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Topology of the ground state of two interacting Bose-Einstein condensates

Francesco Riboli* and Michele Modugno†

INFM-LENS, Dipartimento di Fisica, Universita` di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
~Received 20 February 2002; published 13 June 2002!

We investigate the spatial patterns of the ground state of two interacting Bose-Einstein condensates. We
consider the general case of two different atomic species~with different mass and in different hyperfine states!
trapped in a magnetic potential whose eigenaxes can be tilted with respect to the vertical direction, giving rise
to a nontrivial gravitational sag. Despite the complicated geometry, we show that within the Thomas-Fermi
approximations and upon appropriate coordinate transformations, the equations for the density distributions
can be put into a very simple form. Starting from these expressions we give explicit rules to classify the
different spatial topologies that can be produced, and we discuss how the behavior of the system is influenced
by the interatomic scattering length. We also compare explicit examples with the full numeric Gross-Pitaevskii
calculation.
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I. INTRODUCTION

Bose-Einstein condensation of mixtures of differe
atomic species has recently been the subject of an inten
experimental and theoretical research@1–12#. The first ex-
perimental realization of a system of two interacting Bo
Einstein condensates~BECs! has been obtained at JILA wit
a double condensate of87Rb in two different hyperfine
states,uF,MF&5u1,21& and u2,2& @1#. This mixture was
characterized by a partial overlap between the two cond
sates, in the presence of a gravitational ‘‘sag’’ due to
different magnetic moment. Since then several other exp
ments have been performed with double condensates o
bidium @2–4# and with spinor condensates of sodium in o
tical traps@5#.

Motivated by these experiments and by the future po
bility of realizing other binary mixtures of interacting BEC
these systems have been extensively studied also from
theoretical point of view. Up to now only two particula
cases have been addressed:~i! a system of two condensate
with different mass in cylindrically symmetric potentials a
ranged concentrically@6,7,10,11#, and~ii ! including a gravi-
tational sag, but for condensates with the same mass~the
JILA case! @12#.

In this paper we extend these studies by considering
very general case of two different atomic species, with d
ferent mass and in different hyperfine states, trapped
magnetic potential whose eigenaxes can be tilted with
spect to the direction of gravity. We show that, despite
complicated geometry, the ground state of the system ca
easily characterized within the Thomas-Fermi~TF! approxi-
mation valid for large numbers of atoms. We provide gene
formulas that allow us to calculate the shape and the den
distributions of the two BECs. Our results can be a use
tool to analyze future experiments.

The paper is organized as follows. In Sec. II we disc
the equations for the ground state of the system and s
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that upon an appropriate coordinate transformation, they
be put into a very simple spherical form. In Sec. III w
discuss the general features of the model, and we give
explicit algorithm to classify all the different topologies th
can be constructed by varying the number of atoms and
interatomic scattering length. We also work out some
amples for the case of87Rb and 41K, which is a promising
system for the realization of a new binary mixture of BEC
@15,16#. Finally we compare the results against the numeri
solution of the full Gross-Pitaevskii~GP! equations for the
system, finding a good agreement.

II. THE MODEL

Let us consider a system of two Bose-Einstein cond
sates with massmi and in the hyperfine state (Fi ,MFi), each
containingNi atoms (i 51,2), confined in a magnetic trap
The ground state of the system can be obtained by solv
two coupled Gross-Pitaevskii equations for the condens
wave functionsc i @13#,

F2
\2

2m1
¹21U1~x!1u11uc1u21u12uc2u2Gc15m1c1 ,

~1!

F2
\2

2m2
¹21U2~x!1u21uc1u21u22uc2u2Gc25m2c2,

~2!

with the normalization condition

E d3xuc i u25Ni . ~3!

The coupling constantsui j are given in terms of the scatte
ing lengthai j by @12#

u115
4p\2a11

m1
, ~4!
©2002 The American Physical Society14-1
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u1252p\2a12S m11m2

m1m2
D5u21, ~5!

u225
4p\2a22

m2
, ~6!

where we used the fact thata125a21. Hereinafter we assum
a11, a22.0.

The total potential experienced by each condensate is
sum of the gravitational potential and of a dipole magne
potentialUB

i (x)5mBgFiMFi uB(x)u (gFi is the gyromagnetic
factor of the speciei ) which we assume, as usual, to b
harmonic,

UB
( i )~x!5mBgFiMFi S B01

1

2 (
j

K jxj
2D . ~7!

By defining K̄5(K1K2K3)1/3, l j5AK j /K̄, and

U0i5mBgFiMFiB0 , ~8!

v i
25mBgFiMFiK̄/mi , ~9!

we can finally writeUB in the standard form

UB
( i )~x!5

1

2
miv i

2(
j

l j
2xj

21U0i . ~10!

For what concerns the gravitational potential, here we c
sider the general case in which the vertical direction~the
direction of gravity! is not aligned with any of the symmetr
axis of the trap, but lies in thex-z symmetry plane, rotated
by an angleu. We include this possibility since in the exper
ments the trap confinement is generally weaker along
horizontal directionx, and therefore even a small angle c
produce a large ‘‘horizontal sag’’; we will give explicit ex
amples in the following section@14#. The total potential is

Ui~x!5UB
( i )~x!1mig~x sinu1z cosu!. ~11!

By performing an appropriate transformation on the co
dinates the potentialU(x) can be put in a simpler form
These transformations amount to

~i! a scaling byl j ~notice that the determinant of th
transformation is equal to 1!,

xj→xj8[l j xj , ~12!

in order to putUB(x8) in a spherically symmetric form;
~ii ! a rotation of an anglew (xj8→xj9) in order to align the

z9 axis with the vertical direction,

w5tan21S lz

lx
tanu D . ~13!

The transformed potential reads~to simplify the notations
in the following we omit the apices,xj9→xj )
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Ui~x!5
1

2
miv i

2@r 21~z2z0i !
2#1U0i , ~14!

where we have definedr 25x21y2, and

U0i5mBgFiMFiB02
1

2
mi

g2l 2

v i
2 , ~15!

z0i52
gl

v i
2 , ~16!

where the scaling factorl is given by

l 5
cosu

lzcosw
. ~17!

Then we perform a translation alongz by z01, defining
dz5z022z01, and we express all quantities in dimensionle
units, rescaling lengths byaho[A\/(mv1) and energies by
\v1. Finally, the expressions for the trapping potential th
will be used in the rest of the paper are

V1~x![U1~x!2U015
1

2
~r 21z2!, ~18!

V2~x![U2~x!2U025
1

2
h@r 21~z2dz!2#, ~19!

with

h5
m2v2

2

m1v1
25

gF2MF2

gF1MF1
, ~20!

dz5
lg

aho
S 1

v2
2 2

1

v1
2D 5

lg

ahov1
2 S m2

hm1
21D . ~21!

To summarize, in this section we have shown that w
suitable transformations the trapping potential for the t
condensates can be reduced to a simple spherical form.
allows for a much easier investigation of the features of
interacting system, as will be discussed in the following s
tion.

III. THOMAS-FERMI APPROXIMATION

For large numbers of atomsNi the solution of Eqs.~1!
and ~2! can be derived in the so-called Thomas-Fermi a
proximation that amounts to neglecting the kinetic ter
¹2c i . Therefore, by reabsorbing the valuesU0i of the po-
tentials on their minima in the definition of the chemic
potentials,m i2U0i→m i , the above equations become

V1~x!1u11uc1u21u12uc2u25m1 , ~22!

V2~x!1u21uc1u21u22uc2u25m2 , ~23!

where the reduced coupling constantsui j are
4-2
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u1154p
a11

aho
, ~24!

u1252p
a12

aho
S 11

m1

m2
D5u21, ~25!

u2254p
a22

aho

m1

m2
. ~26!

By defining g1[u21/u11, g2[u12/u22, and D5u11u22

2u12
2 , the solution of Eqs.~22! and ~23! in the overlapping

region take the form

uc1u25a1@R1
22r 22~z2zc1!2#, ~27!

uc2u25a2@R2
22r 22~z2zc2!2#, ~28!

where we have defined the radiiRi ,

R1
2~m1 ,m2!5

2~m12g2m2!

12hg2
1

hg2

~12hg2!2 dz2, ~29!

R2
2~m1 ,m2!5

2~m22g1m1!

h2g1
1

hg1

~h2g1!2 dz2; ~30!

the position of the centers alongz,

zc15
2hg2

12hg2
dz, ~31!

zc25
h

h2g1
dz; ~32!

and the normalization factorsa i ,

a15u22

12hg2

2D
, ~33!

a25u11

h2g1

2D
. ~34!

Notice that in order to have overlap betweenc1 andc2 Eqs.
~27! and ~28! both have to be satisfied, that is, both rig
members must be positive (uc1u2,uc2u2>0). The overlap-
ping region between the two condensates is therefore
intersection of the regions of space delimited by the spher
surfacesS i defined by the equationRi

25r 21(z2zci)
2, and

identified by the sign of the coefficienta i : for a i.0 the
region to be considered is the one inside the surfaceS i , for
a i,0 the one outside.

In the regions where there is not an overlap the wa
functions take the usual form

uc01u25
1

2u11
~2m12r 22z2!, ~35!

uc02u25
h

2u22
S m2

h
2r 22~z2dz!2D . ~36!
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Analogously to the overlapping case, these solutions are
fined in a region of space whose boundary is delimited by
surfaces S0i of equation R0i

2 5r 21(z2zci
0 )2, with R01

2

52m1 , R02
2 52m2 /h, zc1

0 50, andzc2
0 5dz.

Notice that in order to satisfy the continuity condition
the wave functionc i at the interface between the overla
ping and nonoverlapping regions the wave functionc01 must
be connected toc1 at the boundary defined byS2 ~where
uc2u2 vanishes, but notuc1u2), and vice versa.

A. General considerations

Even though a self-consistent solution of the full proble
can be obtained only after having imposed the normaliza
of the wave functions, we can draw some general consi
ations by considering the role played by the determinanD
and the couplingu12. First of all we define the value ofu12

at which the determinantD changes sign,ū[Au11u22. Then
we notice that the behavior of the position of the cent
alongz, zci , and the normalization factorsa i of the overlap-
ping wave functions depend on two critical valuesu12
5hu11 andu125u22/h, which define the poles ofzci and the
zeros ofa i ~the latter have poles also foru1256ū. It is not
difficult to prove that one of these two values lies in t
interval whereD.0, and the other outside. Therefore, to fi
the hierarchy of the scattering lengths we choose the con
sate 1 in order to satisfy the conditionh2<u22/u11; with
this choice the critical value lying in the interval of positiv
D is u* [hu11. In Figs. 1 and 2 we show the position of th
centerszci and the normalization factorsa i as a function of
u12. Notice that in correspondence ofu* the centerzc2 of
the surfaceS2 goes from2` to 1`, and the normalization
factor a2 becomes negative. Therefore foru* ,u12,ū the
region whereuc2u2.0 is the one outside the surfaceS2 @see
also Figs. 3~c! and 3~g!#.

We can distinguish three cases:
~i! u12,2ū, D,0: no overlapping solution is allowed in

this range. From Fig. 2 we see that botha i are negative, and
therefore it is not difficult to prove that an overlapping r

FIG. 1. Plot of the rescaled positionzc1 /dz ~continuous line!
andzc2 /dz ~dashed line! of the centers of the ‘‘interacting’’ surface
S i as a function of the mutual couplingu12.
4-3
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FRANCESCO RIBOLI AND MICHELE MODUGNO PHYSICAL REVIEW A65 063614
gion could be constructed only at the price of putting a h
in the condensate, where bothc i would be vanishing. This
has obviously no physical meaning and in fact what actu
happens is that whenu12 approaches2ū1 the condensate
eventually collapse@7,12#.

~ii ! 2ū,u12,ū, D.0: in this range the two condensat
can coexist and overlap in some region of space ifudzu
,R101R20. We will discuss in detail the actual degree
overlap and its topology in the following section.

~iii ! u12.ū, D,0: in this case the strong mutual repu
sion leads to a phase separation between the two conden
@8,9#. The actual shape of the interface is determined by
one at the critical valueū. Since for this value the overla
goes to zero~in the TF approximation!, if one further in-
creasesu12 the shape of the interface cannot change.

Of course, if one retains the kinetic term in the GP eq
tions this can in part affect the degree of overlap between
two condensates. In particular the transition to the pha
separation regime is not so sharp: the condensates can
an appreciable overlap also foru12*ū @10–12#. The effect of
the kinetic energy is also to raise the critical value bel
which the system collapses.

B. Topology of spatial configurations

In this section we investigate the different configuratio
that can be obtained in the case~ii ! discussed above (D

.0, 2ū,u12,ū). Before solving completely the system
for some particular set of parameters, we give an overview
the different topologies that one can obtain. We again dis
guish three cases, as shown in Fig. 3.

~1! ‘‘External overlap’’: this case can take place when t
separationudzu between the centers is larger than the diff
ence of the radii of the noninteracting profiles,uR012R02u
,udzu,R011R02 @see Figs. 3~a!–3~d!#. One can easily
verify that all the four surfacesS1 and S01 intersect on a
circle perpendicular to the plane in Fig. 3, passing for
points P and Q ~shown as black dots!. The overlapping re-
gion is the one contained between the surfacesS1 and S2

FIG. 2. Plot of the normalization factorsa1 ~continuous line!
anda2 ~dashed line! of the interacting wave functions as a functio
of u12 ~in arbitrary units!.
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~dashed lines in the figure! whose actual shape depends
u12, as shown in Fig. 3 foru12,0 ~a!, 0,u12,u* ~b!, u*
,u12,ū ~c!, andu125ū which is a case of phase separati
~d!. For smallerdz one obtains other configurations, whic
fall into the next two classes.

~2! ‘‘Full overlap’’: in this case, forudzu,uR012R02u, one
of the two condensates is entirely contained in the other w
whom it is fully overlapping. See Figs. 3~e! and 3~f! for
u12,0 and 0,u12,u* , respectively. Which of the two con
densates lies in the outer shell depends on the actual valu
the parameters@6#.

~3! ‘‘Partial overlap’’: this is similar to case~2!, but now
the mutual repulsion between the two condensates is g
enough to expel each from the central region of the other
force the overlap to occur only at the boundary betwe

FIG. 3. Possible topologies for a binary mixture of two BEC

~1! ‘‘External overlap’’: u12,0 ~a!, 0,u12,u* ~b!, u* ,u12,ū

~c!, and phase separationu125ū ~d!; ~2! ‘‘full overlap’’: u12,0 ~e!,

0,u12,u* ~f!; ~3! ‘‘partial overlap’’: u* ,u12,ū ~g! and phase

separationu125ū ~h!. Dark and light gray represent the region
occupied by the noninteracting condensates 1 and 2, respecti
The shaded area indicates the overlapping region. The bound
of these regions are delimited by the surfacesS0i ~noninteracting,
continuous, and dotted lines! andS i ~overlapping, dashed lines!.
4-4
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TOPOLOGY OF THE GROUND STATE OF TWO . . . PHYSICAL REVIEW A65 063614
them. In particular, with the choicehu11<ū, the overlap
takes place over a shell that separates the inner core con
ing the condensate 1, and the outer region with the cond
sate 2@Fig. 3~g!#. Notice that according to the above discu

sion this configuration is possible only foru* ,u12,ū
where the sign ofa2 is negative. This is a necessary but n
sufficient condition, since also the conditionR2,R1 must be
satisfied. In this range ofu12 ~wherea2,0) another possible
solution is R2

2,0, which leads to the case~2!. By further

increasingu12 to the critical valueū one again obtains a
configuration of phase separation@Fig. 3~h!#.

Having determined the possible configurations of the s
tem, we are now ready to solve any particular problem
imposing the normalization condition~3!. To do this one has
to write the normalization integrals for each of the possi
profiles in Fig. 3, and then solve Eq.~3! in order to find the
chemical potentialsm i as a function of the atom numbersNi .
The analytic expressions for these integrals are given in
Appendix. These are polynomial functions of fractional po
ers in the chemical potentialsm i , and in general Eq.~3! does
not admit analytical solutions. Therefore the relation betwe
m i andNi must be inverted numerically~which is neverthe-
less a much easier task than solving numerically the
Gross-Pitaevskii problem!. For the special case of phas
separation the two normalization equations can be decou
~by using the fact thatR15R2 andzc15zc2 for u125ū), and
solved analytically fordz50.

Notice that in general~except for some particular cas
e.g.,dz50) it is not possible to knowa priori which of the
various configurations in Fig. 3 applies: one has to solve
~3! for all the possible configurations, and then choose
one that gives a self-consistent solution.

In summary the ground-state configuration for a particu
system can be found in three steps:

~i! Choose the normalization integrals that apply to
possible profiles in Fig. 3 for a givenu12, and determine
m i(Ni) by solving Eq.~3! self-consistently;

~ii ! identify the overlapping region by plotting the ‘‘inter
acting’’ surfacesS i ;

~iii ! determine the noninteracting region for each cond
sate by using the ‘‘noninteracting’’ surfacesS0i , and the
continuity of the wave functions~see Fig. 3!.

We also recall that for the very special casedz50 there
are also symmetry-breaking solutions, not included in
present analysis, which could be energetically favorable@10#.

C. Examples

To show how the method works we now give some e
plicit examples by considering two condensates of87Rb and
41K, which is a promising system for the realization of a ne
binary mixture of BECs@15,16#. We will classify some pos-
sible configurations that can be obtained by varying the t
parameters and the number of atoms in each condensat
different values of the interatomic scattering length, which
considered here as a tunable parameter@18#. The specific
values will be chosen in order to generate configurations
all the three classes discussed in the preceding section.
06361
in-
n-
-

t

-
y

e

e
-

n

ll

ed

q.
e

r

e

-

e

-

p
for

s

r
he

results, valid in the TF approximation, will be compared w
the numeric solution of the full three-dimensional Gros
Pitaevskii equations~GPE!, found using a steepest desce
method@13#.

We start by considering a case of ‘‘external overlap’’ wi
both condensates in the hyperfine levelu2,2& (h51). The
scattering lengths areaRb599 a0 andaK560 a0 , a0 being
the Bohr radius@17#. As trap frequencies we usevx

Rb

516 Hz, vy
Rb5vz

Rb5250 Hz, with an angle of rotationu
50.035~we retain these values for all the cases analyzed
this section!. With this choice the reduced coupling consta
uii are

uRb,Rb50.0611, uK,K50.0785, ~37!

and therefore, according to the above discussion, we iden
the condensates 1 with87Rb, and the condensates 2 wi

FIG. 4. TF profiles of the two condensates~noninteracting, con-
tinuous; overlapping, dashed! in rescaled~left! and natural~right, in
units of aho) coordinates (x horizontal, z vertical! for a case of
‘‘external overlap’’: NRb553104, NK523104, a125255 a0.

FIG. 5. Density contours of the GPE solutions in thex-z plane
for the 87Rb ~bottom! and 41K ~top! condensates. Each condensa
is compared with the TF profiles that define the boundary of
noninteracting or overlapping phases, as defined in Fig. 3~a!. This is
a case of ‘‘external overlap’’ with attractive interaction between t
two condensates,a125255 a0, and NRb553104, NK523104.
Lengths are given in units ofaho .
4-5
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FRANCESCO RIBOLI AND MICHELE MODUGNO PHYSICAL REVIEW A65 063614
41K. We choose a case of attractive interaction between
two condensates,a125255 a0 (u12520.0530), withNRb
553104 andNK523104. To visualize the role of the scal
ing and rotation transformations, in Fig. 4 we show the
profiles of the two condensates in thex-z plane, in rescaled
~left! and natural coordinates~the coordinate axes correspon
to the trap eigenaxes; right!. The profiles in natural units ca
be easily obtained by performing the inverse transforma
of those in Eqs.~12! and ~13!. We will use this system of
coordinates to show all the following figures. Notice th
despite the small rotation angleu, ~the direction of gravity,
represented by a dotted line in the right picture of Fig. 4
almost indistinguishable from thez axis on the scale of the
figure! the misalignment in the direction of gravity produc
a relatively large horizontal sag in thex direction where the
trap confinement is weak.

In Fig. 5 we compare the TF profiles with the contour p
of the two densities, as found from the full GPE solution. F
clarity each condensate is plotted separately, and comp
with the TF profiles that define the boundary of the non
teracting ~continuous lines! or overlapping phases~dashed
lines!, as defined in Fig. 3. The outer contour line for ea
condensate correspond to 10% of its peak density~for y
50).

Then we consider two examples for a system where
87Rb condensate is in the hyperfine levelu2,2& and the41K
condensate inu2,1& ~we use againaK,K560 a0). In this case
h50.5. In Fig. 6 we show a case of ‘‘partial overlap,’’ ob
tained by fixing the interatomic scattering length toa12
567 a0 (u1250.0645) and the number of atoms toNRb
523104 and NK523105. Notice that when both conden

FIG. 6. Density contours of the GPE solutions in thex-z plane
for the 87Rb ~bottom! and 41K ~top! condensates, for a case o
‘‘partial overlap’’: NRb523104, NK523105, a12567 a0. Each
condensate is compared with the TF profiles which define
boundary of the noninteracting or overlapping phases, as define
Fig. 3~g!. Lengths are given in units ofaho .
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sates are in theu2,2& level the spatial separation between t
two is too large to allow for a configuration of ‘‘partial over
lap’’ for reasonable values of the trap frequencies~in prin-
ciple, one could reduce the separation by strongly increas
the confinement in the direction of gravity!.

Finally, in Fig. 7 we show a case of ‘‘full overlap’’ for
NRb553105, NK513104, and a12520 a0, giving u12
50.0193.

From the examples considered here we see that, altho
the full solution of the GPE is required for a precise det
mination of the actual degree of overlap between the t
condensates, the TF approximation well captures the b
topology of the ground-state configurations. Therefore, d
to its simplicity, the TF method presented here can be
useful tool to characterize the ground-state structure of a
nary mixture of BECs also in presence of a nontrivial geo
etry.

We conclude this section by noting that we have a
verified that our method well reproduces the results alre
studied in literature in case of simpler geometries@6,10,12#.

IV. CONCLUSIONS

We have presented a general method to classify
ground state of a binary mixture of Bose-Einstein cond
sates. We have considered the general case of two diffe
atomic species, with different mass and in different hyperfi
states, trapped in a magnetic potential. We have explic
included the possibility of a nontrivial gravitational sa
when the direction of gravity is not aligned with any of th
trap eigenaxes, since even a small misalignment can prod

e
in

FIG. 7. Density contours of the GPE solutions in thex-z plane
for the 87Rb ~bottom! and 41K ~top! condensates, for a case of ‘‘ful
overlap’’: NRb553105, NK513104, a12520 a0. Each conden-
sate is compared with the TF profiles which define the boundar
the noninteracting or overlapping phases, as defined in Fig. 3~f!.
Lengths are given in units ofaho .
4-6
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TOPOLOGY OF THE GROUND STATE OF TWO . . . PHYSICAL REVIEW A65 063614
a large ‘‘horizontal sag.’’ We have shown that, within th
Thomas-Fermi approximations and by performing a suita
coordinate transformation, the equations for the density
tributions can be put into a simple spherical form. We ha
given explicit rules to classify the different spatial topologi
that can be produced, and we have discussed how the be
ior of the system is influenced by the interatomic interacti

We have also provided explicit examples, and compa
the results with the full numeric Gross-Pitaevskii calculatio
finding a good agreement.

The results presented in this paper might be useful
analyzing future experiments where new combinations of
nary condensates are likely to be produced@15,16#.

Note added.After completing this work, we becam
aware of a very recent preprint related to this subject@19#.
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APPENDIX: NORMALIZATION INTEGRALS

In this appendix we give the explicit expressions for t
integrals that enter the normalization condition~3!. We dis-
tinguish two general cases:~i! ‘‘internal overlap,’’ one of the
two condensates is entirely contained in the other~Fig. 3,
right column!, and ~ii ! ‘‘external overlap’’ ~Fig. 3, left col-
umn!.

In both cases the normalization condition can be writ
as a sum of integrals of a generic density

ucu25a@Rc
22r 22~z2zc!

2# ~A1!

over an appropriate portion of spherical domain who
boundary is given by the surface

RA
25r 21~z2zA!2. ~A2!

In the following sections we consider explicitly the tw
cases.

1. Internal overlap

In this case the normalization condition can be impos
by using a combination of integrals oversphericaldomains.
The generic form is

I I~a,zc ,Rc ,zA ,RA!54paRA
3F1

3
Rc

22
1

3
~zc2zA!22

1

5
RA

2 G .
~A3!

From this expression one can also recover the value of
integral for the noninteracting case

I n~m i !5
8p

15
aRc

5 ~A4!

@ I n(m i)54p(2m i)
5/2/uii for h51#.
06361
le
s-
e

av-
.
d
,

r
i-

d

n

e

d

e

By using appropriate combinations of the integral~A3!,
the normalization condition for the case shown in Fig. 3~g!
reads

N15I I@a1 ,zc1 ,R1~m1 ,m2!,zc1 ,R1~m1 ,m2!#

2I I@a1 ,zc1 ,R1~m1 ,m2!,zc2 ,R2~m1 ,m2!#

1I I@a01,0,A2m1 /h,zc2 ,R2~m1 ,m2!#, ~A5!

N25I n~m2!2I I@a02,dz,A2m2 /h,zc1 ,R1~m1 ,m2!

1I I~a2 ,zc2 ,R2~m1 ,m2!,zc1 ,R1~m1 ,m2!#

2I I@a2 ,zc2 ,R2~m1 ,m2!,zc2 ,R2~m1 ,m2!#, ~A6!

where we have indicated the explicit dependence onm1 and
m2. The cases in Figs. 3~e!, 3~f!, and 3~h! can be constructed
in a similar way.

2. External overlap

These are the configurations shown in Fig. 3~a!–~d!. In
this case the master integral can be written as the inte
over aconvexdomain delimited by two spherical surfaces (A
and B the upper and lower ones along thez axis, respec-
tively!

I E~a,zc ,Rc ,zA ,RA ,zB ,RB!

5pa$RA
2@Rc

220.5RA
22~zc2zA!2#@RA2 z̄~A,B!#

2RA
2~zc2zA!@RA

22 z̄2~A,B!#2 1
3 @Rc

22~zc2zA!2#

3@RA
32 z̄3~A,B!#1 1

2 ~zc2zA!@RA
42 z̄4~A,B!#

1 1
10 @RA

52 z̄5~A,B!#%1~zA↔zB ,RA↔2RB!

~A7!

with

z̄~A,B!5
RA

22RB
21~zB2zA!2

2~zA2zB!
. ~A8!

By assuming a configuration where the condensate 1 h
lower position alongz ~as in Fig. 3!, the normalization con-
dition for the cases withu12,u* shown in Figs. 3~a! and
3~b! is

N15I n~m1!2I E@a01,0,A2m1,0,A2m1,zc2 ,R2~m1 ,m2!#

1I E@a1 ,zc1 ,R1~m1 ,m2!,zc1 ,R1~m1 ,m2!,zc2 ,R2

3~m1 ,m2!#, ~A9!

N25I n~m2!

2I E~a02,dz,A2m2 /h,zc1 ,R1~m1 ,m2!,dz,A2m1!

1I E@a2 ,zc2 ,R2~m1 ,m2!,zc1 ,R1~m1 ,m2!,zc2 ,R2

3~m1 ,m2!#. ~A10!
4-7
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In an analogous way one can construct the appropriate
malization condition for all other cases in this class~‘‘exter-
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