PHYSICAL REVIEW A, VOLUME 65, 063608
Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices
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We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a
linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A
discrete nonlinear Schadinger equation has been solved for various initial conditions and for a definite range
of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynam-
ics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and
symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain
configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase

conditions.
DOI: 10.1103/PhysReVvA.65.063608 PACS nuntber03.75.Fi, 32.80.Pj, 42.50.Vk, 42.65k
The realization of Bose-Einsten condensati®@EC) in The model The configurations of the optical lattices in-

weakly interacting atomic vapors has opened the possibilityestigated in this paper are shown in Fig. 1. The wave func-
to investigate nonlinear properties of atomic matter wavestion of the system can be written as a linear combination of
Among the many features due to nonlinearities, the emerthe wave functiony;(j=1,2,...M) of isolated lattice sitg,
gence of solitons and breathers is one of the most interestinge., ¢(t)=2}v'zlc]-(t) ;. The evolution of the amplitude
Intense theoretical research has now been focused on tle(t) is described by the DNSE, or Gross-Pitaevskii equation
existence of solitons and breathers in nonlinear quantum sy$§7—14),

tems governed by a discrete nonlinear Sdiwger equation

(DNLSE) [1]. de;(t)/dt=—iQ|c;(t)|%c;(t) —ikj_1;Cj_1(t)
The discrete solitons/breathers are characterized by a dy- .
namical, self-maintained energy localization, due to both the —ikjj+1Cj+a(b), @

discreteness and the nonlinearity of the underlying equation )
of motion. Bright solitons can occur in spatially homoge-Where Q=UN/% with the total number of atomsl and
neous, dilute BEC with an attractive interatomic interactioninteratomic scattering pseudopotentisj=4%%a/m, a and
(swave scattering lengta<0) [2,3]. Dark solitons, propa- M are atomic scattering length and mass, ang, are the
gating density dips, have been predicted and experimentali§oupling (tunneling coefficients between sitesandm. The
observed in BEC with a repulsive interactioan0) [4]. The initial condition is given byc;(0)= JN;e'?, whereN; and
dynamics of a BEC trapped in a spatially periodic potential¢; are the normalized initial number of atoms and phases at
[5—6], on the other hand, can be depicted by a DNLSE. In itej. The number of atoms at sifeis then given byNN; .
recent papef7], the problem of Bloch oscillations of bright
solitons was investigated in terms of a tight-binding model 1 2 3 N
for BEC arrays with positive scattering length. The dynamics
of localized excitations in a BEC array was investigated in ‘ . ‘ ‘ e es- .
the framework of the nonlinear lattice theory by Abdullaev
et al. [8]. They showed the existence of temporarily stable (a)
ground states displaying intrinsic localized modes as well as
envelope solitons. BEC in standing waves was investigated 1
by Bronskiet al, [9] by investigating a new family of sta- N 2
tionary solutions to the cubic nonlinear Schimger equation . . ' 3
with an elliptic functional potential. '

The aim of this paper is to show the diversity of the spa- .
tiotemporal behaviors of atomic population distributions in . .
coupled optical lattice$BEC array$ for various initial con-
ditions and a definite range of interatomic interactions.

*Present address: Department of Electrical and Digital-System (b)
Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku,
Hiroshima, 731-5193, Japan; Email address: tsukada@cc.it- FIG. 1. Configurations of the optical lattice®) Linear optical
Hiroshima.ac.jp lattice, (b) circular optical lattice.
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FIG. 2. The time development of the atomic populations in the FIG. 3. The time development of the distribution of the atomic
linear lattice forc;(0)=c,(0)=1/2 andcs(0)~Cx(0)=0. (8  populations forc,(0)~c,(0)=1/y20. (& Q/k=0, (b) Q/k=2,
Q/k=0, (b) Q/k=2, (c) Q/k=3, and(d) Q/«k=5. The lowest (c) Q/x=10, and(d) Q/x=15.

(highesj curve corresponds to site (20) and the curves are suc-
cessively shifted by 0.1 from site 1 to site 20. its shape even after the reflections at the lattice boundaries

since the positive interatomic interactiofygositive nonlin-

For the linear lattice withM lattice sitegFig. 1(a)], the tun-  earity) compensate the diffusion of the wave packétg.
neling coupling coefficients usexg;=xyn+1=0 and  2(b)]. We can, therefore, call this wave packet a bright soli-
Kjj+1=« (for j=1,2,...M—1). While for the circular lattice ton. As the interatomic interaction increases, the velocity of
[Fig. 1(b)], we should putkg .= «y1=«. Throughout this the soliton decreasds-ig. 2(c)] and finally becomes zero
paper, we consider linear and circular latticesNbe=20 and, [Fig. 2(d)], resulting in the localization of the atoms. Al-
for almost all cases, the normalized number of atoms in théhough almost all atoms localized at the initially populated
system is chosen to be one, i.E.-z,Sle =1, two sites, the population exchange between the two sites can

The DNLSE[Eq. (1)] and its localized propagating modes be seen. It should be noted that the same results are obtained
appear in several other fields. This equation describes, fder negative values of the nonlinearitf){ «= —2), if one of
example, localized modes in molecular systems such as ophe phases of the initial order paramete{60) andc,(0) is
tical fibers and waveguidgd1], long proteing 15,16, po-  changed by, i.e., c;(0)=1#2, c,(0)=e"'"/v2 or c,(0)
larons in one-dimensional ionic crystdl$7,18, localized =e '"/v2, ¢c,(0)=1NW2 [24].
modes in electrical latticegl9], arrays of Josephson junc- Figure 3 shows the time development of the population
tions [20,21], a coupled array of nonlinear mechanical pen-distribution for the initial conditions with an uniform distri-
dulums[22], and instabilities in one-dimensional nonlinear bution of the atoms in all sites, i.ec;(0)~ c,(0)=1/1/20.
lattices[23]. In the absence of nonlinearitf){ k=0), the population dis-

Linear-lattice configurationFirst we consider a case that tribution shows a somewhat complex behavior. Two wave
one of the sites of a linear lattidsee Fig. 1a)] is initially packets generated at the lattice boundaries counterpropagate
populated. In the absence of the nonlinear term of @y.  and interfere destructively at the center of the lattice, result-
the atoms spread into two main lobes with several secondailing in the repulsion of the wave packets and successive in-
peaks between thefisee Fig. 1 in Ref[11], in which the terference in a complex mannffig. 3(@)]. Increasing the
length (distance should be replaced by tinheAs the nonlin-  positive nonlinearity 0/x=2), the populations gradually
earity increases, the spreading of the atomic population isonverge into the central region and most part of the popu-
suppressed since the nonlinear term compensates the spreéations localizes on the two central sites forlgt< 25, and
ing and eventually tends to localize on the initially populatedthen the populations again disperse on nearly all sites for
sites. As an example, here, we show a case that two sites 26< «t<45[Fig. 3(b)]. The periodic localization and disper-
one of the lattice ends are initially populated, i.e;(0) sion occur as a function of the time. Increasing the nonlin-
=¢,(0)=/1/2 andc;(0)~ c,o(0)=0. In Fig. 2 we show the earity further, most atoms localize on two spatially separate
time development of the distribution of the atomic popula-regions of sites 8 and 13-ig. 3(c)]. The population distri-
tions as a function of the dimensionless time Each curve bution is still symmetric about the center of the lattice and
corresponds to the normalized population of each site. Theence the symmetric sites 10 and 11 have the same popula-
lowest (highes} curve corresponds to site (20) and the tion. ForQ/«=15, spatially separated three self-trapping re-
curves are successively shifted by 0.1 from site 1 to site 20gions appear and the symmetry breaking, which shows the
In the absence of the interatomic interactiofly k=0), the  asymmetric population distributions for the symmetric sites
atoms initially populated at one of the lattice edges propagat&0 and 11, can be seen at=22 [Fig. 3(d)]. After the sym-
to opposite side of the lattice and then reflect at the latticanetry breaking occurs, the time development of the popula-
boundary, showing splitting and broadening of the wavetion distribution becomes more complex. We have confirmed
packet[Fig. 2@)]. For )/ k=2, the wave packet maintains that as the positive nonlinearity increases further, the local-
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FIG. 4. The same as Fig. 3 but for the negative interatomic ™ 15
interactions.(a) /k=—40 andQ/«x=—80. The populations are '1W
magnified four times. S e
0.5 ST T
ization tends to occur on equally separated sites, i.e., local z 50 3
ization on two spatially separated regions fdotx= 10, three 10 15 20 25 30
regions for(}/ k=15, and four regions fof)/ k= 25. Kt
As the negative nonlinearitjattractive interactionis in- FIG. 5. The dark and bright solitons obtained for different val-

qreased, it seems at first glance that the population dist.ribLues of the populations at two sites of the lattice ends wigf0)
tion becomes more and more homogeneous. However, if we ¢, (0)=1/y20 andQ/x=—50. (a) c;(0)=C,(0)=0.2A/20, (b)
magnify the scale of the population, the bright solitons can,(0)=c,(0)=0.6A/20, (c) c,(0)=1.2A20, and (d) c;(0)
be clearly seen as shown in Fig. 4. The numerical results- 1 5/,/20.

obtained forQ)/x=—40 and—80 are shown in Figs. (4)

and 4b), respectively. The vertical axi@tomic population Circular-lattice configuration Here we consider the time
in Fig. 4 is magnified four times. We can see two solitonsdevelopment of the population in a circular latticee Fig.
generated at the lattice boundaries, which propagate alongp)] for the initial conditions with uniform distribution of
opposite directions and encounter each other at the center e atoms in the system, i.€,(0)~C,o(0)=1/1/20[10]. In

the lattice, preserving their shapes before and after the collihe absence of the nonlinear term, i®/x=0, no change of
sion. They reflect at the lattice boundaries and form traces ahe population distribution occurs since all sites have the
multiple reflections making diamond patterns. The speed&ame symmetry. Upon increasing the positive nonlinearity,
(amplitude of the soliton increaselecreas@sas the abso- the very small population fluctuation induces symmetry
lute value of{)/« is increased. It is verified that the velocity preaking of the population distribution and, consequently, the
and amplitude are well fitted by logarithmic curves as a funcarge parts of the populations initially distributed in all sites
tion of Q/«. The logarithms of the velocity and amplitude tend to localize on one or two sites. If the population fluc-
against the logarithm o)/« exhibit straight lines. Again we tyation of one of the sites is positiveegative, the large part
stress that the same results as those shown in Fig. 4 could Bethe populations tends to localize on tii@pposite or sym-
obtained even for the positiveepulsive interactionnonlin-  metrig site. The numerical result introduced the positive
ear parameters that have the same absolute values with t3g,jation fluctuation at site 10, i.e,,(0)=1.00014/20, is
initial phase condition of¢;=0(m) for odd sites andp;  shown in Figs. 6 for various values of the nonlinearity. For
=m(0) for even sites. In practical experiments, the phasge|atively small values of the nonlinearity, the atoms tend to

shift can be realized by means of phase imprinf@g]. This  |ocalize on around site 10. For large nonlinearities, the atoms
means that the negative nonlinearity is not a necessary con-

dition to obtain the dynamical localization of the atoms and 55 (@) 2.5 (¢)
the self-trapping occurs even for the positive nonlinearity o L N NN
(repulsive interatomic interaction | "

The dark and bright solitons can be created by changing
the initial population distributions. For example, the creation . '
of the solitons for different values of the populations at two 8 EFEFVYm————=— |
sites of the lattice edges is shown in Fig. 5. The amplitude of @ ©0 20 40 60 8 100 0 20 40 60 80 100
the populations is magnified four times. We assume that theaz.s (b) 2.5; (d)
populations of the rest sites are homogeneous, ¢£0Q) £ 2 M
~¢16(0)=1/y/20 andQ/«x=—50. When the populations of 15
the edge sites is reduced to be less than those of other site 1
say ¢;(0)=c,(0)=0.2//20, apparent dark solitons appear 0.5
as shown in Fig. &). Forc,(0)=c,(0)=0.8//20, the soli-
ton becomes very obscure with a shallow defity. 5(b)].

The velocity of the dark solitons decreases as the edge popu-
lation is reduced. In Figs.(6) and 3d), we show the bright FIG. 6. The time development of the atomic populations in the
solitons obtained foc;(0)=1.2//20 or 1.54/20. The veloc- circular lattice forc,(0)=1.0001420 andc,(0)~Co(0)=C45(0)

ity as well as the amplitude of the bright solitons increases as-c,(0)=1/420. (8 Q/«x=3, (b) Q/x=4, (c) Q/x=6, and(d)

the edge populations are increased. Q/k=10.
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FIG. 7. The same as Fig. 6 but for,(0)=0.9999420. (a)
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FIG. 9. The rotationa_l solitons obta_ined for the initial conditions
of ¢g(0)=1/2, c1o(0)=€'?/2, c14(0)=€??/2, c;5(0)=¢€'3¢/2, and
for the nonlinearity of()/x=2.5. (a) ¢=0, (b) ¢=0.1m, () ¢

tend to localize on two regions, site 10 and its symmetric sitg~ 22" and(d) ¢=0.4a.

20. On the other hand, the results for negative populatiogjitons contain two counterrotating components with an
fluctuation at site 10, |eC10(0):09999@, is shown in equa| amp”tude or depth

Fig. 7. For relatively small values of the nonlinearity, the  Considering the population dynamics in circular lattice
atoms tend to mainly localize on site 20. As the nonlinearityconfiguration, it is quite natural to consider the rotation of
increases, the atoms tend to localize on two regions, i.e., sitgfe atomic populations in the system. In order to rotate the
5 and 15. From a practical point of view, it seems importantatoms we introduce a definite phase relation into the initial
to note that the addition or subtraction of a very small num-onditions. Figure 9 shows one of such results obtained for
ber of atoms to or from one of the sites induces the symmethe initial conditions ofce(0)=1/2, c;o(0)=e'?/2, c1,(0)

try breaking of the atomic population distributions, which =gi2¢/2  and ¢,,(0)=€3¢/2, and for the nonlinearity of
results in the abrupt localization of the large part of atoms o)/ =2.5. |f the phase parameteris zero, the large part of
one of the site$10]. ~_ the populations localizes initially populated four sifég.

No symmetry breaking can be seen for the negative interg(a)]. Introducing the nonzero phase parameters, the atoms
atomic interactions and the homogeneous population districan move from site to site resulting in the rotational solitons
bution is maintained even for infinitely large nonlinearities. iy the circular lattice. The velocity of the population rotation
If one or two sites have larger or smaller populations comepends on values of the phase parameter. Upon increasing
pared to other sites’ populations that give nonzero backthe phasey, the rotational velocity becomes largEfFigs.
ground populations, the bright or dark solitons are createdp)—o(d)]. It seems that the velocity is nearly proportional
for the negative nonlinearity. The bright solitons obtained forig the phasep within its small values but seems to be satu-

the initial conditionsﬁclo(O):3/\/X) and c4(0)~cq(0)
=¢44(0)~C,o(0)=1/y/20 with Q/ k= —5 are shown in Fig.
8(a). The dark solitons obtained forc,o(0)=c44(0)

rated for large values. This is the reason why the highest
velocity of the rotational soliton is limited by the bare tun-
neling coefficientx. The velocity cannot exceed the transfer

=0.5//20 andc;(0)~cg(0)=c15(0)~Cy(0)=1/y/20 with  time determined by the bare tunneling coefficientand

O/ k= —35 are shown in Fig.®) in which the amplitude of therefore the rotational solitons become gradually irregular
the populations is magnified four times. Both bright and darkand eventually disappear as the valuepad$ increased. If we
change the sign of the phase shift- — ¢, the direction of
rotation is reversed.

The effect of the nonlinearity on the velocity of the rota-
tional solitons is investigated. It is clear that the rotational
velocity decreases as the nonlinearity is increased. The rota-
tional solitons are observed only for a definite positive values
of the nonlinearity. Outside of this parameter space, the ro-
tational solitons become intermittent and finally disappear.

There is another type of rotational transfer mode of the
atoms, which is obtained for the initial conditions with uni-
form population distribution and the phases proportional to
the number of sites. Such a rotational mode is obtained for
c,(0)=€e"¢/\20 (n=1,2,...,20).

Figure 10 shows the numerical results fofx=1.0 and
for different values of the phase paramegeWhen the ac-

Population

0 10 20 30 40 50
Kt

FIG. 8. (a) The bright solitons obtained for the initial conditions
€10(0)=3/1/20 and c;(0)~cg(0)=cy4(0)~Cr0(0)=1//20 with
QO/k=-5. (b) The dark solitons obtained foc,y(0)=c44(0)
=0.5A20 and c;(0)~cg(0)=c1(0)~Cy(0)=1/120 with Q/«
=-35.
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FIG. 10. The rotational mode obtained fop(0)=e""¢/\20 FIG. 11. The bright and dark solitons induced by the defects of
(n=1,2,...,20) and}/x=1.0.(a) ¢=0.1997 and (b) 0.299r. lattices forc,(0)~ cy(0)=1/20 andQ/k=—50, (8) K1 26= K201

L ... =05k and (b) k150= k201=2«. The populations are magnified
cumulated one-round phase, which is given by multiplicationgigp times.

of phase parametep and the number of lattice sitedvi(
=20), becomes &7 (m=0,1,2,...), there is no population pecomes smaller and small@ee Fig. 10a) for kq o= k201
change and the popplation distribution appears homoge= 0.5«] and eventually disappears @f ,¢= k2o 1:’1, which
neous. The clear rotational modes can be seen for the valuggresponds to the circular lattice without the defect. Increas-
of ¢=0.1997 [Fig. 10@)] and 0.299 [Fig. 1ab)], which  ing the coupling coefficient beyond the dark soliton grows
are a little bit smaller tharp=2m= (m=0,1,2,...). These 5 until Kq100= Koo =4 k [See Fig. 1lb) for kyq.o= ko041
clear rotational modes cannot be obtained in the absence aof ) «], beybnd this value the dark soliton gradu’ally diffuses
the positive.nonlinearity. The periodic growth and _extir)ctionin a complex manner. Further increasirg ,g= k21, the
of the Irotat|_onal wave packets are clearly seen in Fig. 10,0 edge sites have large populations because of the non-
There is a time delay before the start of growth in the rotayesonant level formation by the strong coupling. The strong
tional wave packet. Alike the rotational solitons shown in coupling between site 1 and site 20 induces a large level
Fig. 9, the velocity of the rotational wave packet is nearlygpjitting of symmetric and antisymmetric states. This makes
proportional to the phase shift o a sharp boundary and, consequently, the bright solitons ap-
_ We investigate the effects of the nonlinearity on the rotaear again. Similar results are obtained by introducing dif-
tional mode for a constant phase parameteln the absence  ferent values of the nonlineari)/x at one of the sites.
of interactions ()/«x=0), faint rotational waves are seen. piscussion and conclusionsie investigate the spa-
Increasing the interactions, the rotational waves becomgotemporal dynamics of BEC in optical lattices that have a
clearer and show the periodic growth and extinction. Thinear or a circular configuration with tunneling couplings
period between the growth and extinction becomes short gsetween nearest-neighbor lattice sites. The coupled nonlinear
the interaction is increased. In contrast to the previous rotaschralinger equation has been solved with various initial
tional mode, the rotational velocity is nearly constant, re-congitions and with positive and negative nonlinearities. The
gardless of the values of the interactions and is determ'”eéliversity of the spatiotemporal dynamics for the population
only by the values of the phase parameger distributions such as a macroscopic self-trapping, bright and
Defects in the lattices\Ve study the effects of the defects gark solitons, and symmetry breaking is shown to be derived
on the dynamics of the time development of the populationgrom the positive and negative interatomic interactions. For
by introducing the defects in the lattices, which are imitatetine circular-chain configuration, if we introduce the appro-
by a site with different values of couplingunneling coef-  priate initial phase conditions, two kind of the rotational
ficient « and/or nonlinearitie$)/x from those of other sites. ,0des were predicted. Furthermore, we have considered the
Figure 11 shows the results by introducing a variable cougffect of the lattice defects imitated by a site with different
pling coefficient between site 1 and site 20, .40 OF  values of the coupling coefficient and/or the interatomic in-
K20,1, IN the circular lattice configuration. The initial condi- teractions and shown the appearance of bright and dark soli-

tions are c;(0)~Cy(0)=1/y20 and O/x=—50. If k12  tons induced by the lattice defects.
= Ky01=0, the system becomes equivalent to a linear lattice

and again the bright solitons produced from the lattice This work is partially supported by a Grant-in-Aid from
boundaries are seen. Increasing the coupling coefficierthe Ministry of Education, Science, Sports and Culture
K1.20= K201 from O to «, the amplitude of the bright solitons (Grant No. 20275514
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