized QLE?) can be rewritten as
the Brownian noise operator, and the symmetric partex-

plicitly depends on temperature and becomes proportional to Q(t)=w,P(1), (9a)
a Dirac 6 function when the high-temperature limiizT

>hw first, and the infinite frequency cutoff limits — oo D(t) = — —

later, are taken. Equation$4) and (5) show the non- P omQ(L) = YmP(1) +2GAX() +IM), - (9b)
Markovian nature of quantum Brownian motion, which be- v \/7

comes particularly evident in the low-temperature limit Y(t): — —CY(t)+2G,8Q(t)+—CYm(t), (90)
[28,29. Therefore, theexactQLE (2) reduce to the standard 2 2

ones[27] in the limit w—o0. It is also important to stress

that the quantum Langevin description of quantum Brownian X(t)= — EX(t)‘F @X- (t) (9d)
motion given by Eq(2) is more general than that associated 2 2 e
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where we have introduced the phase input novg(t) feedback loop has been experimentally realized in Rlef
=i(b] (t)—biy(t)) and the amplitude input noisX;,(t)  (see alsq15]), using a different method, the so-called “cold

= biTn(t) +bin(1). damping” techniqué14]. This latter feedback scheme shares
some analogies with that proposed in R&2] and amounts
IIl. POSITION MEASUREMENT AND FEEDBACK to applying a viscous feedback force to the oscillating mirror.

In the experiment of Ref§11,15, the viscous force is pro-
Usually the movable mirror is used as a ponderomotivevided by the radiation pressure of another laser beam, inten-
meter to detect small forces acting of6. Thus, we intro-  sity modulated by the time derivative of the homodyne sig-
duce an additional Hamiltonian term describing the action ohal.

a classical external forci(t), that is The effect of the feedback loop has been described using
guantum trajectory theor}32] and the master-equation for-
Hex=—Qf(1). (10 malismin Ref[12], and a classical description neglecting all

. . , uantum fluctuations in Refl1,15. Here we shall use a
Information about such a force can be obtained by looking a?nore general description of feedback based on QLEs for

the mechanical oscillator positioQ(t). The position mea- . : )
surement is commonly performed in the large cavity band-He'SE"nberg operators, first developed in R2d] and gener-

width limit y.>Gg, w,, when the cavity mode dynamics alized to the nonideal detection case in R@2] (see also
(o3 ’ m: . )
adiabatically follows that of the movable mirror and it can be[33] for a comparison between these quantum feedback ap

_ ) proaches and general quantum control thedriBisis general
eliminated, that is, from Eq(9c), guantum description of feedback will allow us to compare

4GB Y, (1) the two different feedback schemes, the stochastic cooling
Y(t)= Q(t)+ e (12) scheme of Ref[12], and the cold damping scheme of Ref.
Ve JZ [11,15. A recent analysis of the quantum limits of cold

) ) damping has been presented in H&8B]. The present quan-
and X (t) =X (t)/\7c from Eq. (9d). Performing a continu- tym treatment will also allow us to show that in the presence
ous homodyne measurement of the phase quadrat(fle  of feedback the radiation quantum noise has important ef-
means, therefore, continuously monitoring the real-time dyfects, and that a classical stochastic treatment of the dynam-
namics of the oscillator positioQ(t), which, in turn, implies jcs of the system is generally inadequate. Our treatment ex-
detecting the effects of classical foréft). The experimen- pjicitly includes the limitations due to the quantum efficiency
tally detected quantity is the output homodyne photocurrengf the detection, but neglects other possible technical imper-

[21,22,31 fections of the feedback loop, as, for example, the electronic
B noise of the feedback loofdiscussed irf15]), or the fluc-
Yout(t)_zan(t)_ ‘/;Yiz(t)’ (12 tuations of the laser beam used for the feedback in the cold

where 7 is the detection efficiency and’ (t) is ageneral- damping scheme.

ized phase input noiseoinciding with the input nois¥;,(t)

in the case of perfect detectiop=1, and taking into account A. Stochastic cooling

the additional noise due to the inefficient detection in the | ot ys first consider the stochastic cooling scheme of Ref.
general case;<1 [22]. This generalized phase input noise [12]. |n this scheme, the feedback loop induces a continuous
can be written in terms of a generalized input ndis€t) as  position shift controlled by the output homodyne photocur-
Y (t)=i(bl(t)—b,()). The quantum noisb,(t) is corre-  rent Y, (t). This effect of feedback manifests itself in an
lated with the input noisb;,(t) and it is characterized by the additional term in the QLE for a generic operatd{t) given

following correlation function$22]: by [22]
(b,(Db,(t"))=(b](t)b,(t"))=0, (133 . 3
T T Ofbm:iEvouta—r)[gscpm,om], (14
(b,(Hb](t"))=8(t—t"), (13b) 7

. TtV = )= —t’ wherer is the feedback loop delay time, agg. is a dimen-
(bin(HbL(t"))=(b, ()b ,(t"))=ns(t—t"). (139 sionless feedback gain factor. The feedback delay time is
The output of the homodyne measurement may be used ®ssentially determined by the electronics involved in the
devise a phase-sensitive feedback loop to control the dynanfieedback loop and is always much smaller than the typical
ics of the mirror. For example, we have proposed in REf]  time scale of the mirror dynamics. It is therefore common to
to reduce the effects of thermal noise on the mirror by feedconsider the zero delay-time limit— 0. This limit is, how-
ing back the output homodyne photocurrent in an appropriatever, quite delicate in generf21,22. In fact, Y, (t—7),
way. The proposed scheme is a sort of continuous version dfeing an output operator, commutes with P (t),O(t)] for
the stochastic cooling technique used in accelerdtbd} any nonzeror, but this is no more true when=0. There-
because the homodyne measurement provides a continuofmse, one has to be careful with ordering in the zero delay-
monitoring of the oscillator’s position, and the feedback con-time limit. However, with the choice of Eql4) for the
tinuously “kicks” the mirror in order to put it in its equilib- feedback term, the only nonzero commutator in the QLE of
rium position. Our proposal of cooling the mirror using a Eq.(9) is[gs.P(t),Q(t)], which, being & number, does not
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create any ordering ambiguity. Therefore one has exactly the

same equations one would have by putting direetiyO in
Eqg. (14), that is,

Q=00+ 8.e7eY (D~ 552X, (153

P(t) = — 0nQ(t) — ymP(t) +2GBX (1) + (1) + (1),

(15b)
Y<t>=—§v<t>+2GﬂQ<t>+@Ymm, (150
X(H)=—ZX()+ J}xmu), (150)

where we have used E(L2). After the adiabatic elimination
of the radiation moddsee Eq.(11)], the above equations

reduce to

Q(t) =wnP(1)+4GBgsQ(t) + \/zgchin(t)

_ Yse [Ye

>\, YA, (169
. 2Gp
P(1) =~ QL) ~ YmP(V) + 2= Xin() D + (1),
Vre
(16b)

The solution of these QLE for the conjugate operatQ(s)

PHYSICAL REVIEW A 65 063803

t
_Jodt’ Xsc(t’)[\/%gchin(t_t’)
gsc\/% ,
7 V5, Yt )}
2GpB

t
+fodt Kp(t ){W(t—t )+T%xm(t—t )1.

(17b)

We have introduced the time-dependent susceptibylityt)
describing the response of the movable mirror in the pres-
ence of the stochastic cooling feedback

Wm
1_91)2

Xsdt)=
2_.2
\/wm Ym 2
) 1-9; 2
X e (”gl)ym“zsm[t\/wrzn— 7;( 5 ) ,

(18)
and the two related response functions
Ys(t)+ t
Ko(t)= Xsc(t) + Ymxscl )’ (19)
Om
Ys(t)+ t
Kp(t)= Xsdt) wgl)(sc( ) (20)

m

and P(t) can be easily obtained by performing the LaplaceWWe have also rescaled the feedback gain and defiped
transform, and they will be useful in the following. Their —4GBYsc/ Ym-

expression is

t
Q(1) =Kqo(1)Q(0) + xs(t)P(0) + fodt'xsc(t’)f(t—t’)

t
+f0dt' Ko(t)[V7eGscYin(t—t")

_g_sc\/i Nt _t!
2GS

t
+J0dt Xsd(t ){W(t_t )+Tycxin(t_t )1:
(17a

t
P<t>=Kp<t>P<0>—xsc<t>Q<0>+fodt'pr)f(t—t')

B. Cold damping

Cold damping techniques, that is, the possibility to use a
feedback loop to reduce the effective temperature of a sys-
tem well below the operating temperature, have been applied
in classical electromechanical systems for many yEbd$
and only recently they have been proposed to improve cool-
ing and sensitivity at the quantum lej@4]. This technique
is based on the application of a negative derivative feedback,
which increases the damping of the system without corre-
spondingly increasing the thermal noigk4,34]. This tech-
nique has been successfully applied for the first time to an
optomechanical system composed of a high-finesse cavity
with a movable mirror in the experiments of Ref$1,15. In
these experiments, the displacement of the mirror is mea-
sured with very high sensitivit}8], and the obtained infor-
mation is fed back to the mirror via the radiation pressure of
another, intensity-modulated, laser beam incident on the back
of the mirror. Cold damping is obtained by modulating with
the time derivativeof the homodyne signal, in such a way
that the radiation pressure force is proportional to the mirror
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velocity. The servo-control force then corresponds to a vis
cous force. The results of Refisl1,15 referred to a room-
temperature experiment, and have been explained using

PHYSICAL REVIEW A 65 063803

(Xin(OYA(E))y == (Yt ) Xin(D))=—ins(t—t").
R (240

classical description. The quantum description of cold damptn this case the solution of the adiabatic QLE reads

ing in this optomechanical system has been presentgbin
(see also Ref[34]), and we shall follow this treatment.

In the quantum Langevin description, cold damping feed-

back scheme implies the following additional term in the
QLE for a generic operataP(t) [16]:

. i
Opp(t) = nTy—chut(t_'T)[gch(t)aO(t)]- (21)

As for the stochastic cooling feedback case, one has only one

nonzero feedback term in the QLE of the systén which
in this case i§g.4Q(t),P(t)]. Since this commutator is @

t
Q(t)=K(1)Q(0) + xcq(t)P(0) + fodt,)(cd(t,)f(t_t,)
26p
e

+ftdt,Xcd(t_tI)[ Xin(t,)"_W(t,)
0

_ Ged Jed

Vre 2\yem

and P(t)=Q(t)/w,,, where we have introduced the time-

Yin(t')+

Y7t (25)

number also in this case, we do not have any ordering probjependent susceptibility in the case of the cold damping

lem in the zero delay-time limit, and the QLE for the cold
damping feedback scheme becomes

feedback scheme

Q) =wrP(1), (229 . ()= om
. . , o170 2
P(t) =~ onQ(t) = ymP(t) + 2GBX(t) = geqY (1) @m™ Ym|
Jed
3 .y_cnYi’%(t)+W(t)+f(t), (22b) ><e‘(1+92)7mt/25int\/wﬁ1—yzm 1+Zg|2 2
(26)
=X Ve,
vin= 2 v{n+2GEQM+ 2 Yin(t), (220 and the related response function
. t
X(t)=— %X(tH @Xm(t)- (220 K(t)= 1_wmfodt’)(cd(t’)- (27)

Adiabatically eliminating the cavity mode, one has

Q(t)=wnP(1), (233

P(t) Q(t) P(t)+ZG'BX ()W) + (1)
=Ty " Ym 77— in
7

Ye

4G,89cd- Ycd, Ged
- t)— —=Y,;,(t)+ Y7 (1).
e T o Y
(23b)

Notice that the modulation with the derivative of the homo-
dyne photocurrent implies the introduction of two new quan-

We have again rescaled the feedback gain and defiped
=4GBwmTcd! YmYe-

C. Comparison between the two feedback schemes

The two sets of QLE for the mirror Heisenberg operators,
Egs.(16) and(23), show that the two feedback schemes are
not exactly equivalent. They are, however, physically analo-
gous, as it can be seen, for example, by looking at the dif-
ferential equation for the displacement oper&gt). In fact,
from Eqgs.(16) one gets

Q)+ (1+91) ymQ() + (@’ + ¥291) Q(1)

tum input noisesy;,(t) and Y/ (t), whose correlation func- = wm{zca_ﬁxin(t)+w(t)+ f(t)

tions can be simply obtained by differentiating the Vre

corresponding correlation functions ¥f,(t) andY/(t). We

have, therefore, F\7eBseVin(t) = 97“\/%%71@)
(Yin()Yin(t)) = (Yin(t) Yin(0) = (YR Y7A(E)) ) o 5

. : . Zm (1) — =S4 [ L8ym
=(YREOYR)=—31t-t), (243 + | YYD =5V VRO (28)
(Y2 (O Yin(t))=(Yin(t )Y (1)) = — nd(t—t"), for the stochastic cooling scheme, while from E(3) one
(24b) gets
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. . 2 462 2
Q)+ (1+02) YmQ(D) + 02 Q(D) &, (1) YB S0 +5 2" F (1) 31
268 G, i )
~Wm J7e Xin(t) + W) + (1) — \/_—Yin(t) The expression fo(Q?), is obtained using Eq€18), (19),
Ve Ye and(31) in Eq. (30),
Oed
+——=Y7(1) (29 Yoymdi  1+Q%+g
2 ‘}/c’?] n <Q2>St: Cc m212 . 1
1287G°p° (1+91)(Q°+01)
for the cold damping scheme. These equations show that in 2G22 02
both schemes the main effect of feedback is the modification + 5 +(Q%gm. (32
of mechanical dampingy,— ym(1+9;) (i=1,2). In the Ye¥m (1+91)(Q°+01)

stochastic cooling scheme one has also a frequency renor—h 5 is th ibut f the mi
malizationw?— w2+ y2d1, which is, however, usually neg- The te_rm(Q >E."V' Is the contribution of the mirror quantum
ligible since the mechanical quality fact@y= w,/ v, is al- Brovx_/r_nan motion, vyhose gen_eral expression 1S _obtalned by
ways large. Moreover, in the two cases the position dynamic ewrlt;pg F(t _tE) |n4Eq.t(30) Itn terms of its Fourler trans-
is affected by similar, even though not identical, noise terms oM (@) [see Eq(4)], to ge
This comparison shows that the stochastic cooling scheme of o do y

m

Ref. [12] is also able to provide a cold damping effect of <Q2>BMZJ ——wcotl—<ﬁ—w) IYsd@)|? (33)
increased damping without an increased temperdtifg ~w 2T 20y 2kgT

where
IV. STATIONARY STATE AND COOLING

Om

We now study the stationary state of the movable mirror Yed @)=
in the presence of the two feedback schemes, which is ob- i+ 09172— 0’ +ioyn(1+9r)
tained by considering the dynamics in the asymptotic limit
t—oo. We shall see that both feedback schemes are able is the frequency-dependent susceptibility of the mirror in the
lower the effective temperature of the system, and that, irstochastic cooling feedback scheme. The general analytical
particular limits, the steady state can have interesting quarexpression of the quantum Brownian motion tef@?)gy ,
tum features. In fact, both schemes are able to achievealid in any range of parameters, is cumbersome and has
ground-state cooling, and the stochastic cooling feedback iseen obtained ifi28,29. However, in typical optomechani-
even able to achieve steady-state position squeezing. cal experiment§8,9,11,19 it is always# vy, <h o, <kgT,
and it is possible to se28] that, in this limiting case, the
classical approximation cot/2kgT)=2kgT/%w [which
is equivalent to approximaté, (t) = (ynkgT/fiwy,) 5(1)] can
Using the solution17a), one has be safely used in Eq33), so to get

(34)

A. Stochastic cooling feedback

<Q2>St: IIm<Q(t)2> kBT QZ
o <Q2>BM:2h 2 . (35)
o ®m (1+9:)(Q°+01)

o o 2

_’_f dt/f dt”Xsc(t,)Xsc(tH)CZ(t,_t”)! <Q2> = g7 1+ Q2+91
S
e 878 (1+91)(Q%+91)
(30 ¢ kgT Q2
. | . . +[—+ : ——., (39
wherec,(t) is the stationary symmetrized correlation func- 8 2hom|(1+9:)(Q%+0,)

ton of the noise term ny(t)=ygsYin(t) _ _ _ _
—9sd2V(ve I M) Y (1), co(t) is the stationary symmetrized Where we have introduced the rescaled, dimensionless, input
correlation function of the noise terrm,(t)=W(t)  Power of the driving laser

+(2GBIyo)Xin(t), and we have used the fact thai(t)

202 2
and n,(t) are uncorrelated. Using the correlation functions = 16G°B _ 64G o 37)
(3), (4), and(13), one gets YmYe  hwoymY?
2 2 Equation(36) coincides with the corresponding one obtained
cy(t)= L"’glg(t) (319  in[12] using a master-equation description of the stochastic
647G2p? cooling feedback scheme.
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An analogous procedure can be followed to get the sta- (QP+ PQ),;, o o
tionary value(P?)s,. Using Eqs(17b), (18), (20), (31), and — - —J dt’J dt"Kg(t") xsd(t") (" —t")
(37), one obtains the general expression 0 0

+J dt'J dt’Kp(t) xsd(t”)Co(t’ —t").
0 0

(P2 o1 Q? LE g0ty
' 87¢ (1+9,)(Q2+g;) 8 (1+9;)(Q2+gy) (42)
+(P%gwm, (38

Then, using Eqs(18), (19), (20), and(31), and performing
the classical approximation on the quantum Brownian mo-
where the quantum Brownian motion contribution is nowtion contribution(there is no ultraviolet divergence fat

given by —oo in this cas@ one gets
do vn, ho | ~ (QP+PQ) {  kgT 9,9
(P?) :f ——wCOtf(—)b(s (w)|? St:(—+ B ) !
Moo 20n T 24T/ : 8 2hon/ (1+91)(Q%+gy)
w’+ 'yzgz 2
( — (39 _—— S @
Wm 87¢ (1+91)(Q%+gy)

In this case, the classical, high-temperature, approximatiofach steady-state expressit86), (41), and (43) has three
cothfiw/2kgT)=2kgT/hw has to be made with care, be- contributions: the thermal term due to the mirror Brownian
cause, due to the presence of thé term, the integral39) motion, the back action of the radiation pressure, propor-
has an ultraviolet divergence in the usually consideted tional to the input powet, and the feedback-induced noise
—oo limit [see also Eq(34)]. This means that, differently term proportional tay; and inversely proportional to the in-
from (Q?)gy, the classical approximation fafP?)gy is  put power. At sufficiently large temperatures, the thermal
valid only under thestrongerconditionzw <kgT [28], and  noise contribution is much larger than the others and the
that in the intermediate temperature rarfige>kgT>%h o, mirror dynamics is faithfully described in terms ofassical
(which may be of interest for optomechanical systgrose  stochastic equations. This classical description amounts to
has a correction of order lfas/kgT). One has therefor28| neglect all the radiation input noises into the evolution equa-
tions of the system, so tha#/(t) is the only noise acting on
the system. This classical description has been successfully
used in Refs[11,15 to account for the experimental data, in
the case of a cold damping feedback scheme at room tem-
(40 perature. It is, however, evident that the radiation back action
and the feedback-induced noise cannot be neglected in gen-
eral. For example, the classical approximation {@?)s;
suggests that it would be possible to localize the mirror with-
out limit, i.e., (Q?)s—0, using an ever increasing feedback

(P2 =] 9i+Q% g1 ¥m n( fm)
BM 2hwom (1+9,)(Q%+g;) TOm 27kT)’

so that one finally gets

o gf Q2 ¢ kgT gain g, and keeping the input power fixed, while this is no
(P >st_877§ (1+97)(Q2+gy) §+ 2h o, more frue as2 soon as the feedback-induced noise term pro-
portional tog1 is included.
9%4‘ Q%+q, Yn The stochastic cooling feedback scheme has been intro-

In . (41))  ducedin[12] as a promising method for significantly cooling
27KT . : - .
the cavity mirror. Let us, therefore, consider the optimal con-
ditions for cooling, and the cooling limits of this scheme.
This expression coincides with the corresponding one obThe interesting quantity is the stationary oscillator energy
tained in[12] using a master-equation description, except forldst, Which, neglecting the logarithmic correction of Eq.
the logarithmic correction, which however, in the case of(41), can be written as
mirror with a good quality facto©, is quite small, even in

+
(1+91)(Q%+g;) T®m

the intermediate-temperature ranfge>kgT>h oy, . Usi=hon[(Q%) g+ (PP
A peculiar aspect of the stochastic cooling feedback
scheme, which has not been underlinedig], is its capa- hog| 92 (1+202+q,)
bility of inducing steady-state correlations between the posi- Y 2
tion and the momentum of the mirror, i.e., the fact that 78 (1+91)(Q%+9y)
(QP+PQ)s#0. This correlation can be evaluated in the 4ksT\ (g2+2Q2%+g,)
same way as above, starting from E¢kra and(17b), and + 5 . (44
getting hom/(1+91)(Q%+9y)
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2Ust that for high gain values, ground-state cooling can be essen-
hog a tially achieved, even with a nonunit detection efficiency. In
106 Fig. 3, U /hwy, is instead plotted for increasing values of
\ b the mechanical quality facta® [(a) Q=10 (b) Q=10>, (c)
104 Q=10] at fixedg,=10". The figure clearly shows the im-
c portance of @ in stochastic cooling feedback and that
102 ground-state cooling is achieved only whénis sufficiently
4 large.
1 = =53 05 ¢ 107 The possibility to reach ground-state cooling of a macro-

scopic mirror using the feedback scheme of R&R] was

FIG. 2. Rescaled steady-state enerdy, 2% w,, versus the res- ISt pointed out, using an approximate treatment[38],
caled input powet, plotted for different values af, (a:g; =10, b: ~ Where the need of a very large mechanical quality factor is
g.=10%, ¢ g,=1C, d: g,=10") at fixed Q=10', and with  underlined. Here we confirm this result using the more gen-
kgT/hw,=10° and »=0.8. The optimal input powet,, corre- eral QLE approach.
spondingly increases, and for high gain values, ground-state cooling The steady state of the mirror mode in the presence of
can be achieved. stochastic cooling feedback shows other peculiar aspects and

interesting limiting cases. Thanks to the linearization of the
It is evident from Eq.(44) that the effective temperature is problem[see Eqs(7)], this steady state is a Gaussian state,
decreased only if botl® andg, are very large. At the same which however is never exactly a thermal state because it is
time, the additional terms due to the feedback-induced noisglways(Q?)s# (P?)s; and(QP+ P Q)¢+ 0. Its phase-space
and the back-action noise have to remain boundeddor contours are therefore ellipses, rotated by an angle
— andg, —, and this can be obtained by minimizihty, = (1/2)arctaikQP+PQ)s/((Q*)s—(P*s)] with respect to
with respect to/ keepingQ and g, fixed (physically this the Q axis. The steady state becomes approximately a ther-
means optimizing the input powerat giveng, andQ). Itis  mal state only in the limit of very larg@ (and Q?>g;), as
possible to check that these additional terms are boundetican be seen from Eq$36), (41), and(43). This thermal
only for very largeQ, that is, if 9/g;—% and in this case state approaches the quantum ground state of the oscillating
the minimizing rescaled input DOWEVI%ptzgl/\/;- Under mirror when also the feedback gain and the input power be-

these conditions, the steady-state oscillator energy become@me very large. There are, however, other interesting limits
in which the stochastic cooling feedback steady state shows

rol 1 2keT 1 nonclassical features. For example, the Gaussian steady state
U= —— | —=+ - 5, (45  becomes a contractive state, which has been shown to be
2 \/; ®Om 91 able to break the standard quantum limit [i86], when

_ _ _ o (QP+PQ)s; becomes negative, and this can be achieved at
showing that, in the ideal limity=1, g;—%», {~0g;—%,  sufficiently large feedback gain, that is, when>5{(¢
Q/g,— =, the stochastic cooling feedback scheme is able to- 4kgT/hw,) [see Eq.(43)]. Finally, stochastic cooling
reach the quantum limits;=f wy/2, i.e., it is able to cool  feedback can be used even to achieve steady-state position
the mirror down to its quantum ground state. The behavior okqueezing, that is, to beat the standard quantum limit
the steady-state energy is shown in Figs. 2 and 3, whgre  (Q?),,< 1/4. The strategy is similar to that followed for cool-

(in zero-point energy units w,/2) is plotted as a function of  ing. First of all one has to minimizéQ?),, with respect to

the rescaled input powef. In Fig. 2, Us/fhwy is plotted  the input power? at fixedg, and Q, obtaining
for increasing values ofj; [(a) g;=10, (b) g;=10°, (c) g,

=10°, (d) g;=10"] at fixed Q=10", and with kKgT/Awn, _ 01+ 02+g,
=10> and »=0.8. The figure shows the corresponding in- (Q3)T"= % 5 %
crease of the optimal input power minimizing the energy, and 4\/;(1+ 91(Q°+gy1)
kT 2
2Ust a + = o . (46)
P 2hom (1+9;)(Q%+9y)
b This quantity can become arbitrarily small in the limit of
104 very large feedback gain, and provided thgt Q2. That is,
differently from cooling, position squeezing is achieved in
102 the limit g;— o0 (implying {—), and there is no condition
c on the mechanical quality factor. Under this limiting condi-
¢ 2 -1/2 ;
1 5 03 105 ¢ 107 tions, (Q%)s; goes t3(/)2 zero ag; -, and, at the same time,

(P?), diverges agy;’*, so that, in this limit, the steady state
FIG. 3. Rescaled steady-state enerdy 2% w,, versus{ for for the stochastic cooling feedback approaches the position
increasing values of the mechanical quality factbta: 9=10% b:  eigenstate witlQ =0, that is, the mirror tends to be perfectly
Q=10 c: 9=10) at fixedg,= 10", and withkgT/%w,=10° and  localized at its equilibrium position. The possibility to beat
7=0.8. the standard quantum limit for the position uncertainty is
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104 ) 1 (= © .
(Pha=— | “at | "ot et e 0 -0,
<Q@?>p wJo 0
50
Lozl (50)
These stationary expressions can be rewritten in terms of the
N Fourier transforms of the noise correlation functions, in the
same way as we have done for the Brownian motion term in
the preceding section. Using Eqd), (26), (37), and (48),
104 100 108 ¢ 1010 one has

FIG. 4. Steady-state position variang®?)s, versus{ for two

values of the feedback gaim,;=10" (dotted ling, and g,;=10° 2 » do ~ 2 { g% w?
(full line). The dashed line denotes the standard quantum limit (Q%)st= 7mf_ ElXcd(‘”” Z"' ma?@m(w)
(Qd=1/4, while the other parameters a@=10", kgT/hwn, m
=10° and »=0.8. Lo cotr< o | o ( )1 .
D ko | Dl @) s
shown in Fig. 4, wherdQ?), is plotted versug for two 20m 2keT
different values of the feedback gaig,=10" (dotted ling,
andg,=10" (full line), with Q=10%, kgT/hw,=10°, and > deo o2 [ R W
7=0.8. For the higher value of the feedback gain, the stan- (P2)= 'ymj 5= 5 [ Xed(®)|? LIFRL.LE — 0,,(w)
dard quantum limi{ Q%)= 1/4 (dashed lingis beaten in a -~ 2T wp, 4 4 o,
range of values of the input powér
+ icotr( Al PR (52)
B. Cold damping feedback 2om ZkeT
Now we characterize the stationary state of the mirror in
the presence of cold damping. This stationary state has beé(Hﬂ'ere
already studied using classical argumentdih,15, while
the discussion of the cooling limits of cold damping in the ~ W
qguantum case has been recently presentdd8h Here we Xed(@) = — > (53
shall generalize the results p18] to the case of nonideal on~ o tloyy(1+9s)
guantum efficiencyy<<1, and we shall compare the cooling
capabilities of the two feedback schemes. is the frequency-dependent susceptibility of the mirror in the

Using the solution(25) for the time evolution, one has  cold damping feedback scheme, d@dd w) is a “gate” func-
) ) ) tion, equal to 1 within the intervdl and equal to zero out-
(Q%)s=1lim(Q(1)%) side. Notice that we have introduced not only the gate func-
= tion O 4 4(w) for the thermal noise term, but also the
% % gate function® , ,(w) for the feedback-induced noise term.
= fo dt’ fo dt"xca(t") xca(t)C(t' —t"),  (47)  In fact, it is easy to see that a frequency cutoff for the feed-
back is needed to avoid an ultraviolet divergence in the ex-
pression for{ P?).;. Moreover, from an experimental point
wherec(t) is the stationary symmetrized correlation function of view, any feedback loop is active only within a finite
of the noise term n(t')=(2GB/\ye)Xin(t")+W(t") bandwidth, which in this case is given iyw.
—(9ea/ Vye) Yin(t)) + (ged/2\yem) Y (1') appearing in Eq. We first evaluate (Q?)s;. The contribution of the
(25). Using the correlation function@®), (4), (13), and(24), feedback-induced term generally depends upon the value of
one gets the feedback bandwidth w. There are two relevant experi-
mental situations: a narrow bandwidth containing the me-
4G22 02, . o chani_cal resonance peak, that iym(1+g_2)<Aw<a_>m
c(t)= S(t)— 5(t)+ F.(t). (48  (configuration used in Ref$11,15)), or a wide bandwidth
Ye 4nye 2Ty with a very large high-frequency cutoffri,>wn,, ym(1
+g,). However, since the factdy.q(w)|? in Eq. (51) is
Since in the cold damping case it B{(t)=Q(t)/w,, it is  highly peaked around the resonance frequengy (Q?)s; is
straightforward to derive from Eq47) the expressions for practically independent of the feedback loop bandwidth, as
(P?); and(PQ+ QP),, which are given by soon asy,(1+g,)<Aw. In fact, either in the narrow band-
width case, when the spectrum can be approximated by the
1 d constant terng§/47;§, or in the case of a very large cutoff
(PQ+QP>St=—Iim—(Q(t)2>=0, (49 frequency, when thes? dependence is kept, one gets the
®m . dt same result for the feedback-induced contribution, because
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» do w? _ » deo mode so that the logarithmic correction in E§7) can be
= —2|Xcd(w)|2= — | xed(@)|? neglected, the dependence on the frequency cutoffs vanishes
2T o, — 2 and one hagP?),=(Q?),. Therefore, under these condi-
tions, since it is als§Q P+ PQ).=0, the stationary state in
S — (54)  the presence of the cold damping feedback scheme is an
2ym(1+02) effecti\Z/e thermal state V\éith a mean excitation numbeyr
. . I =2(Q%¢— 1/2, where{Q%); is given by Eq.(55). This ef-
F.or the Browman motion contrlbu_tlon we have t.he Sameg ct<ive >thermal equiﬁériuin state in the presence of cold
S|tuat|on descnbed in the stochastlp cooling case: the exa amping has been already pointed out[ 1,15, within a
expression IS cumbersomes], but m_the commonlly m_et classical treatment neglecting both the back-action and the
condition fiwy<kgT, the classical apprommauon feedback-induced terms. The present fully quantum analysis
cothfrw/2kgT) ~2kp T/ w can be made,_ and using E@A') shows that cold damping has two opposite effects on the
f_or both the thermal and the back-action contribution, ON€ffective equilibrium temperature of the mechanical mode:
finally gets on one handr is reduced by the factor (#g,) %, but, on
1 the other hand, the effective temperature is increased by the
) (55  additional noise terms.
1+9; Let us now consider the optimal conditions for cooling

.and the cooling limits of the cold damping feedback scheme.

Notice that the corresponding expression for the stochastif, yhe narrow feedback loop bandwidth case, and neglecting

gglllrjgl'feedbacl(%) coincides with Eq.(55) in the limit ';he logarithmic corrEction toP?)5M | the stationary oscilla-
Differently from (Q?);, (P?)s; depends upon the feed- or energy Is given by

back loop bandwidth. In fact, in the large bandwidth case,

the integrand in E¢(52) tends to a constant at large frequen-

cies, and in the limit of a very large cutoff frequeney,,,

the feedback-induced contribution becomes

1

2
92 ¢ keT
2y — >

@
n{

®Wm

Usi=2% wm<Q2>st:4(1—+gz)

4kBT}
+i+—. (59
hon

) This expression coincides with that derived and discussed in

Ymdz2 @iy (56) [18], except for the presence of the homodyne detection ef-
ficiency 7, which was ideally assumed equal to 1[it8].

The optimal conditions for cooling can be derived in the
In the narrow bandwidth case instead, approximating théame way as it has been done[lt8]. The energyUs; is
noise spectrum with the constant teg@/4»¢, and using Minimized with respect td@" keepingg, fixed, thereby get-
again Eq.(54) within Eqg. (52), one gets a feedback-induced ting {op=02/\/7. Under these conditions, the stationary os-
noise term contribution identical to that ¢Q?), of Eq.  Cillator energy becomes
(55), which is independent of the feedback bandwidth.

P2 fb_ ]
< >st 817{ Wwﬁ]

A potential ultraviolet inergence and a.dependence upon fiom Oy | 1 2kgT 1
the frequency cutoffo is present also in the quantum Ust=71+— —+ﬁ—— , (60)
Brownian motion term. In fact, as we have seen in the pre- 92 \/; ®m 92

ceding section, the classical expression for the thermal con-
tribution to (P?);, holds only in the limit of very large showing that, in the ideal limiy=1, g,— (and therefore
temperatures, kgT>%w, while, in the intermediate- (~g,—»), also the cold damping scheme is able to reach
temperature regimé v, <kgT<Aw, one has an additional the quantum limitUg=7%w,/2, i.e., it is able to cool the
logarithmic correction, so to get mirror to its quantum ground state, as first pointed out in
[18]. However, differently from the stochastic cooling case
of the preceding section, the stationary energy does not de-
' (57) pend on the mechanical quality factor, implying that cooling
is easier to achieve using cold damping, because the addi-
Finally, the back-action term is simply evaluated using Eqtional conditionQ/g,—  is not necessary in this case. How-

<P2>BM= kgT 1 N Ym n hw
St 2hwn1+0, ww, \27KT

(54) and one gets the same contribution as in G&&), ever, cold damping, at variance with stochastic cooling feed-
back, does not yield any nonclassical feature in the steady
<P2>ba= ¢ (58) state. Figure 5 shows the rescaled steady-state energy
St 8(1+gy)° 22U /h oy, versus{ plotted for increasing values af, [(a)

92:101 (b) 92:1031 (C) 92:1051 (d) 92:107]1 with
Therefore, the general expression {&°)s; depends on the kgT/Aw,=10° and =0.8. The figure is essentially indis-
parameter regime considered and it may generally depenthguishable from Fig. 2, since, as we have seen, the steady
upon the feedback loop high-frequency cuteft, and the states for the two feedback schemes become identical for
thermal bath cutofts. However, in the common experimen- large mechanical quality factors. For high gain values,
tal situation of a narrow bandwidth around the resonanceground-state cooling can be achieved also in this case, even
peak, ym(1+0,)<Aw<w,, and a highQ mechanical with nonunit homodyne detection efficiency.
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2Ust chanical susceptibility at resonance means that the mirror
hog a responds neither to the noise nor to any force acting on it.
106 / Therefore one expects that the SNR of the optomechanical
b device is not improved by feedback. However, we shall see
104 that this intuitive guess is valid only undstationarycondi-
c tions, and that, at least in the case ofiampulsiveforce, a
102 nonstationarystrategy can be designed to improve the sen-
4 sitivity for the detection of a weak classical force. The pos-
1 - -3 TENAETL sibility to use the above feedback cooling schemes in a non-

stationary way has been first shown[it6]. Here we shall
reconsider and extend the treatmenf 18], adopting a gen-

FIG. 5. Rescaled steady-state enerdys2#% w,, versus the res- . .
eral description of nonstationary spectral measurements.

caled input powet, plotted for different values d, (a: g,= 10, b:

9,=1C%, c: g,=10, d: g,=10)), with kgT/hw,=10° and 7 Spectral measurements are performed whenever the clas-
) . 1 . ’ m . . . .

=0.8. The optimal input power correspondingly increases, and fopiC@l forcef (t) to detect has a characteristic frequency. Since

high gain values, ground-state cooling can be achieved. the directly measured quantity is the output homodyne pho-

tocurrentY,,(t), we define thesignal Jw) as

The ultimate quantum limit of ground-state cooling is e
achieved in both schem_es_ o_nlybf?th the input power and _ Sm):U dteﬂwtwout(t))FTm(t) , (61)
the feedback gain go to infinity. If instead the input power is —o
kept fixed, the effective temperature does not decrease e . .
monotonically for increasing feedback gain, but, as it can ba&'hereFr, (t) is a “filter” function, approximately equal to 1
easily seen from Eq$44) and(59), there is an optimal feed- in the time interval[0,T,] in which the spectral measure-
back gain, giving a minimum steady-state energy, generallynent is performed, and equal to zero otherwise. Using Eq.
much greater than the quantum ground-state energy. The efd1), the input-output relatio12), and the time evolution of
istence of an optimal feedback gain at fixed input power is dhe position operato®(t) [Eq. (173 or (25)], the signal can
consequence of the feedback-induced noise term originatinge rewritten as
from the quantum input noise of the radiation. In a classical
treatment neglecting all quantum radiation noises, one would S(e)= leyey/ J*‘”d e o VB o,
have instead erroneously concluded that the oscillator energy (w)= PN o' x(0)f(0)Fr (0—o"),
can be made arbitrarily small, by increasing the feedback ¢ (62)
gain, and independently of the radiation input power. This is
another example of the importance of including the radiationNhere"f‘(w) and T:T (w) are the Fourier transforms of the
guantum noises, showing again that a full quantum treatment v . . ~ .
is necessary to get an exhaustive description of the syste rce and~of the f||te~r function, respectlvely, andw) is
dynamics[16]. equal to Xsc(_w) or xcq(w), according to the feedback

The experimental achievement of ground-state cooling vi#cheme considered. . _ .
feedback is prohibitive with present day technology. For ex- The noise corresponding to the sigigito) will be given
ample, the experiments of Refd1,15 have used feedback Dby its “variance”; since the signal is zero whé(t) =0, the
gains up tog,=40 and an input power correspondingdo Noise spectrum can be generally written as
=1, and it is certainly difficult to realize in practice the limit . o
of very large gains and input powers. This is not surprising, N(w)={ f dtF; (t)f dt’Fq (t/)e ettt
since this would imply the preparation of a mechanical mac- o m —o m
roscopic degree of freedom in its quantum ground state, 112
which is remarkable. The same considerations hold for X<Yout(t)Yout(t,)>f0} ’ (63)
breaking the standard quantum limit for the steady-state po-
sition fluctuations with the stochastic cooling feedback.

where the subscrigt=0 means evaluation in the absence of
the external force. Using again Eq41), (12), and the input
noises correlation function@) and (13), the spectral noise
can be rewritten as

V. SPECTRAL MEASUREMENTS AND THEIR
SENSITIVITY

Both stochastic cooling and cold damping feedback (8GBn)? [+=
schemes cool the mirror by overdamping it, thereby strongly N(w):[—”f dtF; (t)
decreasing its mechanical susceptibility at resondmses Ve — m
Eqgs.(34) and(53)]. As a consequence, the oscillator does not e
resonantly respond to the thermal noise, yielding in this way Xf dt’Fr (t)e Tttt
an almost complete suppression of the resonance peak in the —oo m
noise power spectrum. Since the effective temperature is pro- . 12
portional to the area below the noise power spectrum, this + ﬂf dtF; (t)z] , (64)
implies cooling. However, the strong reduction of the me- — m
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where C(t,t") =(Q(t)Q(t") +Q(t")Q(t))/2 is the symme- +odw ~

trized correlation function of the oscillator position. This <Q2)5t=f Z—ym[|)(sc(w)|2
very general expression of the noise spectrum is nonstation- —eem
ary because it depends upon the nonstationary correlation

function C(t,t"). The last term in Eq(64) is the shot noise X
term due to the radiation input noise.

§ ® hw
4" 20y M 24T/ O mmr(@)

2

~ 92
Stationary spectral measurements g

Spectral measurements are usually performed in the starhen, using the Fourier transform of E(9) in Eq. (69),
tionary case, that is, using a measurement tigemuch  one finally gets

larger than the typical oscillator time scales. The most sig-

nificant time scale is the mechanical relaxation time, which _

is y,! in the absence of feedback afigty,(1+9;)] % (i NG s @)= Ym|Xso( @)]?
=1,2) in the presence of feedback. In the stationary case, the

oscillator is relaxed to equilibrium and, redefinitig=t+ 7, 5
the correlation functiorC(t,t’)=C(t,t+7) in Eq. (64) is L 2 COt[—( @ )@ (0)].
replaced by thestationary correlation function Cq(7) 20 2kgT) 1 ™7
=lim;_,..C(t,t+ 7). Moreover, for very largeT,,, one has

Fr (t+7)=F (t)=1 and, defining the measurement time This position noise spectrum for the stochastic cooling feed-

T,, so thatT,, fth (1), Eq. (64) assumes the form back essentially coincides with that already obtainefl®],
Tm except that in that paper the high-temperature limit

}1/2 [cothfiw/2kgT) =2kgT/h w] is considered and the presence

2.7 9n0(@) . (69

{95 0Pt

2t 4—775w—§1®mu(w)

(70)

( )+ 7 (65 of the frequency cutoffss andw ¢, iS not taken into account.
The noise spectrum in the cold damping case of ©&8)
instead essentially reproduces the one obtaindd8h with

where the difference that in Ref18] the homodyne detection effi-

ciency 7 is set equal to 1, and the feedback and thermal
noise cutoff functions have not been explicitly considered.

) e The comparison between Eq&8) and (70) shows once
NQ(‘*’):J dre™"“7C(7), (66)  again the similarities of the two schemes. The only differ-
- ences lie in the different susceptibilities and in the feedback-

induced noise term, which has an additiondf w2, factor in

is the stationary position noise spectrum. This noise spedhe stochastic cooling case, which is, however, usually neg-

trum can be easily evaluated using the results of the precedigible with good mechanical quality factors. In fact, it is

ing section. In fact, using the definition &.(7) and the Possible to see that the two noise spectra are practically in-
inverse Fourier transform of E§66), one has distinguishable in a very large parameter region.
The effectively detected position noise spectrum is not
given by Egs(68) and(70), but one has to add the shot noise
n i _ [(trde contribution due to the input noise in the homodyne photo-
(Q9st= lim(Q(1))=Cy(0) = fﬁx ZNQ(“’)' (67) current. In fact, using Eq65), and rescaling it to a position
i spectrum, one has

[« Gﬂn)2
N(w)—H Ye

The. position noise spectrum can then be extracted f_rom the N2 (@) =yl ()2 £+ g_,2 0%+ 8 175
stationary mean values derived in the preceding section. Us- Q.det miAl 4 4yl w2
ing Eqg. (51), one has "
® I'( ho ) 1
e  2om M 2T | A Y
NQ cd( @)= 'ym|Xcd(w)| Z 4_£ ®Aw(w) ) ) ) )
wherei =1 refers to the stochastic cooling case an® to

the cold damping case. The homodyne-detected position
(69) noise spectrum is actually subject also to cavity filtering,
yielding an experimental high-frequency cutoff, which
however does not appear in E§1) because we have adia-
batically eliminated the cavity mode from the beginning.
for the cold damping scheme, while the derivation for theTherefore the spectrum of E¢71) provides a faithful de-
stochastic cooling case is less immediate. In fact, using Egscription of the mirror mode dynamics only fer<y,; since
(30), (31), and(33), one gets it is usually w,w,>v., we have not considered the feed-

w

ho
+ Z—G)mCOt"< 5k T)®[ - m](w)
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back and reservoir cutoff functions in E1), and we shall
not consider them in the following. The detected noise spec-
trum has three contributions: the Brownian motion term
which is independent of the input powegr, the shot noise
term inversely proportional te, and the back-action term, 2x107%
proportional top. The main effect of feedback on the spec-

trum is the modification of the susceptibility due to the in-

crease of damping, which is responsible for the suppression 2x10-5
and widening of the resonance peak. This peak suppression

in the noise spectrum has been already predicted and illus-

trated in[12,18, and experimentally verified for the cold  FiG. 6. Stationary SNR as a function of frequency in the case of
damping case irf11,15. Moreover the feedback-induced 4, igeal impulsive force, i.e%(w)=const. The full line refers to
noise term proportional tgl is responsible for an increase of the case with no feedback, the dashed line to the case gyith
the shot noise contribution to the spectrum. For a given feed=g,=10*, and the dotted line to the case with=g,=1C" (the
back gain and frequency, the minimum noise is obtained agwo feedback schemes give indistinguishable results in these)cases
an intermediate, optimal, power, given by The other parameters a@=1C, (=10, kgT/hw,=1C, and 5
=0.8. At a given frequency, the stationary SNR decreases for in-
creasing feedback gain.

(arb.units)

0 1 /Oy 2

_ \/1+ QO Fu@ P o
o 7]7r2n|;(i(w)|2 ' In the case of stationary spectral measurements also the

expression of the signal simplifies. In fact, one lﬁas(w)

and the corresponding value of the minimum displacement. 5(,), and Eq.(62) assumes the traditional form
noise is

GBn ~ ~
ho (w)= [x(0)f(w)]. (74)
NQ min(@) = 7m|X| a))| COt 2k T 2\ Ye
|')‘(_(w)| _ The stationary SNRR(w), is now simply obtained divid-
2'\/; \/1+ Q’Zgizlxi(w)|2(w2+ a},lyﬁj). ing the signal of Eq(74) by the noise of Eq(65),
(73 » 17 - ® ho N 14
st(w)_| (U))| Ym!m Z_meOt 2kgT n
This expression shows that both feedback schemes are able
to arbitrarily reduce the displacement noise at resonance. In 1 9| 1 -2
fact, using the fact that;(wm)>g; * in both cases, one has Y ant (w + 8 1Y)+ (@) ,
thatNé’mm(wm) can be made arbitrarily small by increasing YmlXi
the feedback gain. This noise reduction at resonance is simi- (75

lar to that occurring to an oscillator with increasing damping,

except that in our case, also the feedback-induced noise invhere agairi=1 refers to the stochastic cooling case and
creases with the gain, and it can be kept small only if the=2 to the cold damping case. It is easy to see that, in both
input power is correspondingly increased in order to maincases, feedbacklways lowersthe stationary SNR at any
tain the optimal conditior(72). This arbitrary reduction of frequency,(except ato=0, where the SNR for the cold
the position noise in a given frequency bandwidth with in-damping case does not depend upon the feedback Jaiis
creasing feedback gain does not hold if the input pogvex  is shown in Fig. 6, where the stationary SNR in the case of

kept fixed. In this latter case, the noise has a frequencyan ideal impulsive forcéthat is,?'(w) is a constartis plot-
dependent lower bound that cannot be overcome by increaged for three values of the feedback gain. The curves refer to
ing the gain. There is an important difference between th@oth feedback schemes because the two ciasds2 give

two feedback schemes. In fact, it is easy to check from Edalways practically indistinguishable results, except for very
(73) that in the cold damping case noise reduction takegow values ofQ. As mentioned at the beginning of the sec-
place only close to resonance, and that the n0|se spectrumign, this result is not surprising because the main effect of
not affected at lower frequencigéor example,Ng i.(@  feedback is to decrease the mechanical susceptibility at reso-
=0) is not changed by the cold damping feedt]ad:k the  nance, so that the oscillator is less sensitive not only to the
stochastic coollng case instead, frequency renormalizationoise but also to the signal. Therefore, even though the two
w2—>w +glym allows one to reduce position noise even atfeedback schemes are able to provide efficient cooling and
Iow frequencies. This reduction of position noise out of reso-noise reduction in narrow bandwidths for the mechanical
nance, without cold damping but with a feedback-inducedmode, they cannot be used to improve the sensitivity of the
increase of the mechanical frequency, has been demonstratedtomechanical device for stationary measurements. In the
experimentally by Cohadoet al. in Ref. [11]. following section we shall see how cooling via feedback can
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be used to improve the sensitivity for the detection of impul- Fr (1)=6(t)e ¥m (77
sive forces, using an appropriate nonstationary strategy. "

[0(t) is the Heavyside step functign satisfying
fthTm(t)Zsz. Using Eq.(77) and rewritingc(t) in terms
. ) of its Fourier transfornt(w), one gets

The two feedback schemes discussed here achieve noise
reduction through a modification of the mechanical suscep- (8G A7)
- . e ) 7 _ _ _
tlblllty._ Hov_vever, this modification does not tra_nsla’_[e into a N2(w)= |K(w_|/2Tm)|2<Q2>st+|X0(w
sensitivity improvement because at the same time it strongly Ve
degrades the detection of the signal. The sensitivity of posi-
tion measurements would be improved if the oscillator mode

VI. HIGH-SENSITIVE NONSTATIONARY
MEASUREMENTS

could keep its intrinsic susceptibility, unmodified by feed- . 2,52 ~ P

back, together with the reduced noise achieved by the feed- 2T ) [%(P#)stt [Xo(@—i/2T )|

back loop. This is obviously impossible in stationary condi- todaw’ o)

tions, but a situation very similar to this ideal one can be f 27 1 +9Thm. (78
o aa

realized in the case of the detection of iampulsiveforce,
that is, with a time durationr much shorter than the me-
chanical relaxation timgin the absence of feedbackos
<1/y,,. In fact, one could use the following nonstationary o ) ~ i
strategy: prepare at=0 the mirror mode in the cooled sta- From Eq. (27), it is possible to see thaK(w)=(iw
tionary state of Sec. IV, then suddenly turn off the feedbackt ym) xo(w)/wn,; then, using Eq(48) with g.q=0, and the
loop and perform the spectral measurement in the presendégh-temperature approximation colef2kgT)=2kT/% @

of the impulsive force for a timeT,,, such thato<T, for the Brownian noise, one finally gets the following ex-
<1/yy,. In such a way, the force spectrum is still well re- pression for nonstationary noise spectrum for the cold damp-
produced, and the mechanical susceptibility is the one withing feedback

out feedbackeven though modified by the short measure-

——+ (0~ w)?
m

ment time T,,<1/y,,). At the same time, the mechanical 8GB7)2 24 (12Tt v)2
mode is far from equilibrium during the whole measurement, N2(w)= ﬂﬂo(a}—i/ZTm)F T - til
and its noise spectrum is different from the stationary form c WOm

of Eq. (71), being mostly determined by thepoled initial [ kT

state. As long ag ,<vy,,, heating, that is, the approach to X (02 ot (P2t v T | 24 2 + T
the hotter equilibrium without feedback, will not affect and (QVsrt (PT)ert YmTm 4 hogy 7% m-

increase too much the noise spectrum. Therefore, one ex-
pects that as long as the measurement time is sufficiently (79)
short, the SNR for the detection of the impulsive force
[which has now to be evaluated using the most general exFhe corresponding noise spectrum for the stochastic cooling
pressiong62) and(64)] can be significantly increased by this case can be obtained in a similar way. Using B3, one
nonstationary strategy. gets

It is instructive to evaluate explicitly the nonstationary
noise spectrum of Ec_{64) for the above measurement strat- C(t,t’)=Kq(t)Kq(t')<Q2>st+ Xo() xo(t" ) {(P?)g,
egy. Let us first consider the cold damping case, which gives
more compact expressions. Using E25), one gets (QP+PQ)s

+[xo(HKo(t) + Kot xolt)
C(t,t") =K (DKt ){Q?) s+ xo(D) xo(t ){(Ps

t t’ t t’
+fodtlfo dtoxo(ty) xo(to)c(t—t' —t;+1tp), +f0dt1f0 dtyxo(ty) xo(to)e(t—t' —t;+t,),

(76) (80

where yo(t) is the mechanical susceptibility in the absencewhereKq(t) is given by Eq(19) (with x. replaced byxo),

of feedback[see Eq.(34) with g,=0 or Eq.(53) with g,  (Q%st, (P?)st, and(QP+PQ); are the stationary values
=0], K(t) is given by Eq.(27) with x.q replaced byyo, in the presence of stochastic cooling feedbgck evaluated in
<Q2>St and<P2>St are the Stationary values in the presence OfSeC. IV, and we have used the fact that, without fe(?dback,
feedback evaluated in Sec. IV, anft) is the cold damping Ca(t) =0 andc,(t) =c(t) [see Eqs(31) and(48)]. Inserting
noise correlation function introduced in Eq47) and (48).  this nonstationary correlation function in E&4), using Eq.
This nonstationary correlation function has to be inserted irf(77), the fact that o(w) = (i@ + ym) xo(®@)/ @y, and again

Eq. (64). Simple analytical results are obtained if we choosethe high-temperature approximation for the Brownian noise,
the following filter function: one finally gets
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103
Ng?

10

10-1

FIG. 7. Nonstationary noise spectrumlé(w)=N2(wm)/
AnlymTy for different values of the measurement timg, T,
=10"* (dotted ling, ¥, T,y=10 2 (full line), y,T,,= 10 ° (dashed
line), ymTm=10"% (dot-dashed line The figure refers to the cold
damping feedback scheme, but the curves are indistinguishable
from those obtained with the stochastic cooling feedback, using the
same parameter=10%, (=10, g;=0,=10, kgT/hw,=10,
7n=0.8.

2
N*(w)= Ml}o(w— /2T ) [?
Ye FIG. 8. Nonstationary noise specter‘é(w) for different val-
w2+(1/2-|-m+ ym)Z ) ) ues of the feedback gaim,=1 (full line), g,=10 (dotted ling,
X 5 (Q%) st {P?) g,=10 (dashedl g,=10° (dot dashe}] with fixed measurement
Wy time, Y Tm=10"2% (@), and y,,T,,= 10" (b). (a) corresponds to a
ot 12T strongly nonstationary condition, in which the noise is significantly
+ QP+ PQ)g suppressed, thanks to the cooled initial condition(birthe station-
Wm ary terms becomes important and the noise reduction due to feed-
back cooling is less significant. The figure refers to the cold damp-
{  kgT ing feedback scheme, but the curves are indistinguishable from
+ Vme( 4 +m 7T, (81) those obtained with the stochastic cooling feedback, using the same

parameters@= 10, =10, kgT/Awy,=10°, =0.8.

Notice that the two noise spect{z9) and(81) are very simi-

lar, the only difference being in the initial stationary values,factor (Q<10?). The effect of the terms depending upon the
whose explicit expression for the two feedback schemes ifeedback-cooled initial conditions on the nonstationary noise
given in Sec. V. It is also easy to check that the stationarys shown in Fig. 8, where the noise spectrum is plotted for
noise spectrum corresponding to the situation with no feeddifferent values of the feedback gain at a fixed valud gf

back is recovered in the limit of largg,,, as expected, when |p Fig. 8(a), Né(w) is plotted aty,,T,,= 102 for g,= 1 (full

t~he terms prop~ortional toym T, become dominant, and line), g,= 10 (dotted ling, g,=10? (dashed g,=10® (dot
Xo(w—1/2T )= xo(w). In the opposite limit of smalll,,  dashed For this low value ofy,T,,, the noise terms de-
instead, the terms associated to do®led initial conditions  pending on the initial conditions are dominant, and increas-
are important, and since the terms proportionay{d@ ,, are  ing the feedback gain implies reducing the initial variances,
still small, this means having a reduced, nonstationary noisand therefore an approximately uniform noise suppression at
spectrum. This is clearly visible in Fig. 7, where the nonsta-all frequencies. In Fig. 8bNé(w) is instead plotted at
tionary noise spectrum, renormalized in order to have a poy, T,=10"* for g,=1 (full line), g,=10 (dotted ling, g,
sition spectrumNg(w) =N*(w)/4n{ y,Tm, is plotted for =107 (dashedi g,=10° (dot-dashel In this case, the
different values of the measurement timg, ym,Tm=10"1 feedback-gain-independent, stationary terms become impor-
(dotted 1ing, ymT =102 (full line), y,Tm=10"2 (dashed tant, and the effect of feedback on the noise spectrum be-
line), ymTm=10"* (dot-dashed ling The resonance peak is comes negligible. Also in this case, Fig. 8 is valid for both
significantly suppressed for decreasing, even if it is si-  stochastic cooling and cold damping schemes.
multaneously widened, so that one can even have a slight It is also possible to check from Eq&9) and (81) that,
increase of noise out of resonance. This figure is referred teimilarly to what happens for the stationary case, noise does
the cold damping feedback scheme, but it is indistinguishnot uniformly decrease for increasing feedback gain if the
able from that obtained with the stochastic cooling feedbackinput power{ is kept fixed, but there is an optimal feedback
using the same parameter@+ 10%, /=10, g;=g,=10°, gain, minimizing the noise at a given frequency and input
ksT/hwn=1C, 7=0.8). In fact, it can be checked that the power.

two nonstationary noise spectf@9) and (81) differ signifi- The significant noise reduction attainable at short mea-
cantly only at very low values of the mechanical quality surement timesy,,T,,<1 is not only due to the feedback-
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1073 stationary way. In Fig. 9, the spectral SNR(w), is plotted
for different values of feedback gain and measurement time
[as in the previous curves, the figures well describe both
feedback schemes, because they give indistinguishable re-
sults for R(w) in the physically relevant parameter regjon
The full line refers tog;=g,=9=2x10° and y,Tp,
=103, the dashed line to the situation with no feedback and
10-7" the same measurement tinges 0 and y,,, T,=10"3; finally
0.8 1 /o, 1.2 the dotted line refers to a “standard” measurement, that is,
no feedback and a stationary measurement, with a long mea-
FIG. 9. Spectrum of the nonstationary SNR(w), with and  syrement timey,,T,,= 10. The proposed nonstationary mea-
without_feedback cooling of the initial stgte. The full line refers to asyrement scheme, “cool and measure,” gives the highest
nonstationary measuremenj,Tp,=10"2, in the presence of feed- - gensitivity. This is confirmed also by Fig. 10, where the SNR
back,g=2x10° (the.two feedback schemes give |nd|st|nQU|shabIeat resonanceR(w,,), when feedback cooling is used with
curves; the dashed line refers_to the no-fet;:dbe_lck case, and with thgz 2% 10° (full line), and without feedback coolinglotted
same, short, measurement timgT,=10 =. Finally, the dotted _line), is plotted as a function of the rescaled measurement

line refers to a “standard measurement,” without feedback, and |q. T Th fi fth . in th led ini
the stationary limity,,T,,=10. The other parameters a#g= w,, IME Ym!m. 1NE preparation ot the mirror in the cooled ini-

—10°% y t,=3%10°4 0=1CF, {=10, n=0.8, kyT/% tial state yields a better se_nsitivity for any measurement time.
1’"1%5_ Ym Q ¢ 7 BIIM®m  As expected, the SNR in the presence of feedback ap-
proaches that without feedback in the stationary limit

cooled initial conditions, but it is also caused by the effective¥mIm>1, when the effect of the initial cooling becomes
reduction of the mechanical susceptibility given by the shorfTélevant. Both Figs. 9 and 10 refer to a resonaak (

.~ ~ . . =w,) impulsive force with y,oc=10"* and y.t;=3
measurement timeyo(w)— xo(w—1/2T,). This lowered "y . _ =
susceptibility yields a simultaneous reduction of the signal a€< 10°%, while the other parameters a@=10, {=10, 7

small measurement times,T,,<1, and therefore the behav- 0.8, kT/fwy=10". : .
) . L The proposed nonstationary strategy can be straightfor-
ior of the nonstationary SNR may be nontrivial. However, . W g .

wardly applied whenever the “arrival time’; of the impul-

one expects that impulsive forces at least can be sat'SfaCt%ive force is known: feedback has to be turned off just before

r|Iy_ detected using a short measurement time, pecause_t_P{ﬁe arrival of the force. However, the scheme can be easily
noise can be kept very small and the corresponding sensitiv-

oo . o z%dapted also to the case of an impulsive force withuan
ity increased. Let us check this fact considering the case ql . : o

. ) nown arrival time as, for example, that of a gravitational
the impulsive force . . : L

wave passing through an interferometer. In this case it is

convenient to repeat the process many times, i.e., subject the
oscillator to cooling-heating cycles. Feedback is turned off
for a timeT, during which the spectral measurement is per-

\év: rfir:rcrf rlgqtzgrfg;c?rﬁgr(;ag)lﬁgsl;;tosn;?;gvgll\}gies’”o%rggi;g(;t?jivi d]‘ormed and the oscillator starts heating up. Then feedback is
ing the signal of Eq(61), evaluated with Eq(77), by the turned on and the oscillator is cooled, and then the process is

nonstationary noise spectra of Eq9) and (81), and it is iterated. This cyclic cooling strategy improves the sensitivity

shown in Figs. 9 and 10. As anticipated, the sensitivity of th of gravitational wave detection provided that the cooling

: Lo . . Sime Teool» Which is of the order of TA,,(1+g;)], is much
optomechanical device is improved using feedback in a NONSmaller tharil,,, which is verified at sufficiently large gains.

Cyclic cooling has been proposed, in a qualitative way, to

R

(arb.units)

1073

f(t)=foexd — (t—ty)2202]cog w;t), (82)

2%10-2 cool the violin modes of a gravitational waves interferometer
in [15], and its capability of improving the high-sensitive

R () detection of impulsive forces has been first showfli@]. In

(b unite) the case of a random, uniformly distributed, arrival titge

and in the impulsive limito<T,,, the performance of the

2x10-3 cyclic cooling scheme is well characterized by a time aver-
aged SNR, i.e.,

10-3 101 YT 10 _ Tm
(R(w))= Tm+TcooI[ fo dtyR(w,ty)

FIG. 10. Nonstationary SNR at resonan@(w,,), with and
without feedback cooling of the initial state, plotted as a function of T+ Teool
the rescaled measurement timgT,,. The full line refers to the +f
case with feedback-cooled initial conditiong=f2x 10°, the two
feedback schemes give indistinguishable curvéte dotted line
refers to the no-feedback cagps 0. The other parameters are the Where R(w,t;) is the nonstationary SNR at a given force
same as in Fig. 9. arrival timet, discussed in this section, afd(w,t1) oo IS

T dth(witl)cool}’ (83
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10-3 VII. CONCLUSIONS
<R> We have studied how quantum feedback schemes can be
(axb units) used to reduce thermal noise and improve the sensitivity of
1074 optomechanical devices. We have analyzed in detail the sto-
chastic cooling scheme introduced in Relf2] and the cold
damping scheme experimentally implemented in Refs.
10-5 [11,15. We have seen that the two schemes are physically
analogous, even though they show some differences. In both

0.8 1 0/@, 1.2 cases, the main effect of feedback is the increase of mechani-
FIG. 11. Time averaged spectral SNR with and without cycliccaI damping, accompanled by the mtrodl_Jctlon of a contro_l-
cooling. The full line refers to cyclic cooling withy,,T,,=10 3, lable, measur(_ament-mduced, nOI_Sg: The increase of damping
g=2x 10, and T,y =10 °T,, (the two feedback schemes give M&aNS reduction of tr_\e susceptibility at resonance, and the
indistinguishable curvgsThe dashed line refers to the no-feedback Consequent suppression of the resonance peak in the noise
case, with the same measurement timd ,= 103 [see Eq(85)]. spectrum. Stochastic cooling feedback differs from cold
The other parameters ate=w,,, yno=10% Q=10 (=10, damping in the fact that it has the supplementary effect of
7=0.8, kgT/hwyp=10". increasing the mechanical frequency. This means that, while
cold damping achieves thermal noise reduction only around

the nonstationary SNR one has during the cooling cyclef€Sonance, stochastic cooling is able to reduce noise even at
which means with feedback turned on and with uncooled’€ry low frequencies, out of resonance. We have also shown
initial conditions. It is easy to understand tHa&{w,t;)coo| t_ha_t both schemes are abI_e to achieve the ultimate quantum
<R(w,ty), and, since it is alsd oo <Tp, the second term limit of ground-state coolingsee also[18] for the cold
in Eq. (83) can be neglected, so the6] dam_plng_ case For_both f_ee_dback schemes, ground-state
cooling is reached in the limit of very large feedback gain,
ideal homodyne detection, and very large input power. In the
Tm stochastic cooling case, however, also the additional condi-
<R(w)>:-|-+—-|-|fo dt;R(w,ty). (84 tion of very large mechanical quality factor is needede
meoeee also[35]), so that cooling is much more easily achieved in
the cold damping case. In the limit of very large gain and
This time-averaged SNR can be significantly improved byinput power, but with fixed mechanical quality factor, sto-
cyclic cooling, as it is shown in Fig. 11, whef®(w)) is  chastic cooling feedback is instead able to achieve steady-
plotted both with and without feedback. The full line de- state position squeezing, that is, one can beat the standard
scribes the time-averaged SNR subject to cyclic feedbacRuantum |imit<Q§t><1/4. Finally stochastic cooling is also
cooling with g=2x10°, y,T,=10"3 and T., able to produce stationary contractive stdtgs]. Reaching
=103T,,. In the absence of feedback, in the case of arthese quantum limits in optomechanical systems is experi-
impulsive force with unknown arrival time and duratienp ~ mentally very difficult but it would be extremely important,
the best strategy is to perform repeated measurements of doecause it would be a genuine manifestation of quantum me-
ration T,,, without any cooling stage. The measurement timechanics for a macroscopic mechanical degree of freedom.
T, can be optimized considering that it has to be longer than We have also analyzed the sensitivity of the optomechani-
o, and at the same time it has not to be too long, in order t&al device in the case of position spectral measurements for
have a good SNRsee the dotted line in Fig. 10n this case, the detection of weak forces. Even though both feedback
the time-averaged SNR can be written as schemes are not able to improve the sensitivity of stationary
measurements, we have shown how feedback can be used in
L a nonstationary way in order to increase the SNR in the case
Tm of impulsive forces. If the arrival time of the classical force
(Ro(w))= T_mJo dtyRo(@, 1), (85 is known, one has to keep the mirror mode cooled by feed-
back, and then turn off the feedback just before the arrival of
the force. The mirror therefore responds to the force with its
whereRy(w,t;) is the SNR evaluated fay=0. The dashed intrinsic susceptibility, not suppressed by the feedback, and
line in Fig. 11 refers to this case without feedback, and withwith a nonstationary noise, reduced by the feedback. The
ymTm=10"3. The other parameter values are the same as iBNR is increased as long as the measurement Tigpés
Figs. 9 and 10 and in this case, cyclic cooling provides aronger than the force duratiom, but much smaller than the
improvement at resonance by a factor 16 with respect to thenechanical relaxation time, that is<T,<1/y,,. This non-
case with no feedback. As suggested in R&8|, one could stationary strategy can be well adapted to the case of a force
use nonstationary cyclic feedback to cool the violin modes irwith an unknown arrival time, for example, gravitational
gravitational-wave interferometers, which have sharp resowaves. In this case, the cooling and measurement steps have
nances within the detection band. One expects that singl® be cyclically repeatetsee alsg15]), and the performance
gravitational bursts, having a duration smaller than the coolef cyclic cooling can be characterized by a SNR averaged
ing cycle period, could be detected in this way. over the force arrival time. This time-averaged SNR can be
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significantly improved by cyclic cooling, thanks also to the mentation of these nonstationary strategy is feasible with
fact that the cooling time can be made very small using vencurrent technology, and it may be useful not only for opto-
large feedback gaing, because it iST¢oo=[ ¥m(1+g)] 1.  mechanical devices, but also for microelectromechanical
Different from ground-state cooling, the experimental imple-systems.
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