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Multiple transitions in atom optics: Intensity- and density-dependent effects

K. V. Krutitsky,* K.-P. Marzlin,† and J. Audretsch‡
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Starting from the first principles of nonrelativistic QED we have derived the system of Maxwell-Schro¨dinger
equations which can be used for theoretical description of atom optical phenomena at high densities of atoms
and high intensities of the laser radiation. The role of multiple atomic transitions between ground and excited
states in atom optics has been investigated. Nonlinear optical properties of interacting Bose gases are studied
and an equation for the refractive index has been derived. We have investigated the role of light-induced and
collisional nonlinearities in the diffraction of an ultracold atomic beam from an intense standing laser wave in
the Raman-Nath and in the Bragg regimes.
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I. INTRODUCTION

In last decades the problem of interaction of the la
radiation with ultracold atomic gases has attracted a lo
attention. With the aid of the laser radiation one can mani
late the center-of-mass motion of ultracold atoms and
can observe different wave phenomena of ultracold ato
beams. Using various configurations of optical fields one
create diffraction gratings@1#, beam splitters@2#, lenses@3#,
waveguides@4#, mirrors @5# for ultracold atomic beams, an
one can collimate them@6#.

After the experimental realization of Bose-Einstein co
densation@7#, which allows one to create rather dense atom
systems, the problem of interaction of photons with ultrac
atoms has reached a new stage of development. The con
sate behavior even in the absence of any external poten
is described by nonlinear equations, where the nonlinear
are caused by atomic collisions. Acting with the laser on
dense atomic sample one can induce nonlinearities of
other kind in the behavior of the matter field caused by
namical dipole-dipole interactions. This provides a possi
ity to create atomic solitons of different kinds@8,9#, to
change dramatically the effective scattering length of
condensate@10,11#, to create nonlinear beam splitters@12#,
vortices@13#, photonic band gaps, and defect states in a c
densate@14#.

In recent years, different approaches to the descriptio
interaction of ultracold atoms in the field of optical radiatio
have been suggested and different aspects of the phe
enon have been considered. The properties of the laser r
tion modified by atomic dipole-dipole interactions were i
vestigated @15–17# and it was shown that they can b
described by the refractive index, which is governed in
linear case—when the light intensity is low enough—by t
Clausius-Mossotti relation known from classical optics
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quantum correlations are neglected. If the quantum statis
correlations are taken into account, the formula for the
fractive index contains additional terms defined by
position-dependent correlation function@15–17#. Nonlinear
optical properties of a noninteracting Bose gas were stud
as well @18#.

The modification of the properties of the laser radiati
should have a back influence on the behavior of an ultrac
atomic ensemble~for example, on the motion of atomi
beam!. An attempt to consider this back influence was u
dertaken by several authors@8,12,16,19–21#. In the first
works on the subject, the two-body interactions were m
eled by the phenomenological contact potential@19#. Later
on dynamical dipole-dipole interactions were taken into
count within the framework of the nonrelativistic electrod
namics@8,12,16,20–24#. However, in papers by Zhang an
Walls @12# and Lenzet al. @8# the averaged polarization of a
ultracold atomic ensemble was computed as a function of
incident laser field, whereas it should be a function of t
macroscopic or the local field, which are different from t
external laser field due to dynamical dipole-dipole intera
tions. Wallis@21# used the correct form of the equations f
the electromagnetic field, although his result for the mat
field equation seems to be inconsistent with the equation
the electromagnetic field@22#. This problem was considere
also by Castin and Mo” lmer @20# and Ruostekoski and Jav
anainen@16#. But the equations used in those papers are v
complicated because these are written in terms of the lo
field and dipole-dipole interactions are presented explicitly
the form of the sum over dipole fields. This makes the ana
sis very difficult and an analytical study is practically impo
sible to perform.

In Refs.@22–24# a self-consistent quantum theory of ato
optical processes has been developed. Making use of
Lorentz-Lorenz relation, which allows one to simplify th
analysis, we obtained the general system of Maxw
Schrödinger equations for atomic creation and annihilati
operators and the propagation equation for the laser fi
which can be used for the description of linear and nonlin
phenomena in atom optics of single-species and multispe
condensates at high densities of the atomic system. Howe
the treatment in@22–24# was restricted to low light intensi
ties.
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In the present paper we shall continue the investigati
started in@22,23#. Having in mind mainly atom optical ap
plications, we shall derive the system of Maxwe
Schrödinger equations for the case of high density of t
atoms and high light intensity. The nonlinear optical prop
ties of the interacting Bose gas will also be discussed.
paper is organized in the following manner. In Sec. II w
discuss basic equations, which govern the time evolution
the matter-field operators under the influence of the photo
In Sec. III a general procedure for the elimination of t
excited state is developed and a compact analytical exp
sion for the excited-state matter-field operator is derived
order to accomplish the elimination procedure for the int
acting gas, it is helpful to employ the Lorentz-Lorenz re
tion, which is briefly discussed in Sec. IV. In Sec. V w
discuss nonlinear matter equations for the cases of low
high light intensity. Section VI is devoted to the investigati
of linear and nonlinear optical properties of the interact
Bose gas. In Sec. VII we study the diffraction of an ultraco
dense atomic beam from an intense standing light wav
the Raman-Nath and Bragg regimes. The conclusions
summarized in Sec. VIII.

II. HEISENBERG EQUATIONS OF MOTION FOR THE
ATOMIC OPERATORS

We consider a system of bosonic ultracold two-level
oms with massM, transition frequencyva , and transition
dipole momentd. We shall describe such a system in term
of matter-field operators. Letug& and ue& be the vectors of
the ground and excited states of the quantized atomic fie
Then the corresponding annihilation operators of the ato
in these internal states at the positionr are f̂g(r ,t) and
f̂e(r ,t). The matter-field operators are assumed to satisfy
bosonic equal time commutation relations.

The Heisenberg equations of motion for the atomic ope
tors are easily derived from the Hamiltonian of the seco
quantized atomic field interacting with the photons. We
sume the incident laser fieldEin(r ,t) to be a monochromatic
wave with the frequencyvL5ckL , which is close to the
frequencyva of the electric-dipole transition. In the refe
ence frame rotating with the frequencyvL and in making use
of the electric-dipole approximation and the rotating-wa
approximation, we obtain the following dynamical equatio
for the matter-field operators@22,23#:

i\
]f̂g

]t
5Ĥcmf̂g1Ĥgef̂e , ~1!

i\
]f̂e

]t
5Ĥcmf̂e2\~D1 iG!f̂e1Ĥegf̂g , ~2!

whereĤcm52\2¹2/(2M ), D5vL2va2d is the detuning
of the frequency of the laser wave from the frequency of
atomic transition,d andG are the Lamb shift and one-half o
the spontaneous emission rate of a single atom in free sp
respectively. Here we have introduced the operatorsĤeg5

2d•Êloc
1 , andĤge52d•Êloc

2 which are responsible for th
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transitionsug&→ue& andue&→ug&, respectively.Ĥeg andĤge

are related to the operator of the local electric fieldÊloc
6 (r ,t).

The positive-frequency part of this operator has the form

Êloc
1 ~r ,t !5Ein

1~r !1 i(
kl
A2p\vk

V
elĉkl~0!

3exp@ ik•r2 i ~vk2vL!t#

1E dr 8“3“3
P̂1~r 8,t2ur2r 8u/c!

ur2r 8u
eikLur2r8u,

~3!

where “3 refers to the pointr and the operatorĉkl(0)
corresponds to the free-space photon field. The polariza
operator isP̂15df̂g

†f̂e . Note that in Eq.~3! a small volume
around the observation pointr is excluded from the integra
tion. The last term in Eq.~3! describes dipole-dipole interac
tion. Due to the structure of the local field given by Eq.~3!
one can distinguish two kinds of the photons: primary la
photons and secondary photons, reradiated by the atom

Usually in atom optics of a Bose-Einstein condens
~BEC! one deals with equations for the ground-state mat
field operator f̂g . Therefore, one has to eliminate th
excited-state matter-field operatorf̂e from the system of
Eqs.~1! and~2!. In the following section we shall develop
general procedure for the elimination of the excited sta
which is in contrast to previous work~see, for instance
@12,22–24#! valid for relatively high atomic densities an
relatively high laser radiation intensities.

We have to point out that the system of Eqs.~1! and ~2!
does not take into account ground state collisions of the
oms, which play an important role in a condensate. The c
responding terms can be included into the equation for
ground-state operatorf̂g after the elimination of the excited
state in the same manner as it has been done in Ref.@10#.

III. ELIMINATION OF THE EXCITED STATE

Let us assume that initially there are no atoms in the
cited state. Then we can rewrite Eq.~2! in the form

f̂e~ t !52 i E
0

t

ei [( Ĥcm /\)2D̃] t8Ĥeg~ t8!e2 i (Ĥcm /\)t8f̂g~ t8!dt8,

~4!

whereD̃5D1 iG. Using the identity

E eaxF~x!dx5
eax

a (
k50

`
~21!k

ak

]k

]xk
F~x!, ~5!

we get

f̂e~r ,t !5
e2 i (Ĥcm /\)t

\D̃
(
k50

`
~2 i !k

D̃k

]k

]tk

3@ei (Ĥcm /\)tĤeg~r ,t !f̂g~r ,t !#. ~6!
9-2
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MULTIPLE TRANSITIONS IN ATOM OPTICS: . . . PHYSICAL REVIEW A 65 063609
Since we are dealing with ultracold atoms, one can ass
that their center-of-mass motion does not have any influe
on the electromagnetic field propagation. If in addition t
laser frequency in the medium remains unaltered, we m
neglect the time dependence ofĤeg . In the case of a slow
atomic motion we can neglect the center-of-mass mo
Ĥcm in Eq. ~6!. Then we have

f̂e~r ,t !5
Ĥeg~r !

\D̃
(
k50

`
~2 i !k

D̃k

]k

]tk
f̂g~r ,t !. ~7!

From the system of Eqs.~1! and~2!, with the center-of-mass
motion neglected, one can derive the relation

]n

]tn
f̂g~r ,t !52 i n

Ĥge~r !Ĥeg~r !

\2D̃22n

3 (
k5n21

`
~2 i !k

D̃k

]k

]tk
f̂g~r ,t !, n51,2, . . . .

~8!

Substituting this relation iteratively into Eq.~7!, we obtain

f̂e~r ,t !5
Ĥeg~r !

\D̃
(

m50

`

~21!mamF Ĥge~r !Ĥeg~r !

\2D̃2 Gm

f̂g~r ,t !,

~9!

a051,

am115 (
k150

1

(
k250

k111

(
k350

k211

••• (
km50

km2111

152
~2m11!!

m! ~m12!!
,

m50,1, . . . . ~10!

The zeroth-order term (m50) in Eq. ~9! corresponds to the
transition ug&→ue&. The next term (m51) corresponds to
the transitionug&→ue&→ug&→ue& and so on. This amount
to the higher-order adiabatic elimination. Thereby differe
terms in Eq.~9! describe multiple transitions of the atom
between ground and excited states, caused by the influ
of the photons. In a typical atom optical situation when t
electromagnetic field has a form of a standing wave, th
terms correspond to the processes with the momentum tr
fer from the laser beam to the atoms62\K (m11), where
K is a wave vector of the laser wave in a medium.

We assume thatê(r )5Ĥge(r )Ĥeg(r )/(\2D̃2) acts only on
statesuc& for which the series in Eq.~9! converges, i.e.,uc&
can be decomposed into eigenstates ofê whose eigenvalues
satisfy the conditionuenu,1/4. Then the result of the sum
mation is given by@25#

f̂e~r ,t !5
Ĥeg~r !

\D̃

A114ê~r !21

2ê~r !
f̂g~r ,t !, ~11!

and the equation for the ground state~1! takes the form
06360
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]t
f̂g~r ,t !5F Ĥcm1Ĝ„f̂g~r ,t !…1

\D̃

2
@A114ê~r !21#G

3f̂g~r ,t !, ~12!

where Ĝ(f̂g) is an operator which takes into accou
ground-state collisions. The general form of this operato
not known and one has the corresponding explicit expr
sions only in the low-density approximations.

Although we do not seef̂e explicitly on the right-hand-
side of Eqs.~11! and ~12!, it is still there, becauseÊloc

6 de-

pends onf̂e and this dependence, which is given by Eq.~3!,
is very complicated. Formally we could iteratively substitu
Eqs.~3! and~11! into Eq.~12!. However, by performing such
a procedure we would get an equation for the ground-s
operator in a form that would be impossible to use. The
fore, the algorithm described in this section does rea
eliminate the excited state only in the case when the dip
dipole interactions are small, i.e., whenÊloc

6 'Ein
6 . In this

case Eqs.~11! and ~12! coincide with Eqs.~12! and ~14! in
Ref. @26#, where they have been obtained in a different ma
ner. In order to eliminate the excited state in the case w
the dipole-dipole interactions play an important role, it
useful to employ in addition the Lorentz-Lorenz relatio
which will be briefly discussed in the following section.

IV. LOCAL-FIELD CORRECTION

As was mentioned in the preceding section, the solut
of Eqs.~3!, ~11!, and~12! is a rather complicated mathemat
cal problem because these equations contain explicitly
dipole-dipole interactions. In many particular situations su
a detailed microscopic description of matter is not necess
and it is more convenient to consider optical properties of
medium on a macroscopic level. This can be done by in
ducing the macroscopic fieldÊmac(r ,t), instead of the local
field Êloc(r ,t) in the equations for the matter fields.

As in Ref.@27# we can introduce the macroscopic field b
imposing the requirement that it is a solution of the mac
scopic Maxwell equations for a charge-free and current-f
polarization medium. Taking into account that in most of t
practical situations the electromagnetic processes are m
faster than the center-of-mass motion of the atoms, we
neglect the time dependence of the local fieldÊloc

6 and the

polarizationP̂6. Then the system of Maxwell equations ca
be written in the form of the wave equation

“3“3Êmac
6 ~r !5kL

2@Êmac
6 ~r !14pP̂6~r !#. ~13!

Using Eq.~13! and the definition of the local field~3!, we get
the following relation:

Êloc
6 ~r !5Êmac

6 ~r !1
4p

3
P̂6~r !. ~14!

This equation is often called in the literature the Loren
Lorenz relation. It constitutes the basis of the local-field
9-3
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fects in classical@28#, quantum@29# and nonlinear optics~see
@30–32# and references therein!.

V. NONLINEAR MATTER EQUATION

As mentioned above, the elimination of the excited st
is, in general, a complicated mathematical problem. Let
consider some important special cases, when one can o
rather simple analytical solutions.

A. Low light intensity

We consider first the special case of a low light intens
In this case we can keep only the first term (m50) in Eq.
~9!, which is linear with respect to the electromagnetic fie
strength:

f̂e~r ,t !52
d•Êloc

1 ~r !

\D̃
f̂g~r ,t !. ~15!

If we substitute Eq.~14! into Eq. ~15! and take into accoun
Eq. ~15!, we obtain

f̂e~r ,t !52F V̂1~r !

2D̃
1

4p

3
auf̂g~r ,t !u2

d•Êloc
1 ~r !

\D̃
G f̂g~r ,t !,

~16!

where the position-dependent Rabi frequencyV̂1(r )
52d•Êmac

1 (r )/\ is related to the macroscopic electric fiel

a52d2/(\D̃) is the atomic polarizability, anduf̂gu2

5f̂g
†f̂g . Repeating the same procedure infinite number

times we come to the result

f̂e~r ,t !52
V̂1~r !

2D̃
(
n50

` S 4p

3
auf̂g~r ,t !u2D n

f̂g~r ,t !.

~17!

The series in Eq.~17! converges, provided that the eigenva
ues of the operator 4p/3uauuf̂gu2 are less than 1. In this cas
we get

f̂e~r ,t !52
V̂1~r !

2D̃F12
4p

3
auf̂g~r ,t !u2G f̂g~r ,t !. ~18!

This adiabatic solution has been obtained in Ref.@22# using a
slightly different technique. Note that a singularity occurs
Eq. ~18! under the condition 4p/3uauufgu251. However, as
it follows from our derivation, we never encounter this si
gularity, because in the region 4p/3uauufgu2>1 Eq. ~18! is
not valid. This was not clear from the derivation given
Ref. @22#.

Then substituting Eq.~18! in Eq. ~1!, we obtain as a resul
an equation for the ground-state matter fieldf̂g ,
06360
e
s
ain

.

f

i\
]f̂g~r ,t !

]t
5F Ĥcm1Ĝ„f̂g~r ,t !…

1
\uV̂1~r !u2

4D̃U12
4p

3
auf̂g~r ,t !u2U2G f̂g~r ,t !,

~19!

whereuV̂1u25V̂2V̂1.

B. High light intensity

If the light intensity is high, we have to take into accou
higher-order terms in the expansion~9!. In the case of a
dilute gas, i.e., when 4p/3uauufgu2!1 it is enough to keep
only linear terms with respect to the atomic density. Then
obtain

f̂e~r ,t !52
V̂1~r !

2D̃
F 11

4p

3

uf̂g~r ,t !u2

A114«̂m

3S a2
a*

4«̂m
†

uA114«̂m
† 21u2D G f̂g~r ,t !,

~20!

where «̂m5uV̂1u2/(4D̃2) is a bounded operator with eigen
values«m that obey the conditionu«mu,1/4. The operatorĜ
of Eq. ~12! in this case is given by Ĝ

54p\2a/M uf̂g(r ,t)u2, wherea is a scattering length of the
condensate, and we get the following equation for
ground-state matter-field operator:

i\
]f̂g~r ,t !

]t
5F Ĥcm1

\uV̂1~r !u2

4D̃

A114«̂m~r !21

2«̂m~r !

1
4p\2âe f f~r !

M
uf̂g~r ,t !u2G f̂g~r ,t !, ~21!

where an effective scattering length

âe f f~r !5a1
\uV̂1~r !u2

4D̃A114«̂m

S a
A114«̂m21

2«̂m

1H.c.D M

3\2

~22!

contains a light-induced contribution, which vanishes if t
light intensity tends to zero.

The dependence of the effective scattering lengthae f f on
the detuningD is depicted in Fig. 1. If the detuningD is
comparable toG, one can obtain rather big negative corre
tions to the scattering lengtha. However, inelastic processe
caused by the spontaneous emission and described by
imaginary part ofae f f give also a significant contribution in
9-4
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this region. In order to reduce spontaneous emission the
tuning D must be of the order of at least fewG. This results
in a modification of the scattering length of the order
21 nm, which is comparable to the typical values of t
scattering lengtha for alkali atoms.

In contrast to the photoassociation mechanism of the s
tering length modification@10,11#, our mechanism does no
provide big corrections and does not allow one to reverse
sign of the scattering length for the condensates with att
tive interactions. Nevertheless, as it will be shown in S
VII it has to be taken into account in certain atom optic
processes.

C. Decomposition up to the order 1ÕD̃3

In the limit D@G, which is the most interesting one fo
atom optical applications, strong-field effects do not give
big contribution. In addition, one has to take into accou
that the densities of the condensates currently achievab
the experiments are not higher than 531015 cm23. There-
fore, in order to provide a satisfactory description of ato
optical processes it is enough to keep the terms up to

order 1/D̃3 in the expansion~9!. Employing the Lorentz-
Lorenz relation~14! we get the following expression for th
excited-state operator:

f̂e52
V̂1

2D̃
F11

4p

3
auf̂gu21S 4p

3
auf̂gu2D 2

2
uV̂1u2

4D̃2 G f̂g .

~23!

The operatorĜ in this case is given by

Ĝ~ ĉg!5
4p\2a

M F11
32

3
Aa3

p
uf̂guG uf̂gu2, ~24!

where the second term takes into account the effects of q
tum fluctuations@33#. Then the equation for the ground-sta
operator takes the form

FIG. 1. Light-induced scattering length modification at differe
values of «G5ud•Emac

1 u2/(\G)2. The parameters ared
510218 esu, M510223 g. The imaginary part ofae f f is deter-
mined by the spontaneous emission.
06360
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i\
]f̂g

]t
5Ĥcmf̂g1

4p\2a

M F11
32

3
Aa3

p
uf̂guG uf̂gu2f̂g

1
\uV̂1u2

4D̃
F11

4p

3
~a1a* !uf̂gu2

1S 4p

3
uf̂gu2D 2

@a21uau21~a* !2#2
uV̂1u2

4D̃2 G f̂g .

~25!

Neglecting the summands, which containuf̂gu4, uV̂1u4, and
the scattering lengtha, we get the same equation as in Re
@12#.

Let us compare the light-induced and collisional nonline
terms in Eq.~25! in the limit D@G. The leading nonlinear
terms in Eq.~25! are proportional to the densityuf̂gu2. Their
relative contributions are defined by the quantities

UE52
uV1u2

D2

2p

3
d2, UC5

4p\2a

M
,

respectively. The typical orders of magnitude of the para
eters for alkali-metal atoms are~in CGS system of units! d
;10218 esu, uau;1027 cm, M;10223 g, and we get the
estimates

uUEu;
uV1u2

D2
10236 erg cm23, uUCu;10237 erg cm23.

Therefore, we see that atuV1u2/D2;0.1 UE andUC are of
the same order of magnitude.

The higher-order light-induced and collisional nonline
terms in Eq.~25! have different dependence on the dens
Their relative contributions are defined by

VE5
3\uV1u2

4D S 4p

3

d2

\D D 2

ufgu2,

VC5
128p\2a

3M
Aa3

p
ufgu,

respectively. For the densitiesufgu2;1014 cm23 and detun-
ings uDu;108 Hz, we have

uVEu;
uV1u2

D2
10238 erg cm23, uVCu;10239 erg cm23.

Thus, we see that the light-induced and collisional nonlin
terms in Eq.~25! have about the same order of magnitude

VI. OPTICAL PROPERTIES OF THE ULTRACOLD GAS

We substitute Eq.~11! into the definition of the polariza-
tion field. This gives us a general nonlinear relation betwe
the polarization and the local field,

t

9-5
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P̂15a
A114ê21

2ê
uf̂gu2Êloc

1 . ~26!

The optical properties of a gas are determined by the ref
tive index. In order to work out the refractive index one h
to relate the polarization to the macroscopic electric fie
which can be done by means of the Lorentz-Lorenz form
~14!. This relation has the form

P̂15x̂Êmac
1 , ~27!

where the dielectric susceptibility depends, in general, on
atomic density uf̂gu2 and the macroscopic electric-fiel
strengthÊmac. From Eq.~13! we get the following equation
for the macroscopic electric field:

“3“3Êmac
1 2kL

2n̂2Êmac
1 50, ~28!

with the refractive indexn̂ given by n̂5(114px̂)1/2. We
would like to stress that the refractive index is a rather i
portant parameter. On the one hand, it describes the pr
gation of the laser radiation in a medium. On the other ha
the refractive index of the gas plays an important role
atom optical processes, because as one can see from Eq~28!
it modifies the laser wave vector and, therefore, the mom
tum transfer from the laser to the atoms.

A. Low light intensity

In the special case of the low light intensity we ha
obtained the adiabatic solution~18!. Then the expression fo
the refractive index takes the form

n̂25

11
8p

3
auf̂gu2

12
4p

3
auf̂gu2

. ~29!

As it follows from our physical interpretation of the expa
sion ~9!, the Clausius-Mossotti formula~29! corresponds to
the quantum transition of the typeug&→ue&. Therefore, it
takes into account pair interactions between the atoms w
one atom emits a photon, which is absorbed by another a
and so on.

B. High light intensity

In the case of a high light intensity and low atomic de
sity the expression for the excited-state operatorf̂e is given
by Eq. ~20!, which leads to the following result for the re
fractive index:

n̂5112pauf̂gu2
A114«̂m21

2«̂m

. ~30!

The dependence of the refractive indexn on the detuningD
is shown in Fig. 2. The refractive index strongly depends
the laser intensity when the laser frequencyvL is close to the
06360
c-
s
,
a

e

-
a-

d,

n-

en
m

-

n

atomic transition frequencyva . On the other hand, stron
modifications of the real part of the refractive index are
evitably accompanied by the increase of absorption, whic
determined by the imaginary part of the refractive index.

C. Decomposition up to the order 1ÕD̃3

If we keep the terms up to the order 1/D̃3, we have to use
Eq. ~23! for the excited state operator. Then the refract
index takes the form

n̂5112pauf̂gu2F11
p

3
auf̂gu21

5

8 S 4p

3
auf̂gu2D 2

2
ud•Êmac

1 u2

\2D̃2 G , ~31!

which corresponds to the Kerr-type optical nonlinearity.
Equations~25!, ~28!, and ~31! can be considered as a

atom optical analog of the system of Maxwell-Schro¨dinger
equations used in quantum and nonlinear optics. In gene
they have to be solved in a self-consistent way and in m
of the situations solutions can be obtained only by do
numerical calculations. In the following section we sh
consider some particular examples.

VII. DIFFRACTION OF AN ULTRACOLD ATOMIC BEAM
FROM AN INTENSE STANDING LIGHT WAVE

In this section we will be dealing with the system of Eq
~25!, ~28!, and ~31!. Assuming thatD@G, we can neglect
spontaneous emission rateG. Alternatively, we can conside
short interaction timet, such thatWGt,1, whereW is a
population of the excited atomic state@1#. This condition
allows one also to neglectG. In addition we shall restrict
ourselves by the situations when the number of photons
atoms is high and they are in coherent states, i.e., we
consider atomic BEC interacting with a laser field. This
lows us to replace all the operators by macroscopic fu
tions.

We consider a typical scheme for the observation of d
fraction in atom optics: An incident atomic beam moves
the plane (y,z) and crosses under a certain angle two la
waves counterpropagating along they axis with wave vectors
1kL and 2kL , respectively, and with Gaussian envelop
From the uncertainty relation it follows that in order to get
distinct diffraction pattern, the width of the atomic wav
packetwy should be sufficiently large compared to the wav

FIG. 2. Refractive index at different values of«G

5ud•Emac
1 u2/(\G)2. The parameter 2pd2rg /(\G)50.2.
9-6
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lengh of the laser radiation in a medium. In this case
atoms can be described as a homogeneous medium with
stant refractive index. If the spontaneous emission does
make any contribution, the effect of the atoms on the la
beam is purely dispersive and only the wavelength will
shifted. This means that in a medium we shall have a sta
ing wave that is formed by counter propagating laser bea
with the wave vectors1nkL and2nkL , respectively. In this
approximation the solution of Eq.~28! is given by

uV1u25uV0u2 exp~2z2/wL
2!cos2 nkLy. ~32!

We assume that the longitudinal kinetic energy of the ato
beam, associated with the center-of-mass motion inz direc-
tion, is large compared to the nonlinear potential in Eq.~25!.
Then thez component of the atomic velocity will not chang
much and, therefore, the motion of atoms inz direction dur-
ing the whole evolution can be treated classically. Only
motion in y direction should be treated quantum mecha
cally. In such a situation the coordinatez plays the role of
time and we can change the variablet5z/vg in Eq. ~25! with
vg being the group velocity.

A. Raman-Nath regime

We assume that we are in the Raman-Nath regime and
can neglect the transverse kinetic energy during the inte
tion of the atoms with the electromagnetic field. This a
proximation is valid for heavy atoms or if the interaction
so strong that it can have a considerable effect on the at
without leading to large spatial variations during the inter
tion time @34#. In this case the density of atoms remai
unaltered, but their phase changes. Making use of all
assumptions stated above, we can write down the solutio
Eq. ~25! for z@wL ~in the far zone! in the following form:

fg~y,`!5fg~y,2`!exp~2 ib!

3expH E
2`

` 2 i uV1~y,z!u2

4Dvg
F11

8p

3
arg

13S 4p

3
rgD 2

2
uV1~y,z!u2

4D2 GdzJ , ~33!

whererg5ufgu2 is the density of atoms in the ground sta
and

b'
4p\awL

Mvg
ApS 11

32

3
Aa3rg

p D rg . ~34!

We representrg as a Gaussian wave packet with wid
wy ,

rg5r exp~2y2/wy
2!. ~35!

Then we substitute Eqs.~32! and~35! into Eq. ~33! and take
into account that the width of the atomic wave packet m
be much larger than the wavelength of the laser radiat
i.e., wy@2p/(nkL). After integration, we get the following
result:
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fg~y,`!5fg~y,2`!e2 i (w1b) (
q52`

`

ei2qnkLy~2 i !qCq ,

~36!

which is represented here in the form of a Fourier ser
expansion. We use the notations

Cq5Jq~w!1A@Jq11~w!2Jq21~w!#

1 iAF3

2
Jq~w!2

Jq12~w!1Jq22~w!

4 G , ~37!

w5
uV0u2wLAp

8Dvg
F11

8p

3
ar13S 4p

3
ar D 2G ,

A5
uV0u4

64A2D3

wL

vg
Ap. ~38!

Jq is theqth-order Bessel function.
From the solution~36! it follows that the momentum

transferred from the laser beam to the atomic beam is de
mined by the wave number of the incident laser radiationkL
and the refractive index of the gasn. The probability to find
the beam in a momentum state 2qnkL is given by

Pq5uCqu25Jq
2~w!22A

]

]w
Jq

2~w!, q50,61,62, . . . ,

~39!

with P0 being the probability to find the atomic beam in th
same momentum state as for the incident atomic beam.
angle of diffractionaq for a particular momentum stateq is
thereby given by

tanaq5
2qn\kL

mvg
. ~40!

Therefore the diffraction pattern, as it follows from Eq
~36!, ~39!, and ~40!, depends on the density of the atom
beam and the intensity of the laser radiation. Since the
rameterw, which is proportional to the intensity of the lase
wave, corresponds tom50 in Eq. ~9!, it describes the pro-
cesses with the momentum transfer62n\kL .

The parameterA, which is proportional to the intensity
squared, describes the contribution of the intens
dependent processes with the momentum transfer64n\kL

@m51 in Eq. ~9!#. For estimations we choose the value
the parameteruV0u2wLAp/(8Dvg) within the range 3–5@1#
and assume thatuV0u2/D250.4, which is quite realistic and
at the same time consistent with our derivations. Then we
that the contribution of the processes with the moment
transfer64n\kL is of the order of 10%. If one assumes
laser beam widthwL;10 mm, an atomic beam propagatin
with the group velocityvg.10 m/s interacts with the lase
for a time t,1 ms. Spontaneous emission is then suf
ciently supressed.

The phase shiftb in Eq. ~36!, which is produced by the
contact interaction of the atoms in the beam, can be ra
9-7
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big compared top. However, it does not play any importan
physical role. In the following section we shall consider a
other situation, when the contact interaction is really imp
tant.

B. Bragg regime

In the Raman-Nath approximation only the momentu
conservation in the process of atom-photon interaction
taken into account. If we take into account additionally t
energy conservation, we come to the Bragg regime.

Bragg diffraction of a dense atomic beam has been c
sidered in Ref.@12#, where the authors have solved a mat
wave equation similar to Eq.~25!, but without the terms
proportional to 1/D3 and without the contact interaction
Here we shall consider this more general case.
o-

fi
-
n-

06360
-
-

is

n-
r

We can look for a solution of Eq.~25! with the Rabi
frequency~32! in the form

fg~y,z,t !5 (
q52`

`

fq~y,z!ei (K0y12qnkL)yei [K0zz2(E/\)t] .

~41!

Since the atomic wave packet widthwy is assumed to be
large compared to the laser wave length, one can neglec
spatial dispersion and use the slowly varying amplitude
proximation. We substitute Eq.~41! into Eq.~25! and neglect
the second-order derivatives offq with respect toy and z.
Then for the first-order Bragg diffraction only the terms wi
q50,1 in Eq.~41! have to be considered and we obtain t
following system of equations:
i S vg

]f0

]z
2vR

]f0

]y D5@vR1 f 1~z!#f01 f 2~z!f11
8p

3
ag~z!@2~ uf0u212uf1u2!f01~2uf0u21uf1u2!f11f1* f0f0#

13S 4p

3
a D 2

g~z!@2~ uf0u416uf0u2uf1u213uf1u4!f01~3uf0u416uf0u2uf1u21uf1u4!f1

1~2uf0u213uf1u2!f1* f0f0#1
4p\a

M F11
32

3
Aa3

p
uf01f1 exp~2inkLy!uG~ uf0u212uf1u2!f0 ,

~42!

i S vg

]f1

]z
1vR

]f1

]y D5@vR1 f 1~z!#f11 f 2~z!f01
8p

3
ag~z!@2~ uf1u212uf0u2!f11~2uf1u21uf0u2!f01f0* f1f1#

13S 4p

3
a D 2

g~z!@2~ uf1u416uf0u2uf1u213uf0u4!f11~3uf1u416uf0u2uf1u21uf0u4!f0

1~2uf1u213uf0u2!f0* f1f1#1
4p\a

M F11
32

3
Aa3

p
uf01f1exp~2inkLy!uG~ uf1u212uf0u2!f1 ,

~43!
i-
tro-
the

e

wherevg5\K0z /M is a group velocity,vR5\n2kL
2/(2M )

andvR5\nkL /M are the photon recoil frequency and ph
ton recoil velocity, respectively,

f 1~z!52g~z!26
g2~z!

D
, f 2~z!5g~z!24

g2~z!

D
,

g~z!5
uV0u2

16D
e2z2/wL

2
.

For the incident atomic beam with a Gaussian density pro
and with the wave vector iny direction matching the single
photon recoil momentum, we have the following initial co
ditions
le

f0~y,2`!5Ar expS 2
y2

2wy
2D , f1~y,2`!50.

~44!

In the absence of the electromagnetic field@g(z)50#,
Eqs.~42! and ~43! describe the free propagation of the inc
dent atomic beam without changing its shape. If the elec
magnetic field is switched on there is a coupling between
two modesf0 andf1. If the atomic density is negligible one
can neglect all the nonlinear terms in Eqs.~42! and ~43!.
Neglecting also the propagation of the atomic beam iny
direction, we obtain the following solution in the far zon
(z@wL):

uf0~y,`!u25uf0~y,2`!u2cos2Q,

uf1~y,`!u25uf0~y,2`!u2sin2Q, ~45!
9-8
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where

Q~y,`!5
uV0u2

16A2D

wL

vg
ApS 12

1

4A2

uV0u2

D2 D . ~46!

The second term in the braces describes the contributio
the processes with the momentum transfer64n\kL .

If the condensate density is high enough, the coupl
between the modesf0 and f1 becomes essentially nonlin
ear. We have numerically solved the system of Eqs.~42! and
~43! for that case with the initial conditions~44!. The diffrac-
tion pattern in the far zone (z@wL) is shown in Fig. 3, where
the results obtained under the same assumptions as in
@12# are also presented for comparison. The diffraction p
tern is mainly determined by the linear terms and the non
ear terms of the kindf2 in Eqs.~42! and ~43!, and one can

FIG. 3. Diffraction pattern in the wave zone at different valu
of the parameters gE5uV0u2wL/16DvgAp and gC

54p\awL /Mvg , 8p/3uaur50.3. Solid lines, all nonlinearities
are taken into account; dashed lines, onlyf2 light-induced nonlin-
earities are taken into account. The origin of the reference fram
shifted to the center of the corresponding mode.
. A
.

ys
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clearly see an interplay of collisional and light-induced pr
cesses. The contribution of the higher-order terms is ab
few percent.

VIII. CONCLUSION

Starting from the microscopic model and making use
the multipolar formulation of QED and electric-dipole a
proximation, we have derived the general system
Maxwell-Schrödinger equations for atomic creation and a
nihilation operators and the propagation equation for the
ser field. It describes the modification of the properties of
external off-resonant laser radiation in a medium due
dipole-dipole interactions and the influence of this modific
tion on the center-of-mass motion of the ultracold atoms a
single dynamical process. The system can be used, for
stance, for the self-consistent analysis of linear and nonlin
phenomena in the atom optics of Bose condensates at
tively high densities of the atomic system and high inten
ties of the laser radiation.

A general procedure for the elimination of the excit
state has been developed. The annihilation and creation
erators of the excited state for large detuning are represe
in the form of a series expansion in powers of the inve
detuning, which corresponds to multiple transitions of ato
between the ground and excited electronic states. We h
derived compact analytical expressions, which relate ann
lation and creation operators of the excited state to the
responding operators of the ground state.

The optical properties of an interacting ultracold Bose g
are investigated and an equation for the intensity-depen
refractive index is derived. The refractive index is shown
be an important parameter in atom optical processes, bec
it defines, on the one hand, the propagation of the laser
diation in a medium and, on the other, the momentum tra
fer from the laser beam to the atomic beam.

As a typical atom optical application we have consider
the diffraction of an ultracold atomic beam from an inten
standing laser wave in the Raman-Nath and in the Br
regimes. It has been shown that in the Bragg regime
light-induced interaction as well as the contact interact
can make a significant contribution to the diffraction patte
while in the Raman-Nath regime the diffraction pattern
determined by electromagnetic processes and the contac
teraction gives only an unimportant phase shift.
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