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Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices:
Bloch oscillations, Landau-Zener tunneling, and mean-field effects

M. Cristiani, O. Morsch, J. H. Mu¨ller, D. Ciampini, and E. Arimondo
INFM, Dipartimento di Fisica, Universita` di Pisa, Via Buonarroti 2, I-56127 Pisa, Italy

~Received 4 February 2002; published 13 June 2002!

We report experimental results on the properties of Bose-Einstein condensates in one-dimensional optical
lattices. By accelerating the lattice, we observed Bloch oscillations of the condensate in the lowest band, as
well as Landau-Zener~LZ! tunneling into higher bands when the lattice depth was reduced and/or the accel-
eration of the lattice was increased. The dependence of the LZ tunneling rate on the condensate density was
then related to mean-field effects modifying the effective potential acting on the condensate, yielding good
agreement with recent theoretical work. We also present several methods for measuring the lattice depth and
discuss the effects of the micromotion in the time-orbiting-potential trap on our experimental results.
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I. INTRODUCTION

In a very short time after their first observation, Bos
Einstein condensates~BECs! have advanced from bein
mere physical curiosities to the status of well-studied phy
cal systems@1#. A host of diverse and interesting phenome
such as collective modes, quantized vortices, and soliton
name but a few, have been extensively investigated and
now well understood@2–6#. Going from the harmonic poten
tials used in the experiments mentioned above to optical
tices @7# constitutes a natural extension of the experimen
efforts to periodic potentials and has opened up new aven
for research. So far, experiments using periodic potent
have focused mainly on Bragg scattering@8–10# and, more
recently, on phase properties, involving such intriguing c
cepts as number squeezing@11# and the Mott insulator tran
sition @12,13#. Some interesting work has also been done
superfluid properties of BECs in optical lattices@14,15#.

In the present work we report on experiments with Bo
Einstein condensates adiabatically loaded into o
dimensional optical lattices@16,17#. In particular, we look at
the dynamics of the BEC when the periodic potential p
vided by the optical lattice is accelerated, leading to Blo
oscillations and Landau-Zener~LZ! tunneling. We then pro-
ceed to use LZ tunneling as a tool for measuring the effe
of the mean-field interaction between the atoms in the c
densate. The modification of the LZ tunneling rate in t
presence of interactions can be interpreted in terms o
effective potential, and we obtain good qualitative agreem
with a recent theoretical study using this approach@18#.

This paper is organized as follows: After briefly introdu
ing some essential ideas and terminology used in the th
retical treatment of cold atoms in optical lattices~Sec. II!, we
describe our experimental apparatus in Sec. III. After p
senting in Sec. IV the results of preliminary experiments
the calibration of the lattice and on the effects of the cond
sate micromotion, we turn to the subject of Bloch oscil
tions in accelerated lattices in Sec. V. The following Sec.
deals with LZ tunneling and leads on to a discussion
mean-field effects in Sec. VII. In Sec. VIII we present o
conclusions and an outlook on further studies, followed
1050-2947/2002/65~6!/063612~11!/$20.00 65 0636
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an Appendix in which we discuss various parameters
evant to the description of our system as an array of tun
ing junctions.

II. COLD ATOMS IN PERIODIC STRUCTURES: BASIC
CONCEPTS

The properties of cold atoms in conservative optical l
tices ~i.e., far detuned, so spontaneous scattering is ne
gible! bear a strong resemblance to the behavior of electr
in crystal lattices in condensed-matter physics and ha
therefore, enjoyed increasing interest since the early day
laser cooling. There are a number of excellent review pap
on the subject@19,20#, so in the following we shall only
briefly review some basic concepts and establish convent
and notations for the remainder of this work.

The physical system we are considering consists o
Bose-Einstein condensate in a periodic potential created
two interfering linearly polarized laser beams with paral
polarizations. The potential seen by the atoms stems from
ac-Stark shift created by an off-resonant interaction betw
the electric field of the laser and the atomic dipole. Th
results in an optical lattice potential of the form

U~x!5U0sin2~px/d!, ~1!

where d is the distance between neighboring wells~lattice
constant! and

U05~2/3!\G~ I /I 0!~G/D!, ~2!

is the depth of the potential@19#, whereI is the intensity of
one laser beam,I 0 is the saturation intensity of the87Rb
resonance line,G is the decay rate of the first excited stat
and D is the detuning of the lattice beams from the atom
resonance. If the momentum spread of the atoms loaded
such a structure is small compared to the characteristic la
momentumpB52\p/d, then their thermal de Broglie wave
length will be large compared to the lattice spacingd and
will, therefore, extend over many lattice sites. The cond
sates used in our experiment have coherence lengths co
rable to their spatial extent of'10 mm, which should be
compared to typical lattice spacings in the region
©2002 The American Physical Society12-1
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0.4–1.6 mm. A description in terms of a coherent deloca
ized wave packet within a periodic structure is then app
priate and leads us directly to the Bloch formalism first d
veloped in condensed-matter physics. As will be explaine
the following section, we could vary the lattice spacingd by
changing the angle between the lattice beams. In this pa
the lattice spacingd always refers to the respective geom
etries of the optical lattices used.

In a lattice configuration in which the two laser beam
with wave vector kL are counterpropagating, the usu
choices of units are the recoil momentumprec5\kL

5mv rec and the recoil energyErec5\2kL
2/2m. In the case of

an angle geometry, with the angleu between the lattice
beams~see Fig. 1!, it is more intuitive to base the natura
units on the lattice spacingd5p/kLsin(u/2) and the projec-
tion k5p/d of the laser wave vectorkL onto the lattice
direction. One can then define a Bloch momentumpB
52\p/d5mvB , corresponding to the full extent of the firs
Brillouin zone or, alternatively, to the net momentum e
change in the lattice direction between the atoms and the
laser beams. Possible choices for the energy unit are e
the Bloch energy defined asEB5\2(2p)2/md2, or an ‘‘ef-
fective’’ recoil energyErec(u)5EB/8, where the parameteru
indicates the dependence on the lattice geometry@21#. As an
intuitive choice for the natural units for the lattice depths
the geometry dependent recoil energyErec(u), we shall
quote the lattice depthU0 in units of this scaled recoil en
ergy; for simplicity of notation we shall writeErec , where it
is understood that this always refers to the respective la
geometries. In Sec. IV on the calibration of the lattice dep
we also use the parameters5U0 /Erec . Throughout the pa-
per, velocities and momenta will be quoted in units of t
Bloch momentumpB and Bloch velocityvB .

In the tight-binding limit (U0@10 Erec), the condensate
in the lattice can be approximated by wave packets locali
at the individual lattice sites~Wannier states!. This descrip-
tion is more intuitive than the Bloch picture in the case
experiments in which the condensate is released from

FIG. 1. Schematic of the experimental procedure. The cond
sate is loaded into the optical lattice, which can transfer momen
to it in units of pB5mvB . The frequency differenced between the
lattice beams can be used to create a moving or uniformly acc
ated lattice.
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~deep! optical lattice into which it had previously bee
loaded adiabatically. In the present work, this description
only made use of in Sec. III and in the Appendix, where t
Wannier states are approximated by Gaussian functions.

III. EXPERIMENTAL SETUP

Our apparatus for creating Bose-Einstein condensate
described in detail in Ref.@23#. Briefly, we use a double-
magneto-optical trap setup in order to cool and capture87Rb
atoms and transfer them into a time-orbiting potential~TOP!
trap. Starting with a few times 107 atoms in the magnetic
trap, we evaporatively cool the atoms down to the critic
temperature for condensation in'30 s, obtaining pure con
densates containing up to 23104 atoms. After condensation
the magnetic trap is adiabatically relaxed to mean trap
quenciesn̄ trap on the order of 20–60 Hz, resulting in
variation of the condensate peak density between
31013 cm23 and 1014 cm23.

The optical lattice was realized using two linearly pola
ized Gaussian beams~waist '1.8 mm, maximum power
'3 mW) independently controlled by two acousto-op
modulators and detuned by about 30–60 GHz above or
low the rubidium resonance line. The lattice constantd could
be varied through the angleu between the laser beams, a
shown in Fig. 1. Both horizontal and vertical optical lattic
with various anglesu were realized. Furthermore, by intro
ducing a frequency differenced between the two beams, th
lattice could be moved at a constant velocityv lat
5@l/2 sin(u/2)#d or accelerated with an accelerationa
5@l/2 sin(u/2)#dd/dt. While in the counterpropagating ge
ometry lattice depths up to'2 Erec were realized, in the
angle-geometry lattice depths up to'20 Erec could be re-
alized.

IV. PRELIMINARY EXPERIMENTS

In order to better understand the effect of the lattice on
condensate and to calibrate the theoretically calculated la
depth against experimental values, we performed a serie
preliminary experiments in conditions in which we expect
mean-field effects to be negligible, i.e., either with the co
densate in a weak magnetic trap~after adiabatic relaxation!,
resulting in a low condensate density, or by loading the c
densate into the lattice after switching off the magnetic tr
In the latter case, for horizontal lattice configurations t
condensate was in free fall after switching off the TOP tra
limiting the interaction time with the lattice to 10–15 ms.
all experiments, the condensate was observed a
10–20 ms of time of flight by flashing on a resonant ima
ing beam for 20ms and observing the shadow cast by t
condensate onto a charge coupled device camera.

A. Calibration of the lattice

1. Rabi oscillations

If we abruptly switch on an optical lattice moving at
speed1

2 vB , then in the band-structure picture the condens
finds itself at the edge of the Brillouin zone where the fi
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m
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EXPERIMENTAL PROPERTIES OF BOSE-EINSTEIN . . . PHYSICAL REVIEW A 65 063612
and second band intersect at zero lattice depth. Raising
lattice up to a final depth ofU0 opens up a band gap of widt
DE5U0/2 in the shallow lattice limit, and hence the pop
lations of the two bands@24# accumulate a phase differenc
Df5(U0/2\)t, which results in the two populations gettin
back into phase~modulo 2p) after a timetRabi52h/U0. In
the rest frame of the laboratory, one observes Rabi osc
tions @8# between the momentum classesup50& and up
5pB& in the shape of varying populations of the correspo
ing diffraction peaks observed after a time of flight~see Fig.
2!. From the oscillation frequencyVR we could then calcu-
late the lattice depthU052\VR , yielding results that fell
short by about~20–25! % of the calculated value. We a
tribute the discrepancy between the experimental and th
retical values mainly to the uncertainty in our laser intens
measurements and to imperfections in the lattice beam c
section and polarization.

As pointed out in Ref.@19#, an alternative way of inter-
preting the observed Rabi oscillations in this kind of expe
ment is to consider a two-photon Raman coupling betw
the two momentum states, whose energies differ byDE
52\2k2/m54Erec . The coupling is resonantly enhanced
the frequency differenced between the two lattice beam
matches DE/h, i.e., if the lattice velocityv lat5(l/2)d
5\k/m5 1

2 vB , as before. The two-photon Rabi frequen
for the beam intensities corresponding to a lattice depthU0
can be easily calculated and, again, givesVR5U0/2\.

2. Analysis of the interference pattern

If the depth of a stationary lattice is increased on a ti
scale comparable to the inverse of the chemical potentia
the condensate~in frequency units!, then the condensate ca
adiabatically adapt to the presence of the periodic poten
@25#. When the lattice has reached its final depth, the sys
is in a steady state with the condensate distributed among
lattice wells~in the limit of a sufficiently deep lattice in orde
for individual lattice sites to have well-localized wave pac
ets!. If the lattice is now switched off suddenly, the ind
vidual ~approximately! Gaussian wave packets at each latt
site will expand freely and interfere with one another.~In this
case a tight-binding approximation is more intuitive than
Bloch wave approach.! The resulting spatial interference pa
tern after a time of flight oft will be a series of regularly

FIG. 2. Rabi oscillations of the condensate in an optical latti
Shown here is the fractionN1 /N of condensate atoms in the firs
diffraction order as a function of time. The lattice~in the counter-
propagating configuration! was moving with a constant velocityv
5

1
2 vB . From the Rabi periodtRabi'260 ms one finds a lattice

depthU0'2 Erec .
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spaced peaks with spacingvBt, corresponding to the variou
diffraction orders, with a Gaussian population envelope
width '\t/ms, wheres is the width of the wave packets a
the individual lattice sites. In particular, Pedriet al. have
shown@26# that the relative populationsP61 of the two sym-
metric plus and minus first-order peaks with respect to
zeroth-order central peak are given byP615exp
(24p2s2/d2) @27#. For deep lattice wells,s/d can be found
by making a harmonic approximation to the sinusoidal latt
potential about a potential minimum, giving a Gaussi
width s5d/ps1/4. For the relatively shallow lattice used i
our experiments (s,20), however, this approximation is no
very accurate. Instead, we used a variational ansatz fo
Gaussian wave packet in a sinusoidal potential. The resul
transcendental equation can be solved numerically to yiels
~see Ref.@26# and the Appendix!. Alternatively, we can find
an analytical expression for the lattice depth as a function
the measured side-peak population, giving

sexpt5
16

@ ln~P61!#2
P61

21/4. ~3!

This expression can be used directly to calibrate the lat
based on a measurement of the side-peak populations. F
3 shows the lattice depthsexpt as inferred from the above
equation by measuring the populations of the zeroth
plus/minus first-order diffraction peaks plotted against
lattice depthscalc calculated from the beam intensity an
detuning, taking into account the losses at the cell windo
('8%). A straight-line fit givessexpt5(0.7660.1)scalc ,
consistent with the results obtained by measuring the R
oscillation frequency.

3. Tunneling

If the lattice beams are arranged such as to create a
odic potential along the vertical direction, for deep enou
lattice potentials the condensate can be held against gra
for several hundreds of milliseconds. As the potential is
duced below a critical depth the condensate starts tunne
out of the lattice. If this critical depth is fairly small
(&12 Erec), then the tunneling rate can be calculated fro
LZ theory. If the condensate moving with the accelerationa

.

FIG. 3. Calibration of the lattice depth by measuring the sid
peak populations. We calculated the lattice depth from the m
value of the plus and minus first-order side-peak using Eq. 3.
varying the intensity of the lattice beams, we performed meas
ments ofsexpt for various values ofscalc .
2-3
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crosses the band gapDE at the Brillouin-zone edge fas
enough, the probabilityr for undergoing a transition to th
first excited band is given by@28#

r 5e2ac /a, ~4!

with the critical acceleration

ac5
d

4\2
~DE!2. ~5!

If the atoms can tunnel into the second band and, theref
effectively into the continuum, they will no longer be trapp
by the lattice. Starting from this assumption, for the cond
sate accelerated by gravity witha59.81 m s22 we can cal-
culateNtrapped the number of atoms that remain trapped af
a time t lat to be

Ntrapped5Nini~12r ! t lat /tB, ~6!

where t lat is an integer multiple of the Bloch periodtB
5vB /g ~see following section!. Figure 4 shows the results o
an experiment in which the condensate was loaded in
vertical lattice with lattice constantd51.2 mm, after which
the magnetic trap was switched off and the number
trapped atoms was determined after a timet lat510.1 ms
526 tB as a function ofscalc . Fitting the above equation
for Ntrapped(t) to the data, we found that the actual latti
depth was around 75% of the value calculated from the
tice beam parameters. This value agrees with those fo
using Rabi oscillations and side-peak intensity.

B. Effects of the micromotion

The time-orbiting potential trap used in our experiments
an intrinsically dynamic trap that relies on the fast rotation
the bias field to create an averaged harmonic trapping po
tial. It has been shown, however, that the atoms in such a
perform a small but non-negligible micromotion at the ro
tion frequencyVTOP (2p310 kHz in our setup! of the bias
field @29#. Although the spatial amplitude of this fast motio
is extremely small~less than 100 nm for typical experiment
parameters!, its velocity can be as large as a few millimete

FIG. 4. Calibration of the lattice potential withd51.2 mm by
measuring the tunneling rate. Plotted here as a function of the
culated lattice depthscalc is the number of condensate atom
Ntrapped remaining in the lattice at timet lat510.1 ms after switch-
ing off the magnetic trap. Fitting a theoretical curve~see text! to the
data we find thatsexpt'0.763scalc , consistent with the results o
the other calibration techniques.
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per second. As the Bloch velocitiesvB of the lattices used in
our experiments lie between 3 mm s21 and 11.8 mm s21

~depending on the angleu), the micromotion velocity com-
ponent along the lattice direction can be a significant fract
of the Bloch velocity. This has two consequences:

~a! If the interaction time of the lattice with the conden
sate is short compared to 2p/VTOP5100 ms, the initial ve-
locity of the condensate is undetermined to within the mic
motion velocity amplitude.

~b! If, on the other hand, the interaction time with th
lattice is long compared with 2p/VTOP, the condensate os
cillates to and fro in the Brillouin zone and can, if the m
cromotion velocity is large enough, reach the band edge
thus be Bragg reflected. Another possible mechanism is
parametric excitation atVTOP of transitions to higher bands

All of these effects are undesirable if one wants to co
duct well-controlled experiments. In our setup, the microm
tion takes place in the horizontal plane and was thus imp
tant when we worked with horizontal lattices. In order
minimize the detrimental effects of the micromotion, we e
ployed two techniques:

~a! For short interaction times, we synchronized the in-
stant at which the lattice was switched on with a given ph
of the rotating bias field. This allowed us to ensure that
lattice was always switched on when the condensate velo
along the lattice direction was approximately zero. A sm
residual jitter, however, was still given by the sloshing~di-
pole oscillation! of the condensate in the magnetic tra
which was especially critical when we worked with larg
lattice constants~and hence small Bloch velocities!.

~b! For long interaction times, we phase modulated one o
the lattice beams synchronously with the rotating bias fi
and with a modulation depth that resulted in the latt
‘‘shaking’’ with the same velocity amplitude as the microm
tion. In this way, in the rest frame of the lattice the conde
sate was stationary~again, save a possible sloshing motion!.

Figure 5 shows the effect of method~b! in which a con-
densate was loaded into a lattice (U0'2Erec) with a 1-ms
ramp and then left in the lattice for 7.5 ms before the lat
was suddenly switched off. When the micromotion was n
compensated by phase modulating one of the lattice bea
the condensate appeared ‘‘smeared out’’ when observed
a time of flight. Using the compensation technique elim
nated this effect@Fig. 5 ~c!#.

V. BLOCH OSCILLATIONS

A. Theoretical considerations

One of the most intriguing manifestations of the quantu
dynamics of particles in a periodic potential are Bloch osc
lations. Their theoretical explanation is based on the evo
tion in the band-structure picture of a collection of particl
occupying a small fraction of the Brillouin zone when th
potential is switched on~meaning that in real space the
wave functions extend over many lattice sites, which tra
lates into temperatures well below the recoil temperat
Trec5Erec /kB , see Sec. II!. If the lattice is switched on

l-
2-4
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EXPERIMENTAL PROPERTIES OF BOSE-EINSTEIN . . . PHYSICAL REVIEW A 65 063612
adiabatically, then all the atoms will end up in the lowe
band. Accelerating the atoms by applying a force~real or
inertial! to them will result in their being moved through th
Brillouin zone until they reach the band edge. Owing to t
effects of the periodic potential, at this point there is a g
between the first and second band, and unless the acce
tion is large enough for the atoms to undergo a LZ transit
~see Sec. VI!, they will remain in the first band and thus b
Bragg reflected back to the opposite end of the Brillou
zone. In the rest frame of the lattice this corresponds to
velocity of atoms oscillating to and fro between1 1

2 avB and
2 1

2 avB ~where 0,a,1, depending on the lattice depth!,
whereas in the laboratory frame these Bloch oscillatio
manifest themselves as an undulating~or, for shallow lat-
tices, almost stepwise! increase in velocity rather than th
linear increase expected in the classical picture in which
atoms are ‘‘dragged along’’ by the potential. The instan
neous velocity of the atomic wave packet in the lattice fra
can be calculated from the slope of the first band at
corresponding quasimomentumq, giving v5(1/\)
(dE(q)/dq).

B. Experimental results

The condensate was loaded into the~horizontal! optical
lattice with lattice constantd50.39 mm immediately after
switching off the magnetic trap. The switch on was do
adiabatically with respect to the lattice vibration frequenc
@7# vv ib52ErecAs/\ ~valid for s@1) by ramping up the
lattice beam intensity over a timet ramp'100 ms. Thereaf-
ter, the lattice was accelerated witha59.81 m s21 by ramp-
ing the frequency differenced between the beams. After
time taccel the lattice was switched off and the condens
was observed after an additional time of flight of 13–18 m
Figure 6 shows the results of these measurements in
laboratory frame. The Bloch oscillations are more evide

FIG. 5. Effects of the micromotion in a horizontal counterprop
gating lattice configuration.~a! shows a condensate~after a time of

flight of 15 ms! released from the magnetic trap withn̄ trap

525 Hz without the optical lattice. In~b!, the optical lattice (U0

'2Erec) was switched on for 7.5 ms with the magnetic trap still o
One clearly sees that the condensate is broadened along the l
direction. In~c!, we compensated the micromotion by phase mo
lating one of the lattice beams~see text!. The difference in intensity
of the dark spot in~a! and ~c! is due to shot-to-shot fluctuations o
the number of atoms in the condensate. Also, in~c! a faint spot to
the left of the central condensate can be seen; this correspond
part of the condensate having undergone Bragg reflection due
initial sloshing.
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however, if one calculates the mean velocityvm as the
weighted sum over the momentum components after the
teraction with the accelerated lattice, as shown in Fig.
When the instantaneous lattice velocityv lat is subtracted
from vm , one clearly sees the oscillatory behavior ofvm
2v lat . This result is analogous to the first observation
Bloch oscillations in cold atoms at subrecoil temperatu

-

.
tice
-

o a
an FIG. 6. Acceleration of a Bose-Einstein condensate in the co
terpropagating geometry (d50.39 mm). In ~a!–~f! the lattice pa-
rameters wereU052.3 Erec anda59.81 m s22, and the conden-
sate was accelerated for 0.1,0.6,1.1,2.1,3.0, and 3.9
respectively. In~g!, the condensate was accelerated for 2.5 ms w
the same lattice depth as above, but witha525 m s22. In this case,
a fraction of the condensate underwent LZ tunneling out of
lowest band each time a Bragg resonance was crossed. Note th
separations between the spots vary because detection occurred
different times of flight.

FIG. 7. Bloch oscillations of the condensate mean velocityvm in
an optical lattice.~a! Acceleration in the counterpropagating lattic
with d50.39 mm, U0'2.3 Erec and a59.81 m s22. Solid line:
theory.~b! Bloch oscillations in the rest frame of the lattice, alon
with the theoretical prediction~solid line! derived from the shape o
the lowest Bloch band.
2-5
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@19#. The added feature in our experiment is that by usin
Bose-Einstein condensate released from a weak mag
trap, the spatial extent of the atomic cloud is sufficien
small so that after a relatively short time of flight
('10–20 ms) the separation between the individual m
mentum classes is already much larger than the size of
condensate due to its expansion and can, therefore, be e
resolved. The mean velocity is then calculated simply
counting the number of atoms in each of these classes~the
dark dots visible in Fig. 6!.

VI. LZ TUNNELING

We investigated theU0 dependence for the LZ tunnelin
of the condensate into the second band when crossing
edge of the Brillouin zone, and therefore, effectively to t
continuum, as the gaps between higher bands were neglig
for the shallow potentials used in our experiments. As in S
V, we loaded the condensate into the optical lattice a
switching off the magnetic trap. The trap had been adiab
cally expanded to a mean trap frequencyn̄ trap'20 Hz prior
to switch off, thus ensuring that the condensate density
small (,1013 cm23) and, therefore, mean-field effec
could be neglected. After that, the lattice was accelerated
final velocity nvB(n51,2, . . . ). Each time the condensat
was accelerated across the edge of the Brillouin zone,
cording to LZ theory a fractionr ~see Eqs. 4 and 5! under-

FIG. 8. LZ tunneling of a condensate in an optical lattice.~a!
and ~b!: Mean velocity of the condensate after acceleration of
lattice tovB and 3vB , respectively, as a function of acceleration.~c!
Mean velocity of the condensate after acceleration of the lattic
4.4vB as a function of lattice depth. In~a! and~b!, the lattice depth
was fixed at U052Erec , and in ~c! the acceleration a
59.81 m s21. In ~c!, agreement with theory is expected to b
somewhat less good because the final velocity of the lattice is no
integer multiple ofvB ~see text!.
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went tunneling into the first excited band. In Fig. 8, the a
erage velocity of the condensate after the acceleration
shown as a function ofa andU0 along with theoretical pre-
dictions using the LZ tunneling probability. If the final lattic
velocity is vB , one finds a final mean velocityvm5(1
2r )vB , whereas a straightforward generalization of this f
mula yields

vm5vB~1/r 21!@12~12r !n# ~7!

for a final lattice velocity ofnvB . In this case, a fractionr of
the condensate undergoes LZ tunneling each time the B
resonance is crossed, with a remaining fraction 12r being
accelerated further. Note that this result is only independ
of the lattice depth~except through the tunneling fractionr )
if the final lattice velocity is an integer multiple ofnvB . As
can be seen from Fig. 8, agreement with theory is go
Again, it should be stressed here that owing to the sm
condensate densities, these measurements do not differ q
tatively from those using cold but uncondensed atoms@19#.

VII. MEAN-FIELD EFFECTS

A. Theoretical considerations

In Bose-Einstein condensates, interactions between
constituent atoms are responsible for the nonlinear beha
of the BEC and can lead to interesting phenomena suc
solitons @6# and four-wave mixing with matter waves@30#.
As the atoms are extremely cold, collisions between th
can be treated by considering onlys-wave scattering, which
is described by the scattering lengthas . For rubidium the
atomic mean-field interaction is repulsive corresponding t
positive scattering lengthas55.4 nm.

For a BEC in an optical lattice, one expects an effect d
to the mean-field interaction similar to the one responsi
for determining the shape of a condensate in the Thom
Fermi limit: The interplay between the confining potent
and the density-dependent mean-field energy leads t
modified ground state that reflects the strength of the me
field interaction. Applied to a BEC in a periodic potentia
one expects the density modulation imposed on the cond
sate by the potential~higher density in potential troughs
lower density where the potential energy is high! to be modi-
fied in the presence of mean-field interactions. In particu
the tendency of the periodic potential to create a loca
higher density where the potential energy of the lattice is l
will be counteracted by the~repulsive! interaction energy
that rises as the local density increases.

The nonlinear interaction of the condensate inside an
tical lattice with lattice constantd5p/sin(u/2)kL may be
described through a dimensionless parameter@18#

C5
pn0as

kL
2sin2~u/2!

5
n0g

EB
, ~8!

with g defined in Eq.~A2!, corresponding to the ratio of th
nonlinear interaction term and the Bloch energy. The para

e

to

an
2-6



ie

a

io

e
ua
n
a-
e

xi
n

he
n
in
w
th

n

-

of
m-
p

LZ

was
in
fter

e

-
a
m
be

er-
e

ntal
x-

o
ity

are
s.

-
as

r
tent

ike

infi-

d
t

pe

n
g

den-
.

EXPERIMENTAL PROPERTIES OF BOSE-EINSTEIN . . . PHYSICAL REVIEW A 65 063612
eterC contains the peak condensate densityn0 @31#, the scat-
tering length, and the atomic massm. In our notation, the
parameterC always refers to the respective lattice geometr
with angleu. From the dependence ofC on the lattice angle
u it follows that a small angleu ~meaning a large lattice
constantd) will result in a large interaction termC. In our
experiment, creating a lattice withu529° ~i.e., d
51.56 mm) allowed us to realize a value ofC larger by a
factor of more than 10 with respect to Ref.@32# using a
comparable condensate density. Figure 9 shows our estim
for the nonlinear interaction parameterC realized by varying
the magnetic trap frequency~and, thereby, the densityn0).

In Ref. @18#, the authors derived an analytical express
in the perturbative limit~assumingU0!EB) for the effect of
the mean-field interaction on the ground state of the cond
sate in the lattice. Starting from the Gross-Pitaevskii eq
tion for the condensate wave function in a one-dimensio
optical lattice@i.e., a one-dimensional Hamiltonian equiv
lent to that of Eq.~A1!#, they found that by substituting th
potential depthU0 with an effective potential

Ue f f5
U0

114C
, ~9!

the effect of the mean-field interaction could be appro
mately accounted for. This reduction of the effective pote
tial agrees with the intuitive picture of the back action on t
periodic potential of the density modulation of the conde
sate imposed on it by the lattice potential. For repulsive
teractions, this results in the effective potential being lo
ered with respect to the actual optical potential created by
lattice beams.

B. Experimental results

In order to measure the effective potentialUe f f , we as-
sumed that the perturbative treatment described above ca
extended to define an effective band gapDEe f f at the edge of
the Brillouin zone which for a particular interaction param
eterC can be written as

FIG. 9. Calculated dependence of the parameterC on the trap

frequencyn̄ trap for two different lattice configurations. Mean-fiel
effects are far more important for the larger lattice constand
51.56 mm, which results in aC larger by a factor of'16 with
respect to the counterpropagating configuration (d50.39 mm). In
calculatingC, we assumed a typical condensate numberNtot5104

and used the Thomas-Fermi expression for the condensate
density.
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DEe f f5
Ue f f

2
5

U0

2~114C!
, ~10!

where DE is the value of the band gap in the absence
interactions@33#. One can then derive the interaction para
eter C indirectly by determining the effective band ga
DEe f f from the LZ tunneling rater, using Eqs.~4! and ~5!
with the band gapDEe f f .

Figure 10 shows the results of measurements of the
tunneling rate for two different values ofC. In this experi-
ment, in contrast to those described so far, the lattice
adiabatically ramped up with the magnetic trap still on,
order to maintain the condensate at a constant density. A
accelerating the condensate tovB , the magnetic trap and th
lattice were both switched off and the fractionr that had
undergone tunneling~i.e., the fractional population that ap
peared in the zero-momentum class! was measured after
time of flight. The effective potentials could be derived fro
the slopes of the linear fits in Fig. 10 and were found to
markedly different. Comparing the experimentally det
mined values forC with those calculated on the basis of th
experimental parameters, we found that the experime
values were larger by about a factor of 2. In fact, we e
pected the predictions of Ref.@18# to be only approximately
valid ~see discussion below!.

In order to further test the validity of Eq. 10, we used tw
different lattice anglesu and varied the condensate dens
by changing the trap frequency@35#. The effective potential
in each case was inferred from the tunneling probabilityr for
a fixed lattice depth. The results of these measurements
shown in Fig. 11, along with the theoretical prediction
Clearly, the reduction ofUe f f with respect to the noninter
acting limit is much larger for the small lattice angle,
expected from theory. The general behavior ofUe f f as a
function ofC is well reproduced by our results. ReplacingC
by '2C in the formula forUe f f /U0 leads to much bette
agreement with the experimental data, which is consis
with the results of Fig. 10.

In spite of the good qualitative agreement, we should l
to point out that the model of Choi and Niu@18# only ap-
proximately describes our experiment, as it assumes an

ak

FIG. 10. LZ tunneling for different values of the interactio
parameterC. The tunneling fractionr was measured by acceleratin
the condensate tovB in a vertical lattice withd51.2 mm, andC
was varied by changing the trap frequency and hence the con
sate densityn0. The straight lines are best linear fits to the data
2-7
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nitely extended condensate and neglects the radial degre
freedom of the condensate in the one-dimensional~1D! lat-
tice. Especially the finite extent of the condensate in
experiment~in which only 6–30 lattice sites were occupie
by the condensate, see the Appendix! should lead to non-
negligible corrections. Also, the analysis of Ref.@18# as-
sumes a uniform condensate density across the entire la
whereas in our experiment there was a pronounced den
envelope over the 6–30 lattice wells occupied by the c
densate. In the above comparison with theory we calcula
C using the peak condensate density.

VIII. CONCLUSIONS AND OUTLOOK

We have presented experimental results on the adiab
loading and subsequent coherent acceleration of a B
Einstein condensate in a 1D optical lattice. In the adiab
acceleration limit we have observed Bloch oscillations of
condensate mean velocity in the lattice reference fra
whereas for larger accelerations and/or smaller lattice de
LZ tunneling out of the lowest band occurred. The expe
mentally observed variation of the LZ tunneling rate with t
condensate density has been related to the mean-field i
action in the condensate leading to a reduced effective
tential. Agreement with recent theoretical results is satisf
tory.

A natural extension of our work on mean-field effects w
consist in checking theoretical predictions concerning ins
bilities at the edge of the Brillouin zone@36# and the possi-
bility of creating bright solitons by exploiting the nonlinea
ity of the Gross-Pitaevskii equation, which can compens
the negative group-velocity dispersion at the band edge@37#.

Note added in proof. When taking into account saturatio
effects of the imaging beam, we found that we systematic
underestimated the atom number in our experiments b
factor of 1.8. Therefore, our experimental values forC have
to be corrected by the same factor.

FIG. 11. Dependence of the effective potentialUeff on the inter-
action parameterC. The different symbols indicate the two~hori-
zontal! lattice geometries, with the empty symbols corresponding
the counterpropagating case and the full ones to the angle con
ration (d51.56 mm). Solid line: theoretical prediction of Choi an
Niu’s expression forUe f f . The parameters in these experimen
werea523.4 m s22 andU052.2 Erec for the counterpropagating
lattice anda53.23 m s22 and U055.7 Erec for the angle geom-
etry.
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APPENDIX: AN ARRAY OF COUPLED
WELLS –RELEVANT PARAMETERS

The possibility of studying the dynamics of a Bos
Einstein condensate spread out coherently over a large n
ber of wells of a periodic potential, bearing a close rese
blance to an array of coupled Josephson junctions,
inspired a host of theoretical papers in the past few years
the experimental side, phase fluctuations@11#, Josephson os
cillations @15#, and the Mott insulator transition@12# have
been investigated, invoking concepts and notations inher
from the physics of Josephson junctions. In order to facilit
the comparison of our work with these studies, in this A
pendix we report the values pertinent to our experiment
the various parameters that are important in the descrip
of coherent quantum effects in an array of tunneling jun
tions.

For the description of a condensate in an array of coup
potentials wells, the physical parameters needed to desc
the dynamics of the system are the on-site interactionEC ,
and the tunneling energyEJ . These quantities are defined
a variety of ways in the literature@38–40#. Our calculations
are based on a variational ansatz of the total Hamiltonia

FIG. 12. Dependence of the on-site interaction energyEC , in
~a!, and of the Josephson frequencynC , in ~b!, on the nonlinear
parameterC for a lattice with d51.56 mm, U055.6Erec , and
Ntot5104. For these parameters, the tunneling energyEJ5h
38 Hz.
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Htot5H01guC~rW !u25
2\2

2m
¹21U0sin2~kL

W
•rW !1guC~rW !u2,

~A1!

with the interaction parameterg given by

g54p\2as /m ~A2!

and the wave functionC(rW) given by

C~rW !5(
n

c0~x2nd!ANn~ t !eiqn(t)f~y,z!. ~A3!

Here, Nn(t) is the number of atoms at siten, qn(t) is a
site-dependent phase, andf(y,z) is the part of the wave
function perpendicular to the lattice direction. Basing t
variational ansatz forc0 on a Gaussian of the formc0(x)
5(1/s1/2p1/4)exp@21

2(x/s)2# @41#, we obtain a minimum en-
ergy wave function of widths which, expressed in units o

the widthsh5
d

p
(U0 /Erec)

21/4 in the harmonic approxima

tion of the potential wells, satisfies the condition

expF2S s

sh
D 2

/AU0 /ErecG5S s

sh
D 24

. ~A4!

This equation can be solved numerically to yields/sh .
We now define the quantitiesEC andEJ as follows@42#:

EC5Nsg1DE dxc0~x!4, ~A5!

EJ52E dxc0~x!H0c0~x2d!. ~A6!

In the expression forEC , the 1D interaction parameterg1D is
defined as

g1D5g
1

psysz
, ~A7!

FIG. 13. Variation ofEJ andEC with lattice depth~lattice con-
stant d51.56 mm, Ntot5104) for a fixed value of the nonlinea
parameterC50.17.
06361
wheresy,z are the Gaussian widths in they andz directions
of the radial wave function

f~y,z!5
1

p1/2sy
1/2sz

1/2
expF2

1

2
~y/sy!22

1

2
~z/sz!

2G .
~A8!

The 1D coupling strengthg1D is equivalent to that derived by
Olshanii in the case of a cigar shaped atomic trap@43#. Ns
5Ntot /nocc is the mean number of atoms per lattice si
with Ntot5(nNn the total number of condensate atoms a
nocc the number of lattice sites occupied, as defined belo

As the maximum lattice depth we could experimenta
achieve in the counterpropagating configuration w
'2 Erec , we have only calculatedEC and EJ numerically
for a lattice in the angle geometry withd51.56 mm, as the
present model only gives reasonable values forU0 /Erec*4.
Figure 12~a! shows the dependence of the on-site interact
energyEC as a function of the nonlinear interaction param
eter C for a constant lattice depthU055.6 Erec . The Jo-
sephson frequencync5AEJEC/h as a function ofC is shown
in Fig. 12~b!. In Fig. 13, bothEJ and EC are plotted as a
function of the lattice depth.

Finally, we briefly discuss the variation withn̄ trap of the
numbernocc of lattice sites occupied by the condensate. In
rough approximation, this number is given by the diame
of the condensate as calculated from the Thomas-Fermi l
divided by the lattice constantd. Pedri et al. have used a
more refined model@26# to derive the expression

nocc511
2

d
A \

2pmn̄ trap
S 15

8Ap
NtotasAmpn̄ trap

\

d

s D 1/5

.

~A9!

Figure 14 showsnocc as a function ofn̄ trap for two dif-
ferent lattice geometries. It is clear from this plot that in t
angle geometry, the number of wells occupied (,10) is
small and hence we expect finite-size effects to be part
larly important in this configuration.

FIG. 14. Number of wells occupied by the condensate as a fu
tion of the magnetic trap frequency for two different lattice co
stants. For the large lattice constant, the number of wells is smal
that finite-size effects are expected to be important.
2-9
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