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Conditional state generation in a dispersive atom-cavity field interaction
with a continuous external pump field
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The interaction of an atom with both a quantized cavity field and an external classical driving field, the fields
being degenerate in frequency, is studied in the regime where the atom and fields are highly detuned. The atom
interacts dispersively with the quantized field but the classical driving field gives rise to the creation or
destruction of photons conditional on the state of the atom. We show how this interaction can be used to
generate coherent states of the cavity field and various forms of superpositions of macroscopically distinct
states. This method is in contrast to the usual method used in microwave cavity QED of injecting a coherent
state into a cavity via a waveguide attached to a klystron and where subsequently Schro¨dinger cat states may
be generated by manipulating the field with injected atoms. The method proposed here could possibly be used
in the case of an optical cavity. Further, we show that coherent states may be generated in the steady state from
the competition between the driven dispersion interaction and dissipative single-photon losses, a form of
optical balance.
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I. INTRODUCTION

The Jaynes-Cummings model~JCM! is a description of a
two-level atom interacting with a single-mode quantized c
ity electromagnetic field within the rotating wave approxim
tion @1#. It is the simplest model of field-matter interaction
relevant to quantum optics, having exactly integrable nonp
turbative solutions. If the cavity field has somehow been p
pared in a coherent state, the model predicts@2#, and experi-
ments confirm@3#, the collapse and revival of the Rab
oscillations~nutations!, a direct consequence of the quan
zation of the field. Numerous multilevel and multimode e
tensions of the original JCM have been studied over
years@4#. Even within the original JCM, an important varia
tion in the form of the interaction occurs in the limit of
large ~but not too large! detuning between the cavity fiel
and the relevant atomic transition frequency. In such sit
tions the interaction is dispersive, an interaction that
proved of great importance in various proposals and exp
ments for the production of superpositions of macrosco
cally ~or at least mesoscopically! distinguishable quantum
states, the so-called Schro¨dinger cat states, within the conte
of cavity QED @5#. The Schro¨dinger cat states are superp
sitions of coherent states differing by some macroscopic
tation in phase space~typically 180°! resulting from the dis-
persive atom-field interaction. But again, one needs
provide the cavity field with an initial coherent state. In e
periments using submillimeter microwave cavities suppo
ing a single-mode field and where circular Rydberg ato
are used to manipulate the field, a coherent state can b
jected into the cavity through a waveguide attached to a
stron, itself driven by a classical field@6#. It is also possible
to directly drive a current on the surface of one of the mirr
on the cavity. For optical cavities it is generally assumed t
it is possible to drive one of the semitransparent cavity m
rors with an external laser field@7#. In this paper we describe
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what we believe is a more elegant and versatile proced
wherein a strong external coherent field~microwave or laser,
depending on the type of cavity QED experiment! resonant
with a cavity mode, interacts nonresonantly, i.e., disp
sively, with an appropriately prepared atom passing throu
the cavity. The resulting interaction is conditional on t
state of the atom and essentially converts the classical e
nal field into a quantized cavity field of identical frequen
~but possibly of different polarization!. For the atom pre-
pared in one of the bare atomic states, coherent states wi
produced. Furthermore, we show that by preparing the
jected atom in a superposition of the bare atomic states, v
ous types of Schro¨dinger cat states may be generated,
though manipulation and state reduction on the atom
required after it exists the cavity. The procedure describ
here should work for both microwave and optical cavities
long as dissipative effects can be ignored over the time sc
of the interaction. We then show that when dissipative effe
are taken into account, it is still possible to generate a coh
ent state as the result of the optical balance between
dispersive interaction and the dissipative interaction in
steady-state regime, a result that could be of particular
portance for generating coherent states in optical cavity
periments involving single or few atoms.

The driven Jaynes-Cummings model for cases where
cavity and external driving field are close to or on resona
with the atom, has been studied by several authors. Als
Gou, and Carmichael@8# studied the Stark splittings in th
quasienergies of the dressed states resulting from the p
ence of the driving field in the case where both fields
resonant with the atom. Jyotsna and Agarwal@9# studied the
effect of the external field on the Rabi oscillations in the ca
where the cavity field is resonant with the atom and wh
the external field is both resonant and nonresonant. Du
Knight, and Moya-Cessa@10# studied a similar model bu
where the external field was taken to be quantized. Cho
and Carmichael@11# have studied the JCM with an extern
©2002 The American Physical Society01-1
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CHRISTOPHER C. GERRY PHYSICAL REVIEW A65 063801
resonant driving field and have shown that the collapses
revivals of the mean photon number occur over a mu
longer time scale than the revival time of the Rabi oscil
tions for the atomic inversion. Joshi@12#, in a similar vein,
studied the driven two-photon JCM Nha, Chough, and
@13# studied the preparation of a temporally stable sing
photon state an atom-cavity field system with a driving cl
sical field. As far as the author is aware, the dispersive in
action with an external driving field has not previously be
considered though it is a logical extension of previous w
in this area.

This paper is organized as follows. In Sec. II, we discu
the driven Jaynes-Cummings model in the regime where
atom is equally detuned with both the quantized cavity fi
and driving external classical field such that the atom-ca
field coupling is dispersive. We discuss the generation
coherent states and superpositions of coherent states. In
III, we consider the inclusion of dissipative effects, showi
yet another mechanism to generate coherent states a
result of optical balance in the steady state. The paper c
cludes in Sec. IV with some brief remarks.

II. DRIVEN JAYNES-CUMMINGS MODEL IN THE
DISPERSIVE REGIME

We consider an atom with three levelsue&, uf&, and ug&
configured as in Fig. 1. We assume that only dipole tran
tions can occur consecutively as follows:ue&↔u f &↔ug&. We
let v0 be the ue&↔u f & transition frequency and assume

FIG. 1. The energy-level configuration of an atom interact
with both cavity and external driving fields. The transition fr
quency between levelse andf is v0 while vc andvex are the cavity
and external field frequencies, respectively. The cavity and exte
fields are close, but not too close, to resonance with the ato
transition frequencyv0 such that the interaction is dispersive. W
assume the conditionvc5vex . The levelg is far out of resonance
with any of the frequencies involved.
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near resonance with a single-mode cavity field of freque
vc . But theu f &↔ug& transition we assume is far out of res
nance with the cavity mode of interest~or any other cavity
mode!. A strong, classical, prescribed field, of frequen
vex , possibly of different polarization than the cavity fiel
interacts directly with an atom passing through the cavity,
pictured in Fig. 2. The Hamiltonian for the atom-cavity sy
tem is given by

Ĥ5 1
2 \v0s31\vcâ

†â1\g~ ŝ1â1â†ŝ2!

1\~Ee2 ivextŝ11E* eivextŝ2!. ~2.1!

Here

ŝ35ue&^eu2u f &^ f u, ŝ15ue&^ f u, ŝ25u f &^eu,
~2.2!

g is the coupling constant between the atom and the ca
field mode,E is proportional to the coupling constant b
tween the atom and the external classical field of freque
vex and the amplitude of that field. We have assumed for
moment thatv0 , vc , andvex are different. To remove the
time dependence inĤ, we use the operatorR̂5exp
@2ivext(ŝ31â†â)# to transform to a frame rotating at the fre
quencyvex . The Hamiltonian in the rotating frame~essen-
tially the interaction picture! is then

ĤR5 1
2 \~v02vex!ŝ31\~vc2vex!â

†â

1\g@ŝ1~ â1l!1~ â†1l* !ŝ2#, ~2.3!

wherel5E/g. We now assume the resonance condition
tween the external and cavity fields,vc5vex , and obtain

ĤR5 1
2 \Dŝ31\g@ŝ1~ â1l!1~ â†1l* !ŝ2#, ~2.4!

al
ic

FIG. 2. An atom passes through a cavity and interacts dis
sively with a cavity field mode. At the same time it interacts with
external classical field tuned into resonance with the cavity fie
The atom enters the cavity prepared in either one, or a superpos
of two, of the bare states indicated in Fig. 1. After the atom exits
cavity it may be subjected to classical fields implementingp/2
pulses and then selectively ionized in order to produce various ty
of Schrödinger cat states.
1-2
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CONDITIONAL STATE GENERATION IN A . . . PHYSICAL REVIEW A65 063801
where we have setD5v02vc . At this point we may intro-
duce auxiliary Bose operatorsb̂5â1l andb̂†5â†1l* sat-
isfying @ b̂,b̂†#51 so that we may write

ĤR5 1
2 \Dŝ31\g@ŝ1b̂1b̂†ŝ2#, ~2.5!

which superficially has the appearance of the interaction
ture Hamiltonian of the usual detuned JCM. Alternative
introducing the displacement operatorD̂(l)5exp(lâ†

2l* â) we may write

ĤR5 1
2 \Dŝ31\gD̂†~l!@ŝ1â1â†ŝ2#D̂~l!, ~2.6!

where we have made use of the relations

D̂†~l!H â
â†J D̂~l!5 H â1l

â†1l* J . ~2.7!

In the limit of moderately large detuning between t
atom and the fields, one can use the standard techniques@14#
to obtain the effective atom-field interaction Hamiltonian

Ĥeff5\x@ŝ1ŝ21b̂†b̂ŝ3#

5\x@ŝ1ŝ21D̂†~l!â†âD̂~l!ŝ3#

5\x@ŝ1ŝ21~ â†â1lâ†1l* â1ulu2!ŝ3#, ~2.8!

wherex5g2/D. Obviously, in the limitl→0 ~no external
driving field! we recover the usual dispersive interacti
HamiltonianĤeff5\x@ŝ1ŝ21â†âŝ3#. But with lÞ0, the in-
teraction is no longer purely dispersive as it contains te
of the form (lâ†1l* â)ŝ3 that creates or destroys photo
in the cavity conditional on the state of the atom. If the ato
is prepared in the far off-resonance stateug&, the cavity field
is unaffected. But with the atom prepared in either statesue&
or uf&, and if the cavity field is initially in a vacuum stateu0&,
the external classical driving field will generate a coher
state of the quantized field.

As a specific example, suppose an atom prepared in s
uf& is injected through a cavity in the vacuum state. Th
while the atom is inside the cavity, the atom-field syste
evolves according to

uc~ t !&5exp@2 iĤ efft/\#u0&u f &

5exp@ ixt~ â†â1lâ†1l* â1ulu2!#u0&u f &

5exp@ i ulu2 sin~xt !#u2l~12eixt!&u f &, ~2.9!

whereu2l(12eixt)& is a coherent state of the cavity field
On the other hand, if the atom is initially in the stateue&, it is
easy to see that we obtain

uc~ t !&5exp@2 iĤ efft/\#u0&ue&

5exp@2 ixt2 ixt~ â†â1lâ†1l* â1ulu2!#u0&ue&

5e2 ixt exp@2 i ulu2 sin~xt !#u2l~12e2 ixt!&ue&.

~2.10!
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The coherent statesu2l(12e6 ixt)& are obviously not
simple inversions~i.e., not separated by a rotation 180°! of
each other in the phase space. But if we writel5ulueiq it is
easy to see that they are really reflections of each other a
a line alongq1p. The two coherent states evolve from th
origin ~the vacuum state! at t50 in opposite directions abou
a circle centered on2l. For t,p/2x the coherent states ca
have a large angular separation in phase space, in
greater than 90°, the angular separationbecoming90° for t
5p/2x. Of course, the separations in phase space will a
depend onulu and thus may be quite large. Fort5p/x the
two states become identical:u22l&. For the simplification of
notation in future applications we set

uc f~ t !&5exp@ i ulu2 sin~xt !#u2l~12eixt!&, ~2.11a!

uce~ t !&5e2 ixt exp@2 i ulu2 sin~xt !#u2l~12eixt!&,
~2.11b!

Suppose we prepare the atom in the general superpos
state sinuue&1eif cosuuf& and the cavity field in the vacuum
state. Then at timet>0 we obtain the entangled state

uc~ t !&5sinuuce~ t !&e&1eif cosuuc f~ t !&u f &. ~2.12!

For the simplest case whereu5p/4 andf50 we have

uc~ t !&5
1

&
~ uce~ t !&ue&1uc f~ t !&u f &). ~2.13!

If the atom leaves the cavity after timet ~and hencefortht
should be understood as the time the atom and the fields
interacted! and is then manipulated by resonant classi
fields effectingp/2 pulses causing the transformationsue&
→(ue&1u f &)/& and u f &→(u f &2ue&)/&, we obtain

uc~ t !&→ 1
2 @ ue&~ uce~ t !&2c f~ t !&)1u f &~ uce~ t !&1uc f~ t !&)].

~2.14!

If by selective ionization the atom is found to be in stateuf&
~ue&!, we project the cavity field onto the states~apart from
normalization!

uce~ t !&6uc f~ t !&, ~2.15!

which constitute forms of Schro¨dinger cat states. For th
time t5p/2x we have

@ uce~ t !&F6uc f~ t !&F] u t5p/2x

5ei ulu2u2l~12 i !&7 ie2 i ulu2u2l~11 i !&

5ei ulu2u2le2 ip/4&7 ie2 i ulu2u2leip/4&, ~2.16!

obviously superpositions of coherent states separated by
in phase space.

There exists another possibility. Suppose the atom is p
pared in a superposition of the far off-resonance stateug& and
either uf& or ue&. As an example, we take the initial state as
1-3
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CHRISTOPHER C. GERRY PHYSICAL REVIEW A65 063801
uc~0!&5u0&
1

&
~ u f &1ug&). ~2.17!

This evolves into

uc~ t !&5
1

&
@ uc f~ t !&u f &1u0&ug&]. ~2.18!

If, when the atom exits the cavity, we subject it to ap/2
pulse from a classical resonant field causing the transfor
tions u f &→(u f &1ug&)/& andug&→(ug&2u f &)/&, we obtain

1
2 @ u f &~ uc f~ t !&2u0&)1ug&~ uc f~ t !&1u0&]. ~2.19!

Selective state reduction measurements on the atom pr
the cavity field into either of the~unnormalized! states

uc f~ t !&6u0&, ~2.20!

i.e., superpositions of a coherent state with the vacu
States of this sort have previously been discussed as an
ample of a quantum switch by Davidovichet al., @15# though
the mechanism of generation is a bit different than in o
case. In the former, the external source of microwave ra
tion is a klystron, driven by a classical current, coupled to
cavity mode structure via a waveguide. Such arrangem
have in fact been used to inject coherent states in a ca
field mode in certain experiments@6#. ~It would also be pos-
sible to drive one of the cavity mirrors with a current res
nant with the cavity mode.! In the case of the quantum
switch of Davidovichet al. @15#, a coherent state is generate
in the cavity by a frequency pulling effect associated with
atom in a particular state. Effectively, the refractive index
the cavity is given a change large enough to tune the ca
into resonance with the klystron source. Such a couplin
represented by the replacementsŝ1→â† and ŝ2→â in the
last term of Eq.~2.1!, whereas our proposal requires a cla
sical external field interacting directly with an atom. Furth
in our case both external and cavity fields are assumed f
the outset at resonance with each other but not with the a
Thus the generation of a coherent state in the cavity, or
is conditional on the state of the atom. No frequency pull
effect is involved.

So far we have made no approximations. But now s
pose thatx is sufficiently small, or thatt is sufficiently short,
so that we may takext!1. Then, from Eqs.~2.11! we will
have

uce~ t !&.exp~ ixulu2t !u ilxt&,

uc f u~ t !&.exp~2 ixtulu2!u2 ilxt&. ~2.21!

This approximation is independent ofulu. But for a strong
external classical field,ulu will be large and thus, apart from
the factors exp(6ixulu2 t), we generate coherent states
equal amplitude but separated in phase space by 180°. U
this approximation, the Schro¨dinger cat states in Eq.~2.13!
take the form

eixulu2tu ilxt&6e2 ixulu2tu2 ilxt&, ~2.22!
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a superposition of maximally separated equal amplitude
herent states for which the conditionxt!1 holds. If ulu is
large enough to attain the conditionxulu2t5p, the Schro¨-
dinger cat states of Eq.~2.22! will become the even and od
coherent states. This procedure discussed here is an alt
tive to the usual cavity QED approach to generating Sch¨-
dinger cat states where one injects a coherent stateua& di-
rectly into the cavity via a waveguide and then by injecting
sequence of suitably prepared atoms manipulates the
state into the formuaeiw/2&6uae2 iw/2& where w5xt. For
w5p, we obtain the maximally separated statesu ia&
6u2 ia&, which happen to be the even or odd Schro¨dinger
cat states. But the states in Eq.~2.19! arealwaysseparated by
180° as long as the conditionxt!1 holds. Thus for a strong
enough external field, it may be possible to produce
Schrödinger cat states in a much shorter time scale than
the conventional approach.

There is another way to reach these approximate res
If we go back to the effective Hamiltonian of Eq.~2.8! and,
under the assumption thatulu is large enough so that^â†â&
!ulu^â&, we may simply drop theâ†âŝ3 term to obtain the
approximate effective Hamiltonian

Ĥeff5\xŝ3~lâ†1l* â1ulu2!, ~2.23!

where we have also dropped the termŝ1ŝ2 , which is at
most of order unity. For the initial stateu0&u f &, we have

exp@2 iĤ efft/\#u0&u f &5eixulu2tD̂~ ixlt !u0&u f &

5eixulu2tu ixlt&u f &. ~2.24!

Similarly, for the initial stateu0&ue& we obtain

e2 ixulu2tu2 ixlt&ue&.

These results are in agreement with Eqs.~2.21!.
In the preceding, section we have assumed that only

atom passes through the cavity. If the atom is prepared in
stateuf& then according to Eq.~2.9!, the cavity field, if ini-
tially in the vacuum, becomesu2l(12eixt)&. This coherent
state reaches its maximum amplitude when the interac
time t satisfies the conditionxt5p for which we obtain
u22l&. The coherent state can be amplified by sending i
sequence of identically prepared atoms. In the ideal case
sequence ofN atoms, each prepared in the stateuf&, all having
the same speed and thus the same interaction timet5p/x,
the coherent stateu22Nl& would be generated, assumin
negligible dissipation during the process. In this way a la
amplitude coherent state could be built up in the cavity. Mo
generally, if t i is the interaction time of thei th atom, then,
apart from an irrelevant overall phase factor, the cavity fi
would be in the coherent stateua&, where a52l( i 51

N (1
2eixt i). If the t i'p/x it would still be possible to obtain a
large amplitude coherent state although it may not be p
sible to determinea precisely if the interaction times ar
stochastic.
1-4
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CONDITIONAL STATE GENERATION IN A . . . PHYSICAL REVIEW A65 063801
III. INCLUSION OF DISSIPATIVE INTERACTIONS AND
THE GENERATION OF COHERENT STATES BY

OPTICAL BALANCE

So far, we have not considered the dissipative effects
losses through the walls of the cavity. This can be justifie
the time scales involved in any of the above processes
short compared to the characteristic time scales of the de
process. But here we include the effects of losses and s
that even in this case it is still possible to generate cohe
states in the cavity and not just at short times but also in
long-time steady-state regime. The latter results from the
tical balance achieved between the competition from the
tion of the external driving field, which tends to create ph
tons, and the loss mechanism@16#.

In the absence of interactions other than with the walls
the cavity and with the walls at zero temperature, the de
of any field established in the cavity is described by
master equation

]r̂F

]t
52k~ â†âr̂F22âr̂Fâ†1 r̂Fâ†â!, ~3.1!

where k is the rate of single-photon losses andr̂F is the
density operator of the field. The decay time of the field
tdecay51/k. In most cases, workers have assumed that
dissipative interaction can be ignored during the formation
any particular state as long as the time of formation is sh
compared to any of the other relevant time scales involv
such as the decay times of atoms and the decay time o
cavity. If the field is initially in a coherent stateua&, it re-
mains in a~pure! coherent state but with a decaying amp
tude: r̂F(t)5uae2kt/2&^ae2kt/2u. On the other hand, if the
field is initially in a superposition of the formua&6u2a&,
this initially pure state decoheres into a statistical mixtu
such that for timest@tdecoh5tdecay/uau2 ~tdecohbeing the de-
coherence time!,

r̂F~ t@tdecoh!'
1
2 @ uae2kt/2&^ae2kt/2u

1u2ae2kt/2&^2ae2kt/2u#. ~3.2!

But here we are interested in the long-time dynamics
our model interaction, including the effects of dissipation,
the case where the external driving field is maintained. T
we must modify our master equation to

]r̂

]t
52

i

\
@Ĥeff ,r̂ #2k~ â†âr̂22âr̂â†1 r̂â†â!, ~3.3!

where Ĥeff is given by Eq.~2.8! and wherer̂ is now the
density operator of the atom-field system. As a definite
ample, we suppose the initial density operator to ber̂(0)
5 r̂F(0)^ r̂A(0), where the initial field density operator i
r̂F(0)5u0&^0u and wherer̂A5u f &^ f u is the initial atomic
density operator. As long as the atom is initially in one of
bare states, evolution under the dispersive interaction
not create entanglement between the atom and field an
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we may writer̂(t)5 r̂F(t) ^ r̂A , such that our master equa
tion for the atom-field system reduces to a master equa
for the field only,

]r̂F

]t
5 ix@~ â†â1lâ†1l* â!,r̂F#

2k~ â†âr̂F22âr̂Fâ†1 r̂Fâ†â!. ~3.4!

At times short enough to ignore the dissipative interacti
the field evolves into the coherent state given by Eq.~2.9a!.
But we are interested in the long-time steady-state solu
and to that end we now make the transformation to a sec
rotating frame,

r̂F5exp~2 ixâ†ât !r̂̃F exp~ ixâ†ât !. ~3.5!

Equation~3.4! now takes the form

]r̂̃F

]t
5 ix@~l ĉ†1l* ĉ!, r̂̃F#2k~ ĉ†ĉr̂̃F22ĉr̂̃Fĉ†1 r̂̃Fĉ†ĉ!,

~3.6!

where

ĉ5eixâ†âtâeixâ†ât5âe2 ixt. ~3.7!

Of course, we have@ ĉ,ĉ†#51. We make one more transfor
mation defining yet another Bose operatord̂5 ĉ2 ixl/k so
that we may rewrite Eq.~3.6! as

]r̂̃F

]t
52k~ d̂†d̂r̂̃F22d̂r̂̃Fd̂†1 r̂̃Fd̂†d̂!. ~3.8!

As t→` we approach the steady state in this second rota
frame where one has]r̂̃F /]t50. Evidently the right-hand
side of Eq.~3.8! vanishes ford̂r̂̃F(`)505 r̂̃F(`)d̂†, which
in turn means that we must haver̂̃F(`)5uz&2 2^zu where
uz&2 is a coherent state satisfying the eigenvalue prob
ĉuz&25zuz&2 and wherez5 ixl/k. The subscript 2 indicates
that the coherent state is in the second rotating frame. F
Eq. ~3.5! we obtain the steady-state solution in the first r
tating frame as

r̂F~ t→`!5uze2 ixt&^ze2 ixtu. ~3.9!

Note that this is not independent of time but does satisfy
~3.4! as an identity provided that]r̂̃F /]t50. Thus the
steady-state solution of Eq. ~3.3! is r̂(t→`)
5uze2 ixt&^ze2 ixtu ^ u f &^ f u. The coherent field state will be
maintained in the cavity under the conditions of optical b
ance as long as the atom is present. Once the atom leave
cavity, optical balance can no longer be maintained and
coherent state simply decays in amplitude as descri
above.

In the case of an optical cavity, we must add one furth
term to the master equation above in order to take into
count the spontaneous emission from the atom out of
sides of the cavity. Equation~3.3! must be modified to
1-5
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i

\
@Ĥeff ,r̂ #2k~ â†âr̂22âr̂â†1 r̂â†â!

2
g

2
~ ŝ1ŝ2r̂22ŝ2r̂ŝ11 r̂ŝ1ŝ2!, ~3.10!

whereg is the spontaneous emission rate. But we still obt
the same steady-state solutions at long time, namely,r̂(t
→`)5uze2 ixt&^ze2 ixtu ^ u f &^ f u. The last term in Eq.~3.10!
vanishes identically owing to the atom being in the pure s
uf&. Note that in this case, theinitial state of the atom nee
not beuf& but spontaneous emission certainly will bring it
that state in sufficiently long time.

IV. CONCLUSIONS

In this paper, we have studied a variant of the Jayn
Cummings model with a continuous external pump field
which both the cavity field and the external field are detun
from the atomic transition frequency. The model has disti
features over just the usual dispersive interaction with
external driving field. It can be applied to generate coher
states in both microwave and optical cavities. In the case
microwave cavities it could replace the procedure descri
in Ref. @6# or those methods proposed in connection w
micromaser experiments@17#. In the case of optical cavities
on

.

L

06380
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te

s-
r
d
t
o
nt
of
d

the methods proposed here could be applied to the ‘‘sin
atom laser’’ experiments of the type discussed by Anet al.
@18# The interaction can be used to generate various form
Schrödinger cat states without the prior establishment o
coherent state. This could be an important feature in ca
where the relevant decay times are short, as for optical c
ties. Under certain conditions, the components of the Sch¨-
dinger cat state arealwaysseparated by 180° in phase spac
this being impossible without the external driving field. Wi
the inclusion of dissipative interactions, we have shown t
coherent states may be maintained in the cavity field in
long-time steady-state regime, as long as the atom remain
the cavity. This steady-state behavior has no counterpa
the undriven dispersive model and is possible only in
presence of the external driving field. This feature of t
interaction including dissipation may be of considerable i
portance in optical cavity QED experiments where a coh
ent state needs to be maintained over an extended perio
time.
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