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Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices:
Bloch oscillations, Landau-Zener tunneling, and mean-field effects
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We report experimental results on the properties of Bose-Einstein condensates in one-dimensional optical
lattices. By accelerating the lattice, we observed Bloch oscillations of the condensate in the lowest band, as
well as Landau-Zeneg(LZ) tunneling into higher bands when the lattice depth was reduced and/or the accel-
eration of the lattice was increased. The dependence of the LZ tunneling rate on the condensate density was
then related to mean-field effects modifying the effective potential acting on the condensate, yielding good
agreement with recent theoretical work. We also present several methods for measuring the lattice depth and
discuss the effects of the micromotion in the time-orbiting-potential trap on our experimental results.
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[. INTRODUCTION an Appendix in which we discuss various parameters rel-
evant to the description of our system as an array of tunnel-
In a very short time after their first observation, Bose-ing junctions.

Einstein condensate@BECs have advanced from being
mere physical curiosities to the status of well-studied physi- Il. COLD ATOMS IN PERIODIC STRUCTURES: BASIC
cal system$1]. A host of diverse and interesting phenomena CONCEPTS
such as collective modes, quantized vortices, and solitons, to
name but a few, have been (_extenswely mvesquted and atftes (i.e., far detuned, so spontaneous scattering is negli-
now well u.nderstoo@Z—'G]. Going frgm the harmonic poten- gible) bear a strong resemblance to the behavior of electrons
tials used in the experiments mentioned above to optical 1aty, ¢rystal lattices in condensed-matter physics and have,
tices[7] constitutes a natural extension of the experimentajerefore, enjoyed increasing interest since the early days of
efforts to periodic potentials and has opened up new avenuggser cooling. There are a number of excellent review papers
for research. So far, experiments using periodic potentialgn the subjec{19,20, so in the following we shall only
have focused mainly on Bragg scatterif@-10] and, more  briefly review some basic concepts and establish conventions
recently, on phase properties, involving such intriguing con-and notations for the remainder of this work.

The properties of cold atoms in conservative optical lat-

cepts as number squeeziffl] and the Mott insulator tran- The physical system we are considering consists of a
sition[12,13. Some interesting work has also been done orBose-Einstein condensate in a periodic potential created by
superfluid properties of BECs in optical lattickist,15. two interfering linearly polarized laser beams with parallel

In the present work we report on experiments with Bose{olarizations. The potential seen by the atoms stems from the
Einstein condensates adiabatically loaded into oneac-Stark shift created by an off-resonant interaction between
dimensional optical latticefsl6,17. In particular, we look at the electric field of the laser and the atomic dipole. This
the dynamics of the BEC when the periodic potential pro-results in an optical lattice potential of the form
vided by the optical lattice is accelerated, leading to Bloch _ .
oscillations and Landau-ZenétZ) tunneling. We then pro- U(x)=Uosin(mx/d), @)
ceed to use LZ tunnellng asa tool for measurmg_the effect§here d is the distance between neighboring wefliattice
of the mean-field interaction between the atoms in the CONgonstant and
densate. The modification of the LZ tunneling rate in the

presence of interactions can be interpreted in terms of an Uo=(213)AT(1/15)(T/A), (2)
effective potential, and we obtain good qualitative agreement
with a recent theoretical study using this approft8. is the depth of the potentigl9], wherel is the intensity of

This paper is organized as follows: After briefly introduc- one laser beaml is the saturation intensity of thé&’Rb
ing some essential ideas and terminology used in the thegesonance linel" is the decay rate of the first excited state,
retical treatment of cold atoms in optical lattig@ec. 1), we  and A is the detuning of the lattice beams from the atomic
describe our experimental apparatus in Sec. lll. After pretesonance. If the momentum spread of the atoms loaded into
senting in Sec. IV the results of preliminary experiments onsuch a structure is small compared to the characteristic lattice
the calibration of the lattice and on the effects of the condenmomentumpg =27 7/d, then their thermal de Broglie wave-
sate micromotion, we turn to the subject of Bloch oscilla-length will be large compared to the lattice spacth@nd
tions in accelerated lattices in Sec. V. The following Sec. VIwill, therefore, extend over many lattice sites. The conden-
deals with LZ tunneling and leads on to a discussion ofsates used in our experiment have coherence lengths compa-
mean-field effects in Sec. VII. In Sec. VIII we present our rable to their spatial extent 610 wm, which should be
conclusions and an outlook on further studies, followed bycompared to typical lattice spacings in the region of

1050-2947/2002/66)/06361211)/$20.00 65 063612-1 ©2002 The American Physical Society



CRISTIANI, MORSCH, MULLER, CIAMPINI, AND ARIMONDO PHYSICAL REVIEW A 65 063612

-] (deep optical lattice into which it had previously been
loaded adiabatically. In the present work, this description is
only made use of in Sec. Il and in the Appendix, where the
Wannier states are approximated by Gaussian functions.

Ill. EXPERIMENTAL SETUP

6\
s

® ®+d Our apparatus for creating Bose-Einstein condensates is
fme-offight | - described in detail in Ref.23]. Briefly, we use a double-
magneto-optical trap setup in order to cool and capfiiRb
l atoms and transfer them into a time-orbiting potenfi@P)
. % trap. Starting with a few times 1Catoms in the magnetic
N s trap, we evaporatively cool the atoms down to the critical
B temperature for condensation 430 s, obtaining pure con-
densates containing up to<2L0* atoms. After condensation,

FIG. 1. Schematic of the experimental procedure. The condenthe magnetic trap is adiabatically relaxed to mean trap fre-
sate is loaded into the optical lattice, which can transfer momentum uencies . on the order of 20—60 Hz. resulting in a
to it in units of pg=mug. The frequency differencé between the 4 Virap ’ 9

lattice beams can be used to create a moving or uniformly acceIeManat?lon _O;‘ the Cf”de[‘§ate peak density between 2
ated lattice. x 10 cm 2 and 16* cm 3.

The optical lattice was realized using two linearly polar-
ized Gaussian beam@vaist ~1.8 mm, maximum power

0.4-1.6 um. A description in terms of a coherent delocal- ~3 mWw) independently controlled by two acousto-optic
ized wave packet within a periodic structure is then appromodulators and detuned by about 30—60 GHz above or be-
priate and leads us directly to the Bloch formalism first de-low the rubidium resonance line. The lattice consthoould
veloped in condensed-matter physics. As will be explained ibe varied through the anglé between the laser beams, as
the following section, we could vary the lattice spacthgy  shown in Fig. 1. Both horizontal and vertical optical lattices
changing the angle between the lattice beams. In this papegith various angles) were realized. Furthermore, by intro-
the lattice spacingl always refers to the respective geom- ducing a frequency differencé between the two beams, the
etries of the optical lattices used. lattice could be moved at a constant velocity,,

In a lattice Configuration in which the two laser beamS:[)\/z S|n(0/2)]5 or accelerated with an acceleratiam
with wave vectork, are counterpropagating, the usual =[)/2sin(@/2)]ds/dt. While in the counterpropagating ge-
choices of units are the recoil momentume.=7%k.  ometry lattice depths up te-2 E,.. were realized, in the
=Mu ¢ and the recoil energg,.=7k/2m. In the case of  angle-geometry lattice depths up 4620 E,. could be re-
an angle geometry, with the angk between the lattice glized.
beams(see Fig. 1, it is more intuitive to base the natural

qnits on the lattice spacind= m/k sin(6/2) and the proj_ec- IV. PRELIMINARY EXPERIMENTS
tion k=x/d of the laser wave vectok, onto the lattice
direction. One can then define a Bloch momentyg In order to better understand the effect of the lattice on the

=2hm/d=mug, corresponding to the full extent of the first condensate and to calibrate the theoretically calculated lattice
Brillouin zone or, alternatively, to the net momentum ex-depth against experimental values, we performed a series of
change in the lattice direction between the atoms and the twpreliminary experiments in conditions in which we expected
laser beams. Possible choices for the energy unit are eithgrean-field effects to be negligible, i.e., either with the con-
the Bloch energy defined d&;=%2(2m)%/ md?, or an “ef-  densate in a weak magnetic tregfter adiabatic relaxation
fective” recoil energyE,««(#) = Eg/8, where the parametgr ~ resulting in a low condensate density, or by loading the con-
indicates the dependence on the lattice geonj@tty As an  densate into the lattice after switching off the magnetic trap.
intuitive choice for the natural units for the lattice depths isIn the latter case, for horizontal lattice configurations the
the geometry dependent recoil enery..(6), we shall condensate was in free fall after switching off the TOP trap,
quote the lattice depthl, in units of this scaled recoil en- limiting the interaction time with the lattice to 10—-15 ms. In
ergy; for simplicity of notation we shall writg,., where it ~ all experiments, the condensate was observed after
is understood that this always refers to the respective latticd0—20 ms of time of flight by flashing on a resonant imag-
geometries. In Sec. IV on the calibration of the lattice depthing beam for 20us and observing the shadow cast by the
we also use the paramete U,/E,... Throughout the pa- condensate onto a charge coupled device camera.
per, velocities and momenta will be quoted in units of the
Bloch momentunpg and Bloch velocityvg . A. Calibration of the lattice

In the tight-binding limit Uy,>10 E,.), the condensate
in the lattice can be approximated by wave packets localized
at the individual lattice site§Wannier states This descrip- If we abruptly switch on an optical lattice moving at a
tion is more intuitive than the Bloch picture in the case ofspeedivg, then in the band-structure picture the condensate
experiments in which the condensate is released from #&nds itself at the edge of the Brillouin zone where the first

1. Rabi oscillations
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FIG. 2. Rabi oscillations of the condensate in an optical lattice. Scalo
Shown here is the fractioN; /N of condensate atoms in the first
diffraction order as a function of time. The latti¢e the counter- FIG. 3. Calibration of the lattice depth by measuring the side-

propagating configurationrvas moving with a constant velocity peak populations. We calculated the lattice depth from the mean

:%UB- From the Rabi periodrs,,~260 us one finds a lattice Vvalue of the plus and minus first-order side-peak using Eqg. 3. By
depthUg~2 Eec. varying the intensity of the lattice beams, we performed measure-

ments ofs,,, for various values 0§ .

and second band intersect at zero lattice depth. Raising thsepaced peaks with spaciegt, corresponding to the various
'a”'fe up tc_) a final depth dﬂo_opens_up a band gap of width diffraction orders, with a Gaussian population envelope of
AE=Uy/2 in the shallow lattice limit, and hence the popu- _ . : )

: . width ~#At/mo, whereo is the width of the wave packets at
lations of the two bandg24] accumulate a phase difference

. . . .~ ~ the individual lattice sites. In particular, Pedst al. have
A¢d=(Uy/2h)t, which results in the two populations getting . . ’ i
back into phasémodulo 27) after a timerguy—2h/Us. In shown[26] that the relative populatior2.. ; of the two sym

the rest frame of the laboratory, one observes Rabi oscillar—netrIC plus and minus first-order peaks with respect to the

tions [8] between the momentum classgs=0) and |p zeroth-order central peak are given Dby.,=exp

=pg) in the shape of varying populations of the correspond-(_%zozldz) [27]. For deep lattice wellsy/d can be found

ing diffraction peaks observed after a time of flighee Fig. by making a harmonic approximation to the sinusoidal lattice

. otential about a potential minimum, giving a Gaussian
2). From the oscillation frequen we could then calcu-  PS . . .
Iaite the lattice deptmo=229R C%/i%lding results that fell width o=d/7s'* For the relatively shallow lattice used in

short by about20—25 % of the calculated value. We at- our experimentsg<20), however, this approximation is not

tribute the discrepancy between the experimental and thege. Y accurate. Instead, we used a variational ansatz for a
. pancy € eXp . €Qaussian wave packet in a sinusoidal potential. The resulting
retical values mainly to the uncertainty in our laser intensit

: . . . Yiranscendental equation can be solved numerically to yield
measurements and to imperfections in the lattice beam cross . ;

; I See Ref[26] and the Appendix Alternatively, we can find
section and polarization.

As pointed out in Ref[19], an alternative way of inter- an analytical expression for the lattice depth as a function of

preting the observed Rabi oscillations in this kind of experi—the measured side-peak population, giving

ment is to consider a two-photon Raman coupling between

the two momentum states, whose energies differ Ady _ 16 p-1/4 3
=2#2k?/m=4E,.. The coupling is resonantly enhanced if sex"t_[|n(p+l)]2 *1 = )

the frequency differencé between the two lattice beams N

matchesAE/h, i.e., if the lattice velocityv s =(N/2)6  Thjs expression can be used directly to calibrate the lattice

=fkim=;vg , as before. The two-photon Rabi frequency hased on a measurement of the side-peak populations. Figure
for the beam intensities corresponding to a lattice d&pth 3 shows the lattice depth,,p; as inferred from the above

can be easily calculated and, again, givhs=Uo/2%. equation by measuring the populations of the zeroth and
plus/minus first-order diffraction peaks plotted against the
2. Analysis of the interference pattern lattice depths,, . calculated from the beam intensity and

If the depth of a stationary lattice is increased on a timedetunmg, taking into account the losses at the cell windows

scale comparable to the inverse of the chemical potential o(f~80./°)' A s_tralght-llne fit glve_ssexpt=(O.76t0._1)sca|c, .
the condensatén frequency units then the condensate can con_5|st_ent with the results obtained by measuring the Rabi
adiabatically adapt to the presence of the periodic potentia‘?sc'"at'on frequency.
[25]. When the lattice has reached its final depth, the system

is in a steady state with the condensate distributed among the

lattice wells(in the limit of a sufficiently deep lattice in order If the lattice beams are arranged such as to create a peri-
for individual lattice sites to have well-localized wave pack- odic potential along the vertical direction, for deep enough
et9. If the lattice is now switched off suddenly, the indi- lattice potentials the condensate can be held against gravity
vidual (approximately Gaussian wave packets at each latticefor several hundreds of milliseconds. As the potential is re-
site will expand freely and interfere with one anothér.this  duced below a critical depth the condensate starts tunneling
case a tight-binding approximation is more intuitive than aout of the lattice. If this critical depth is fairly small
Bloch wave approachThe resulting spatial interference pat- (<12 E,..), then the tunneling rate can be calculated from
tern after a time of flight ot will be a series of regularly LZ theory. If the condensate moving with the acceleraton

3. Tunneling

063612-3



CRISTIANI, MORSCH, MULLER, CIAMPINI, AND ARIMONDO

PHYSICAL REVIEW A 65 063612

10x10°4 P - per second. As the Bloch velocitieg of the lattices used in
6 . " our experiments lie between 3 mmisand 11.8 mms!
g 6 /'/' (depending on the angl@), the micromotion velocity com-
Z§ 4 o ponent along the lattice direction can be a significant fraction
it of the Bloch velocity. This has two consequences:
27 ,f‘ (a) If the interaction time of the lattice with the conden-
R B T T T T T | sate is short compared tor2Q+op= 100 us, the initial ve-
8 10 12 14 16 18 20 22 locity of the condensate is undetermined to within the micro-
Seale motion velocity amplitude.
FIG. 4. Calibration of the lattice potential with=1.2 wm by (b) If, on the other hand, the interaction time with the

measuring the tunneling rate. Plotted here as a function of the calattice is long compared with 2/ Q1op, the condensate os-
culated lattice depths.,. is the number of condensate atoms Cillates to and fro in the Brillouin zone and can, if the mi-
Nirapped Fémaining in the lattice at timg,,=10.1 ms after switch- ~cromotion velocity is large enough, reach the band edge and
ing off the magnetic trap. Fitting a theoretical curgee textto the  thus be Bragg reflected. Another possible mechanism is the
data we find thate,,~0.76xs¢4)c, consistent with the results of parametric excitation @@ 1op of transitions to higher bands.
the other calibration techniques. All of these effects are undesirable if one wants to con-
duct well-controlled experiments. In our setup, the micromo-
tion takes place in the horizontal plane and was thus impor-
tant when we worked with horizontal lattices. In order to
minimize the detrimental effects of the micromotion, we em-
r=e 2/ (4) ployed two techniques: . . _ _

(a) For short interaction timeswe synchronized the in-
stant at which the lattice was switched on with a given phase
of the rotating bias field. This allowed us to ensure that the
lattice was always switched on when the condensate velocity
a.=—(AE)% (®  along the lattice direction was approximately zero. A small

4h . . S i
residual jitter, however, was still given by the sloshiati-

If the atoms can tunnel into the second band and, therefor@0l€ oscillation of the condensate in the magnetic trap,

effectively into the continuum, they will no longer be trapped Which was especially critical when we worked with large

by the lattice. Starting from this assumption, for the condenlattice constantsand hence small Bloch velocities

sate accelerated by gravity with=9.81 ms? we can cal- (b) Forlong interaction timeswe phase modulated one of

culateNyappeqthe number of atoms that remain trapped afterthe lattice beams synchronously with the rotating bias field

a timet, to be and with a modulation depth that resulted in the lattice
“shaking” with the same velocity amplitude as the micromo-

crosses the band gapE at the Brillouin-zone edge fast
enough, the probability for undergoing a transition to the
first excited band is given bj28|

with the critical acceleration

Nirapped= Nini(1—r)%at/7s, (6) tion. In this way, in the rest frame of the lattice the conden-
_ ) ) ) sate was stationarjagain, save a possible sloshing mojion
where t|5; is an integer multiple of the Bloch periodg Figure 5 shows the effect of methdb)) in which a con-

=vg/g (see following section Figure 4 shows the results of yaonsate was loaded into a lattice =~ 2E,.) with a 1-ms

an experiment in which the condensate was loaded into g, ang then left in the lattice for 7.5 ms before the latter

vertical lattice with lattice constant=1.2 m, after which was suddenly switched off. When the micromotion was not

:?:ppn;gggte(;[:]ist:/?lgsV\:jaéstersr\;]vil:]cehdeiftzf: :rl?m;h:e 18u1m2$5r 0compensated by phase modulating one of the lattice beams,
' the condensate appeared “smeared out” when observed after

=26 75 as a function ofs;,.. Fitting the above equation : . : . ) o
.__a time of flight. Using the compensation technique elimi-
for Nirappedt) to the data, we found that the actual lattice nated this effecfFig. 5 (0)].

depth was around 75% of the value calculated from the lat-
tice beam parameters. This value agrees with those found

using Rabi oscillations and side-peak intensity. V. BLOCH OSCILLATIONS

B. Effects of the micromotion A. Theoretical considerations

The time-orbiting potential trap used in our experiments is  One of the most intriguing manifestations of the quantum
an intrinsically dynamic trap that relies on the fast rotation ofdynamics of particles in a periodic potential are Bloch oscil-
the bias field to create an averaged harmonic trapping potetations. Their theoretical explanation is based on the evolu-
tial. It has been shown, however, that the atoms in such a trajon in the band-structure picture of a collection of particles
perform a small but non-negligible micromotion at the rota-occupying a small fraction of the Brillouin zone when the
tion frequencyQop (27X 10 kHz in our setupof the bias  potential is switched orfmeaning that in real space their
field [29]. Although the spatial amplitude of this fast motion wave functions extend over many lattice sites, which trans-
is extremely smal{less than 100 nm for typical experimental lates into temperatures well below the recoil temperature
parameters its velocity can be as large as a few millimeters T,..=E,cc/Kg, see Sec. )l If the lattice is switched on
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FIG. 5. Effects of the micromotion in a horizontal counterpropa-
gating lattice configuration(@) shows a condensatafter a time of
flight of 15 m9 released from the magnetic trap with, g,
=25 Hz without the optical lattice. Iiib), the optical lattice (J,
~2E,sc) Was switched on for 7.5 ms with the magnetic trap still on.
One clearly sees that the condensate is broadened along the lattice
direction. In(c), we compensated the micromotion by phase modu-
lating one of the lattice beangsee text The difference in intensity
of the dark spot ifa) and(c) is due to shot-to-shot fluctuations of : g .
the number of atoms in the condensate. Also(dna faint spot to i e Ak T e Y
the left of the central condensate can be seen; this corresponds to a

part of the condensate having undergone Bragg reflection due to an FIG: 6. Acceleration of a Bose-Einstein condensate ip the coun-
initial sloshing. terpropagating geometrydE&0.39 um). In (a)—(f) the lattice pa-

rameters weréJ,=2.3 E,.,c anda=9.81 ms?2, and the conden-

diabaticallv. th I th il end in the | sate was accelerated for 0.1,0.6,1.1,2.1,3.0, and 3.9 ms,
adiabatically, then all the atoms will end up In the c"""aStrespectively. In(g), the condensate was accelerated for 2.5 ms with

.banq- Accelerating the at_oms l?y aPp'ying a fofceal or the same lattice depth as above, but with25 m s 2. In this case,
inertial) to them will result in their being moved through the 3 fraction of the condensate underwent LZ tunneling out of the
Brillouin zone until they reach the band edge. Owing to thejgwest band each time a Bragg resonance was crossed. Note that the

effects of the periodic potential, at this point there is a gapseparations between the spots vary because detection occurred after
between the first and second band, and unless the accelekgfferent times of flight.

tion is large enough for the atoms to undergo a LZ transition
(see Sec. V) they will remain in the first band and thus be
Bragg reflected back to the opposite end of the Brillouin
zone. In the rest frame of the lattice this corresponds to th

velocity of atoms oscillating to and fro betweerzavg and  \yhen the instantaneous lattice velocity,, is subtracted
—zavg (where O<a<1, depending on the lattice depth o0 o, one clearly sees the oscillatory behavior wf
Whefeas in the laboratory frame these Bloch OSC'"at'OnS—mat. This result is analogous to the first observation of
manifest themselves as an undulatifu, for shallow lat- |5y gscillations in cold atoms at subrecoil temperatures
tices, almost stepwigdncrease in velocity rather than the
linear increase expected in the classical picture in which the 4- 0o
atoms are “dragged along” by the potential. The instanta- f
neous velocity of the atomic wave packet in the lattice frame
can be calculated from the slope of the first band at the
corresponding quasimomentumg, giving v=(1/h) 11

(dE(g)/dq). 04

- \G:‘:; ?':-\
_.\k"f;.. e 'va':\" o
Chk 2 —.‘,\ i R - o
AR \\ LR \f‘\k‘k‘} :LH'A. ::\" ":\

.

however, if one calculates the mean velocity, as the
weighted sum over the momentum components after the in-
feraction with the accelerated lattice, as shown in Fig. 7.

V. IV,
fhiliy
&

B. Experimental results

The condensate was loaded into tt®rizonta) optical
lattice with lattice constantd=0.39 um immediately after
switching off the magnetic trap. The switch on was done
adiabatically with respect to the lattice vibration frequencies
[7] ®,ip=2Eec\s/ (valid for s=>1) by ramping up the ——
lattice beam intensity over a timg,y,,~100 us. Thereaf- 18 20 22 24 26 28 30 32
ter, the lattice was accelerated with-9.81 ms* by ramp- FIG. 7. Bloch oscillations of the condensate mean velagjyn

ing the frequency. differencé .between the beams. After a an optical lattice(a) Acceleration in the counterpropagating lattice
time t,cce the lattice was switched off and the condensateyith d=0.39 um, Uy~2.3 E, anda=9.81 ms2. Solid line:

was observed after an additional time of flight of 13—18 ms.theory. (b) Bloch oscillations in the rest frame of the lattice, along
Figure 6 shows the results of these measurements in thgith the theoretical predictiotsolid line) derived from the shape of
laboratory frame. The Bloch oscillations are more evidentthe lowest Bloch band.
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1.0 went tunneling into the first excited band. In Fig. 8, the av-

a 08 ® erage velocity of the condensate after the acceleration is
= 06 ° a) shown as a function o andU, along with theoretical pre-
<5 04 e dictions using the LZ tunneling probability. If the final lattice
0.2 velocity is vg, one finds a final mean velocity,,=(1
004, . . . —2 —r)vg, whereas a straightforward generalization of this for-
0 100 200 300 400 ;
2 mula yields
a(m/s”)
3.0
@ 25 o vm=vp(r=1)[1—-(1-r)"] )
Z 20 b)
=, )
> 13 for a final lattice velocity ohvg. In this case, a fractionof
L : : : : : : . the condensate undergoes LZ tunneling each time the Bragg
0 10 20 30 40 50 60 70 resonance is crossed, with a remaining fractionrlbeing
a (m/s?) accelerated further. Note that this result is only independent
8 of the lattice depthi{except through the tunneling fraction
o g if the final lattice velocity is an integer multiple ofvg . As
> o can be seen from Fig. 8, agreement with theory is good.
c 2 c) Again, it should be stressed here that owing to the small
; condensate densities, these measurements do not differ quali-

o o5 10 ' . 1 tatively from those using cold but uncondensed atohs.

1{5 20 25 30

UO / Erec

. . . . VIl. MEAN-FIELD EFFECTS
FIG. 8. LZ tunneling of a condensate in an optical lattis.

and (b): Mean velocity of the condensate after acceleration of the A. Theoretical considerations

lattice tOUB‘T’deJB' respectively, as a function O.f acceleratu(n)_. In Bose-Einstein condensates, interactions between the
Mean velocity of the condensate after acceleration of the lattice tg

4.4y 5 as a function of lattice depth. If@) and(b), the lattice depth C?Tstltléegé ato?s are} regpton_SIIbIe fct).r the r?onlmear behar\]llor
was fixed at Uy=2E,., and in (c) the accelerationa of the and can lead to Interesting phenomena such as

=9.81 ms™ In (), agreement with theory is expected to be solitons[6] and four-wave mixing with matter wave80].

somewhat less good because the final velocity of the lattice is not ahS the atoms are extre_)me_ly cold, collisions b_etween_them
integer multiple ofvg (see text can be treated by considering ordywave scattering, which

is described by the scattering lengih. For rubidium the

[19]. The added feature in our experiment is that by using atomic mean-field interaction is repulsive corresponding to a
Bose-Einstein condensate released from a weak magnefpositive scattering lengths=5.4 nm.

trap, the spatial extent of the atomic cloud is sufficiently For a BEC in an optical lattice, one expects an effect due
small so that after a relatively short time of flight to the mean-field interaction similar to the one responsible
(=10-20 ms) the separation between the individual mofor determining the shape of a condensate in the Thomas-
mentum classes is already much larger than the size of thieermi limit: The interplay between the confining potential
condensate due to its expansion and can, therefore, be easilyd the density-dependent mean-field energy leads to a
resolved. The mean velocity is then calculated simply bymodified ground state that reflects the strength of the mean-
counting the number of atoms in each of these claéises field interaction. Applied to a BEC in a periodic potential,

dark dots visible in Fig. 6 one expects the density modulation imposed on the conden-
sate by the potentialhigher density in potential troughs,
VI. LZ TUNNELING lower density where the potential energy is hitinbe modi-

] ] . fied in the presence of mean-field interactions. In particular,
We investigated thé&), dependence for the LZ tunneling {he tendency of the periodic potential to create a locally

of the condensate into the second band when crossing thggher density where the potential energy of the lattice is low
edge of the Brillouin zone, and therefore, effectively to theyi|| pe counteracted by thérepulsive interaction energy
continuum, as the gaps between higher bands were negligibjga rises as the local density increases.

for the shallow potentials used in our experiments. As in Sec. The nonlinear interaction of the condensate inside an op-
V, we loaded the condensate into the optical lattice afteficq| |attice with lattice constanti=w/sin(6/2)k, may be
switching off the magnetic trap. The trap had been adiabatigescriped through a dimensionless paramitt8}
cally expanded to a mean trap frequengy,,~20 Hz prior

to switch off, thus ensuring that the condensate density was Nas Nog

small (<10 cm %) and, therefore, mean-field effects s al2) Es’

could be neglected. After that, the lattice was accelerated to a LSIn(6/2) .
final velocity nug(n=1,2,...).Each time the condensate
was accelerated across the edge of the Brillouin zone, asvith g defined in Eq(A2), corresponding to the ratio of the
cording to LZ theory a fractiom (see Egs. 4 and)5under-  nonlinear interaction term and the Bloch energy. The param-

()
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FIG. 9. Calculated dependence of the param€t@n the trap (Up/ Eree)

frequencyv,,, for two different lattice configurations. Mean-field
effects are far more important for the larger lattice consint
=1.56 um, which results in aC larger by a factor of~16 with
respect to the counterpropagating configuratide0.39 xm). In
calculatingC, we assumed a typical condensate numgf=10* .
and used the Thomas-Fermi expression for the condensate peﬁﬁte densityn,.
density.

FIG. 10. LZ tunneling for different values of the interaction
parameteC. The tunneling fractiom was measured by accelerating
the condensate tog in a vertical lattice withd=1.2 um, andC
was varied by changing the trap frequency and hence the conden-
The straight lines are best linear fits to the data.

Uetr  Ug

ABeii=—5" = 3(1740)’

eterC contains the peak condensate densiy31], the scat- (10

tering length, and the atomic mass In our notation, the
parametelC always refers to the respective lattice geometries

: : where AE is the value of the band gap in the absence of
with angle 8. From the dependence Gfon the lattice angle . . . . :

. ; : interactiong 33]. One can then derive the interaction param-
0 it follows that a small angled (meaning a large lattice

constantd) will result in a large interaction terr@. In our eter C indirectly by determining the effective band gap
experiment, creating a lattice withd=29° (i.e., d AEey from the LZ tunneling rate, using Eqs.(4) and (5)

) with the band gap\Eg;.
=1.56 um) allowed us to realize a value &f larger by a . b
factor of more than 10 with respect to Ré82] using a Figure 10 shows the results of measurements of the LZ

comparable condensate density. Figure 9 shows our estimattusnne"ng rate for two different values @. In this experi-
P Y- F19 ﬁ]ent, in contrast to those described so far, the lattice was

for the nonlinear interaction paramet@rrealized by varying adiabatically ramped up with the magnetic trap still on, in

the|nmsg?e[gg]tr{?%f;i?ﬁgrnsc(ggﬂbéze;bghg?etigzngyor)éssionorder to maintain the condensate at a constant density. After
' ' Y P accelerating the condensateutp, the magnetic trap and the

in the perturbative limitassumingdJ,<Eg) for the effect of lattice were both switched off and the fractionthat had

the mean-field interaction on the ground state of the Qonderl]ndergone tunnelingi.e., the fractional population that ap-
sate in the lattice. Starting from the Gross-Pitaevskii equa- eared in the zero-momentum claseas measured after a

tloq folr Ithg co_ndensate nge fUQCtIO? ;'n a .:)ne.—d|mens_|on ime of flight. The effective potentials could be derived from
loptlca ﬁtt'ci[:ée"fl oner; |mfen5|3nﬁ ;‘m' tobnlgn _eqwxa— the slopes of the linear fits in Fig. 10 and were found to be
ent to_t at of EqJ( .)]’t €y foun that y su stituting the markedly different. Comparing the experimentally deter-
potential depti, with an effective potential mined values folC with those calculated on the basis of the
experimental parameters, we found that the experimental
U Uo @) values were larger by about a factor of 2. In fact, we ex-
eff™1+4C’ pected the predictions of RdfL8] to be only approximately
valid (see discussion below
the effect of the mean-field interaction could be approxi- Inorder to further test the validity of Eq. 10, we used two
mately accounted for. This reduction of the effective potendifferent lattice angle$) and varied the condensate density
tial agrees with the intuitive picture of the back action on theby changing the trap frequen¢g5]. The effective potential
periodic potential of the density modulation of the conden-in each case was inferred from the tunneling probabilfiyr
sate imposed on it by the lattice potential. For repulsive in2 fixed lattice depth. The results of these measurements are
teractions, this results in the effective potential being low-shown in Fig. 11, along with the theoretical predictions.
ered with respect to the actual optical potential created by thelearly, the reduction ot with respect to the noninter-
lattice beams. acting limit is much larger for the small lattice angle, as
expected from theory. The general behaviorlf;; as a
function of C is well reproduced by our results. Replaci@g
by ~2C in the formula forU.¢;/U, leads to much better
In order to measure the effective potentid};;, we as- agreement with the experimental data, which is consistent
sumed that the perturbative treatment described above can hth the results of Fig. 10.

B. Experimental results

extended to define an effective band gep, ;s at the edge of In spite of the good qualitative agreement, we should like
the Brillouin zone which for a particular interaction param-to point out that the model of Choi and Njd8] only ap-
eterC can be written as proximately describes our experiment, as it assumes an infi-
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FIG. 11. Dependence of the effective potentiak on the inter- =207
action paramete€. The different symbols indicate the twori- 516_
zonta) lattice geometries, with the empty symbols corresponding to 2 |
the counterpropagating case and the full ones to the angle configu- 12 b)
ration (d=1.56 wm). Solid line: theoretical prediction of Choi and

Niu’s expression forU.¢;. The parameters in these experiments
werea=23.4 ms?2andU,=2.2 E, for the counterpropagating
lattice anda=3.23 ms? andUy=5.7 E,e for the angle geom-
etry. FIG. 12. Dependence of the on-site interaction endfgy in
(@), and of the Josephson frequengy, in (b), on the nonlinear
RsrameterC for a lattice withd=1.56 um, Uy=5.6E., and
Nio:=10% For these parameters, the tunneling enegy=h

T T T T T
0.05 0.10 0.C15 0.20 0.25

nitely extended condensate and neglects the radial degrees
freedom of the condensate in the one-dimensidhB) lat-
tice. Especially the finite extent of the condensate in our® Hz.

experiment(in which only 6—30 lattice sites were occupied

by the condensate, see the Appendkould lead to non- ACKNOWLEDGMENTS

negligible corrections. Also, the analysis of R¢L8] as- _
sumes a uniform condensate density across the entire lattice, Th|s work was supported by the INFM through a PRA

whereas in our experiment there was a pronounced densify °/€ct: by MURST through the COFIN2000 Initiative, and

envelope over the 630 lattice wells occupied by the conPY the European Commission through the Cold Quantum-
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VIIl. CONCLUSIONS AND OUTLOOK

We have presented experimental results on the adiabatic APPENDIX: AN ARRAY OF COUPLED
loading and subsequent coherent acceleration of a Bose- WELLS ~RELEVANT PARAMETERS
Elnstleln gon(ﬁer?sate r:n a l[t)) optlcglé?ttlck:]e. In'”th('a adla?arflc The possibility of studying the dynamics of a Bose-
acceleration limit we have observed Bloch oscillations of t “Einstein condensate spread out coherently over a large num-
condensate mean velocity in the lattice reference fram ST . :
whereas for larger accelerations and/or smaller lattice deptﬁ%er of wells of a periodic potential, bearing a_cloge resem-
LZ tunneling out of the lowest band occurred. The experi-; ance to an array of poupled Jqsephson junctions, has
mentally observed variation of the LZ tunneling rate with the SPired a host of theoretical papers in the past few years. On
condensate density has been related to the mean-field intdf® €xperimental side, phase fluctuatiphs], Josephson os-
action in the condensate leading to a reduced effective pdiilations [15], and the Mott insulator transitiofl2] have
tential. Agreement with recent theoretical results is satisfacP€en investigated, invoking concepts and notations inherited
tory. from the physics of Josephson junctions. In order to facilitate

A natural extension of our work on mean-field effects will the comparison of our work with these studies, in this Ap-
consist in checking theoretical predictions concerning instapendix we report the values pertinent to our experiment for
bilities at the edge of the Brillouin zor{@6] and the possi- the various parameters that are important in the description
bility of creating bright solitons by exploiting the nonlinear- of coherent quantum effects in an array of tunneling junc-
ity of the Gross-Pitaevskii equation, which can compensatéions.
the negative group-velocity dispersion at the band ¢8@¢ For the description of a condensate in an array of coupled

Note added in proofWhen taking into account saturation potentials wells, the physical parameters needed to describe
effects of the imaging beam, we found that we systematicallfhe dynamics of the system are the on-site interackgn
underestimated the atom number in our experiments by and the tunneling enerdy;. These quantities are defined in
factor of 1.8. Therefore, our experimental values@have a variety of ways in the literatue88—4Q. Our calculations
to be corrected by the same factor. are based on a variational ansatz of the total Hamiltonian
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FIG. 13. Variation ofE; andE with lattice depth(lattice con-
stantd=1.56 um, N,,;=10% for a fixed value of the nonlinear
parametelC=0.17.

FIG. 14. Number of wells occupied by the condensate as a func-
tion of the magnetic trap frequency for two different lattice con-
stants. For the large lattice constant, the number of wells is small, so

52 that finite-size effects are expected to be important.
Hior=Ho+ 9| W (r)[2= 5 V2+ Ugsir(k_ ) +g|¥(r)[?,
(A1) whereo, , are the Gaussian widths in tlyeandz directions

of the radial wave function
with the interaction parameteygiven by

1 1 1
g:47Tﬁ2aS/m (AZ) ¢(y,z):Wexp{—z(yloy)z—z(zla'z)z .
y z

and the wave functio’ (r) given by (A8)

The 1D coupling strength, p is equivalent to that derived by
V()= o(x—nd)YN,(1)e'nWep(y,z). (A3)  Olshanii in the case of a cigar shaped atomic {4fl. Ns
n =N;ot/Nocc IS the mean number of atoms per lattice site,
with N;o= 2N, the total number of condensate atoms and
Here, Np(t) is the number of atoms at site 9,(t) is a n__.the number of lattice sites occupied, as defined below.
site-dependent phase, anfly,z) is the part of the wave  As the maximum lattice depth we could experimentally
function perpendicular to the lattice direction. Basing theachieve in the Counterpropagating Configuration was
variational ansatz fory, on a Gaussian of the forn#o(X)  ~2 E ., we have only calculateB. and E; numerically
= (Uo"?m"*)exy{ — 3(¥/0)?] [41], we obtain a minimum en- for a lattice in the angle geometry with=1.56 xm, as the
ergy wave function of widthr WhiCh, eXpreSSGd in units of present model on|y gives reasonable Va]uei}@fErecz4_
Figure 12a) shows the dependence of the on-site interaction
energyE¢ as a function of the nonlinear interaction param-
tion of the potential wells, satisfies the condition eter C for a constant lattice deptbly=5.6 E,... The Jo-
sephson frequency,= VE;Ec/h as a function ofC is shown
_a in Fig. 12b). In Fig. 13, bothE; and E¢ are plotted as a
:<i) _ (A4)  function of the lattice depth.

Th Finally, we briefly discuss the variation with,,, of the
numbern, of lattice sites occupied by the condensate. In a
rough approximation, this number is given by the diameter
of the condensate as calculated from the Thomas-Fermi limit
divided by the lattice constard. Pedriet al. have used a
more refined modd]26] to derive the expression

— 1/5
15 N mﬂ'vtrapd)
—Np@as\| ————| -
8\/; tot“s % o

(A9)

d
the width o,=— (U /E,..) ~ ¥ in the harmonic approxima-
h T 0 rec pp

2
g
exp{ —(0_—) INUG/E,ec
h

This equation can be solved numerically to yiettor, .
We now define the quantitids: andE; as follows[42]:

EC:nglDJ dxero(X)*, (A5)

2 h
Ey=- J dxiio(X)Hoto(x—d). (A6) T d N 2mmuga,

In the expression foEc, the 1D interaction parametgyp is

defined as Figure 14 shows\, as a function ofv,,, for two dif-
ferent lattice geometries. It is clear from this plot that in the
angle geometry, the number of wells occupied1Q) is

, (A7)  small and hence we expect finite-size effects to be particu-

TOy0, larly important in this configuration.

Jip=9
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