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Mirror quiescence and high-sensitivity position measurements with feedback
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We present a detailed study of how phase-sensitive feedback schemes can be used to improve the perfor-
mance of optomechanical devices. Considering the case of a cavity mode coupled to an oscillating mirror by
the radiation pressure, we show how feedback can be used to reduce the position noise spectrum of the mirror,
cool it to its quantum ground state, or achieve position squeezing. Then, we show that even though feedback
is not able to improve the sensitivity of stationary position spectral measurements, it is possible to design a
nonstationary strategy able to increase this sensitivity.
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I. INTRODUCTION

Mirrors play a crucial role in a variety of precision me
surements such as gravitational wave detection@1# and
atomic force microscopes@2#. In these applications on
needs a very high resolution for position measurements a
good control of the various noise sources, because one h
detect the effect of a very weak force@3,4#. As shown by the
pioneering work of Braginsky@5#, even though all classica
noise sources had been minimized, the detection of grav
tional waves would be ultimately determined by quantu
fluctuations and the Heisenberg uncertainty principle. Qu
tum noise in interferometers has two fundamental sour
the photon shot noise of the laser beam, prevailing at
laser intensity, and the fluctuations of the mirror position d
to radiation pressure, which is proportional to the incide
laser power. This radiation pressure noise is the so-ca
‘‘back-action noise’’ arising from the fact that intensity fluc
tuations affect the momentum fluctuations of the mirr
which are then fed back into the position by the dynamics
the mirror. The two quantum noises are minimized at
optimal, intermediate, laser power, yielding the so-cal
standard quantum limit~SQL! @3,6#. Real devices con-
structed up to now are still far from the standard quant
limit because quantum noise is much smaller than tha
classical origin, which is essentially given by thermal noi
In fact, present interferometric gravitational wave detect
are limited by the Brownian motion of the suspended mirr
@7#, which can be decomposed into suspension and inte
~i.e., of internal acoustic modes! thermal noise. Therefore i
is very important to establish the experimental limitatio
determined by the thermal noise, and recent experim
@8,9# go in this direction.

Recently, Ref.@10# reported the first experimental ev
dence of the reduction of thermal noise by means of
radiation pressure of an appropriately modulated laser l
incident on the back of the mirror@11#. The method was
based on a phase-sensitive feedback control proposed in
@12#: detect the mirror displacement through a homody
measurement, and then use the output photocurrent to re
a real-time reduction of the mirror fluctuations. The propos
scheme is a sort of continuous version of the stochastic c
ing technique used in accelerators@13#, because the feedbac
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continuously ‘‘kicks’’ the mirror in order to put it in its equi-
librium position. This proposal has been experimentally
alized in Ref.@11#, using the ‘‘cold damping’’ technique@14#,
which amounts to applying a viscous feedback force to
oscillating mirror. In the experimental studies of optom
echanical systems performed up to now, the effects of qu
tum noise are blurred by thermal noise and the experime
results can be well explained in classical terms~see, for ex-
ample,@15#!. However, developing a fully quantum descri
tion of the system in the presence of feedback is of fun
mental importance for two main reasons. First of all it allow
to establish the conditions under which the effects of qu
tum noise in optomechanical systems become visible
experimentally detectable. We have recently shown in R
@16# that there is an appreciable difference between the c
sical and quantum description of feedback already at liq
He temperatures. Moreover, a completely quantum treatm
allows one to establish the ultimate limits of the propos
feedback schemes, as, for example, the possibility to re
the ground-state cooling of a mechanical, macroscopic
gree of freedom. In Ref.@12#, a quantum treatment of sto
chastic cooling feedback has been already presented, b
however, on a master-equation description which is not va
at very low temperatures@17#. A consistent quantum descrip
tion of both stochastic cooling and cold damping feedba
schemes, valid at all temperatures, has been presente
@16#, and recently a discussion of the quantum limits of co
damping has been presented in@18#. The present paper wil
extend and generalize the results of@16,18#, allowing us to
make a detailed comparison of the two feedback schem
and to establish all their potential applications. In particu
we shall see that both schemes can achieve ground-
cooling of an oscillating mode of the mirror, and that, in
appropriate limit, the ‘‘stochastic cooling’’ feedback of Re
@12#, can even break the standard quantum limit, achiev
steady-state position squeezing. The experimental realiza
of these quantum limits in optomechanical systems is
tremely difficult, but the feedback methods described in t
paper may be useful also for microelectromechanical s
tems, where the search for quantum effects in mechan
systems is also very active@19,20#.

Thermal noise reduction is important, but is not the on
relevant aspect. What is more important, especially for gra
©2002 The American Physical Society03-1
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tational wave detection@1#, or for metrology applications
@20#, is to improve the sensitivity, i.e., the signal-to-noi
ratio ~SNR! of position measurements@4#. Both the stochas-
tic cooling scheme of Ref.@12# and the cold damping schem
of Ref. @11# cool the mirror by overdamping it, thereb
strongly decreasing its mechanical susceptibility at re
nance. Cooling is therefore achieved through the suppres
of the resonance peak in the noise power spectrum. T
suggests that both feedback schemes cannot be directly
plied to improve the sensitivity for the detection of we
forces, because the strong reduction of the mechanical
ceptibility at resonance means that the mirror does not
spond both to the noise and to the signal. We shall see
this is true only in stationary conditions, i.e., we shall pro
that thestationaryspectral SNR is never improved by fee
back. However, as we have recently shown in@16#, it is
possible to use feedback with an appropriatenonstationary
strategy, able to increase significantly the SNR for the de
tion of impulsive classical forces acting on the oscillato
Here we shall extend the results of@16# by adopting a gen-
eral description of nonstationary spectral measurements

The outline of the paper is as follows. In Sec. II we d
scribe the model and derive the appropriate quantum Lan
vin equations. In Sec. III we describe the stochastic coo
feedback scheme of Ref.@12# and the cold damping feedbac
using the quantum Langevin theory developed in@21,22#,
and we make a detailed comparison of the two schemes
Sec. IV we analyze the stationary state of the oscillat
mirror, and we determine the conditions under which fe
back can be used to achieve ground-state cooling or pos
squeezing. In Sec. V we present a general description
nonstationary spectral measurement and we discuss the
tionary limit in particular. Section VI describes how the se
sitivity of position measurements can be improved by us
feedback in a nonstationary way, and Sec. VII is for concl
ing remarks.

II. THE MODEL

The system studied in the present paper consists of a
herently driven optical cavity with a moving mirror~Fig. 1!.

FIG. 1. Schematic description of the system. The cavity mod
driven by the laser which, thanks to the beam splitter, provides
the local oscillator for the homodyne measurement. The signa
then fed back to the mirror motion.
06380
-
on
is

ap-

s-
e-
at

c-

-
e-
g

In
g
-

on
of
ta-

-
g
-

o-

This optomechanical system can represent one arm o
interferometer able to detect weak forces as those assoc
with gravitational waves@1#, or an atomic force microscop
@2#. The detection of very weak forces requires having qu
tum limited devices, whose sensitivity is ultimately dete
mined by the quantum fluctuations. For this reason we s
describe the mirror as a singlequantum-mechanical har-
monic oscillator with massm and frequencyvm . Experi-
mentally, the mirror motion is the result of the excitation
many vibrational modes, including internal acoustic mod
The description of the mirror as a single oscillator is, ho
ever, a good approximation when frequencies are limited
bandwidth including a single mechanical resonance, by
ing, for example, a bandpass filter in the detection loop@23#.

The optomechanical coupling between the mirror and
cavity field is realized by the radiation pressure. The elec
magnetic field exerts a force on the movable mirror which
proportional to the intensity of the field, which, at the sam
time, is phase shifted by 2kq, wherek is the wave vector and
q is the mirror displacement from the equilibrium positio
In the adiabatic limit in which the mirror frequency is muc
smaller than the cavity-free spectral rangec/2L (L is the
cavity length! @24#, one can focus on one cavity mode on
because photon scattering into other modes can be negle
and one has the following Hamiltonian@25#:

H5\vcb
†b1\vm~P21Q2!22\Gb†bQ

1 i\E~b†e2 iv0t2beiv0t!, ~1!

whereb is the cavity mode annihilation operator with optic
frequencyvc , andE describes the coherent input field wit
frequencyv0;vc driving the cavity. Moreover,Q andP are
the dimensionless position and momentum operator
the movable mirror, with @Q,P#5 i /2, and G
5(vc /L)A\/2mvm is the coupling constant. Since we sha
focus on the quantum and thermal noise of the system,
shall neglect all the technical sources of noise, i.e., we s
assume that the driving laser is stabilized in intensity a
frequency. This means neglecting all the fluctuations of
complex parameterE. Including these supplementary nois
sources is, however, quite straightforward and a detailed
culation of their effect is shown in Ref.@26#. Moreover, re-
cent experiments have shown that classical laser noise ca
made negligible in the relevant frequency range@8,9#. The
adiabatic regimevm!c/2L we have assumed in Eq.~1! im-
plies vm!vc , and therefore the generation of photons d
to the Casimir effect, and also retardation and Doppler
fects are completely negligible.

The dynamics of the system is not only determined by
Hamiltonian interaction~1!, but also by the dissipative inter
action with external degrees of freedom. The cavity mode
damped due to the photon leakage through the mirrors
couple the cavity mode with the continuum of the outsi
electromagnetic modes. For simplicity we assume that
movable mirror has perfect reflectivity and that transmiss
takes place through the other, ‘‘fixed,’’ mirror only. We ind
cate the photon decay rate at the fixed mirror bygc . Then,
the quantityE is related to the input laser power̀ by E

is
o
is
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MIRROR QUIESCENCE AND HIGH-SENSITIVITY . . . PHYSICAL REVIEW A 65 063803
5A`gc /\v0. The mechanical oscillator, which may repr
sent not only the center-of-mass degree of freedom of
mirror, but also a torsional degree of freedom as in@9#, or an
internal acoustic mode as in@8#, undergoes Brownian motion
caused by the uncontrolled coupling with other internal a
external modes at thermal equilibrium.

The dynamics of the system can be described by the
lowing set of coupled quantum Langevin equations~QLE!
~in the interaction picture with respect to\v0b†b):

Q̇~ t !5vmP~ t !, ~2a!

Ṗ~ t !52vmQ~ t !1W~ t !2gmP~ t !1Gb†~ t !b~ t !, ~2b!

ḃ~ t !52S ivc2 iv01
gc

2 Db~ t !12iGQ~ t !b~ t !1E

1Agcbin~ t !, ~2c!

wherebin(t) is the input noise operator@27# associated with
the vacuum fluctuations of the continuum of modes outs
the cavity, having the following correlation functions:

^bin~ t !bin~ t8!&5^bin
† ~ t !bin~ t8!&50, ~3a!

^bin~ t !bin
† ~ t8!&5d~ t2t8!. ~3b!

Furthermore,W(t) is the Brownian noise operator define
consistently with quantum mechanics@17#. It has the follow-
ing correlation functions:

^W~ t !W~ t8!&5
1

2p

gm

vm
$Fr~ t2t8!1 iFi~ t2t8!%, ~4!

where

Fr~ t !5E
0

Ã

dv v cos~vt !cothS \v

2kBTD , ~5a!

Fi~ t !52E
0

Ã

dv v sin~vt !, ~5b!

with T the bath temperature,gm the mechanical decay rate
kB the Boltzmann constant, andÃ the frequency cutoff of
the reservoir spectrum. The antisymmetric part,Fi , of Eq.
~4! is a direct consequence of the commutation relations
the Brownian noise operator, and the symmetric part,Fr ex-
plicitly depends on temperature and becomes proportiona
a Dirac d function when the high-temperature limitkBT
@\Ã first, and the infinite frequency cutoff limitÃ→`
later, are taken. Equations~4! and ~5! show the non-
Markovian nature of quantum Brownian motion, which b
comes particularly evident in the low-temperature lim
@28,29#. Therefore, theexactQLE ~2! reduce to the standar
ones@27# in the limit Ã→`. It is also important to stres
that the quantum Langevin description of quantum Brown
motion given by Eq.~2! is more general than that associat
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with a master-equation approach, because it is validat all
temperaturesand it does not need any high-temperature lim
@17#.

In standard interferometric applications, the driving fie
is very intense. Under this condition, the system is char
terized by a semiclassical steady state with the internal ca
mode in a coherent stateub&, and a new equilibrium position
for the mirror, displaced byGubu2/vm with respect to that
with no driving field. The steady-state amplitude is given
the solution of the nonlinear equation

b5
E

gc

2
1 ivc2 iv022i

G2

vm
ubu2

, ~6!

which is obtained by taking the expectation values of E
~2!, factorizing them and setting all the time derivatives
zero. Equation~6! shows a bistable behavior that has be
experimentally observed in@30#. Under these semiclassica
conditions, the dynamics is well described by linearizing t
QLE ~2! around the steady state. If we now rename w
Q(t) andb(t) the operators describing the quantum fluctu
tions around the classical steady state, we get

Q̇~ t !5vmP~ t !, ~7a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1Gb@b~ t !1b†~ t !#1W~ t !,
~7b!

ḃ~ t !52S gc

2
1 iD Db~ t !12iGbQ~ t !1Agcbin~ t !, ~7c!

where we have chosen the phase of the cavity mode fiel
that b is real and

D5vc2v02
2G2

vm
b2 ~8!

is the cavity mode detuning. We shall consider from now
D50, which corresponds to the most common experimen
situation, and which can always be achieved by appropria
adjusting the driving field frequencyv0. In this case the
dynamics becomes simpler, and, introducing the field ph
quadrature Y(t)5 i „b†(t)2b(t)…/2 and field amplitude
quadratureX(t)5@b(t)1b†(t)#/2, one has that only the
phase quadratureY(t) is affected by the mirror position fluc
tuationsQ(t), while the amplitude field quadratureX(t) is
not. In fact, the linearized QLE~7! can be rewritten as

Q̇~ t !5vmP~ t !, ~9a!

Ṗ~ t !52vmQ~ t !2gmP~ t !12GbX~ t !1W~ t !, ~9b!

Ẏ~ t !52
gc

2
Y~ t !12GbQ~ t !1

Agc

2
Yin~ t !, ~9c!

Ẋ~ t !52
gc

2
X~ t !1

Agc

2
Xin~ t !, ~9d!
3-3
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VITALI, MANCINI, RIBICHINI, AND TOMBESI PHYSICAL REVIEW A 65 063803
where we have introduced the phase input noiseYin(t)
5 i „bin

† (t)2bin(t)… and the amplitude input noiseXin(t)
5bin

† (t)1bin(t).

III. POSITION MEASUREMENT AND FEEDBACK

Usually the movable mirror is used as a ponderomot
meter to detect small forces acting on it@6#. Thus, we intro-
duce an additional Hamiltonian term describing the action
a classical external forcef (t), that is

Hext52Q f~ t !. ~10!

Information about such a force can be obtained by looking
the mechanical oscillator positionQ(t). The position mea-
surement is commonly performed in the large cavity ba
width limit gc@Gb, vm , when the cavity mode dynamic
adiabatically follows that of the movable mirror and it can
eliminated, that is, from Eq.~9c!,

Y~ t !.
4Gb

gc
Q~ t !1

Yin~ t !

Agc

, ~11!

andX(t).Xin(t)/Agc from Eq. ~9d!. Performing a continu-
ous homodyne measurement of the phase quadratureY(t)
means, therefore, continuously monitoring the real-time
namics of the oscillator positionQ(t), which, in turn, implies
detecting the effects of classical forcef (t). The experimen-
tally detected quantity is the output homodyne photocurr
@21,22,31#

Yout~ t !52hAgcY~ t !2AhYin
h ~ t !, ~12!

whereh is the detection efficiency andYin
h (t) is a general-

ized phase input noise, coinciding with the input noiseYin(t)
in the case of perfect detectionh51, and taking into accoun
the additional noise due to the inefficient detection in
general caseh,1 @22#. This generalized phase input nois
can be written in terms of a generalized input noisebh(t) as
Yin

h (t)5 i „bh
†(t)2bh(t)…. The quantum noisebh(t) is corre-

lated with the input noisebin(t) and it is characterized by th
following correlation functions@22#:

^bh~ t !bh~ t8!&5^bh
†~ t !bh~ t8!&50, ~13a!

^bh~ t !bh
†~ t8!&5d~ t2t8!, ~13b!

^bin~ t !bh
†~ t8!&5^bh~ t !bin

† ~ t8!&5Ahd~ t2t8!. ~13c!

The output of the homodyne measurement may be use
devise a phase-sensitive feedback loop to control the dyn
ics of the mirror. For example, we have proposed in Ref.@12#
to reduce the effects of thermal noise on the mirror by fe
ing back the output homodyne photocurrent in an appropr
way. The proposed scheme is a sort of continuous versio
the stochastic cooling technique used in accelerators@13#,
because the homodyne measurement provides a contin
monitoring of the oscillator’s position, and the feedback co
tinuously ‘‘kicks’’ the mirror in order to put it in its equilib-
rium position. Our proposal of cooling the mirror using
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feedback loop has been experimentally realized in Ref.@11#
~see also@15#!, using a different method, the so-called ‘‘co
damping’’ technique@14#. This latter feedback scheme shar
some analogies with that proposed in Ref.@12# and amounts
to applying a viscous feedback force to the oscillating mirr
In the experiment of Refs.@11,15#, the viscous force is pro-
vided by the radiation pressure of another laser beam, in
sity modulated by the time derivative of the homodyne s
nal.

The effect of the feedback loop has been described u
quantum trajectory theory@32# and the master-equation for
malism in Ref.@12#, and a classical description neglecting a
quantum fluctuations in Ref.@11,15#. Here we shall use a
more general description of feedback based on QLEs
Heisenberg operators, first developed in Ref.@21# and gener-
alized to the nonideal detection case in Ref.@22# ~see also
@33# for a comparison between these quantum feedback
proaches and general quantum control theories!. This general
quantum description of feedback will allow us to compa
the two different feedback schemes, the stochastic coo
scheme of Ref.@12#, and the cold damping scheme of Re
@11,15#. A recent analysis of the quantum limits of co
damping has been presented in Ref.@18#. The present quan
tum treatment will also allow us to show that in the presen
of feedback the radiation quantum noise has important
fects, and that a classical stochastic treatment of the dyn
ics of the system is generally inadequate. Our treatment
plicitly includes the limitations due to the quantum efficien
of the detection, but neglects other possible technical imp
fections of the feedback loop, as, for example, the electro
noise of the feedback loop~discussed in@15#!, or the fluc-
tuations of the laser beam used for the feedback in the c
damping scheme.

A. Stochastic cooling

Let us first consider the stochastic cooling scheme of R
@12#. In this scheme, the feedback loop induces a continu
position shift controlled by the output homodyne photoc
rent Yout(t). This effect of feedback manifests itself in a
additional term in the QLE for a generic operatorO(t) given
by @22#

Ȯf b~ t !5 i
Agc

h
Yout~ t2t!@gscP~ t !,O~ t !#, ~14!

wheret is the feedback loop delay time, andgsc is a dimen-
sionless feedback gain factor. The feedback delay time
essentially determined by the electronics involved in
feedback loop and is always much smaller than the typ
time scale of the mirror dynamics. It is therefore common
consider the zero delay-time limit,t→0. This limit is, how-
ever, quite delicate in general@21,22#. In fact, Yout(t2t),
being an output operator, commutes with@gscP(t),O(t)# for
any nonzerot, but this is no more true whent50. There-
fore, one has to be careful with ordering in the zero del
time limit. However, with the choice of Eq.~14! for the
feedback term, the only nonzero commutator in the QLE
Eq. ~9! is @gscP(t),Q(t)#, which, being ac number, does not
3-4
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create any ordering ambiguity. Therefore one has exactly
same equations one would have by putting directlyt50 in
Eq. ~14!, that is,

Q̇~ t !5vmP~ t !1gscgcY~ t !2
gsc

2
Agc

h
Yin

h ~ t !, ~15a!

Ṗ~ t !52vmQ~ t !2gmP~ t !12GbX~ t !1W~ t !1 f ~ t !,
~15b!

Ẏ~ t !52
gc

2
Y~ t !12GbQ~ t !1

Agc

2
Yin~ t !, ~15c!

Ẋ~ t !52
gc

2
X~ t !1

Agc

2
Xin~ t !, ~15d!

where we have used Eq.~12!. After the adiabatic elimination
of the radiation mode@see Eq.~11!#, the above equation
reduce to

Q̇~ t !5vmP~ t !14GbgscQ~ t !1AgcgscYin~ t !

2
gsc

2
Agc

h
Yin

h ~ t !, ~16a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1
2Gb

Agc

Xin~ t !1W~ t !1 f ~ t !.

~16b!

The solution of these QLE for the conjugate operatorsQ(t)
and P(t) can be easily obtained by performing the Lapla
transform, and they will be useful in the following. The
expression is

Q~ t !5KQ~ t !Q~0!1xsc~ t !P~0!1E
0

t

dt8xsc~ t8! f ~ t2t8!

1E
0

t

dt8 KQ~ t8!@AgcgscYin~ t2t8!

2
gsc

2
Agc

h
Yin

h ~ t2t8!]

1E
0

t

dt8 xsc~ t8!FW~ t2t8!1
2Gb

Agc

Xin~ t2t8!G ,

~17a!

P~ t !5KP~ t !P~0!2xsc~ t !Q~0!1E
0

t

dt8KP~ t8! f ~ t2t8!
06380
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t

dt8 xsc~ t8!FAgcgscYin~ t2t8!

2
gsc

2
Agc

h
Yin

h ~ t2t8!G
1E

0

t

dt8 KP~ t8!FW~ t2t8!1
2Gb

Agc

Xin~ t2t8!G .

~17b!

We have introduced the time-dependent susceptibilityxsc(t)
describing the response of the movable mirror in the pr
ence of the stochastic cooling feedback

xsc~ t !5
vm

Avm
2 2gm

2 S 12g1

2
D 2

3e2(11g1)gmt/2sinF tAvm
2 2gm

2 S 12g1

2
D 2G ,

~18!

and the two related response functions

KQ~ t !5
ẋsc~ t !1gmxsc~ t !

vm
, ~19!

KP~ t !5
ẋsc~ t !1g1xsc~ t !

vm
. ~20!

We have also rescaled the feedback gain and definedg15
24Gbgsc /gm .

B. Cold damping

Cold damping techniques, that is, the possibility to us
feedback loop to reduce the effective temperature of a s
tem well below the operating temperature, have been app
in classical electromechanical systems for many years@14#,
and only recently they have been proposed to improve c
ing and sensitivity at the quantum level@34#. This technique
is based on the application of a negative derivative feedba
which increases the damping of the system without co
spondingly increasing the thermal noise@14,34#. This tech-
nique has been successfully applied for the first time to
optomechanical system composed of a high-finesse ca
with a movable mirror in the experiments of Refs.@11,15#. In
these experiments, the displacement of the mirror is m
sured with very high sensitivity@8#, and the obtained infor-
mation is fed back to the mirror via the radiation pressure
another, intensity-modulated, laser beam incident on the b
of the mirror. Cold damping is obtained by modulating wi
the time derivativeof the homodyne signal, in such a wa
that the radiation pressure force is proportional to the mir
3-5
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velocity. The servo-control force then corresponds to a v
cous force. The results of Refs.@11,15# referred to a room-
temperature experiment, and have been explained usi
classical description. The quantum description of cold dam
ing in this optomechanical system has been presented in@16#
~see also Ref.@34#!, and we shall follow this treatment.

In the quantum Langevin description, cold damping fee
back scheme implies the following additional term in t
QLE for a generic operatorO(t) @16#:

Ȯf b~ t !5
i

hAgc

Ẏout~ t2t!@gcdQ~ t !,O~ t !#. ~21!

As for the stochastic cooling feedback case, one has only
nonzero feedback term in the QLE of the system~9!, which
in this case is@gcdQ(t),P(t)#. Since this commutator is ac
number also in this case, we do not have any ordering p
lem in the zero delay-time limit, and the QLE for the co
damping feedback scheme becomes

Q̇~ t !5vmP~ t !, ~22a!

Ṗ~ t !52vmQ~ t !2gmP~ t !12GbX~ t !2gcdẎ~ t !

1
gcd

2Agch
Ẏin

h ~ t !1W~ t !1 f ~ t !, ~22b!

Ẏ~ t !52
gc

2
Y~ t !12GbQ~ t !1

Agc

2
Yin~ t !, ~22c!

Ẋ~ t !52
gc

2
X~ t !1

Agc

2
Xin~ t !. ~22d!

Adiabatically eliminating the cavity mode, one has

Q̇~ t !5vmP~ t !, ~23a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1
2Gb

Agc

Xin~ t !1W~ t !1 f ~ t !

2
4Gbgcd

gc
Q̇~ t !2

gcd

Agc

Ẏin~ t !1
gcd

2Agch
Ẏin

h ~ t !.

~23b!

Notice that the modulation with the derivative of the hom
dyne photocurrent implies the introduction of two new qua
tum input noises,Ẏin(t) andẎin

h (t), whose correlation func-
tions can be simply obtained by differentiating th
corresponding correlation functions ofYin(t) andYin

h (t). We
have, therefore,

^Ẏin~ t !Ẏin~ t8!&5^Ẏin~ t8!Ẏin~ t !&5^Ẏin
h ~ t !Ẏin

h ~ t8!&

5^Ẏin
h ~ t8!Ẏin

h ~ t !&52 d̈~ t2t8!, ~24a!

^Ẏin
h ~ t !Ẏin~ t8!&5^Ẏin~ t8!Ẏin

h ~ t !&52Ahd̈~ t2t8!,
~24b!
06380
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^Xin~ t !Ẏin
h ~ t8!&52^Ẏin

h ~ t8!Xin~ t !&52 iAhḋ~ t2t8!.
~24c!

In this case the solution of the adiabatic QLE reads

Q~ t !5K~ t !Q~0!1xcd~ t !P~0!1E
0

t

dt8xcd~ t8! f ~ t2t8!

1E
0

t

dt8xcd~ t2t8!F2Gb

Agc

Xin~ t8!1W~ t8!

2
gcd

Agc

Ẏin~ t8!1
gcd

2Agch
Ẏin

h ~ t8!G , ~25!

and P(t)5Q̇(t)/vm , where we have introduced the time
dependent susceptibility in the case of the cold damp
feedback scheme

xcd~ t !5
vm

Avm
2 2gm

2 S 11g2

2
D 2

3e2(11g2)gmt/2sinF tAvm
2 2gm

2 S 11g2

2 D 2G
~26!

and the related response function

K~ t !512vmE
0

t

dt8xcd~ t8!. ~27!

We have again rescaled the feedback gain and definedg2
54Gbvmgcd /gmgc .

C. Comparison between the two feedback schemes

The two sets of QLE for the mirror Heisenberg operato
Eqs.~16! and ~23!, show that the two feedback schemes a
not exactly equivalent. They are, however, physically ana
gous, as it can be seen, for example, by looking at the
ferential equation for the displacement operatorQ(t). In fact,
from Eqs.~16! one gets

Q̈~ t !1~11g1!gmQ̇~ t !1~vm
2 1gm

2 g1!Q~ t !

5vmF2Gb

Agc

Xin~ t !1W~ t !1 f ~ t !G
1AgcgscẎin~ t !2

gsc

2
Agc

h
Ẏin

h ~ t !

1
gm

vm
FAgcgscYin~ t !2

gsc

2
Agc

h
Yin

h ~ t !G , ~28!

for the stochastic cooling scheme, while from Eqs.~23! one
gets
3-6
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Q̈~ t !1~11g2!gmQ̇~ t !1vm
2 Q~ t !

5vmF2Gb

Agc

Xin~ t !1W~ t !1 f ~ t !2
gcd

Agc

Ẏin~ t !

1
gcd

2Agch
Ẏin

h ~ t !G ~29!

for the cold damping scheme. These equations show tha
both schemes the main effect of feedback is the modifica
of mechanical dampinggm→gm(11gi) ( i 51,2). In the
stochastic cooling scheme one has also a frequency re
malizationvm

2 →vm
2 1gm

2 g1, which is, however, usually neg
ligible since the mechanical quality factorQ5vm /gm is al-
ways large. Moreover, in the two cases the position dynam
is affected by similar, even though not identical, noise term
This comparison shows that the stochastic cooling schem
Ref. @12# is also able to provide a cold damping effect
increased damping without an increased temperature@16#.

IV. STATIONARY STATE AND COOLING

We now study the stationary state of the movable mir
in the presence of the two feedback schemes, which is
tained by considering the dynamics in the asymptotic lim
t→`. We shall see that both feedback schemes are ab
lower the effective temperature of the system, and that
particular limits, the steady state can have interesting qu
tum features. In fact, both schemes are able to ach
ground-state cooling, and the stochastic cooling feedbac
even able to achieve steady-state position squeezing.

A. Stochastic cooling feedback

Using the solution~17a!, one has

^Q2&st5 lim
t→`

^Q~ t !2&

5E
0

`

dt8E
0

`

dt9KQ~ t8!KQ~ t9!c1~ t82t9!

1E
0

`

dt8E
0

`

dt9xsc~ t8!xsc~ t9!c2~ t82t9!,

~30!

wherec1(t) is the stationary symmetrized correlation fun
tion of the noise term n1(t)5AgcgscYin(t)
2gsc/2A(gc /h)Yin

h (t), c2(t) is the stationary symmetrize
correlation function of the noise termn2(t)5W(t)
1(2Gb/Agc)Xin(t), and we have used the fact thatn1(t)
and n2(t) are uncorrelated. Using the correlation functio
~3!, ~4!, and~13!, one gets

c1~ t !5
gcgm

2 g1
2

64hG2b2
d~ t ! ~31a!
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c2~ t !5
4G2b2

gc
d~ t !1

gm

2pvm
Fr~ t !. ~31b!

The expression for̂Q2&st is obtained using Eqs.~18!, ~19!,
and ~31! in Eq. ~30!,

^Q2&st5
gcgmg1

2

128hG2b2

11Q 21g1

~11g1!~Q 21g1!

1
2G2b2

gcgm

Q 2

~11g1!~Q 21g1!
1^Q2&BM . ~32!

The term^Q2&BM is the contribution of the mirror quantum
Brownian motion, whose general expression is obtained
rewriting Fr(t82t9) in Eq. ~30! in terms of its Fourier trans-
form Fr(v) @see Eq.~4!#, to get

^Q2&BM5E
2Ã

Ã dv

2p

gm

2vm
v cothS \v

2kBTD ux̃sc~v!u2, ~33!

where

x̃sc~v!5
vm

vm
2 1g1gm

2 2v21 ivgm~11g1!
~34!

is the frequency-dependent susceptibility of the mirror in
stochastic cooling feedback scheme. The general analy
expression of the quantum Brownian motion term^Q2&BM ,
valid in any range of parameters, is cumbersome and
been obtained in@28,29#. However, in typical optomechani
cal experiments@8,9,11,15# it is always \gm!\vm!kBT,
and it is possible to see@28# that, in this limiting case, the
classical approximation coth(\v/2kBT).2kBT/\v @which
is equivalent to approximateFr(t).(gmkBT/\vm)d(t)# can
be safely used in Eq.~33!, so to get

^Q2&BM5
kBT

2\vm

Q 2

~11g1!~Q 21g1!
. ~35!

Finally it is

^Q2&st5
g1

2

8hz

11Q 21g1

~11g1!~Q 21g1!

1F z

8
1

kBT

2\vm
G Q 2

~11g1!~Q 21g1!
, ~36!

where we have introduced the rescaled, dimensionless, i
power of the driving laser

z5
16G2b2

gmgc
5

64G2

\v0gmgc
2

`. ~37!

Equation~36! coincides with the corresponding one obtain
in @12# using a master-equation description of the stocha
cooling feedback scheme.
3-7
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An analogous procedure can be followed to get the
tionary value^P2&st . Using Eqs.~17b!, ~18!, ~20!, ~31!, and
~37!, one obtains the general expression

^P2&st5
g1

2

8hz

Q 2

~11g1!~Q 21g1!
1

z

8

g1
21Q 21g1

~11g1!~Q 21g1!

1^P2&BM , ~38!

where the quantum Brownian motion contribution is no
given by

^P2&BM5E
2Ã

Ã dv

2p

gm

2vm
v cothS \v

2kBTD ux̃sc~v!u2

3S v21gm
2 g1

2

vm
2 D . ~39!

In this case, the classical, high-temperature, approxima
coth(\v/2kBT).2kBT/\v has to be made with care, be
cause, due to the presence of thev2 term, the integral~39!
has an ultraviolet divergence in the usually consideredÃ
→` limit @see also Eq.~34!#. This means that, differently
from ^Q2&BM , the classical approximation for̂P2&BM is
valid only under thestrongercondition\Ã!kBT @28#, and
that in the intermediate temperature range\Ã@kBT@\vm
~which may be of interest for optomechanical systems!, one
has a correction of order ln(\Ã/kBT). One has therefore@28#

^P2&BM5
kBT

2\vm

g1
21Q 21g1

~11g1!~Q 21g1!
1

gm

pvm
lnS \Ã

2pkTD ,

~40!

so that one finally gets

^P2&st5
g1

2

8hz

Q 2

~11g1!~Q 21g1!
1F z

8
1

kBT

2\vm
G

3
g1

21Q 21g1

~11g1!~Q 21g1!
1

gm

pvm
lnS \Ã

2pkTD . ~41!

This expression coincides with the corresponding one
tained in@12# using a master-equation description, except
the logarithmic correction, which however, in the case
mirror with a good quality factorQ, is quite small, even in
the intermediate-temperature range\Ã@kBT@\vm .

A peculiar aspect of the stochastic cooling feedba
scheme, which has not been underlined in@12#, is its capa-
bility of inducing steady-state correlations between the po
tion and the momentum of the mirror, i.e., the fact th
^QP1PQ&stÞ0. This correlation can be evaluated in th
same way as above, starting from Eqs.~17a! and ~17b!, and
getting
06380
-

n

-
r
f

k

i-
t

^QP1PQ&st

2
52E

0

`

dt8E
0

`

dt9KQ~ t8!xsc~ t9!c1~ t82t9!

1E
0

`

dt8E
0

`

dt9KP~ t8!xsc~ t9!c2~ t82t9!.

~42!

Then, using Eqs.~18!, ~19!, ~20!, and ~31!, and performing
the classical approximation on the quantum Brownian m
tion contribution ~there is no ultraviolet divergence forÃ
→` in this case!, one gets

^QP1PQ&st

2
5S z

8
1

kBT

2\vm
D g1Q
~11g1!~Q 21g1!

2
g1

2

8hz

Q
~11g1!~Q 21g1!

. ~43!

Each steady-state expression~36!, ~41!, and ~43! has three
contributions: the thermal term due to the mirror Browni
motion, the back action of the radiation pressure, prop
tional to the input powerz, and the feedback-induced nois
term proportional tog1

2 and inversely proportional to the in
put power. At sufficiently large temperatures, the therm
noise contribution is much larger than the others and
mirror dynamics is faithfully described in terms ofclassical
stochastic equations. This classical description amount
neglect all the radiation input noises into the evolution eq
tions of the system, so thatW(t) is the only noise acting on
the system. This classical description has been success
used in Refs.@11,15# to account for the experimental data,
the case of a cold damping feedback scheme at room t
perature. It is, however, evident that the radiation back ac
and the feedback-induced noise cannot be neglected in
eral. For example, the classical approximation for^Q2&st
suggests that it would be possible to localize the mirror wi
out limit, i.e., ^Q2&st→0, using an ever increasing feedba
gain g1 and keeping the input power fixed, while this is n
more true as soon as the feedback-induced noise term
portional tog1

2 is included.
The stochastic cooling feedback scheme has been in

duced in@12# as a promising method for significantly coolin
the cavity mirror. Let us, therefore, consider the optimal co
ditions for cooling, and the cooling limits of this schem
The interesting quantity is the stationary oscillator ene
Ust , which, neglecting the logarithmic correction of E
~41!, can be written as

Ust5\vm@^Q2&st1^P2&st#

5
\vm

8 F g1
2

hz

~112Q 21g1!

~11g1!~Q 21g1!

1S z1
4kBT

\vm
D ~g1

212Q 21g1!

~11g1!~Q 21g1!
G . ~44!
3-8
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It is evident from Eq.~44! that the effective temperature
decreased only if bothQ andg1 are very large. At the sam
time, the additional terms due to the feedback-induced n
and the back-action noise have to remain bounded foQ
→` andg1→`, and this can be obtained by minimizingUst
with respect toz keepingQ and g1 fixed ~physically this
means optimizing the input power̀at giveng1 andQ). It is
possible to check that these additional terms are boun
only for very largeQ, that is, if Q/g1→` and in this case
the minimizing rescaled input power iszopt.g1 /Ah. Under
these conditions, the steady-state oscillator energy beco

Ust.
\vm

2 F 1

Ah
1

2kBT

\vm

1

g1
G , ~45!

showing that, in the ideal limith51, g1→`, z;g1→`,
Q/g1→`, the stochastic cooling feedback scheme is able
reach the quantum limitUst5\vm/2, i.e., it is able to cool
the mirror down to its quantum ground state. The behavio
the steady-state energy is shown in Figs. 2 and 3, whereUst
~in zero-point energy units\vm/2) is plotted as a function o
the rescaled input powerz. In Fig. 2, 2Ust /\vm is plotted
for increasing values ofg1 @~a! g1510, ~b! g15103, ~c! g1
5105, ~d! g15107# at fixed Q5107, and with kBT/\vm
5105 and h50.8. The figure shows the corresponding
crease of the optimal input power minimizing the energy, a

FIG. 2. Rescaled steady-state energy 2Ust /\vm versus the res-
caled input powerz, plotted for different values ofg1 ~a: g1510, b:
g15103, c: g15105, d: g15107) at fixed Q5107, and with
kBT/\vm5105 and h50.8. The optimal input powerzopt corre-
spondingly increases, and for high gain values, ground-state coo
can be achieved.

FIG. 3. Rescaled steady-state energy 2Ust /\vm versusz for
increasing values of the mechanical quality factorQ ~a: Q5103, b:
Q5105, c: Q5107) at fixedg15107, and withkBT/\vm5105 and
h50.8.
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that for high gain values, ground-state cooling can be ess
tially achieved, even with a nonunit detection efficiency.
Fig. 3, 2Ust /\vm is instead plotted for increasing values
the mechanical quality factorQ @~a! Q5103, ~b! Q5105, ~c!
Q5107# at fixedg15107. The figure clearly shows the im
portance of Q in stochastic cooling feedback and th
ground-state cooling is achieved only whenQ is sufficiently
large.

The possibility to reach ground-state cooling of a mac
scopic mirror using the feedback scheme of Ref.@12# was
first pointed out, using an approximate treatment, in@35#,
where the need of a very large mechanical quality facto
underlined. Here we confirm this result using the more g
eral QLE approach.

The steady state of the mirror mode in the presence
stochastic cooling feedback shows other peculiar aspects
interesting limiting cases. Thanks to the linearization of t
problem@see Eqs.~7!#, this steady state is a Gaussian sta
which however is never exactly a thermal state because
always^Q2&stÞ^P2&st and^QP1PQ&stÞ0. Its phase-space
contours are therefore ellipses, rotated by an anglef
5(1/2)arctan@^QP1PQ&st/(^Q

2&st2^P2&st)# with respect to
the Q axis. The steady state becomes approximately a t
mal state only in the limit of very largeQ ~andQ 2@g1), as
it can be seen from Eqs.~36!, ~41!, and ~43!. This thermal
state approaches the quantum ground state of the oscilla
mirror when also the feedback gain and the input power
come very large. There are, however, other interesting lim
in which the stochastic cooling feedback steady state sh
nonclassical features. For example, the Gaussian steady
becomes a contractive state, which has been shown to
able to break the standard quantum limit in@36#, when
^QP1PQ&st becomes negative, and this can be achieved
sufficiently large feedback gain, that is, wheng1.hz(z
14kBT/\vm) @see Eq. ~43!#. Finally, stochastic cooling
feedback can be used even to achieve steady-state pos
squeezing, that is, to beat the standard quantum l
^Q2&st,1/4. The strategy is similar to that followed for coo
ing. First of all one has to minimizêQ2&st with respect to
the input powerz at fixedg1 andQ, obtaining

^Q2&st
min5

g1QA11Q 21g1

4Ah~11g1!~Q 21g1!

1
kBT

2\vm

Q 2

~11g1!~Q 21g1!
. ~46!

This quantity can become arbitrarily small in the limit o
very large feedback gain, and provided thatg1@Q 2. That is,
differently from cooling, position squeezing is achieved
the limit g1→` ~implying z→`), and there is no condition
on the mechanical quality factor. Under this limiting cond
tions, ^Q2&st goes to zero asg1

21/2, and, at the same time
^P2&st diverges asg1

3/2, so that, in this limit, the steady stat
for the stochastic cooling feedback approaches the pos
eigenstate withQ50, that is, the mirror tends to be perfect
localized at its equilibrium position. The possibility to be
the standard quantum limit for the position uncertainty

ng
3-9
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shown in Fig. 4, wherêQ2&st is plotted versusz for two
different values of the feedback gain,g15107 ~dotted line!,
and g15109 ~full line!, with Q5104, kBT/\vm5105, and
h50.8. For the higher value of the feedback gain, the st
dard quantum limit̂ Q2&st51/4 ~dashed line! is beaten in a
range of values of the input powerz.

B. Cold damping feedback

Now we characterize the stationary state of the mirror
the presence of cold damping. This stationary state has b
already studied using classical arguments in@11,15#, while
the discussion of the cooling limits of cold damping in t
quantum case has been recently presented in@18#. Here we
shall generalize the results of@18# to the case of nonidea
quantum efficiencyh,1, and we shall compare the coolin
capabilities of the two feedback schemes.

Using the solution~25! for the time evolution, one has

^Q2&st5 lim
t→`

^Q~ t !2&

5E
0

`

dt8E
0

`

dt9xcd~ t8!xcd~ t9!c~ t82t9!, ~47!

wherec(t) is the stationary symmetrized correlation functi
of the noise term n(t8)5(2Gb/Agc)Xin(t8)1W(t8)
2(gcd /Agc)Ẏin(t8)1(gcd/2Agch)Ẏin

h (t8) appearing in Eq.
~25!. Using the correlation functions~3!, ~4!, ~13!, and~24!,
one gets

c~ t !5
4G2b2

gc
d~ t !2

gcd
2

4hgc
d̈~ t !1

gm

2pvm
Fr~ t !. ~48!

Since in the cold damping case it isP(t)5Q̇(t)/vm , it is
straightforward to derive from Eq.~47! the expressions fo
^P2&st and ^PQ1QP&st , which are given by

^PQ1QP&st5
1

vm
lim
t→`

d

dt
^Q~ t !2&50, ~49!

FIG. 4. Steady-state position variance^Q2&st versusz for two
values of the feedback gain,g15107 ~dotted line!, and g15109

~full line!. The dashed line denotes the standard quantum l
^Q2&st51/4, while the other parameters areQ5104, kBT/\vm

5105 andh50.8.
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^P2&st5
1

vm
2 E0

`

dt8E
0

`

dt9ẋcd~ t8!ẋcd~ t9!c~ t82t9!.

~50!

These stationary expressions can be rewritten in terms o
Fourier transforms of the noise correlation functions, in t
same way as we have done for the Brownian motion term
the preceding section. Using Eqs.~4!, ~26!, ~37!, and ~48!,
one has

^Q2&st5gmE
2`

` dv

2p
ux̃cd~v!u2F z

4
1

g2
2

4hz

v2

vm
2

QDv~v!

1
v

2vm
cothS \v

2kBTD Q [ 2Ã,Ã]~v!G , ~51!

^P2&st5gmE
2`

` dv

2p

v2

vm
2

ux̃cd~v!u2F z

4
1

g2
2

4hz

v2

vm
2

QDv~v!

1
v

2vm
cothS \v

2kBTD Q [ 2Ã,Ã]~v!G , ~52!

where

x̃cd~v!5
vm

vm
2 2v21 ivgm~11g2!

~53!

is the frequency-dependent susceptibility of the mirror in
cold damping feedback scheme, andQ I(v) is a ‘‘gate’’ func-
tion, equal to 1 within the intervalI and equal to zero out
side. Notice that we have introduced not only the gate fu
tion Q [ 2Ã,Ã] (v) for the thermal noise term, but also th
gate functionQDv(v) for the feedback-induced noise term
In fact, it is easy to see that a frequency cutoff for the fee
back is needed to avoid an ultraviolet divergence in the
pression for̂ P2&st . Moreover, from an experimental poin
of view, any feedback loop is active only within a finit
bandwidth, which in this case is given byDv.

We first evaluate ^Q2&st . The contribution of the
feedback-induced term generally depends upon the valu
the feedback bandwidthDv. There are two relevant exper
mental situations: a narrow bandwidth containing the m
chanical resonance peak, that is,gm(11g2),Dv,vm
~configuration used in Refs.@11,15#!, or a wide bandwidth
with a very large high-frequency cutoffÃ f b@vm , gm(1
1g2). However, since the factorux̃cd(v)u2 in Eq. ~51! is
highly peaked around the resonance frequencyvm , ^Q2&st is
practically independent of the feedback loop bandwidth,
soon asgm(11g2),Dv. In fact, either in the narrow band
width case, when the spectrum can be approximated by
constant termg2

2/4hz, or in the case of a very large cuto
frequency, when thev2 dependence is kept, one gets t
same result for the feedback-induced contribution, becau

it
3-10
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E
2`

` dv

2p

v2

vm
2

ux̃cd~v!u25E
2`

` dv

2p
ux̃cd~v!u2

5
1

2gm~11g2!
. ~54!

For the Brownian motion contribution we have the sa
situation described in the stochastic cooling case: the e
expression is cumbersome@28#, but in the commonly met
condition \vm!kBT, the classical approximation
coth(\v/2kBT).2kBT/\v can be made, and using Eq.~54!
for both the thermal and the back-action contribution, o
finally gets

^Q2&st5F g2
2

8hz
1

z

8
1

kBT

2\vm
G 1

11g2
. ~55!

Notice that the corresponding expression for the stocha
cooling feedback~36! coincides with Eq.~55! in the limit
Q@1,g1.

Differently from ^Q2&st , ^P2&st depends upon the feed
back loop bandwidth. In fact, in the large bandwidth ca
the integrand in Eq.~52! tends to a constant at large freque
cies, and in the limit of a very large cutoff frequencyÃ f b ,
the feedback-induced contribution becomes

^P2&st
f b5

gmg2
2

8hz

Ã f b

pvm
2

. ~56!

In the narrow bandwidth case instead, approximating
noise spectrum with the constant termg2

2/4hz, and using
again Eq.~54! within Eq. ~52!, one gets a feedback-induce
noise term contribution identical to that of^Q2&st of Eq.
~55!, which is independent of the feedback bandwidth.

A potential ultraviolet divergence and a dependence u
the frequency cutoffÃ is present also in the quantum
Brownian motion term. In fact, as we have seen in the p
ceding section, the classical expression for the thermal c
tribution to ^P2&st , holds only in the limit of very large
temperatures, kBT@\Ã, while, in the intermediate-
temperature regime\vm!kBT!\Ã, one has an additiona
logarithmic correction, so to get

^P2&st
BM5

kBT

2\vm

1

11g2
1

gm

pvm
lnS \Ã

2pkTD . ~57!

Finally, the back-action term is simply evaluated using E
~54! and one gets the same contribution as in Eq.~55!,

^P2&st
ba5

z

8~11g2!
. ~58!

Therefore, the general expression for^P2&st depends on the
parameter regime considered and it may generally dep
upon the feedback loop high-frequency cutoffÃ f b and the
thermal bath cutoffÃ. However, in the common experimen
tal situation of a narrow bandwidth around the resona
peak, gm(11g2),Dv,vm , and a high Q mechanical
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mode so that the logarithmic correction in Eq.~57! can be
neglected, the dependence on the frequency cutoffs vani
and one haŝP2&st5^Q2&st . Therefore, under these cond
tions, since it is alsôQP1PQ&st50, the stationary state in
the presence of the cold damping feedback scheme is
effective thermal state with a mean excitation number^n&
52^Q2&st21/2, wherê Q2&st is given by Eq.~55!. This ef-
fective thermal equilibrium state in the presence of co
damping has been already pointed out in@11,15#, within a
classical treatment neglecting both the back-action and
feedback-induced terms. The present fully quantum anal
shows that cold damping has two opposite effects on
effective equilibrium temperature of the mechanical mo
on one handT is reduced by the factor (11g2)21, but, on
the other hand, the effective temperature is increased by
additional noise terms.

Let us now consider the optimal conditions for coolin
and the cooling limits of the cold damping feedback schem
In the narrow feedback loop bandwidth case, and neglec
the logarithmic correction tôP2&st

BM , the stationary oscilla-
tor energy is given by

Ust52\vm^Q2&st5
\vm

4~11g2!
F g2

2

hz
1z1

4kBT

\vm
G . ~59!

This expression coincides with that derived and discusse
@18#, except for the presence of the homodyne detection
ficiency h, which was ideally assumed equal to 1 in@18#.
The optimal conditions for cooling can be derived in t
same way as it has been done in@18#. The energyUst is
minimized with respect toz keepingg2 fixed, thereby get-
ting zopt5g2 /Ah. Under these conditions, the stationary o
cillator energy becomes

Ust5
\vm

2

g2

11g2
F 1

Ah
1

2kBT

\vm

1

g2
G , ~60!

showing that, in the ideal limith51, g2→` ~and therefore
z;g2→`), also the cold damping scheme is able to rea
the quantum limitUst5\vm/2, i.e., it is able to cool the
mirror to its quantum ground state, as first pointed out
@18#. However, differently from the stochastic cooling ca
of the preceding section, the stationary energy does not
pend on the mechanical quality factor, implying that cooli
is easier to achieve using cold damping, because the a
tional conditionQ/g2→` is not necessary in this case. How
ever, cold damping, at variance with stochastic cooling fe
back, does not yield any nonclassical feature in the ste
state. Figure 5 shows the rescaled steady-state en
2Ust /\vm versusz plotted for increasing values ofg2 @~a!
g2510, ~b! g25103, ~c! g25105, ~d! g25107#, with
kBT/\vm5105 and h50.8. The figure is essentially indis
tinguishable from Fig. 2, since, as we have seen, the ste
states for the two feedback schemes become identical
large mechanical quality factors. For high gain valu
ground-state cooling can be achieved also in this case, e
with nonunit homodyne detection efficiency.
3-11
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VITALI, MANCINI, RIBICHINI, AND TOMBESI PHYSICAL REVIEW A 65 063803
The ultimate quantum limit of ground-state cooling
achieved in both schemes only ifboth the input power and
the feedback gain go to infinity. If instead the input power
kept fixed, the effective temperature does not decre
monotonically for increasing feedback gain, but, as it can
easily seen from Eqs.~44! and~59!, there is an optimal feed
back gain, giving a minimum steady-state energy, gener
much greater than the quantum ground-state energy. The
istence of an optimal feedback gain at fixed input power
consequence of the feedback-induced noise term origina
from the quantum input noise of the radiation. In a classi
treatment neglecting all quantum radiation noises, one wo
have instead erroneously concluded that the oscillator en
can be made arbitrarily small, by increasing the feedb
gain, and independently of the radiation input power. This
another example of the importance of including the radiat
quantum noises, showing again that a full quantum treatm
is necessary to get an exhaustive description of the sys
dynamics@16#.

The experimental achievement of ground-state cooling
feedback is prohibitive with present day technology. For
ample, the experiments of Refs.@11,15# have used feedbac
gains up tog2540 and an input power corresponding toz
.1, and it is certainly difficult to realize in practice the lim
of very large gains and input powers. This is not surprisi
since this would imply the preparation of a mechanical m
roscopic degree of freedom in its quantum ground st
which is remarkable. The same considerations hold
breaking the standard quantum limit for the steady-state
sition fluctuations with the stochastic cooling feedback.

V. SPECTRAL MEASUREMENTS AND THEIR
SENSITIVITY

Both stochastic cooling and cold damping feedba
schemes cool the mirror by overdamping it, thereby stron
decreasing its mechanical susceptibility at resonance@see
Eqs.~34! and~53!#. As a consequence, the oscillator does
resonantly respond to the thermal noise, yielding in this w
an almost complete suppression of the resonance peak i
noise power spectrum. Since the effective temperature is
portional to the area below the noise power spectrum,
implies cooling. However, the strong reduction of the m

FIG. 5. Rescaled steady-state energy 2Ust /\vm versus the res-
caled input powerz, plotted for different values ofg2 ~a: g2510, b:
g25103, c: g25105, d: g25107), with kBT/\vm5105 and h
50.8. The optimal input power correspondingly increases, and
high gain values, ground-state cooling can be achieved.
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chanical susceptibility at resonance means that the mi
responds neither to the noise nor to any force acting on
Therefore one expects that the SNR of the optomechan
device is not improved by feedback. However, we shall
that this intuitive guess is valid only understationarycondi-
tions, and that, at least in the case of animpulsiveforce, a
nonstationarystrategy can be designed to improve the s
sitivity for the detection of a weak classical force. The po
sibility to use the above feedback cooling schemes in a n
stationary way has been first shown in@16#. Here we shall
reconsider and extend the treatment of@16#, adopting a gen-
eral description of nonstationary spectral measurements.

Spectral measurements are performed whenever the
sical forcef (t) to detect has a characteristic frequency. Sin
the directly measured quantity is the output homodyne p
tocurrentYout(t), we define thesignal S(v) as

S~v!5U E
2`

1`

dte2 ivt^Yout~ t !&FTm
~ t !U, ~61!

whereFTm
(t) is a ‘‘filter’’ function, approximately equal to 1

in the time interval@0,Tm# in which the spectral measure
ment is performed, and equal to zero otherwise. Using
~11!, the input-output relation~12!, and the time evolution of
the position operatorQ(t) @Eq. ~17a! or ~25!#, the signal can
be rewritten as

S~v!5
8Gbh

2pAgc
U E

2`

1`

dv8x̃~v8! f̃ ~v8!F̃Tm
~v2v8!U,

~62!

where f̃ (v) and F̃Tm
(v) are the Fourier transforms of th

force and of the filter function, respectively, andx̃(v) is
equal to x̃sc(v) or x̃cd(v), according to the feedbac
scheme considered.

The noise corresponding to the signalS(v) will be given
by its ‘‘variance’’; since the signal is zero whenf (t)50, the
noise spectrum can be generally written as

N~v!5H E
2`

1`

dtFTm
~ t !E

2`

1`

dt8FTm
~ t8!e2 iv(t2t8)

3^Yout~ t !Yout~ t8!& f 50J 1/2

, ~63!

where the subscriptf 50 means evaluation in the absence
the external force. Using again Eqs.~11!, ~12!, and the input
noises correlation functions~3! and ~13!, the spectral noise
can be rewritten as

N~v!5H ~8Gbh!2

gc
E

2`

1`

dtFTm
~ t !

3E
2`

1`

dt8FTm
~ t8!e2 iv(t2t8)C~ t,t8!

1hE
2`

1`

dtFTm
~ t !2J 1/2

, ~64!

r
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where C(t,t8)5^Q(t)Q(t8)1Q(t8)Q(t)&/2 is the symme-
trized correlation function of the oscillator position. Th
very general expression of the noise spectrum is nonsta
ary because it depends upon the nonstationary correla
function C(t,t8). The last term in Eq.~64! is the shot noise
term due to the radiation input noise.

Stationary spectral measurements

Spectral measurements are usually performed in the
tionary case, that is, using a measurement timeTm much
larger than the typical oscillator time scales. The most s
nificant time scale is the mechanical relaxation time, wh
is gm

21 in the absence of feedback and@gm(11gi)#21 ( i
51,2) in the presence of feedback. In the stationary case
oscillator is relaxed to equilibrium and, redefiningt85t1t,
the correlation functionC(t,t8)5C(t,t1t) in Eq. ~64! is
replaced by thestationary correlation function Cst(t)
5 limt→`C(t,t1t). Moreover, for very largeTm , one has
FTm

(t1t).FTm
(t).1 and, defining the measurement tim

Tm so thatTm5*dtFTm
(t)2, Eq. ~64! assumes the form

N~v!5H F ~8Gbh!2

gc
NQ

2 ~v!1hGTmJ 1/2

, ~65!

where

NQ
2 ~v!5E

2`

1`

dte2 ivtC~t!, ~66!

is the stationary position noise spectrum. This noise sp
trum can be easily evaluated using the results of the pre
ing section. In fact, using the definition ofCst(t) and the
inverse Fourier transform of Eq.~66!, one has

^Q2&st5 lim
t→`

^Q2~ t !&5Cst~0!5E
2`

1`dv

2p
NQ

2 ~v!. ~67!

The position noise spectrum can then be extracted from
stationary mean values derived in the preceding section.
ing Eq. ~51!, one has

NQ,cd
2 ~v!5gmux̃cd~v!u2F z

4
1

g2
2

4hz

v2

vm
2

QDv~v!

1
v

2vm
cothS \v

2kBTDQ [ 2Ã,Ã]~v!G , ~68!

for the cold damping scheme, while the derivation for t
stochastic cooling case is less immediate. In fact, using E
~30!, ~31!, and~33!, one gets
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^Q2&st5E
2`

1`dv

2p
gmF ux̃sc~v!u2

3S z

4
1

v

2vm
cothS \v

2kBTDQ [ 2Ã,Ã]~v! D
1uK̃Q~v!u2

g2
2

4hz
QDv~v!G . ~69!

Then, using the Fourier transform of Eq.~19! in Eq. ~69!,
one finally gets

NQ,sc
2 ~v!5gmux̃sc~v!u2F z

4
1

g2
2

4hz

v21gm
2

vm
2

QDv~v!

1
v

2vm
cothS \v

2kBTDQ [ 2Ã,Ã]~v!G . ~70!

This position noise spectrum for the stochastic cooling fe
back essentially coincides with that already obtained in@12#,
except that in that paper the high-temperature lim
@coth(\v/2kBT).2kBT/\v# is considered and the presen
of the frequency cutoffsÃ andÃ f b is not taken into account
The noise spectrum in the cold damping case of Eq.~68!
instead essentially reproduces the one obtained in@18#, with
the difference that in Ref.@18# the homodyne detection effi
ciency h is set equal to 1, and the feedback and therm
noise cutoff functions have not been explicitly considere
The comparison between Eqs.~68! and ~70! shows once
again the similarities of the two schemes. The only diff
ences lie in the different susceptibilities and in the feedba
induced noise term, which has an additionalgm

2 /vm
2 factor in

the stochastic cooling case, which is, however, usually n
ligible with good mechanical quality factors. In fact, it
possible to see that the two noise spectra are practically
distinguishable in a very large parameter region.

The effectively detected position noise spectrum is
given by Eqs.~68! and~70!, but one has to add the shot nois
contribution due to the input noise in the homodyne pho
current. In fact, using Eq.~65!, and rescaling it to a position
spectrum, one has

NQ,det
2 ~v!5gmux̃ i~v!u2F z

4
1

gi
2

4hz

v21d i ,1gm
2

vm
2

1
v

2vm
cothS \v

2kBTD G1
1

4hzgm
, ~71!

wherei 51 refers to the stochastic cooling case andi 52 to
the cold damping case. The homodyne-detected posi
noise spectrum is actually subject also to cavity filterin
yielding an experimental high-frequency cutoffgc , which
however does not appear in Eq.~71! because we have adia
batically eliminated the cavity mode from the beginnin
Therefore the spectrum of Eq.~71! provides a faithful de-
scription of the mirror mode dynamics only forv,gc ; since
it is usuallyÃ,Ã f b.gc , we have not considered the fee
3-13
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back and reservoir cutoff functions in Eq.~71!, and we shall
not consider them in the following. The detected noise sp
trum has three contributions: the Brownian motion te
which is independent of the input power̀, the shot noise
term inversely proportional tò , and the back-action term
proportional to`. The main effect of feedback on the spe
trum is the modification of the susceptibility due to the i
crease of damping, which is responsible for the suppres
and widening of the resonance peak. This peak suppres
in the noise spectrum has been already predicted and i
trated in @12,18#, and experimentally verified for the col
damping case in@11,15#. Moreover, the feedback-induce
noise term proportional togi

2 is responsible for an increase o
the shot noise contribution to the spectrum. For a given fe
back gain and frequency, the minimum noise is obtained
an intermediate, optimal, power, given by

zopt5A11Q 22gi
2ux̃ i~v!u2~v21d i ,1gm

2 !

hgm
2 ux̃ i~v!u2

, ~72!

and the corresponding value of the minimum displacem
noise is

NQ,min
2 ~v!5gmux̃ i~v!u2

v

2vm
cothS \v

2kBTD
1

ux̃ i~v!u

2Ah
A11Q 22gi

2ux̃ i~v!u2~v21d i ,1gm
2 !.

~73!

This expression shows that both feedback schemes are
to arbitrarily reduce the displacement noise at resonance
fact, using the fact thatx̃ i(vm)}gi

21 in both cases, one ha
thatNQ,min

2 (vm) can be made arbitrarily small by increasin
the feedback gain. This noise reduction at resonance is s
lar to that occurring to an oscillator with increasing dampin
except that in our case, also the feedback-induced noise
creases with the gain, and it can be kept small only if
input power is correspondingly increased in order to ma
tain the optimal condition~72!. This arbitrary reduction of
the position noise in a given frequency bandwidth with
creasing feedback gain does not hold if the input powerz is
kept fixed. In this latter case, the noise has a frequen
dependent lower bound that cannot be overcome by incr
ing the gain. There is an important difference between
two feedback schemes. In fact, it is easy to check from
~73! that in the cold damping case noise reduction ta
place only close to resonance, and that the noise spectru
not affected at lower frequencies@for example,NQ,min

2 (v
50) is not changed by the cold damping feedback#. In the
stochastic cooling case instead, frequency renormaliza
vm

2 →vm
2 1g1gm

2 allows one to reduce position noise even
low frequencies. This reduction of position noise out of re
nance, without cold damping but with a feedback-induc
increase of the mechanical frequency, has been demonst
experimentally by Cohadonet al. in Ref. @11#.
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In the case of stationary spectral measurements also
expression of the signal simplifies. In fact, one hasF̃Tm

(v)

.d(v), and Eq.~62! assumes the traditional form

S~v!5
8Gbh

2pAgc

ux̃~v! f̃ ~v!u. ~74!

The stationary SNR,Rst(v), is now simply obtained divid-
ing the signal of Eq.~74! by the noise of Eq.~65!,

Rst~v!5u f̃ ~v!u H gmTmF v

2vm
cothS \v

2kBTD1
z

4

1
1

4hz S gi
2

vm
2 ~v21d i ,1gm

2 !1
1

gm
2 ux̃ i~v!u2D G J 21/2

,

~75!

where againi 51 refers to the stochastic cooling case ani
52 to the cold damping case. It is easy to see that, in b
cases, feedbackalways lowersthe stationary SNR at any
frequency,~except atv50, where the SNR for the cold
damping case does not depend upon the feedback gain!. This
is shown in Fig. 6, where the stationary SNR in the case
an ideal impulsive force@that is, f̃ (v) is a constant# is plot-
ted for three values of the feedback gain. The curves refe
both feedback schemes because the two casesi 51,2 give
always practically indistinguishable results, except for ve
low values ofQ. As mentioned at the beginning of the se
tion, this result is not surprising because the main effec
feedback is to decrease the mechanical susceptibility at r
nance, so that the oscillator is less sensitive not only to
noise but also to the signal. Therefore, even though the
feedback schemes are able to provide efficient cooling
noise reduction in narrow bandwidths for the mechani
mode, they cannot be used to improve the sensitivity of
optomechanical device for stationary measurements. In
following section we shall see how cooling via feedback c

FIG. 6. Stationary SNR as a function of frequency in the case

an ideal impulsive force, i.e.,f̃ (v)5const. The full line refers to
the case with no feedback, the dashed line to the case withg1

5g25104, and the dotted line to the case withg15g25105 ~the
two feedback schemes give indistinguishable results in these ca!.
The other parameters areQ5105, z510, kBT/\vm5105, and h
50.8. At a given frequency, the stationary SNR decreases for
creasing feedback gain.
3-14
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be used to improve the sensitivity for the detection of imp
sive forces, using an appropriate nonstationary strategy.

VI. HIGH-SENSITIVE NONSTATIONARY
MEASUREMENTS

The two feedback schemes discussed here achieve n
reduction through a modification of the mechanical susc
tibility. However, this modification does not translate into
sensitivity improvement because at the same time it stron
degrades the detection of the signal. The sensitivity of p
tion measurements would be improved if the oscillator mo
could keep its intrinsic susceptibility, unmodified by fee
back, together with the reduced noise achieved by the fe
back loop. This is obviously impossible in stationary con
tions, but a situation very similar to this ideal one can
realized in the case of the detection of animpulsiveforce,
that is, with a time durations much shorter than the me
chanical relaxation time~in the absence of feedback!, s
!1/gm . In fact, one could use the following nonstationa
strategy: prepare att50 the mirror mode in the cooled sta
tionary state of Sec. IV, then suddenly turn off the feedba
loop and perform the spectral measurement in the pres
of the impulsive force for a timeTm , such thats!Tm
!1/gm . In such a way, the force spectrum is still well r
produced, and the mechanical susceptibility is the one w
out feedback~even though modified by the short measu
ment time Tm!1/gm!. At the same time, the mechanic
mode is far from equilibrium during the whole measureme
and its noise spectrum is different from the stationary fo
of Eq. ~71!, being mostly determined by thecooled initial
state. As long asTm!gm , heating, that is, the approach
the hotter equilibrium without feedback, will not affect an
increase too much the noise spectrum. Therefore, one
pects that as long as the measurement time is sufficie
short, the SNR for the detection of the impulsive for
@which has now to be evaluated using the most general
pressions~62! and~64!# can be significantly increased by th
nonstationary strategy.

It is instructive to evaluate explicitly the nonstationa
noise spectrum of Eq.~64! for the above measurement stra
egy. Let us first consider the cold damping case, which gi
more compact expressions. Using Eq.~25!, one gets

C~ t,t8!5K~ t !K~ t8!^Q2&st1x0~ t !x0~ t8!^P2&st

1E
0

t

dt1E
0

t8
dt2x0~ t1!x0~ t2!c~ t2t82t11t2!,

~76!

wherex0(t) is the mechanical susceptibility in the absen
of feedback@see Eq.~34! with g150 or Eq. ~53! with g2
50#, K(t) is given by Eq.~27! with xcd replaced byx0 ,
^Q2&st and^P2&st are the stationary values in the presence
feedback evaluated in Sec. IV, andc(t) is the cold damping
noise correlation function introduced in Eqs.~47! and ~48!.
This nonstationary correlation function has to be inserted
Eq. ~64!. Simple analytical results are obtained if we choo
the following filter function:
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FTm
~ t !5u~ t !e2t/2Tm ~77!

@u(t) is the Heavyside step function#, satisfying
*dtFTm

(t)25Tm . Using Eq.~77! and rewritingc(t) in terms

of its Fourier transformc̃(v), one gets

N2~v!5
~8Gbh!2

gc F uK̃~v2 i /2Tm!u2^Q2&st1ux̃0~v

2 i /2Tm!u2^P2&st1ux̃0~v2 i /2Tm!u2

3 È1`dv8

2p

c̃~v8!

1

4Tm
2

1~v82v!2G1hTm . ~78!

From Eq. ~27!, it is possible to see thatK̃(v)5( iv
1gm)x̃0(v)/vm ; then, using Eq.~48! with gcd50, and the
high-temperature approximation coth(\v/2kBT).2kBT/\v
for the Brownian noise, one finally gets the following e
pression for nonstationary noise spectrum for the cold da
ing feedback

N2~v!5
~8Gbh!2

gc
ux̃0~v2 i /2Tm!u2Fv21~1/2Tm1gm!2

vm
2

3^Q2&st1^P2&st1gmTmS z

4
1

kBT

\vm
D G1hTm .

~79!

The corresponding noise spectrum for the stochastic coo
case can be obtained in a similar way. Using Eq.~17a!, one
gets

C~ t,t8!5KQ~ t !KQ~ t8!^Q2&st1x0~ t !x0~ t8!^P2&st

1@x0~ t !KQ~ t8!1KQ~ t !x0~ t8!#
^QP1PQ&st

2

1E
0

t

dt1E
0

t8
dt2x0~ t1!x0~ t2!c~ t2t82t11t2!,

~80!

whereKQ(t) is given by Eq.~19! ~with xsc replaced byx0),
^Q2&st , ^P2&st , and ^QP1PQ&st are the stationary value
in the presence of stochastic cooling feedback evaluate
Sec. IV, and we have used the fact that, without feedba
c1(t)50 andc2(t)5c(t) @see Eqs.~31! and~48!#. Inserting
this nonstationary correlation function in Eq.~64!, using Eq.
~77!, the fact thatK̃Q(v)5( iv1gm)x̃0(v)/vm , and again
the high-temperature approximation for the Brownian noi
one finally gets
3-15
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N2~v!5
~8Gbh!2

gc
ux̃0~v2 i /2Tm!u2

3Fv21~1/2Tm1gm!2

vm
2 ^Q2&st1^P2&st

1
gm11/2Tm

vm
^QP1PQ&st

1gmTmS z

4
1

kBT

\vm
D G1hTm . ~81!

Notice that the two noise spectra~79! and~81! are very simi-
lar, the only difference being in the initial stationary value
whose explicit expression for the two feedback scheme
given in Sec. IV. It is also easy to check that the station
noise spectrum corresponding to the situation with no fe
back is recovered in the limit of largeTm , as expected, when
the terms proportional togmTm become dominant, and
x̃0(v2 i /2Tm)→x̃0(v). In the opposite limit of smallTm
instead, the terms associated to thecooled, initial conditions
are important, and since the terms proportional togmTm are
still small, this means having a reduced, nonstationary n
spectrum. This is clearly visible in Fig. 7, where the nons
tionary noise spectrum, renormalized in order to have a
sition spectrum,NQ

2 (v)5N2(v)/4hzgmTm , is plotted for
different values of the measurement timeTm , gmTm51021

~dotted line!, gmTm51022 ~full line!, gmTm51023 ~dashed
line!, gmTm51024 ~dot-dashed line!. The resonance peak i
significantly suppressed for decreasingTm , even if it is si-
multaneously widened, so that one can even have a s
increase of noise out of resonance. This figure is referre
the cold damping feedback scheme, but it is indistingui
able from that obtained with the stochastic cooling feedba
using the same parameters (Q5104, z510, g15g25103,
kBT/\vm5105, h50.8). In fact, it can be checked that th
two nonstationary noise spectra~79! and ~81! differ signifi-
cantly only at very low values of the mechanical qual

FIG. 7. Nonstationary noise spectrumNQ
2 (v)5N2(vm)/

4hzgmTm for different values of the measurement time,gmTm

51021 ~dotted line!, gmTm51022 ~full line!, gmTm51023 ~dashed
line!, gmTm51024 ~dot-dashed line!. The figure refers to the cold
damping feedback scheme, but the curves are indistinguish
from those obtained with the stochastic cooling feedback, using
same parameters,Q5104, z510, g15g25103, kBT/\vm5105,
h50.8.
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factor (Q,102). The effect of the terms depending upon t
feedback-cooled initial conditions on the nonstationary no
is shown in Fig. 8, where the noise spectrum is plotted
different values of the feedback gain at a fixed value ofTm .
In Fig. 8~a!, NQ

2 (v) is plotted atgmTm51023 for g251 ~full
line!, g2510 ~dotted line!, g25102 ~dashed!, g25103 ~dot
dashed!. For this low value ofgmTm , the noise terms de
pending on the initial conditions are dominant, and incre
ing the feedback gain implies reducing the initial varianc
and therefore an approximately uniform noise suppressio
all frequencies. In Fig. 8b,NQ

2 (v) is instead plotted at
gmTm51021 for g251 ~full line!, g2510 ~dotted line!, g2
5102 ~dashed!, g25103 ~dot-dashed!. In this case, the
feedback-gain-independent, stationary terms become im
tant, and the effect of feedback on the noise spectrum
comes negligible. Also in this case, Fig. 8 is valid for bo
stochastic cooling and cold damping schemes.

It is also possible to check from Eqs.~79! and ~81! that,
similarly to what happens for the stationary case, noise d
not uniformly decrease for increasing feedback gain if
input powerz is kept fixed, but there is an optimal feedba
gain, minimizing the noise at a given frequency and inp
power.

The significant noise reduction attainable at short m
surement timesgmTm!1 is not only due to the feedback

le
e

FIG. 8. Nonstationary noise spectrumNQ
2 (v) for different val-

ues of the feedback gain,g251 ~full line!, g2510 ~dotted line!,
g25102 ~dashed!, g25103 ~dot dashed!, with fixed measuremen
time, gmTm51023 ~a!, andgmTm51021 ~b!. ~a! corresponds to a
strongly nonstationary condition, in which the noise is significan
suppressed, thanks to the cooled initial condition. In~b! the station-
ary terms becomes important and the noise reduction due to f
back cooling is less significant. The figure refers to the cold dam
ing feedback scheme, but the curves are indistinguishable f
those obtained with the stochastic cooling feedback, using the s
parameters,Q5104, z510, kBT/\vm5105, h50.8.
3-16



iv
o

l a
-

er
c
t

it
e

id

th
o

ime
oth

re-

nd

is,
ea-

a-
est
R

h

ent
i-

e.
ap-
it
s

for-

ore
sily

l
t is
t the
off
er-
k is
s is
ity
ng

.
to

ter
e

er-

e

a
-
ble

t

i

o

e

MIRROR QUIESCENCE AND HIGH-SENSITIVITY . . . PHYSICAL REVIEW A 65 063803
cooled initial conditions, but it is also caused by the effect
reduction of the mechanical susceptibility given by the sh
measurement time,x̃0(v)→x̃0(v2 i /2Tm). This lowered
susceptibility yields a simultaneous reduction of the signa
small measurement timesgmTm!1, and therefore the behav
ior of the nonstationary SNR may be nontrivial. Howev
one expects that impulsive forces at least can be satisfa
rily detected using a short measurement time, because
noise can be kept very small and the corresponding sens
ity increased. Let us check this fact considering the cas
the impulsive force

f ~ t !5 f 0 exp@2~ t2t1!2/2s2#cos~v f t !, ~82!

wheres is the force duration,t1 its ‘‘arrival time,’’ and v f its
carrier frequency. The corresponding SNR is obtained div
ing the signal of Eq.~61!, evaluated with Eq.~77!, by the
nonstationary noise spectra of Eqs.~79! and ~81!, and it is
shown in Figs. 9 and 10. As anticipated, the sensitivity of
optomechanical device is improved using feedback in a n

FIG. 9. Spectrum of the nonstationary SNR,R(v), with and
without feedback cooling of the initial state. The full line refers to
nonstationary measurement,gmTm51023, in the presence of feed
back,g523103 ~the two feedback schemes give indistinguisha
curves!; the dashed line refers to the no-feedback case, and with
same, short, measurement timegmTm51023. Finally, the dotted
line refers to a ‘‘standard measurement,’’ without feedback, and
the stationary limitgmTm510. The other parameters arev f5vm ,
gms51024, gmt15331024, Q5105, z510, h50.8, kBT/\vm

5105.

FIG. 10. Nonstationary SNR at resonance,R(vm), with and
without feedback cooling of the initial state, plotted as a function
the rescaled measurement timegmTm . The full line refers to the
case with feedback-cooled initial conditions (g523103, the two
feedback schemes give indistinguishable curves!. The dotted line
refers to the no-feedback case,g50. The other parameters are th
same as in Fig. 9.
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stationary way. In Fig. 9, the spectral SNR,R(v), is plotted
for different values of feedback gain and measurement t
@as in the previous curves, the figures well describe b
feedback schemes, because they give indistinguishable
sults forR(v) in the physically relevant parameter region#.
The full line refers to g15g25g523103 and gmTm
51023, the dashed line to the situation with no feedback a
the same measurement time,g50 andgmTm51023; finally
the dotted line refers to a ‘‘standard’’ measurement, that
no feedback and a stationary measurement, with a long m
surement time,gmTm510. The proposed nonstationary me
surement scheme, ‘‘cool and measure,’’ gives the high
sensitivity. This is confirmed also by Fig. 10, where the SN
at resonance,R(vm), when feedback cooling is used wit
g523103 ~full line!, and without feedback cooling~dotted
line!, is plotted as a function of the rescaled measurem
time gmTm . The preparation of the mirror in the cooled in
tial state yields a better sensitivity for any measurement tim
As expected, the SNR in the presence of feedback
proaches that without feedback in the stationary lim
gmTm@1, when the effect of the initial cooling become
irrelevant. Both Figs. 9 and 10 refer to a resonant (v f
5vm) impulsive force with gms51024 and gmt153
31024, while the other parameters areQ5105, z510, h
50.8, kBT/\vm5105.

The proposed nonstationary strategy can be straight
wardly applied whenever the ‘‘arrival time’’t1 of the impul-
sive force is known: feedback has to be turned off just bef
the arrival of the force. However, the scheme can be ea
adapted also to the case of an impulsive force with anun-
known arrival time, as, for example, that of a gravitationa
wave passing through an interferometer. In this case i
convenient to repeat the process many times, i.e., subjec
oscillator to cooling-heating cycles. Feedback is turned
for a timeTm during which the spectral measurement is p
formed and the oscillator starts heating up. Then feedbac
turned on and the oscillator is cooled, and then the proces
iterated. This cyclic cooling strategy improves the sensitiv
of gravitational wave detection provided that the cooli
time Tcool , which is of the order of 1/@gm(11gi)#, is much
smaller thanTm , which is verified at sufficiently large gains
Cyclic cooling has been proposed, in a qualitative way,
cool the violin modes of a gravitational waves interferome
in @15#, and its capability of improving the high-sensitiv
detection of impulsive forces has been first shown in@16#. In
the case of a random, uniformly distributed, arrival timet1
and in the impulsive limits!Tm , the performance of the
cyclic cooling scheme is well characterized by a time av
aged SNR, i.e.,

^R~v!&5
1

Tm1Tcool
H E

0

Tm
dt1R~v,t1!

1E
Tm

Tm1Tcool
dt1R~v,t1!coolJ , ~83!

where R(v,t1) is the nonstationary SNR at a given forc
arrival time t1 discussed in this section, andR(v,t1)cool is

he

n

f

3-17



cle
le

b

e-
ac

a

f d
m
ha
r t

it
s
a
th

i
s

ng
o

n be
of

sto-

fs.
ally
both
ani-
ol-
ping
the
oise
ld
of

hile
und
n at

own
tum

ate
in,
the
ndi-

in
nd
o-
dy-

dard
o

eri-
t,
me-
.
ni-
for

ack
ary
ed in
ase
e
ed-
l of
its

and
The

orce
al
have

ed
be

lic

e
ck

VITALI, MANCINI, RIBICHINI, AND TOMBESI PHYSICAL REVIEW A 65 063803
the nonstationary SNR one has during the cooling cy
which means with feedback turned on and with uncoo
initial conditions. It is easy to understand thatR(v,t1)cool
!R(v,t1), and, since it is alsoTcool!Tm , the second term
in Eq. ~83! can be neglected, so that@16#

^R~v!&.
1

Tm1Tcool
E

0

Tm
dt1R~v,t1!. ~84!

This time-averaged SNR can be significantly improved
cyclic cooling, as it is shown in Fig. 11, where^R(v)& is
plotted both with and without feedback. The full line d
scribes the time-averaged SNR subject to cyclic feedb
cooling with g523103, gmTm51023, and Tcool
51023Tm . In the absence of feedback, in the case of
impulsive force with unknown arrival time and durations,
the best strategy is to perform repeated measurements o
ration Tm without any cooling stage. The measurement ti
Tm can be optimized considering that it has to be longer t
s, and at the same time it has not to be too long, in orde
have a good SNR~see the dotted line in Fig. 10!. In this case,
the time-averaged SNR can be written as

^R0~v!&.
1

Tm
E

0

Tm
dt1R0~v,t1!, ~85!

whereR0(v,t1) is the SNR evaluated forg50. The dashed
line in Fig. 11 refers to this case without feedback, and w
gmTm51023. The other parameter values are the same a
Figs. 9 and 10 and in this case, cyclic cooling provides
improvement at resonance by a factor 16 with respect to
case with no feedback. As suggested in Ref.@15#, one could
use nonstationary cyclic feedback to cool the violin modes
gravitational-wave interferometers, which have sharp re
nances within the detection band. One expects that si
gravitational bursts, having a duration smaller than the co
ing cycle period, could be detected in this way.

FIG. 11. Time averaged spectral SNR with and without cyc
cooling. The full line refers to cyclic cooling withgmTm51023,
g523103, and Tcool51023Tm ~the two feedback schemes giv
indistinguishable curves!. The dashed line refers to the no-feedba
case, with the same measurement timegmTm51023 @see Eq.~85!#.
The other parameters arev f5vm , gms51024, Q5105, z510,
h50.8, kBT/\vm5105.
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VII. CONCLUSIONS

We have studied how quantum feedback schemes ca
used to reduce thermal noise and improve the sensitivity
optomechanical devices. We have analyzed in detail the
chastic cooling scheme introduced in Ref.@12# and the cold
damping scheme experimentally implemented in Re
@11,15#. We have seen that the two schemes are physic
analogous, even though they show some differences. In
cases, the main effect of feedback is the increase of mech
cal damping, accompanied by the introduction of a contr
lable, measurement-induced, noise. The increase of dam
means reduction of the susceptibility at resonance, and
consequent suppression of the resonance peak in the n
spectrum. Stochastic cooling feedback differs from co
damping in the fact that it has the supplementary effect
increasing the mechanical frequency. This means that, w
cold damping achieves thermal noise reduction only aro
resonance, stochastic cooling is able to reduce noise eve
very low frequencies, out of resonance. We have also sh
that both schemes are able to achieve the ultimate quan
limit of ground-state cooling~see also@18# for the cold
damping case!. For both feedback schemes, ground-st
cooling is reached in the limit of very large feedback ga
ideal homodyne detection, and very large input power. In
stochastic cooling case, however, also the additional co
tion of very large mechanical quality factor is needed~see
also @35#!, so that cooling is much more easily achieved
the cold damping case. In the limit of very large gain a
input power, but with fixed mechanical quality factor, st
chastic cooling feedback is instead able to achieve stea
state position squeezing, that is, one can beat the stan
quantum limit^Qst

2 &,1/4. Finally stochastic cooling is als
able to produce stationary contractive states@36#. Reaching
these quantum limits in optomechanical systems is exp
mentally very difficult but it would be extremely importan
because it would be a genuine manifestation of quantum
chanics for a macroscopic mechanical degree of freedom

We have also analyzed the sensitivity of the optomecha
cal device in the case of position spectral measurements
the detection of weak forces. Even though both feedb
schemes are not able to improve the sensitivity of station
measurements, we have shown how feedback can be us
a nonstationary way in order to increase the SNR in the c
of impulsive forces. If the arrival time of the classical forc
is known, one has to keep the mirror mode cooled by fe
back, and then turn off the feedback just before the arriva
the force. The mirror therefore responds to the force with
intrinsic susceptibility, not suppressed by the feedback,
with a nonstationary noise, reduced by the feedback.
SNR is increased as long as the measurement timeTm is
longer than the force durations, but much smaller than the
mechanical relaxation time, that is,s!Tm!1/gm . This non-
stationary strategy can be well adapted to the case of a f
with an unknown arrival time, for example, gravitation
waves. In this case, the cooling and measurement steps
to be cyclically repeated~see also@15#!, and the performance
of cyclic cooling can be characterized by a SNR averag
over the force arrival time. This time-averaged SNR can
3-18
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significantly improved by cyclic cooling, thanks also to th
fact that the cooling time can be made very small using v
large feedback gainsg, because it isTcool.@gm(11g)#21.
Different from ground-state cooling, the experimental imp
.
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mentation of these nonstationary strategy is feasible w
current technology, and it may be useful not only for op
mechanical devices, but also for microelectromechan
systems.
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