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Multiple transitions in atom optics: Intensity- and density-dependent effects
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Starting from the first principles of nonrelativistic QED we have derived the system of Maxwell¢Sehen
equations which can be used for theoretical description of atom optical phenomena at high densities of atoms
and high intensities of the laser radiation. The role of multiple atomic transitions between ground and excited
states in atom optics has been investigated. Nonlinear optical properties of interacting Bose gases are studied
and an equation for the refractive index has been derived. We have investigated the role of light-induced and
collisional nonlinearities in the diffraction of an ultracold atomic beam from an intense standing laser wave in
the Raman-Nath and in the Bragg regimes.
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[. INTRODUCTION guantum correlations are neglected. If the quantum statistical
correlations are taken into account, the formula for the re-
In last decades the problem of interaction of the lasefractive index contains additional terms defined by a
radiation with ultracold atomic gases has attracted a lot oposition-dependent correlation functiph5—17. Nonlinear
attention. With the aid of the laser radiation one can manipueptical properties of a noninteracting Bose gas were studied
late the center-of-mass motion of ultracold atoms and onas well[18].
can observe different wave phenomena of ultracold atomic The modification of the properties of the laser radiation
beams. Using various configurations of optical fields one cashould have a back influence on the behavior of an ultracold
create diffraction gratingEl], beam splitter$2], lenseq3],  atomic ensemblgfor example, on the motion of atomic
waveguideg4], mirrors[5] for ultracold atomic beams, and beam. An attempt to consider this back influence was un-
one can collimate therf6]. dertaken by several authof8,12,16,19-21L In the first
After the experimental realization of Bose-Einstein con-works on the subject, the two-body interactions were mod-
densatiori 7], which allows one to create rather dense atomiceled by the phenomenological contact potenfi#)]. Later
systems, the problem of interaction of photons with ultracoldon dynamical dipole-dipole interactions were taken into ac-
atoms has reached a new stage of development. The condeteunt within the framework of the nonrelativistic electrody-
sate behavior even in the absence of any external potentiatemics[8,12,16,20—2% However, in papers by Zhang and
is described by nonlinear equations, where the nonlinearitiegvalls[12] and Lenzet al.[8] the averaged polarization of an
are caused by atomic collisions. Acting with the laser on aultracold atomic ensemble was computed as a function of the
dense atomic sample one can induce nonlinearities of arincident laser field, whereas it should be a function of the
other kind in the behavior of the matter field caused by dy-macroscopic or the local field, which are different from the
namical dipole-dipole interactions. This provides a possibil-external laser field due to dynamical dipole-dipole interac-
ity to create atomic solitons of different kind8,9], to  tions. Wallis[21] used the correct form of the equations for
change dramatically the effective scattering length of thethe electromagnetic field, although his result for the matter-
condensatg10,11], to create nonlinear beam splittdrs2],  field equation seems to be inconsistent with the equation for
vortices[13], photonic band gaps, and defect states in a conthe electromagnetic fielt22]. This problem was considered
densatd 14]. also by Castin and Mmer [20] and Ruostekoski and Jav-
In recent years, different approaches to the description ofnainer{ 16]. But the equations used in those papers are very
interaction of ultracold atoms in the field of optical radiation complicated because these are written in terms of the local-
have been suggested and different aspects of the phenofiield and dipole-dipole interactions are presented explicitly in
enon have been considered. The properties of the laser radigne form of the sum over dipole fields. This makes the analy-
tion modified by atomic dipole-dipole interactions were in- sis very difficult and an analytical study is practically impos-
vestigated[15—-17 and it was shown that they can be sible to perform.
described by the refractive index, which is governed in the In Refs.[22—-24 a self-consistent quantum theory of atom
linear case—when the light intensity is low enough—by theoptical processes has been developed. Making use of the
Clausius-Mossotti relation known from classical optics if Lorentz-Lorenz relation, which allows one to simplify the
analysis, we obtained the general system of Maxwell-
Schralinger equations for atomic creation and annihilation
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In the present paper we shall continue the investigationgansitions g)— |e) and|e)—|g), respectivelyﬂeg andﬂge

started in[22,23. Having in mind mainly atom optical ap- are related to the operator of the local electric félﬁc(r,t).

plications, we shall derive the system of Maxwell- e -
Schralinger equations for the case of high density of theThe positive-frequency part of this operator has the form

atoms and high light intensity. The nonlinear optical proper- 2aho, -
ties of the interacting Bose gas will also be discussed. TheE,J[)c(r,t):EiT](r)HE \/ v €,Cxy(0)
paper is organized in the following manner. In Sec. Il we K

discuss basic equations, which govern the time evolution of <extdik-r—ilwe— ot
the matter-field operators under the influence of the photons. H (o wut]

In Sec. Ill a general procedure for the elimination of the P(r' t—|r—r'|/c) . )
excited state is developed and a compact analytical expres- +f dr'VXVX ; glklr=rl,
sion for the excited-state matter-field operator is derived. In [r=r’|

order to accomplish the elimination procedure for the inter- 3

acting gas, it is helpful to employ the Lorentz-Lorenz rela-

tion, which is briefly discussed in Sec. IV. In Sec. V we where V X refers to the pointr and the operatoc,, (0)
discuss nonlinear matter equations for the cases of low ancbrresponds to the free-space photon field. The polarization
h|gh light mtensﬂy._Sectlon \_/I is devoteq to the investigation operator isP* = d?b;?ﬁe- Note that in Eq(3) a small volume

of linear and nonlinear optical prop(_artles_of the interactingound the observation pointis excluded from the integra-
Bose gas. In Sec. VIl we study the diffraction of an ultracoldjon The [ast term in Eq(3) describes dipole-dipole interac-
dense atomic beam from an intense standing light wave ion Due to the structure of the local field given by E8)

the Raman-Nath and Bragg regimes. The conclusions argne can distinguish two kinds of the photons: primary laser

summarized in Sec. VIIl. photons and secondary photons, reradiated by the atoms.
Usually in atom optics of a Bose-Einstein condensate
Il. HEISENBERG EQUATIONS OF MOTION FOR THE (BEC) one deals with equations for the ground-state matter-

ATOMIC OPERATORS field operator &‘)g. Therefore, one has to eliminate the

We consider a system of bosonic ultracold two-level at-excited-state matter-field operatgr, from the system of
oms with masdaM, transition frequencyw,, and transition Egs.(1) and(2). In the following section we shall develop a
dipole momentd. We shall describe such a system in termsgeneral procedure for the elimination of the excited state,
of matter-field operators. Ldyg) and|e) be the vectors of which is in contrast to previous worksee, for instance,
the ground and excited states of the quantized atomic field§12,22—24) valid for relatively high atomic densities and
Then the corresponding annihilation operators of the atomgelatively high laser radiation intensities.

in these internal states at the positionare ¢g(r,t) and We have to point out that the system of E¢. and (2)

de(r,t). The matter-field operators are assumed to satisfy thgOes not take into account groundi state collisions of the at-
bosonic equal time commutation relations. oms, which play an important role in a condensate. The cor-

The Heisenberg equations of motion for the atomic Opera[esponding terms can be included into the equation for the

tors are easily derived from the Hamiltonian of the secondground-state operatap, after the elimination of the excited
quantized atomic field interacting with the photons. We asState in the same manner as it has been done in[Ref.
sume the incident laser fielg,(r,t) to be a monochromatic

wave with the frequencyw, =ck,, which is close to the lll. ELIMINATION OF THE EXCITED STATE
frequencyw, of the electric-dipole transition. In the refer-
ence frame rotating with the frequeney and in making use
of the electric-dipole approximation and the rotating-wave

Let us assume that initially there are no atoms in the ex-
cited state. Then we can rewrite Eg) in the form

approximation, we obtain the following dynamical equations _ t . S . L
for the matter-field operatof®2,23; de(t)=—1i foe'[(HCmm)*A]t Heg(t )™ (Hem ™t g (t")dt’,
0by - - (4)
iﬁTZHcm‘bg'i”ng(ﬁev D ~ . . . .
whereA=A+iT". Using the identity

L Ibe o - o ax e o (—DF
ih— " =Honbe—H(A+ID) et Hegg, () f e F()dx=— 2 ~—= —F(x),

k=0 a ox

whereH = —#%2V?/(2M), A= w_ — w,— & is the detuning  we get
of the frequency of the laser wave from the frequency of the

atomic transitiong andI” are the Lamb shift and one-half of . e*i('z'cm/ﬁ)t Z(—i)k ok

the spontaneous emission rate of a single atom in free space, de(r,t)= P kzo Xk ok

respectively. Here we have introduced the operakbyg= )

—d-Ejf, andH = —d- Ej; which are responsible for the X [e'Mem ™ (1,1) dg(r,1)]. (6)
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Since we are dealing with ultracold atoms, one can assume A . L A _

that their center-of-mass motion does not have any influenceiﬁ—tqsg(r,t): Hemt G(gg(r,1))+ 7[\/1+4e(r)— 1]
on the electromagnetic field propagation. If in addition the
laser frequency in the medium remains unaltered, we may
neglect the time dependence ng. In the case of a slow
atomic motion we can neglect the center-of-

X ¢hy(r,1), (12)

A mass Motiofyhere G(¢,) is an operator which takes into account
Hem in Eg. (6). Then we have ground-state collisions. The general form of this operator is
not known and one has the corresponding explicit expres-
sions only in the low-density approximations.

Although we do not seébe explicitly on the right-hand-
side of Egs.(11) and(12), it is still there, becausé,iOc de-

pends orfﬁe and this dependence, which is given by E3),
is very complicated. Formally we could iteratively substitute
Egs.(3) and(11) into Eq.(12). However, by performing such

A % _ ik
ern= 1 go ) ¢g<rt> @

egl
A

From the system of Eqs$l) and(2), with the center-of-mass
motion neglected, one can derive the relation

3_”(% (rt)= _iane(r)Heg(r) a procedure we would get an equation for the ground-state
not £2A2-N operator in a form that would be impossible to use. There-
fore, the algorithm described in this section does really

- —i)K (9“ eliminate the excited state only in the case when the dipole-
Xk; 1 RK gtk $o(r,0,  n=12,.... dipole interactions are small, i.e., whéj,.~E;,. In this
case Eqs(11) and(12) coincide with Eqs(12) and(14) in
) Ref.[26], where they have been obtained in a different man-
ner. In order to eliminate the excited state in the case when
the dipole-dipole interactions play an important role, it is
useful to employ in addition the Lorentz-Lorenz relation,
Hodlr >Heg(f)1 .(r.t),  Which will be briefly discussed in the following section.
722 g

Substituting this relation iteratively into E¢7), we obtain

P, t)—

9 IV. LOCAL-FIELD CORRECTION

ap=1, As was mentioned in the preceding section, the solution
of Egs.(3), (11), and(12) is a rather complicated mathemati-
1 kg+1 kptl Km_1+1 (2m+1)! cgl prob_lem t_)ecause_ these equations_contain explicitly the
A= D > oD L dipole-dipole interactions. In many particular situations such
K1=0 kp=0 K3=0 Km=0 mi(m+2)! a detailed microscopic description of matter is not necessary
and it is more convenient to consider optical properties of the
m=0,1,... . (10 medium on a macroscopic level. This can be done by intro-

ducing the macroscopic fielfl,,{r,t), instead of the local

field Eoc(r,t) in the equations for the matter fields.

As in Ref.[27] we can introduce the macroscopic field by
imposing the requirement that it is a solution of the macro-
scopic Maxwell equations for a charge-free and current-free

olarization medium. Taking into account that in most of the
g?actical situations the electromagnetic processes are much

The zeroth-order termnf=0) in Eq. (9) corresponds to the
transition|g)—|e). The next term ifi=1) corresponds to
the transition|g)—|e)—|g)—|e) and so on. This amounts
to the higher-order adiabatic elimination. Thereby different
terms in Eq.(9) describe multiple transitions of the atoms
between ground and excited states, caused by the influen
of the photons. In a typical atom optical situation when the Ctaster than the center-of-mass motion of the atoms, we can
electromagnetic field has a form of a standing wave, these

terms correspond to the processes with the momentum tran@€glect the time dependence of the local figf. and the

fer from the laser beam to the atoms24K(m+ 1), where polarizationP*. Then the system of Maxwell equations can

K is a wave vector of the laser wave in a medium. be written in the form of the wave equation
We assume that(r) =Hge(r)Hey(r)/(2?A%) acts only on
states ) for which the series in Eq(9) converges, i.e /) VXV XEqad ) =K [Emadr) +47P7(N]. (13

can be decomposed into eigenstateg @fhose eigenvalues
satisfy the conditiore,|<1/4. Then the result of the sum-
mation is given by{25]

Using Eq.(13) and the definition of the local fiel(8), we get
the following relation:

. = L~ A A, .
. Hey(r) V1+de(r)—1. Eioc(r) =Emadr) +—=P(1). (14)
d’e(r,t): egl(‘ ) - ( ) ¢g(r,t), (11) loc mac( 3
hA 2¢(r)
This equation is often called in the literature the Lorentz-
and the equation for the ground st#fg takes the form Lorenz relation. It constitutes the basis of the local-field ef-
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fects in classicdl28], quantun29] and nonlinear opticésee 9 (r 1)
[30—39 and references thersin iﬁ%: Flemt G(g(r,1))
V. NONLINEAR MATTER EQUATION
As mentioned above, the elimination of the excited state RO (r))? R
is, in general, a complicated mathematical problem. Let us 5 | Pg(rt),
consider some important special cases, when one can obtain 4|1 4_77 |<Af> (1,12
rather simple analytical solutions. 3 Pyl
o _ (19
A. Low light intensity
We consider first the special case of a low light intensity.Where|Q+|2:Q*Q+-
In this case we can keep only the first term=€0) in Eq.
(9), which is linear with respect to the electromagnetic field B. High light intensity
strength: If the light intensity is high, we have to take into account
. higher-order terms in the expansid@f). In the case of a
bor )= — d- Eloc(r);b (r.) (15) dilute gas, i.e., when #/3|a|| ¢4|*<1 it is enough to keep
e hA g only linear terms with respect to the atomic density. Then we
obtain
If we substitute Eq(14) into Eq.(15) and take into account At 4 |& (rp)2
Eg. (15), we obtain - T 1Pl
@19 Belr)=— | 1+ —
- . 2A 1+4ep,
per=—| = AT t)lzd'E'“(r)]?ﬁ (r.1)
e ry)=—| ——— —— r, o— r,o), *
3 g g 23 N ~
24 ha X| a— —|V1+del—12| | dy(r.0),
(16) a5t
m
where the position-dependent Rabi frequen€y™ (r) (20

=2d-E; {r)/% is related to the macroscopic electric field, wheres,=|0*|%(442) is a bounded operator with eigen-

_ 2 ~ . . . o ~, 2 -
a=-—d%(hA) is the atomic polarizability, and¢g|” \qjuess,, that obey the conditiofe ;| < 1/4. The operatof
=¢;¢g. Repeating the same procedure infinite number of Eq. (12 in this case is given by e

times we come to the result =4mh2alM|dy(r,1)|?, wherea is a scattering length of the
condensate, and we get the following equation for the

. A (r) < (477 . )”A ground-state matter-field operator:
rt)y=——= — r,t)|? rt).
e 28 nzo g ] ot Ay(r,t) AIQT(N]? Vi+4s,(r)—1
r, - r r—
17 iﬁ&: Aot j Asm(
ot 4A 2e(T)
The series in Eq(17) converges, provided that the eigenval- -
72 i 47hca ff(r) ~ ~
:/Jvisgogtthe operator#/3| || ¢4|? are less than 1. In this case Me 13402 | By, (D)
() where an effective scattering length
Pe(r )= dg(r,1).  (18) 5 -
) 2K 1- 2T a0l . AT [ Nitden—1 M
3 o Bef(r)=a+ — —| @ - +H.c.|—
4AN1+4s, 2em 342
(22)

This adiabatic solution has been obtained in R&%] using a

slightly different technique. Note that a singularity occurs incontains a light-induced contribution, which vanishes if the
Eqg. (18) under the condition #/3a|| ¢4|°=1. However, as light intensity tends to zero.

it follows from our derivation, we never encounter this sin-  The dependence of the effective scattering lersgth on
gularity, because in the regionm3| || ¢4/*=1 Eq.(18) is  the detuningA is depicted in Fig. 1. If the detuning is
not valid. This was not clear from the derivation g|Ven n Comparab|e td—‘1 one can obtain rather b|g negative correc-

Ref. [22]. o _ . tions to the scattering length However, inelastic processes
Then substituting Eq18) in Eq. (1), we obtain as aresult caused by the spontaneous emission and described by the
an equation for the ground-state matter fieigl, imaginary part ofag¢s give also a significant contribution in
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Re(acss —a), nm Im(acss — a), nm dbg - 47Tﬁ2
0 'hWZHcm‘f’g‘F |¢g |¢g| ¢g
+ﬁ|9—|2 1+—(a+a*)|¢ |2
4X 0
A . 2 |Q+|2
+ == 2 24 lal2+ 27_
FIG. 1. Light-induced scattering length modification at different 3 |¢9| ) [a®+]af+(a*)7] 4A2

values of ep=|d-E} J¥(AT)%. The parameters ared

=108 esu, M= 102 g. The imaginary part ofi.; is deter- (25)
mined by the spontaneous emission. R R

Neglecting the summands, which contéupy|*, [ *|*, and
the scattering length, we get the same equation as in Ref.
12].

é Let us compare the light-induced and collisional nonlinear
terms in Eq.(25) in the limit A>T". The leading nonlinear

terms in Eq.(25) are proportional to the density}bg|2. Their
relative contributions are defined by the quantities

this region. In order to reduce spontaneous emission the d
tuning A must be of the order of at least feWu This results

in a modification of the scattering length of the order of
—1 nm, which is comparable to the typical values of the
scattering lengtfa for alkali atoms.

In contrast to the photoassociation mechanism of the scat- 102 27 Amhila
tering length modificatio10,11], our mechanism does not Ug=— —d?,  Uc= ,
provide big corrections and does not allow one to reverse the A% 3 M
sign of the scattering length for the condensates with attrac-
tive interactions. Nevertheless, as it will be shown in Secrespectively. The typical orders of magnitude of the param-
VIl it has to be taken into account in certain atom optical€ters for alkali-metal atoms afen CGS system of unitsd

processes. ~10 '8 esu,|a|~10"7 cm, M~10 % g, and we get the
estimates
. ~ 3 Q*|2
C. Decomposition up to the order 1A |UE|~ | | 10-36 erg o3 |Uc|~10737 erg o 3

In the limit A>T, which is the most interesting one for
atom optical applications, strong-field effects do not give arherefore, we see that HD "|?/A2~0.1 Ug and U are of
big contribution. In addition, one has to take into accountthe same order of magnitude.
that the densities of the condensates currently achievable in The higher-order light-induced and collisional nonlinear
the experiments are not higher thaix 50> cm™3. There- terms in Eq.(25) have different dependence on the density.
fore, in order to provide a satisfactory description of atomTheir relative contributions are defined by
optical processes it is enough to keep the terms up to the

= 2 22
order 1A% in the expansion(9). Employing the Lorentz- _3h[07] (477 d ) | e 2
9

Lorenz relation(14) we get the following expression for the o 4A 3 KA
excited-state operator:
1287-rﬁ2 \f el
- T oy [AT A 2 |Q 12] . o
be=— = +?a|¢g| + ?a|¢g| T2 d’g
43 respectively. For the densiti¢gy|*~10"* cm™2 and detun-
(23 ings|A|~1CF Hz, we have
+12

The operatofG in this case is given by [Vel~ 2 | 1038 ergem 3 [Vc|~10"% ergem 3

terms in Eq.(25) have about the same order of magnitude.

32 Thus, we see that the light-induced and collisional nonlinear
\flcbg }I%I2 (24)

VI. OPTICAL PROPERTIES OF THE ULTRACOLD GAS

where the second term takes into account the effects of quan- We substitute Eq(11) into the definition of the polariza-
tum fluctuationg33]. Then the equation for the ground-state tion field. This gives us a general nonlinear relation between
operator takes the form the polarization and the local field,

063609-5



K. V. KRUTITSKY, K.-P. MARZLIN, AND J. AUDRETSCH PHYSICAL REVIEW A65 063609

p R Im(n
L N1raer o “o
P'=a————|d4|°Ejpc - (26) 11 SN er =0 03 f —er=0
oz gl Eloc N seeer=0.5 o 1\ =015
1.05 W ——ep=024 & s

43 A mer=0.24

0.2
0.15
0.1

A /FO.OS L

The optical properties of a gas are determined by the refrac(w:
tive index. In order to work out the refractive index one has 4
to relate the polarization to the macroscopic electric field,
which can be done by means of the Lorentz-Lorenz formula
(14). This relation has the form

-2 -1 2

FIG. 2. Refractive index at different values ot
=|d-Epad?(AT)2. The parameter 2d%py/(#I)=0.2.

Pr=XE ac: (27
AEmac atomic transition frequencw,. On the other hand, strong

where the dielectric susceptibility depends, in general, on theodifications of the real part of the refractive index are in-
atomic density|fi>g|2 and the macroscopic electric-field evitably accompanied by the increase of absorption, which is

strengthémac. From Eq.(13) we get the following equation determined by the imaginary part of the refractive index.

for the macroscopic electric field: _
C. Decomposition up to the order 1A

+ p—
mac

VXVXE,; —k’n’E, . =0, (28)

If we keep the terms up to the ordeA® we have to use
Eq. (23) for the excited state operator. Then the refractive

with the refractive indexn given by n=(1+4my)"2 We 4o takes the form

would like to stress that the refractive index is a rather im-

portant parameter. On the one hand, it describes the propa- A _—_ 54w . 2
gation of the laser radiation in a medium. On the other hand,  n=1+2ma|dy|? 1+§a|¢g|2+ 3 ?a|¢g|2)

the refractive index of the gas plays an important role in

atom optical processes, because as one can see frofRg8eq. PR

it modifies the laser wave vector and, therefore, the momen- _ |d-Emnad (31)
tum transfer from the laser to the atoms. f2A2 |

A. Low light intensity

In the special case of the low light intensity we have
obtained the adiabatic soluti@g8). Then the expression for
the refractive index takes the form

87 . )
1+?a|¢g|
o
n B S (29
1_?a|¢g|

As it follows from our physical interpretation of the expan-
sion (9), the Clausius-Mossotti formulé29) corresponds to
the quantum transition of the typeg)—|e). Therefore, it

which corresponds to the Kerr-type optical nonlinearity.

Equations(25), (28), and (31) can be considered as an
atom optical analog of the system of Maxwell-Saftirger
equations used in quantum and nonlinear optics. In general,
they have to be solved in a self-consistent way and in most
of the situations solutions can be obtained only by doing
numerical calculations. In the following section we shall
consider some particular examples.

VIl. DIFFRACTION OF AN ULTRACOLD ATOMIC BEAM
FROM AN INTENSE STANDING LIGHT WAVE

In this section we will be dealing with the system of Egs.
(25), (28), and (31). Assuming thatA>1I", we can neglect

takes into account pair interactions between the atoms whegpontaneous emission rdfe Alternatively, we can consider
one atom emits a photon, which is absorbed by another ato&hort interaction timer, such thatWI' <1, whereW is a

and so on.

B. High light intensity

In the case of a high light intensity and low atomic den-

sity the expression for the excited-state operalpiis given
by Eg. (20), which leads to the following result for the re-
fractive index:

Vitde,—1

I:l=l+27ra|;bg|2 o (30)
€m

The dependence of the refractive indewn the detuningh

population of the excited atomic stafé]. This condition
allows one also to negledt. In addition we shall restrict
ourselves by the situations when the number of photons and
atoms is high and they are in coherent states, i.e., we will
consider atomic BEC interacting with a laser field. This al-
lows us to replace all the operators by macroscopic func-
tions.

We consider a typical scheme for the observation of dif-
fraction in atom optics: An incident atomic beam moves in
the plane ¥,z) and crosses under a certain angle two laser
waves counterpropagating along thaxis with wave vectors
+k,_ and —k_, respectively, and with Gaussian envelope.
From the uncertainty relation it follows that in order to get a

is shown in Fig. 2. The refractive index strongly depends ordistinct diffraction pattern, the width of the atomic wave

the laser intensity when the laser frequengyis close to the

packetw, should be sufficiently large compared to the wave-

063609-6



MULTIPLE TRANSITIONS IN ATOM OPTICS . .. PHYSICAL REVIEW A 65 063609

lengh of the laser radiation in a medium. In this case the _ >

atoms can be described as a homogeneous medium with con- ¢4(y, ) = ¢4(y, —w)e ieFh) Y e'zq”"ty(—i)qu,
stant refractive index. If the spontaneous emission does not a=-=

make any contribution, the effect of the atoms on the laser (36)
beam is purely dispersive and only the wavelength will b
shifted. This means that in a medium we shall have a stand;
ing wave that is formed by counter propagating laser beams
with the wave vectors- nk; and—nk, , respectively. In this = —
approximation the solution of Eq28) is given by Ca=dal@)+ AlJge1(€) = Jg-a(0)]

hich is represented here in the form of a Fourier series
Xpansion. We use the notations

3 Jg+2(¢@) +Jq-2(9)
5Ja(¢) } (37

|QF|2=]Q0|2 exp( — 22/W?)cog nk,y. (32 +iA

We assume that the longitudinal kinetic energy of the atomic

2 2
beam, associated with the center-of-mass motion direc- o= M[l‘F S_Wap+3 4_7Tap) }
tion, is large compared to the nonlinear potential in &%). 8Avg 3 3
Then thez component of the atomic velocity will not change

much and, therefore, the motion of atomszidirection dur- [Qol* wy

ing the whole evolution can be treated classically. Only the = 6423 P
motion iny direction should be treated quantum mechani- ¢
cally. In such a situation the coordinateplays the role of
time and we can change the variabtez/v in Eq. (25) with

(39)

Jgq is theqth-order Bessel function.
From the solution(36) it follows that the momentum

vq being the group velocity. transferred from the laser beam to the atomic beam is deter-
_ mined by the wave number of the incident laser radiakipn
A. Raman-Nath regime and the refractive index of the gas The probability to find

We assume that we are in the Raman-Nath regime and wi&€ beam in a momentum state2k_is given by
can neglect the transverse kinetic energy during the interac- )
tion of the atoms with the electromagnetic field. This ap- _ 2_ 12 2 _
proximation is valid for heavy atoms ogr if the interaction ig Pa=ICql =Jale) ZAaq: Jle) a=0=122,. 0,
so strong that it can have a considerable effect on the atoms (39
without leading to large spatial variations during the interac- ) N ] ) )
tion time [34]. In this case the density of atoms remainsWith P being the probability to find the atomic beam in the
unaltered, but their phase changes. Making use of all th§ame momentum state as for t'he incident atomic bea'm. The
assumptions stated above, we can write down the solution Gingle of diffractiona, for a particular momentum statgis
Eq. (25) for z>w, (in the far zongin the following form: ~ thereby given by

gy, ) =gy, —®)exp(—ipB) 2qnhik,

tanag= . (40
. 2 mv 4
= —i|Q7(y,2)| 8
X ex f,w 4Avg 1+ 3 *Pg Therefore the diffraction pattern, as it follows from Egs.
(36), (39), and (40), depends on the density of the atomic
Aar \? |1Q7(y,2)|? beam and the intensity of the laser radiation. Since the pa-
+3| 37y TTar? dzg, (33 rametery, which is proportional to the intensity of the laser

wave, corresponds tm=0 in Eq. (9), it describes the pro-
cesses with the momentum transfenzk, .

The parameteA, which is proportional to the intensity
squared, describes the contribution of the intensity-
dependent processes with the momentum transfénz k.

wherep,=|4|? is the density of atoms in the ground state
and
4mhaw, 32 [a’pg ! 1 HIE
B~ T\/; 1+ 3V |Pe (3 [m=1 in Eg.(9)]. For estimations we choose the value of
g the parametefo|?w, \/7/(8Av,) within the range 3—$1]

We represenp, as a Gaussian wave packet with width and assume thdf)o|*/A*=0.4, which is quite realistic and
W at the same time consistent with our derivations. Then we get

a that the contribution of the processes with the momentum
pg=pexp(—y2/w§). (35) transfer=4n7ik, is of the order of 10%. If one assumes a
laser beam widthw, ~10 wm, an atomic beam propagating
Then we substitute Eq$32) and(35) into Eqg.(33) and take  with the group velocityv >10 m/s interacts with the laser
into account that the width of the atomic wave packet musfor a time 7<<1 us. Spontaneous emission is then suffi-
be much larger than the wavelength of the laser radiationgiently supressed.
i.e., wy>2m/(nk_). After integration, we get the following The phase shif in Eq. (36), which is produced by the
result: contact interaction of the atoms in the beam, can be rather
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big compared tar. However, it does not play any important ~ We can look for a solution of Eq25) with the Rabi
physical role. In the following section we shall consider an-frequency(32) in the form
other situation, when the contact interaction is really impor- .

tant. bq(y,2,t)= 2 ¢q(yyz)ei(Koy+2anL)yei[Kozz—(E/h)t]_
q=—x
B. Bragg regime (41)

In the Raman-Nath approximation only the momentum
conservation in the process of atom-photon interaction isSince the atomic wave packet width, is assumed to be
taken into account. If we take into account additionally thelarge compared to the laser wave length, one can neglect its
energy conservation, we come to the Bragg regime. spatial dispersion and use the slowly varying amplitude ap-

Bragg diffraction of a dense atomic beam has been conproximation. We substitute E¢41) into Eq.(25) and neglect
sidered in Ref[12], where the authors have solved a matterthe second-order derivatives @, with respect toy and z
wave equation similar to Eq25), but without the terms Then for the first-order Bragg diffraction only the terms with
proportional to 1A% and without the contact interaction. q=0,1 in Eq.(41) have to be considered and we obtain the

Here we shall consider this more general case. following system of equations:
|
[ 9o do 8w
! <UQE - URW) =[wrtT1(2)]dot+T2(2) 1+ ?ag(z)[2(| b0l ?+2|$1|?) b0+ (2| ol ?+ | h1|?) 1+ T bocbol

4 2
+3 1“) (D[ 2(|pol*+6| po|?| pa]?+ 3| p1]*) po+ (3] ol * + 6| ol ?| pa|>+ | pa|*) 1

3

5 s 4whal 32 [a’ . ) ,
+(2| ol + 3| 4] )¢1¢o¢0]+T 1"‘? ?|¢0+¢1exp(2|nkLy)| (| pol*+ 2| $1]%) o,
(42)

J 0 8
i(%%"‘vRaiyl) =[ort+ (D) ]d1+f2(2) Pot ?ag(z)[2(|¢l|2+2|¢>0|2)¢1+(2|¢1|2+|¢>0|2)¢>O+ ¢o P1b1]

+3

4 2
&7 ] G021+ 1021731 el b (31l 61 ol gl 0l

) o 4rha 32 /a° _ ) )
+(2[¢a]*+ 3| pol )¢o¢1¢1]+T 1"‘3 ;|¢0+¢19XI12|”|<LY)| (| pal*+2|pol*) 91,
(43)
|
wherev,=%Ko,/M is a group velocitywg=7%n?k/(2M) V2
andvg="%nk_/M are the photon recoil frequency and pho- Po(y,— @)= \/;ex -—, $1(y,—)=0.
ton recoil velocity, respectively, 2wy
(44)
9%(2) 9%(2) In the absence of the electromagnetic figlg{z)=0],
f1(z)=29(z)—6 . fx(2)=9(2)—4 , Egs. (42 and(43) describe the free propagation of the inci-
A A dent atomic beam without changing its shape. If the electro-
magnetic field is switched on there is a coupling between the
0.2 two modesgp, and ¢ ;. If the atomic density is negligible one
9(2)=—| o —zzlwf_ can neglect all the nonlinear terms in Eq42) and (43).
16A Neglecting also the propagation of the atomic beanyin
direction, we obtain the following solution in the far zone
Z>w):
For the incident atomic beam with a Gaussian density profile( V)
and with the wave vector ig direction matching the single- | bo(Y,2)|2=|do(y,—>)|?co0,
photon recoil momentum, we have the following initial con-
ditions |1y, %)|?=|o(y, —)|*sir?®, (45)
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|gol® 612 clearly see an interplay of collisional and light-induced pro-
08 ; cesses. The contribution of the higher-order terms is about
0.6 . X few percent.

VIIl. CONCLUSION

Starting from the microscopic model and making use of
the multipolar formulation of QED and electric-dipole ap-
proximation, we have derived the general system of
Maxwell-Schralinger equations for atomic creation and an-
nihilation operators and the propagation equation for the la-
ser field. It describes the modification of the properties of the
external off-resonant laser radiation in a medium due to
dipole-dipole interactions and the influence of this modifica-
tion on the center-of-mass motion of the ultracold atoms as a
single dynamical process. The system can be used, for in-
stance, for the self-consistent analysis of linear and nonlinear
phenomena in the atom optics of Bose condensates at rela-
tively high densities of the atomic system and high intensi-
ties of the laser radiation.

5o v T o1 v A general procedure for the elimination of the excited

-3 -2 -1 0 1 2 3

Iéol” 07\¢1|2 state has been developed. The annihilation and creation op-
32 PR— 06 7N\ erators of the excited state for large detuning are represented
04 o=—15 05 Y in the form of a series expansion in powers of the inverse

0.3
0.2
01

03 / \ detuning, which corresponds to multiple transitions of atoms
02 Nj j’{é“ between the ground and excited electronic states. We have

derived compact analytical expressions, which relate annihi-
3210 12 37 lation and creation operators of the excited state to the cor-
responding operators of the ground state.

The optical properties of an interacting ultracold Bose gas
are investigated and an equation for the intensity-dependent
refractive index is derived. The refractive index is shown to

e an important parameter in atom optical processes, because
it defines, on the one hand, the propagation of the laser ra-
diation in a medium and, on the other, the momentum trans-
fer from the laser beam to the atomic beam.

3 -2 -1 0 1 2 3y/w”

FIG. 3. Diffraction pattern in the wave zone at different values
of the parameters gg=|Qo/?w /16AvgV7m and gc
=4mhaw /Muvg, 8m/3lalp=0.3. Solid lines, all nonlinearities
are taken into account; dashed lines, ogf light-induced nonlin-
earities are taken into account. The origin of the reference frame i
shifted to the center of the corresponding mode.

where As a typical atom optical application we have considered
1002 W L the di_ffraction of an uI_tracoId atomic beam from an intense

O(y,0)=—0b L 77( 1___0). (46)  standing laser wave in the Raman-Nath and in the Bragg
16\2A Vg 4\2 A2 regimes. It has been shown that in the Bragg regime the

light-induced interaction as well as the contact interaction
The second term in the braces describes the contribution afan make a significant contribution to the diffraction pattern,
the processes with the momentum transfetnzk, . while in the Raman-Nath regime the diffraction pattern is
If the condensate density is high enough, the couplingletermined by electromagnetic processes and the contact in-
between the modeg, and ¢; becomes essentially nonlin- teraction gives only an unimportant phase shift.
ear. We have numerically solved the system of E48) and
(43) for that case with the initial conditior{@4). The diffrac- ACKNOWLEDGMENTS
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