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Topology of the ground state of two interacting Bose-Einstein condensates
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We investigate the spatial patterns of the ground state of two interacting Bose-Einstein condensates. We
consider the general case of two different atomic spdeih different mass and in different hyperfine states
trapped in a magnetic potential whose eigenaxes can be tilted with respect to the vertical direction, giving rise
to a nontrivial gravitational sag. Despite the complicated geometry, we show that within the Thomas-Fermi
approximations and upon appropriate coordinate transformations, the equations for the density distributions
can be put into a very simple form. Starting from these expressions we give explicit rules to classify the
different spatial topologies that can be produced, and we discuss how the behavior of the system is influenced
by the interatomic scattering length. We also compare explicit examples with the full numeric Gross-Pitaevskii

calculation.
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[. INTRODUCTION that upon an appropriate coordinate transformation, they can

be put into a very simple spherical form. In Sec. Il we

Bose-Einstein condensation of mixtures of differentdiscuss the general features of the model, and we give an
atomic species has recently been the subject of an intensi&xplicit algorithm to classify all the different topologies that
experimental and theoretical reseafdh-12]. The first ex- can be constructed by varying the number of atoms and the
perimental realization of a system of two interacting Bose-nteratomic scattering length. We also work out some ex-
Einstein condensatéBECS has been obtained at JILA with amples for the case d’Rb and *!K, which is a promising
a double condensate df’Rb in two different hyperfine System for the realization of a new binary mixture of BECs
states,|F,Mg)=|1,—1) and |2,2) [1]. This mixture was [15,16. Finally we compare the results against the numerical
characterized by a partial overlap between the two conderpolution of the full Gross-PitaevskiiGP) equations for the
sates, in the presence of a gravitational “sag” due to thesystem, finding a good agreement.
different magnetic moment. Since then several other experi-

ments have been performed with double condensates of ru- Il. THE MODEL
bidium [2—4] and with spinor condensates of sodium in op-
tical traps[5]. Let us consider a system of two Bose-Einstein conden-

Motivated by these experiments and by the future possisates with massy and in the hyperfine staté(,M;), each
bility of realizing other binary mixtures of interacting BECs, containingN; atoms (=1,2), confined in a magnetic trap.
these systems have been extensively studied also from tAghe ground state of the system can be obtained by solving
theoretical point of view. Up to now only two particular two coupled Gross-Pitaevskii equations for the condensate
cases have been address@pla system of two condensates wave functionsy; [13],
with different mass in cylindrically symmetric potentials ar-

ranged concentricall{6,7,10,1], and(ii) including a gravi- [ 42 5 5 2'

tational sag, but for condensates with the same nfies - Z—le F U0+ Ugg | “+ urd o] * | 1= s
JILA case [12]. ; : (1)

In this paper we extend these studies by considering the

very general case of two different atomic species, with dif- 72 :

ferent mass and in different hyperfine states, trapped in & | — — §24 U,(x) + Uy 1|2+ Ungl 2|2 | tho= i,
magnetic potential whose eigenaxes can be tilted with re- [ 2mM; ]

spect to the direction of gravity. We show that, despite the @

complicated geometry, the ground state of the system can be

easily characterized within the Thomas-Fe(fiF) approxi-  With the normalization condition

mation valid for large numbers of atoms. We provide general

formulas that allow us to calculate the shape and the density 3 )

distributions of the two BECs. Our results can be a useful f x| *=N;. ()
tool to analyze future experiments.

The paper Is organized as follows. In Sec. Il we discussI'he coupling constants;; are given in terms of the scatter-
the equations for the ground state of the system and shoyylg lengtha;; by [12]
ij

. - o 4rmh%a
* . 11
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oo [Mtmy 1 2 2
Upp=2mh<ay; = Uz, (5 Ui(X)= 5 moi[r°+(z2—2zy)°]+ Ug;, (14
m;m, 2
Amh%a,, where we have definedf=x2+y?, and
Upp=—"——, (6)
m; 1 gz|2
. Uoi=e9riMriBo— 5Mi—, (15
where we used the fact that,=a,,. Hereinafter we assume w;
aqq, a,0>0.
The total potential experienced by each condensate is the gl
tat : ! j 2=~ —3, (16)
sum of the gravitational potential and of a dipole magnetic Y

potential U5(x) = uggriMri| B(X)| (ki is the gyromagnetic
factor of the specié) which we assume, as usual, to be where the scaling factdris given by
harmonic,

| cosé 17
. 1 = -
UL (X) = paGriMei Bo+§; Kjsz)- () h200S¢
Then we perform a translation alormby zy,, defining
By defining?=(K K,K4) Y3\, = /K. /K. and dz=2zy,— zy,, and we express all quantities in dimensionless
1hanes e units, rescaling lengths bg,,= VA/(mw;) and energies by
Uoi = 480 MgiBo, (8) hw4. Finally, the expressions for the trapping potential that
will be used in the rest of the paper are
w?= uegrMgK/m;, )] 1
Vl(x)Eul(x)—U01=§(r2+22), (18)
we can finally writeUg in the standard form
. 1 — _ _E 2 —_d-2
ud(x)= Emiwiz; )\j2x1.2+ Ugi - (10) Vo(X)=Uy(X) U02—2 nlre+(z—dz)“], (19
For what concerns the gravitational potential, here we con\-"'ith
sider the general case in which the vertical direct{tme Mo M
direction of gravity is not aligned with any of the symmetry n= 2 §= M, (20)
axis of the trap, but lies in the-z symmetry plane, rotated Mwi griMgg
by an anglef. We include this possibility since in the experi-
ments the trap confinement is generally weaker along the lg [ 1 1 lg m,
horizontal directionx, and therefore even a small angle can = \e2 D2 T 2 om 1]. (21)
ho\®W2 ©®1) apw7\7M

produce a large “horizontal sag”; we will give explicit ex-

amples in the following sectiofiLl4]. The total potential is To summarize. in this section we have shown that with
U.60=UD )+ m in6+7cosh). 11 suitable transformations the trapping potenuall for the two.
(0 =Ug () + mig(xsin g+ cost) (D condensates can be reduced to a simple spherical form. This

By performing an appropriate transformation on the coor-2llows for a much easier investigation of the features of the

dinates the potentiaU(x) can be put in a simpler form. ![?(;cﬁractmg system, as will be discussed in the following sec-
These transformations amount to )

(i) a scaling by\; (notice that the determinant of the
transformation is equa| to);l_ I1l. THOMAS-FERMI APPROXIMATION

For large numbers of atom¥; the solution of Eqs(1)
and (2) can be derived in the so-called Thomas-Fermi ap-
, " ) i proximation that amounts to neglecting the kinetic terms
in order to putUg(x’) in a sphe/ncal/!y symmetric form; V2y; . Therefore, by reabsorbing the valuds; of the po-

(ii) a rotation of an angle (xj —Xx;) in order to align the  entials on their minima in the definition of the chemical

Xj—>Xj/E)\ij, (12)

Z" axis with the vertical direction, potentials,u; — Uy — u;, the above equations become
A\ 2 2_
o=tan 1 )\—Ztanﬁ _ (13) V1(X) + U] 1] °+ Ugg o] = g, (22)
X
Vo(X) + Uy 9]+ Ul thl = o, (23)

The transformed potential reat® simplify the notations
in the following we omit the apicesgj’—>xj) where the reduced coupling constanfsare
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ap 1
ull_ 4’TTa_0 (24) : ch/dZ
':
a m; '
= e — + —| =
U= 27Tah0 1 m, Usq, (25) \“
AN
el
az, M = i = =
Upp=dm—2 . (26) -u 0 SS9
22 apo M \
ho 2 z,,/dz\
By defining y1=Uz1/U11, ¥2=U1o/Uz, and A=uy;Uy; \
—u3,, the solution of Eqs(22) and(23) in the overlapping A<O A>0 ! A<0
region take the form 1
I
I
|¢a]?= aa[Ri—12= (2= 2c1)°], 27 :
W |2:a [Rz—rz—(z—z )2] (29) FIG. 1. Plot of the rescaled positian,/dz (continuous ling
2 22 o2l & andz., /dz (dashed lingof the centers of the “interacting” surfaces
where we have defined the radj, 3,; as a function of the mutual coupling,.
R2( 1 ) = 2( 1= Yopt2) N2 42 (29 Analogously to the overlapping case, these solutions are de-
1y, M2)= 2072,

fined in a region of space whose boundary is delimited by the
surfaces 20, of equation R3=r2+(z—2%)?, with R3;
—2,LL1, ROZ 2#2/7], Cl O andzcz dZ.

1-ny, (1=7nv,)

2(pp— 71#1)+ nY1

Ry, 142) = = ———dz; (30 Notice that in order to satisfy the continuity condition of
=7 (7= 1) . ;
the wave functiony; at the interface between the overlap-
the position of the centers alorrg ping and nonoverlapping regions the wave functign must
be connected ta); at the boundary defined by, (where
S 2 4, (31 |14,|% vanishes, but ndty4|?), and vice versa.
1-7nv2
A. General considerations
Zeo= 7 dz (32 Even though a self-consistent solution of the full problem
7" can be obtained only after having imposed the normalization
ot . of the wave functions, we can draw some general consider-
and the normalization factows;, ations by considering the role played by the determin&ant
1- 75y, and the couplingi,,. First of all we defin_e the value af;,
a1 = U5 (33 at which the determinant changes signj=\/u;iUs,. Then
we notice that the behavior of the position of the centers
= alongz, z;, and the normalization factoes of the overlap-
ap=Up 53— (34  ping wave functions depend on two critical values,

= nuq, andu,,=U,,/ 5, which define the poles at,; and the
Notice that in order to have overlap betwegpand, Eqs.  zeros ofe; (the latter have poles also far,= *u. It is not
(27) and (28) both have to be satisfied, that is, both right difficult to prove that one of these two values lies in the
members must be positive ¢;|?,|#,|>=0). The overlap- interval whereA>0, and the other outside. Therefore, to fix
ping region between the two condensates is therefore théde hierarchy of the scattering lengths we choose the conden-
intersection of the regions of space delimited by the sphericaate 1 in order to satisfy the conditioff <u,,/uy;; with
surfacesS,; defined by the equatioR?=r2+(z—z)?, and this choice the critical value lying in the interval of positive
identified by the sign of the coefficient;: for ;>0 the A isu*=7uy,. InFigs. 1 and 2 we show the position of the
region to be considered is the one inside the surlgefor centersz,; and the normalization factorg; as a function of

;<0 the one outside. us». Notice that in correspondence of the centerz., of
In the regions where there is not an overlap the wavéhe surface., goes from— to +, and the normalization
functions take the usual form factor «, becomes negative. Therefore fof<u12<Uthe
region wherg ¢,|2>0 is the one outside the surfag [see
o= 1 2,u1 -2 (35  also Figs. &) and 3g)].

We can distinguish three cases:

(i) up< —u, A<0: no overlapping solution is allowed in
2 —r 2_ (72— d2)? (36) this range. From Fig. 2 we see that bethare negative, and
therefore it is not difficult to prove that an overlapping re-

)%
| ool 2=5—
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FIG. 2. Plot of the normalization factors, (continuous ling
anda, (dashed lingof the interacting wave functions as a function
of uy, (in arbitrary units.

gion could be constructed only at the price of putting a hole
in the condensate, where bogh would be vanishing. This
has obviously no physical meaning and in fact what actually

happens is that wheun;, approaches—U* the condensates
eventually collaps¢7,12].

(i) —u<uqp,<u, A>0: in this range the two condensates
can coexist and overlap in some region of spacéd]
<Rjot+Ry. We will discuss in detail the actual degree of
overlap and its topology in the following section.

(iii) u;,>u, A<O: in this case the strong mutual repul-
sion leads to a phase separation between the two condensates
[8,9]. The actual shape of the interface is determined by the

one at the critical valuer. Since for this value the overlap

goes to zerd(in the TF approximatioy if one further in- FIG. 3. Possible topologies for a binary mixture of two BECs.
crea?esulz the_fshape of Fhe wte&f_acg canno§ chﬁnge. (1) “External overlap”: up,<0 (a), 0<up,<u* (b), U* <U,<u

' @] course, if one retains the kinetic term in the GP equay ) ang phase separation,—u (d): (2) “full overlap™ uL,<0 (e),
tions this can in part affect the degree of overlap between th <u,<u* () (3) “partial overlap™: u* <uy,<u (g) and phase
two condensates. In particular the transition to the phase- . P T .
separation regime is not so sharp: the condensates can haigParationu,=u (h). Dark and light gray represent the regions

. — occupied by the noninteracting condensates 1 and 2, respectively.
an appreciable overlap also fo{,=u [10-129. The effect of P y g P y

N . . 2 The shaded area indicates the overlapping region. The boundaries
the_ kinetic energy is also to raise the critical value below; i ase regions are delimited by the surfaligs (noninteracting,
which the system collapses.

continuous, and dotted lineand,; (overlapping, dashed lings

21 =22

B. Topology of spatial configurations (dashed lines in the figuravhose actual shape depends on

In this section we investigate the different configurationsu,,, as shown in Fig. 3 fou;,<0 (a), 0<u;,<u* (b), u*
that can be obtained in the cagé) discussed aboveA( <y, ,<u (c), andu;,=U which is a case of phase separation
>0, —u<uy,<u). Before solving completely the system (d). For smallerdz one obtains other configurations, which
for some particular set of parameters, we give an overview ofall into the next two classes.
the different topologies that one can obtain. We again distin- (2) “Full overlap”: in this case, forldz] <|Rp;— R/, one
guish three cases, as shown in Fig. 3. of the two condensates is entirely contained in the other with
(1) “External overlap”: this case can take place when thewhom it is fully overlapping. See Figs.(&§ and 3f) for
separatiorjdz between the centers is larger than the differ-u,,<0 and 0<u;,<u*, respectively. Which of the two con-
ence of the radii of the noninteracting profilé®q;— Ry densates lies in the outer shell depends on the actual value of
<|dZl<Rgp1+ Ry, [see Figs. 8)—-3(d)]. One can easily the parameterfs].
verify that all the four surface&, and 3, intersect on a (3) “Partial overlap”: this is similar to cas€2), but now
circle perpendicular to the plane in Fig. 3, passing for thehe mutual repulsion between the two condensates is great
points P and Q (shown as black dotsThe overlapping re- enough to expel each from the central region of the other and
gion is the one contained between the surfaEgsandX,  force the overlap to occur only at the boundary between
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them. In particular, with the choiceyu;;<u, the overlap
takes place over a shell that separates the inner core contain-
ing the condensate 1, and the outer region with the conden-
sate 2[Fig. 3(g)]. Notice that according to the above discus-

sion this configuration is possible only far* <u;,<u
where the sign ofv, is negative. This is a necessary but not
sufficient condition, since also the conditiBa<R; must be
satisfied. In this range af;, (wherea,<0) another possible FIG. 4. TF profiles of the two condensatg®ninteracting, con-

solution is R§<0, which leads to the cas@). By further tinuous; overlapping, dashgih rescaledleft) and naturalright, in
units of a,,,) coordinates X horizontal, z vertica) for a case of

“external overlap”: Ng,=5% 10%, Ny=2%x10%, a;,=—55 a.

3
2
1
0
-1
-2

~3307230 <10 0 10 20 30 40

increasinguq, to the critical valueu one again obtains a
configuration of phase separatiffig. 3(h)].

Having determined the possible configurations of the sysresults, valid in the TF approximation, will be compared with
tem, we are now ready to solve any particular problem bythe numeric solution of the full three-dimensional Gross-
imposing the normalization conditid@). To do this one has Pitaevskii equation§GPE), found using a steepest descent
to write the normalization integrals for each of the possiblemethod[13].
profiles in Fig. 3, and then solve E(B) in order to find the We start by considering a case of “external overlap” with
chemical potentialg,; as a function of the atom numbes. both condensates in the hyperfine ley2)2) (n=1). The
The analytic expressions for these integrals are given in thecattering lengths amz,=99 a, andax=60 a,, ay being
Appendix. These are polynomial functions of fractional pow-the Bohr radius[17]. As trap frequencies we use)ffb
ers in the chemical potentials , and in general Eq3) does =16 Hz, w;*b: w§b: 250 Hz, with an angle of rotatios
not admit analytical solutions. Therefore the relation between= 0,035 (we retain these values for all the cases analyzed in
#i andN; must be inverted numericallwhich is neverthe-  this sectiof. With this choice the reduced coupling constant
less a much easier task than solving numerically the full. are
Gross-Pitaevskii problem For the special case of phase
separation the two normalization equations can be decoupled Ugpre=0.0611, uy =0.0785, (37
(by using the fact thaR, =R, andz.; =z, for u;,=u), and
solved analytically fordz=0.

Notice that in generalexcept for some particular case,
e.g.,dz=0) it is not possible to knova priori which of the
various configurations in Fig. 3 applies: one has to solve Eq.
(3) for all the possible configurations, and then choose the

and therefore, according to the above discussion, we identify
the condensates 1 witA’Rb, and the condensates 2 with

one that gives a self-consistent solution. ol
In summary the ground-state configuration for a particular
system can be found in three steps: of

(i) Choose the normalization integrals that apply to the
possible profiles in Fig. 3 for a given,,, and determine
mi(N;) by solving Eq.(3) self-consistently; 4l

(i) identify the overlapping region by plotting the “inter-
acting” surfacesy; ; -60 40 -20 0 20 40 60

(iif) determine the noninteracting region for each conden-
sate by using the “noninteracting” surfaces,;, and the
continuity of the wave functiontsee Fig. 3.

We also recall that for the very special case=0 there
are also symmetry-breaking solutions, not included in the
present analysis, which could be energetically favorghig ol

C. Examples

To show how the method works we now give some ex- -a}
plicit examples by considering two condensate$®b and
4K, which is a promising system for the realization of a new ~60 40 20 0 20 40 60
binary mixture of BEC415,16]. We will classify some pos- FIG. 5. Density contours of the GPE solutions in the plane
sible configurations that can be obtained by varying the tragy the 87Rb (bottom and K (top) condensates. Each condensate
parameters and the number of atoms in each condensate, f@rcompared with the TF profiles that define the boundary of the
different values of the interatomic Scattering Iength, which iSnoninteracting or overlapping phases, as defined in Fay. Bhis is
considered here as a tunable paraméi®. The specific  a case of “external overlap” with attractive interaction between the
values will be chosen in order to generate configurations fotwo condensatesa;,= —55 a,, and Ng,=5X10*, Ny=2x 10"
all the three classes discussed in the preceding section. Thengths are given in units &, .
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FIG. 6. Density contours of the GPE solutions in the plane FIG. 7. Density contours of the GPE solutions in the plane

for the ®Rb (bottom and *)K (top) condensates, for a case of for the #Rb (bottom) and *K (top) condensates, for a case of “full
“partial overlap”: Ngy=2x10%, Ny=2x10°, a;,=67 a,. Each  overlap” Ng,=5x10°, Ny=1x10", a;,=20 a,. Each conden-
condensate is compared with the TF profiles which define thesate is compared with the TF profiles which define the boundary of
boundary of the noninteracting or overlapping phases, as defined ifie noninteracting or overlapping phases, as defined in Kfg. 3
Fig. 3(g). Lengths are given in units . Lengths are given in units af;,.

41K, We choose a case of attractive interaction between theates are in thi2,2) level the spatial separation between the
two condensatess;,= —55 a, (U;,=—0.0530), withNg, two is too large to allow for a configuration of “partial over-
=5x10* andNc=2X 10*. To visualize the role of the scal- lap” for reasonable values of the trap frequencies prin-
ing and rotation transformations, in Fig. 4 we show the TFciple, one could reduce the separation by strongly increasing
profiles of the two condensates in tkez plane, in rescaled the confinement in the direction of gravity
(left) and natural coordinatéthe coordinate axes correspond  Finally, in Fig. 7 we show a case of “full overlap” for
to the trap eigenaxes; rightThe profiles in natural units can Ngp=5X10, Nx=1x10% and a,;,=20 ay, giving U,
be easily obtained by performing the inverse transformation=0.0193.
of those in Egs(12) and (13). We will use this system of From the examples considered here we see that, although
coordinates to show all the following figures. Notice thatthe full solution of the GPE is required for a precise deter-
despite the small rotation angtg (the direction of gravity, mination of the actual degree of overlap between the two
represented by a dotted line in the right picture of Fig. 4, iscondensates, the TF approximation well captures the basic
almost indistinguishable from theaxis on the scale of the topology of the ground-state configurations. Therefore, due
figure) the misalignment in the direction of gravity producesto its simplicity, the TF method presented here can be a
a relatively large horizontal sag in thedirection where the useful tool to characterize the ground-state structure of a bi-
trap confinement is weak. nary mixture of BECs also in presence of a nontrivial geom-
In Fig. 5 we compare the TF profiles with the contour plotetry.
of the two densities, as found from the full GPE solution. For We conclude this section by noting that we have also
clarity each condensate is plotted separately, and comparerified that our method well reproduces the results already
with the TF profiles that define the boundary of the nonin-studied in literature in case of simpler geometfi@s0,17.
teracting (continuous lines or overlapping phase&ashed
lines), as defined in Fig. 3. The outer contour line for each
condensate correspond to 10% of its peak dendiy y
=0). We have presented a general method to classify the
Then we consider two examples for a system where thground state of a binary mixture of Bose-Einstein conden-
8Rb condensate is in the hyperfine ley2)2) and the*’K  sates. We have considered the general case of two different
condensate if2,1) (we use agaim =60 a). In this case  atomic species, with different mass and in different hyperfine
7=0.5. In Fig. 6 we show a case of “partial overlap,” ob- states, trapped in a magnetic potential. We have explicitly
tained by fixing the interatomic scattering length 49, included the possibility of a nontrivial gravitational sag,
=67 a; (u;,=0.0645) and the number of atoms My, when the direction of gravity is not aligned with any of the
=2x10* andNg=2x10. Notice that when both conden- trap eigenaxes, since even a small misalignment can produce

IV. CONCLUSIONS
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a large “horizontal sag.” We have shown that, within the By using appropriate combinations of the integ(AB),
Thomas-Fermi approximations and by performing a suitabléhe normalization condition for the case shown in Fi¢g)3
coordinate transformation, the equations for the density disreads

tributions can be put into a simple spherical form. We have

given explicit rules to classify the different spatial topologies Ni=l[a1,Zc1,Ri(m1,12),2c1,Ri( e, m2)]
that can be produced, and we have discussed how the behav- . R R
ior of the system is influenced by the interatomic interaction. L1, Zer Ra(p1, 12),Zc2, Rol 1, 2)]
We have also provided explicit examples, and compared +||[a01,0,\/m12c2,Rz(ﬂl,ﬂz)], (A5)

the results with the full numeric Gross-Pitaevskii calculation,
finding a good agreement.

The results presented in this paper might be useful for N2=Tn(p2) =il @0z, d2,V2p2 /721, Ra s, 112)

analyzing future experiments where new combinations of bi- + 1 (2,26, Ro( g it2),Ze1 Ry, n2) ]
nary condensates are likely to be produ¢es,16.
Note added.After completing this work, we became —hlaz,zc2, Ra( 1, 2),Zc2, Ro( 1, 2)], (A6)

aware of a very recent preprint related to this subj&éf.
where we have indicated the explicit dependencewgrand

M. The cases in Figs.(8), 3(f), and 3h) can be constructed
in a similar way.

We acknowledge useful discussion with G. Modugno and
G. Roati. 2. External overlap
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These are the configurations shown in Figa)3(d). In
APPENDIX: NORMALIZATION INTEGRALS this case the master integral can be written as the integral
over aconvexdomain delimited by two spherical surfaces (
and B the upper and lower ones along theaxis, respec-
tively)

In this appendix we give the explicit expressions for the
integrals that enter the normalization conditi(®). We dis-
tinguish two general case§) “internal overlap,” one of the
two condensates is entirely contained in the otftgg. 3,

- .- - I [} yR ] !R [} 1R
right column, and (ii) “external overlap” (Fig. 3, left col- e(@.2,Re.2a:Ra 28, Re)

umn). = ra{R3[R?—0.5R2— (2.~ 25)2][Ra— (A, B)]
In both cases the normalization condition can be written (RALR: AT A A
as a sum of integrals of a generic density — Rf\(zc_ZA)[Ri_?(A,B)J_ %[R(Z;—(ZC—ZA)Z]
|[9*=alRE—r?=(2-2,)?] (A1) X[RA=Z%(A,B)]+ 3 (2.~ za)[RA—Z*(A,B)]
over an appropriate portion of spherical domain whose + 75 [RA—2°(A,B) 1} + (2o 25 ,Ra> — Rg)
boundary is given by the surface (A7)
Ra=r2+(z—zn)% (A2)  ith
In the following sections we consider explicitly the two o R/Zr R2+ (25— 2,)2
cases. z(A,B)= A8
A= Sz (A8
1. Internal overlap By assuming a configuration where the condensate 1 has a

In this case the normalization condition can be imposedower position along (as in Fig. 3, the normalization con-
by using a combination of integrals ovephericaldomains. dition for the cases withu;,<<u* shown in Figs. &) and

The generic form is 3(b) is
1 1 1 = _ 50 02,
||(C¥,ZC,RC,ZA,RA):47T(1R2 §R§_§(ZC_ZA)2_§Ri ) Nl |n(lu’1) IE[aObO! 2/“’ 0, 2:“’ YZCZ!RZ(Iu’lwu‘Z)]
(A3) tlelar,Ze, Ri(pr, m2), Ze1, Ri(pa, 12) 1262, Ry
X (p1,12)] (A9)
From this expression one can also recover the value of the (K1o2)]
integral for the noninteracting case _
N2=1ln(u2)
_877 5 —le(ap2,dZ,N2us 1,21, Re(p1,12),dZ,\2 1)
In(mi)= 1—5aRc (A4)

+1 E[a21zc21R2(1u‘1 11“2)12C1le(/’Llif'LZ)iZCZIRZ
[1n(mi) =4m(2;) > u;; for p=1]. X (1, 2] (A10)
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In an analogous way one can construct the appropriate nonal overlap”), by considering the appropriate combination of
malization condition for all other cases in this cld$sxter- integrals of the form{A7) over convexdomains.
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