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Atom-laser coherence and its control via feedback
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We present a quantun-mechanical treatment of the coherence properties of a single-mode atom laser. Spe-
cifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence
function, for which we derive analytical expressions in various regimes. The decay of this function is charac-
terized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the
collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction
strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another
constant regime due to quantum revivals of the coherence function. The laser output is only c@esent
degenerateup to the linear regime. However, we show that application of a quantum nondemolition measure-
ment and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for
which it remains coherent.
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[. INTRODUCTION crease in the atom-laser coherence time, and a corresponding
increase in the linewidth, especially in the case of BECs
The invention of the laser in the late 19909 created the formed by evaporative cooling. However, we have previ-
field of quantum optics and continues to lead to an enormoususly shown that a continuous, quantum nondemolition
range of scientific and technological applications. It is ex-(QND) feedback scheme can effectively cancel the linewidth
pected that the realization of “atom lasers” will similarly broadening due to such collisiofi0].
revolutionize the field of atom optid2]. Atom optics is the To study the coherence properties of an atom laser one
study of atoms where their wavelike nature becomes imporean either focus on classical or quantum noise in the atomic
tant, suggesting an analogy with photd8% An atom laser field. Sources of classical noise may be technical, such as
is therefore defined as a device that produces a continuodkictuations in the trapping potential, finite temperatures, and
beam of intense, highly directional, amtbherentmatter  specific trap geometriefl2], or dynamical, such as three-
waves[4], in analogy with the light produced by an optical body recombinatioi19]. The study of these effects is usu-
laser[5]. The ideal atom laser beam is a single frequencyally based on mean-field laser models described by Gross-
(i.e., monochromaticde Broglie wave with well-defined in- Pitaevskii (GP)-type equationd21]. Quantum noise is an
tensity and phase. intrinsic part of the atomic system as a consequence of the
The first experimental achievements of the Bose-Einsteimncertainty relations and is the limiting contribution to
condensatioriBEC) of gaseous atom] was followed im-  coherence. The study of this requires a fully quantum-
mediately by several independent ideas for creating an atommechanical approach, of which the most common is based
laser[7]. Since then there have been experimental advancesn the quantum optical master equat[{@2]. The complexi-
in the coherent release of pulsg] and quasicontinuous ties of either approach, which individually require approxi-
beamd9] of atoms from BECs, as well as further theoretical mations to facilitate theoretical analysis, indicate that simul-
proposals[10]. In the experimental configurations to date, taneous analysis would not be ed8g].
the laser mode is the ground state of a trapped BEC, which is In this paper we present a fully quantum mechanical treat-
pumped by evaporative cooling of uncondensed atoms, anaent of the coherence of a single-mode atom laser and its
the out-coupling(separated in time from the pumpings  control via the QND feedback scheme proposed in (2.
achieved by either Raman or radio-frequelidy transitions  Specifically, we study the properties of the first-order coher-
to an untrapped state. Although these experimental acconence functior(i.e., phase coherengeavhich allows us to de-
plishments do not include simultaneous pumping and outputive the coherence tim@nd hence laser linewidklas well as
coupling, they do represent major steps towards achieving atme power spectrum of the laser output. Section Il summa-
operating atom laser. rizes a set of requirements for the coherence of an atom laser
Recent experimentdll1-13 and theoretical4,14—19 first detailed in Ref[4]. Section Il presents our mathemati-
studies have focused on the fundamental coherence properal model for the atom laser and shows the resulting line-
ties of BECs and atom lasers. Atorumlike photonginter-  width for increasing atomic interaction strength. Numerical
act with each other, producing strong nonlinearities that afmethods are presented in Sec. Il B, while the analytical re-
fect the coherence of the trapped condensate and thus alsalts are discussed in Sec. Il C. When the collisional nonlin-
the out-coupled laser field. For a single-mode condensate thearity is very strong, the coherence function undergoes a
dominant effect of atomic collisions is to turn number fluc- quantum collapse and revival sequengcketailed in Sec.
tuations into fluctuations in the energy and hence fluctuationtl D). This leads to an interesting regime in the power spec-
in the frequency, thus causing increased phase uncertaintyum (detailed in Sec. Il  which has not been considered
Collisional interactions therefore lead to a significant de-before. Section IV details the effects of feedback based on a
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physically reasonable QND measurement of the condensataser as a coherent state is a “convenient fiction.” Despite

number, to include all regimes of the nonlinearity. Section Vthis, mean-field theoriege.g., based on GP equatiorere

concludes. very successful in describing the properties of lasers, as is
the use of initial coherent states for solving and visualizing

Il. REQUIREMENTS FOR COHERENCE master equation&@s done in this papgrA vanishing mean

~ field means that
The coherence of an atom-laser beam can be defined

analogously to that of an optical laser bepdh The funda- (b(t))=0. (2.9
mental assumption is that the laser output is well approxi-
mated by a highly directional classical wave of fixed inten-In the case of optical lasers the output might, in principle, be
sity and phase, which is also ideally restricted to a singlén a state with well-defined amplitude and phase. But since
transverse mode. The output should also be a stationary prave do not know the absolute phase, an average over all pos-
cess, i.e., its statistics should be independent of time. To bgible phases gives E@2.4). For atom lasers, only bilinear
coherent, the laser output should then additionally Hdy@  combinations of the atom field are observable and similarly
relatively small spread of longitudinal spatial frequenciesno Hamiltonian is linear in the atom fieldtoms cannot be
(i.e., be monochromatic (2) a relatively stable intensity created out of nothing Thus a mean-field amplitude is
(i.e., be approximately second-order cohereand (3) a  physically impossible and the absolute phase is unobserv-
relatively stable phasé.e. have a relatively slow decay of able, again giving Eq(2.4).
first-order coherenge Since the mean field of a laser is zero, we cannot require
The first condition, monochromaticity, follows from the (b(t))= 8. However, for approximating(t) by B(t), we
requirement that the laser output approximates a classicabn require that the mean intensity be given by
wave. It can, therefore, be expressed in terms of the charac-

teristic coherence length of the wavg,=(5k) 1, i.e., the (1(t)y=(b™(t)b(t)) =B, (2.9
reciprocal of the spatial frequency spread. Conditibrbe- ) o . )
comes and also that the fluctuations in intensity should be small in
some sense. This requirement is quantified using Glauber’s
l o>\ = 27/K, (2.1)  hormalized second-order coherence functiiom a stationary

system [25]:
i.e., that the coherence length be much greater than the mean ) 5
atomic wavelengthi4]. In terms of the spectral width or line- g () =1 (t+ D) H/(1(1)7, (2.6)
width, €= dw, the monochromaticity requirement simply be- )
v yTed Py where the(: ;) denotes normal ordering.

comest <, where the mean frequenay is defined by the For a field that is second-order coherent, ig#?)(7)=1,

kinetic energy of the atoms, i.e=7%k?/2m. Condition(I) there is no correlation between the arrival times of bosons at
also guarantees that the dispersion of an atomic beam will bg detector and their distribution is Poissonian. Specifically
negligible over the coherence lendd. _ the probability for detecting a boson in the intervai-(r,t

To explain the second and third conditions we require a, . dt) given one detected at tintés g(z)(r)<l(t)>dt. For

many-body description of the output beam; see Réffor  the intensity fluctuations to be small we, therefore, require
an in-depth discussion. Basically, the output field of a lasefyat[4]

can be represented by the localized field annihilation opera-
tor b(t), which approximately satisfies th&function com- lg@(7)—1|<1, 2.7
mutation relation
i.e., the laser output should be approximately second-order

[b(t),b(t")]=8(t—t") (2.2 coherent: conditiorll).
. o Assuming that conditiorfll) is met, the intensity of the
at a given point in the output. Thus(t) =b(t)b(t) can be laser beam will be relatively stable and the only significant
interpreted as the approximate atom-flux operator. The fung, iation in the output field will be due to phase fluctuations.

damental a_ssumption of a Ia_ser is that th? output Sh.OUId b useful measure of the phase fluctuations is the stationary
well approximated by a classical wave of fixed intensity an irst-order coherence functidi25]

phase. This is, therefore, represented mathematically by

— GW(7)=(b'(t+ 7)b(1)), (2.9
b(t)~p(t)=pe ', (2.3 (=t )
. L or its normalized form
where 8 is a complex number and the trivial time depen-
dence emphasizes that the laser output should be stationary. gW(r) =GB () /(bT(t)b(t)). (2.9

The atomic field is not exactly a classical wave because there
are fluctuations in the field amplitude due to classical andJnlike the fieldb(t) itself, the bilinear combinations above
quantum sources of noise. These will need to be small oare measurable even for an atom figk{>)(7) is simply the
somehow canceled to maximize coherence. mean intensity(2.5 when =0 and asr increases, it de-

It can be argued that there are no mean fields in both atororeases towards zero as the phase becomes decorrelated from
and quantum optic§24], and as such the description of a its initial value att.
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So, the phase of the field might be undefined because it
varies in time, i.e., the first-order coherence decays. Al- P(w)=J
though we cannot expect the laser to be approximately first-

order coherent for all timfi.e., g)()~1], we can require This is defined so thaf” . P(w)dw=(I(t)) and, therefore,

(1) i - . .
the_ d.ece}y o (T). to be S'OW In some Sense. The cha_rac can be interpreted as the steady-state flux per unit frequency
teristic time for this decay is simply the coherence tlme,[27]

which can be defined d4]

GW(r)eiomdr, (2.14

If the first-order coherence function has the form
. GM(7)cexp(—y7) then the laser output will have a Lorent-
Tcohz%f lgM(7)|dr. (2.10  Zzian power spectrum. In this case the FWMH is exactly
0 equal to the linewidth as defined in EQ.12), i.e. the recip-
rocal of the coherence time. On the other handzif)(7)
This is the time over which the phase of the field is relatively=exp(—1?7%) then the laser has a Gaussian power spectrum
constant. with a FWHM that is now only approximately equal to the
But even if the phase is constant, it might also be undelinewidth.
fined due to a large intrinsic quantum uncertainty given by In any case, if the first-order coherence function has the
A ¢pAn=1/2[26]. Since typicallyAn<n, the quantum phase form GV)(7)=|G®(7)|explw7), then conditior(lll) for co-
uncertainty will be large if the mean numberis small. For herence can be restated in terms of the maximum spectral
the phase to be well defined we, therefore, need the field tmtensity P(w). From Egs.(2.14) and(2.10 and the above

have a large intensity, i.en>1, over the time that the phase assumption/Appendix A shows that this is a good approxi-
of the field is constant, i.e., for timéb< r.,,. The number ~Mation for the atom lasgrwe find

of bosons in the output field for a given duratidnis n -

=(I(t))T. Thus, for a well-defined phase we require P(_)zf |IGA(7)|d7r=4{I (1)) Tcon. (2.15
(I(t)) 7eop>1. In terms of the first-order coherence function -

this translates t
b4l Thus, regardless of the resultant shape of the output power

spectrum, conditiorilll) becomes

a0y [ lgmldr= [ l6®ldr=1, 212 _
P(w)>1. (2.16

which quantifies the requirement that the decay of first-orde[\Iote that the central frequen@TywiII be shifted by any laser

coher_ence b?. relatively slow: Co.”d'““?‘." )- . dynamics that cause a rotation of the mean phase of the laser
This condition for coherence is equivalent to the require-,

: ; field.
ment t_hat the output field be hlghly Bose-degenet[d_tb The remaining sections of this paper present a study of the
which is rarely considered for optical lasers because it is s

easily satisfied. It requires that the output atom flux, i.e.,quantum phase _dynam_|cs of the atom Igser and thus the co-
(I(t)), be much larger than the linewidtho. Since the herence properties of its output. Specifically we study the

atom-laser linewidth is the reciprocal of the coherence timefirst-order coherence function as a measure of phase fluctua-
e P tions, which(in the absence of intensity fluctuationsill be

the limiting factor to the coherence time of an atom laser.
This function, as indicated in this section, is also intrinsically
related to the laser output characteristics of linewidth and
power spectrum.

0=6w=1Iry, (2.12

we find that condition(l) requiresl«g and condition(lll)
requires Ill. ATOM-LASER LINEWIDTH
£<(I(1)). (2.13 A. Atom-laser dynamics

o The atom-laser model consists of a source of atoms irre-

For single-mode optical lasers typicall}(t))> so condi- versibly coupled to a laser mode, which is supported in a trap
tion (Ill) is always satisfied. On the other hand, the colli-that allows an output beam to form. A broadband reservoir
sional interactions in atom lasers cause significant linewidtlacting both as a pump and a sink is also coupled to the
broadening and so satisfyin@il) is not guaranteed. How- source modes. The laser mode and source can be modeled by
ever, in Sec. IV we show that this broadening can be effecthe ground and excited states of a trapped boson field, rep-
tively canceled by a QND measurement and feedbackesenting the condensed and uncondensed atoms, respec-
scheme. tively [4]. Gain can be achieved, for example, by evaporative

The linewidth, or spectral width, of a field is usually de- cooling of the uncondensed atoms. Out-coupling from the
fined as the full width at half-maximum heigtEWHM) of  laser mode can be accomplished, for example, by coherently
the output power spectrum. In general, the power spectrum igriving condensed atoms into an untrapped electronic state.
given by the Fourier transform of the first-order coherencerThis model can be simply described by a quantum optical
function[22]: master equation for the laser mode al¢ag9], obtained by
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adiabatically eliminating the source modes and tracing ovethe simplest physically reasonable model for an atom laser,
the continuum of output modes. The system is thus charadn that it includes the essential mechanisms of gain, loss, and
terized by a wave functio®(r) and annihilation operata  self-interactions.
for the condensate mode. There are also physical justifications for using Markovian
Far above threshold, the laser mode has Poissonian nurtheory. Referencgl7] states that the Markov approximation
ber statistic§30,31). In the absence of thermal or other ex- is valid for output coupling rates satisfying *>T,,, where
cess noise, its dynamics are modeled by the completely posi-, is the output memory time, which typically ranges from
tive master equatiof,29 10 2 to 1 ms. This condition is thus easily satisfied for typi-
_ cal values of« !, which range from 10 to 10! s[34].
p=xuD[a")A[a"] p+ kD[a]p=Lop, (3.)  Furthermore, as discussed in Rgfg], the Born-Markov ap-

] proximation is only valid for either weak output coupling or
where the superoperatdfsand.A are defined as usual for an |arge atomic densities. BECs formed by evaporative cooling
arbitrary operator: have strong atom-atom interactions that correspond to large

_ 1 atomic densities. We are, therefore, justified in making the
Dlrlp=rpr'=Alrlp, Alrlp=3{r'r.p}. (32 Born-Markov approximation in Eq3.5) [but not necessarily
in Eq. (3.1)]. In other words, we expect that strong nonlinear
interactions, rather than any non-Markovian dynamics, will
dominate the linewidth.

_ * _gaa
Dla']A[a'] 1= fo dgD[a’e 2272, 3.3 B. Numerical calculation of linewidth

_ _ As stated in Sec. Il, the coherence time of a lasgy,, is
The first term of Eq(3.1) represents linear output cou- roughly the time for the phase of the field to become uncor-
pling at ratex and the second term represents nonlineakelated with its initial value. As shown by E@2.10), it is
(saturatetl pumping far above threshold, whege>1 is the  determined by the stationary first-order coherence function
stationary mean boson number. Itis the decreasing differengg.9), in which the output operatotscan be replaced by the
between the gain and loss, as the laser is pumped aboygser mode operatoes sinceb= v+ \/xa. For the evolution

threshold, that gives rise to the gain-narrowed laser linewidthjescribed by the master equatit®15), the coherence func-
[22]. The localized output mode operatoof the preceding  tion becomes

section is then related to the laser mode bia v+ xa,

where v represents vacuum fluctuatiof82]. Note also that gP(t)=Tra’e apJ/ T psa'al, (3.6)
we have chosen a reference potential energy for the system

such that there is no Hamiltoniana'a in the master equa- Where pss is the stationary solution to Ed3.5) given by

That the master equation is of the Lindblad form follows
from the identity

tion. (30,31

To include the effects of atom-atom interactions in the N 1 r2
laser mode we consider a sim@evave scattering model for —e # o n\nl= _f Wda rei(rel’ (3
two-body collisions, which is valid for low temperatures and Pss 2 n! In)(n| 27 Jo Ire)re'd, (3.7

densitied 33]. This is described by the Hamiltonian

where r=+/u. Thus, the state of the laséB.7) can be
thought of either as a mixture of number states or equiva-
lently a mixture of coherent statésee[35] for a discussion

2

ﬁasf |D(r)|*d%r, (3.9

H.y=%Ca'a'aa, C= p-

of this).

where®d(r) is the condensate wave function aaglis the It is a very good approximatiofsee Appendix Ato as-
swave scattering length. The total master equation for thesume that ifg*)(t) is not real then its complex nature is
laser mode including atomic interactions is then simply of the formg®(t)=|gM(t)|e'“!, where w is the

) : - _ ‘ot central frequency of the laser output. That is, we assume

p=kpDla']JA[a'] “p+«Dla]p—iC[a'a’aap]=Lp, g®(t) is complex due to an effective detuning,=

(3.9 —iw[a'a,p] in the evolution. This type of evolution causes

where £ is known as the Liouvillian for the total system a rotation of the mean phase proportionaktpwhereas the
evolution. decay of|g®)(t)| indicates phase diffusion. Using E®.6),

As master equations, Eq8.1) and(3.5) are derived us- this allows the integral in Eq2.10 to be evaluated to give
ing the Born-Markov approximation. More complicated

mathematical models for the atom-laser dynamics may in- Teor=— T (L—iw) tapdi2Tipsa’al. (3.9
clude a full multimode description with non-Markovian . )
pumping and/or dampin¢see, e.g., Ref§17,18). However, Equation(3.8) can be evaluated numerically, for example,

only the single-mode master-equation description employe¥Sing theMATLAB quantum optics toolboX36]. The first
in this paper allows a relatively straightforward analysis. Al-guess forw is found from the approximation

though a single-mode scheme, e.g., E85), ignores the .

many source modes and the continuum of output modes, it is w=Im{Tr{a'Lap.]}=w,, (3.9
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which is exact forL= L. Subsequent corrections are found
by an iterative procedure. Substituting in Eq. (3.8) gives
7, Which is then used to update our guess éwia the
expressionwy 1= w,—Im(1/27,). Basically, this scheme
ensures that the calculateq,, has a vanishing imaginary
component. This is justified in Appendix B, where we also
show that, if Eq(3.8) is valid, then only one correction 0,

is needed for an accurate determinationwof

C. Analytical calculation of linewidth

. o . . FIG. 1. Typical contour plots of th® function for =15 and
Analytically, it is easier to use the fact that E®.6) is C(=rxxl4u) = k(27m)~ Y2 Solid ring: stationary laser staje,,

unchanged ifpg is replaced by the initial coherent state given by Eq. (3.7. Solid circle, iniial coherent state

N : _
[re'®)(re'’| for arbitrary ¢ (say §=0). We, therefore, have  |\/,377y( |77 1|; dashed contour, phase diffusion due to laser gain

Q)4 — t _ ALt and loss att~0.8/k; dotted contour, state due to total evolution
gM()=Tra'p(t)1/r, p(t)y=e"r)(r|. (3.10 including collisions, i.e., Eq(3.5), also att~0.8/«.

Using any suitable phase-space, ¢*) representation, this

. . . . o
expression is then equivalent to differential operator acting o®(«,«*). This is the most

convenient representation for our laser model because of the
g@O(t) = (a* (1))/{a* (0)), (3.11) identity (see Appendix €

where(a* (0))=(a(0))=r and|a) is a coherent eigenstate . 1 - a\k
of the laser field, i.e.ala)=«a|a). The state of the field at Dla']JAla'] P—>k§=:1 — 5] Qine),  (3.16
any time can thus be described by the probability distribution
for a, or equivalently(since a=\n€e'¢) the intensity,n
=|a|?, and phasegp, distributions.

The fluctuations in intensity are relatively small for a laser
with u>1, i.e., on(t)~0. Then, also assuming the number
statistics are unchanged by the evolution, we hay®

which, since the higher-order derivatives are negligible, can
be truncated ak=2. This representation also allows us to
visualize the dynamics produced by the master equ&8din
as shown in Fig. 1.

The master equatiof8.5) thus turns into a Fokker-Planck

~n(t)=n(0), which gives equation(FPE) for Q(n, ¢),
< n(t)efi‘P(t)) <e*i¢(t)> 5
Dty = = L (31 9 1 J
t (Jn(0)e ¢y (g=ie(0) (312 EQ(Z’U:§§ W[Bjk(Z)Q(Z,t)]

Now the phase distribution at tintedue to the laser evolu- d

tion is given bye(t)=(0)+ ¢(t), i.e., the phase distribu- -2 —[A@Qz)]. (3.17
tion of the initial coherent state plus the relative phase dif- . J

ference ¢(t)=ard a(t)/@(0)]. Assuming this phase _ o )
evolution is independent of the initial phase uncertainty, weVherez=(n,¢) and the drift vectoA and diffusion matrb8

have are given by
g(l)(t)z<e7i¢(t)>~efig(t)f(1/2)v¢(t)’ (3.13 Al k(u+1—n) _ 2k(pu+n) 2nC>
(3—2n)C /' 2nC kl2n|’
where the second approximation assumes Gaussian statistics. (3.189
The coherence time, E¢2.10), is thus found by evaluating
the integral To find equations of motion for the moments;) and
. (zjz) the FPE needs to be converted to an Ornstein-
1 —(12)V 4(t) Uhlenbeck(OU) equation. For an OU process, the drift vec-
Teoh~ 2| © s dt. (3.14 oo . . : . .
0 tor is linear in the variablesn(¢) and the diffusion matrix

constant. Our drift vectoA is already linear, but ouB ma-
In the Q-function representatiof22], a density operatqgs  trix is not constant. The simplest option is thus to replace all

has a correspondin@ function defined by the amplitudes iB with their (Q-function) mean value, i.e.,
n— u+ 1. The equations of motion for the moments are then
Q(a,a*)=(alp|a)lm, (319  d(z)/dt=(A;) and d(z;z)/dt=(zA,)+(zA))+(Bjk
+ Byj)/2, whereA and B are now OU parameters.
normalized such thaf Q(«,a*)d?a=1. The action of an We find that the number statistics are unchanged from that

operator orp thus has the corresponding mirror action of aof the initial coherent state, which for th@-function repre-
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sentation areT:/_L—{- 1 andV,=2u+ 1. However, the phase- Clearly, for)(<1, we obtain the standard laser |IﬂeW|d?L5]

related moments are altered. Usipg-1, they are(for the ~ =«/2u [29-31. These two expressions agree at

relative phasep) =8ul/, and they are an excellent fit to the numerical cal-
o culations of Eq.(3.8), except at the boundary between the
$(t)=—2uCt, (3.19  regimes. This is illustrated by the figure in our previous pa-

per[19], and also the extended version in this paper, Fig. 2
2

_ 8uC” K appearing in Sec. Il D.
Vy(t)= 2 (e “+xt=1)+ ﬂt' (3.20 Equation(3.25 represents the same physical dynamics as
found in similar studies by the authors of RgfE5] and[37].
2uC Zobay and Meystrd15] present a three-mode atom-laser
Chg(t)= T(ef"t— 1). (3.2)  model, with the output mode adiabatically eliminated. Ignor-

ing collisions between pump and laser modes, they obtain

As expected, there is a mean phase st8fi9 due to the phase variancel€qs.(21) and(22) of Ref.[15]], which are
collisions, while the nonzero covarianceC;=(n¢) similar and identical to the exponents of Ed8.23 and
—(n){¢)) given by Eq.(3.21 explicitly shows the number- (3.24), respectively. See also the linewidth plotted in Fig. 3
phase correlation produced by the collisions. The phase varef Ref. [15]. Gardiner and Zolle37] studied a Bose-
ance (3.20 contains two terms, where the second corre-Einstein condensate in dynamical equilibrium with thermal
sponds to standard laser phase diffusion. The first term thustoms. Our first-order coherence function, Ej22, has the
indicates the increase in phase fluctuations due to collisionsame structure as the analogous expression,(E4), de-

The effect of collisions on the phase fluctuations can beived in Ref.[37]. The two regimes of Eq.3.25 correspond
clearly seen in Fig. 1. This figure shows single contour plotgo the characteristic time constants of E(87) and(186) of
of the Q-function for the hypothetical coherent stdtéﬁ) Ref. [37] respectively. The second of these expressions,
and snapshots at a later time due to the evolution of th&here the nonlinearity is dominant, is familiar as the inverse
master equatiofB.5). If we ignore collisions the effect of the collapse time of an initial coherent state in the absence of
laser evolution is simply phase diffusion. By including col- pumping or damping38,39.
lisions we see two effects. First, there is a rotation of the Since the output power spectrum is the Fourier transform
mean phase, due to E¢3.19, and second there is phase of G)(t) [see Eq(2.14], the shape of the spectrum is also
shearing. This is due to the nonzero number-phase correlaetermined by the form of ,(t). For the two regimes of Eq.
tion, Eq.(3.2)), indicating that if the inherent number fluc- (3.25, the laser output has Lorentzian and Gaussian power

tuations producen>n the corresponding phas¢ will be ~ Spectra, respectively, as was also found in ReS]. These
less than¢, and vice versa. The initial coherent state will spectra are |Ilustrateq by F!g. 6 in Sec. IVB. See Sec. lliC
approach the actual laser statg, Eq.(3.7), ast—. for a more in-depth discussion of the atom-laser power spec-

I i . . trum.
Substituting Eq(3.20 into the expression for magnitude _ —_— .
of the first-order coherence functid.13 gives The standard laser linewidtim the absence of collisions

is simply given byx/2u. For the preliminary atom-laser ex-
|g(1)(t)| :ef)(z(e_’d+xt71)/4,uef Kty (3.22 periments of_ Refd.8,9], the interaction strengt@ is always

found to satisfyC> «/u and hencey>1 [34]. Atom lasers,
where we have introduceg=4uC/x as a dimensionless therefore, have a linewidth far above the standard limit. Fur-
parameter for the atomic interaction strength. This expresthermore, if y=u? the linewidth will be larger than the
sion does not have a simple analytical solution. However, bynean output fluxxu. In other words, the atomic collision
inspection, there are two limits that can be solved analytistrength does not have to become very large before the laser
cally. If X<\/; we obtain output does not satisfy conditidgiil ) for coherencéi.e., Eq.
(2.13]. It is thus of great interest to find methods for reduc-
ing the linewidth due to atomic interactions. One method is
continuous QND measurement and feedback as shown in
Sec. IV.
For x> /i, on the other hand, the first exponential in Eq.

(3.22 is dominant and then expandieg “* to second order
we obtain D. Revivals of the coherence function

2 Teoti™ fo e <O DMugt=4,1(1+x?). (3.23

. In the preceding section, the atom-laser linewidth was cal-

27 o J' e g t= 27l iy (3.24  culated for atom-atom interactions ranging from weak (

0 <1) to strong f> /). However, exact numerical calcula-

) ) . tions based on Eq(3.9) indicated that there is an upper

The_ r_esult.ant expression for the atom laser linewidth dugy, ,nd to the linewidtHoccurring for y= x?) that was not

to collisions is thus included in the previous analysis. It turns out that, in addition
2 to linewidth broadening, the collisional interactions also lead

w(1+x9)2u for x< \/; (3.25 to quantum revival$38] of the first order coherence func-

2kx/\2mu for x> \/; ' tion. Although, note that in this very strong collisional re-
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gime, the output atomic beam cannot be considered a laser i
; e . T u(1—ik/C) iCt—
according to the definitions in Sec. (sincel=xu for y  gM(t)~eCle W4 exg — ——————(1—e?Cle=2xY) ||
=137, 1+ k?/C?
To study the regime of revivals it is helpful to start by (3.3
ignoring all other laser dynamics apart from the collisions. In
this casep=—iC[a'a’aa]p=Lcp, and we can analytically D)1 et . m o
solve for the periodic structure @f*)(t). For an initial co- g m]~e ex 1+ k2/C2 1-e "cosXt
herent state(0)=|a)(«/,
K
g®)=Tra"p(t))/a*, p(t)=e-c|a)al. - Ee-zKt sin 2Ct) . (3.32
(3.26
Using the number state representation, i.@(t) We only expect this expression to be valid in the very
=Spma(t)|n)(m| and |a@)=exp(—|a?/2)Sa"|n)/\n!, we  strong interaction regime Q> «u). Here revivals of
find for the first-order coherence function |gM(t)| are significant and/C<1 (since u>1). Also, as
@) sict shown by Eq(3.28), revivals occur aimt,=m/C, so in the
g () =exd —u(l—e")], (3.20  strong regime the envelope of the coherence function is
. . . . iven by (for finite m
since|a|?= u for the laser, and its magnitude is g v )
(1) =g
|g(1)(t)|:exn:—lu(]_—cos Z:t)] (32& |g (t)|env |g (mtr)|
The coherence function clearly has periodic revivals when zexp{ - L‘I‘ZK,LL)mtr}
t=m=/C, mis an integer. A
Including the other laser dynamics, i.e., gain and loss, is =e 2o, to=1kp. (3.33

not so straightforward. Since these terms, unlike those in

Lc, are not functions of the number operator we cannOjyere the timet,, can be interpreted as the quantum dissipa-
easily utilize the number state representation. The main etjon time, i.e., how long the state would last if it was in a
fect, however, is simply a decaying envelope applied to theyperposition of coherent states. Nonunitary effects, such as
revivals of Eq.(3.28), such that the strength & compared  gamping, cause a decay of the quantum coherence of these
to «p will determine the number of significant revivals in states at a rate xu [42]. This is relevant because the state
the coherence function. This will be shown below. The re-produced halfway between revivals by nonlinear interactions
vivals of the coherence function become significant wiyen g cn asCc is in fact a superposition of coherent staft4s].
~4mu” or C~ wmpu. This regime was determined by calcu-  The relationship between the quantum dissipation time
lating the exact linewidth based on numerical solutions ofand the revival time can be used to give an indication of the
Eq. (3.8) and corresponds to the interaction strength wherg,ymper of significant revivals in the coherence function for a

the linewidth begins to approach a maximum. given interaction strength. That is, it then no revivals
To determine the value of this maximum linewidth, we i pe seen, but ift,<ty as for the above equation, the

extend the work of Milburn and Holmg#0], who model an  nymper of significant revivals is of ordep/t, . Revivals

anharmonic oscillator coupled to a zero-temperature heaﬁegin to appear at,=to, which is at y=4mu? or C

bath, via two basic assumptions for including saturated gain. xmu as stated earlier.

The master equation modeled by Milburn and Holmes is \ye are now in a position to determine coherence time and

(using our notation linewidth in the regime of revivals. From E@2.10, the
o 12 coherence time is simply half the area under the function
pwn=—iC[(a'a)% p]+ «Dla]p, (829 |gMW(1)]. In the very strong interaction regim&® k), this

area will be made up of many individual peaks which de-

crease in height due to the envelope given by BB3. The

first of these peak$which actually starts atg*)(0)|=1)

which gives a first-order coherence function of the form

gf\ﬂl&(t):ei(:tef Kt/2 exp{ _ w(1—ix/2C) —e?iCtg=xty |, will be the same as the coherence function for no revivals,
1+ k?/4C? and its area will beJ27u/ky as given by Eq(3.24). The

(3.30 subsequent peaks will have areas twice this area multiplied

. ) } by the height of the envelope at that time. Thus we have for
To add saturated gain to this model we first assume thajne total area

far above threshold, the contribution to phase diffusion is

equal for both gain and log€1] and so we replace with 2\2mu | (= % 1
2k. Second, including gain will almost cancel the overall 2 Teo™ K f e 2> s(t—mt)dt— _}
exponential decag ™ “'? of the coherence due to loss, result- KX 0 m=0 2
ing in the smaller terne™ ¥4 (since this will give the stan- o

P ; ; 2\27u 1
dard laser linewidth¢/2u). These assumptions give the fol- — 2 e 2mtitq_ Z| (3.34
lowing results forg)(t) and|g®(t)]: KX \m=0 2
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This expression can be evaluated by udipgt, and by E. Power spectrum

noting that for a geometric serieS,,r™=1/(1-r). The ana- As stated in Sec. Il, conditiofill) for coherence requires

lytical expression for the linewidth in the regime of revivals (5t the integral ofG™)(t)| be much greater than unif§q.

is then (2.1D)]. This was reinterpreted as requiring the linewidth to
be much less than the output flyBose degeneragy or

YN
Cmax=AKV2mp=" (3.39 equivalently requiring the maximum spectral intensity to be
This is in exact agreement with the numerical results obmuch greater than unitf(w)>1. Now the linewidth is only
tained from Eq.{3.6), which are plotted in Fig. 2. the FWHM of the power spectrum if it is Lorentzian. As

In this figure we have plotted the approximate analyticaldiscussed after Eq3.29), this will only be the case in the
expressions for the linewidth in the absefiEgs.(3.25 and  weak-interaction regimg<+u. As x (or C) is increased
(3.39] and presencfEq. (4.14)] of feedback(see Sec. IVB the power spectrum becomes Gaussian, ang asters the
for detail9 as a function of the nonlinearity for x=60. We  Vvery strong interaction regime it will no longer have a simple
have also included numerical resultsee Sec. llIB for de- structure at all. At these strong values of the nonlinearity we
tails) as a comparative test for the analytical work, which issee quantum revivals q(l)(t).
valid for u>1. As can be seen, the agreement is very good In terms of normalized first-order coherence function the
even for an occupation number of only §84], thus con- power spectrum becomes
firming the accuracy of our analytical expressions for the
Iinewith. Without feedback we see four distinct regimes. P(w):KMfw g@®(t)e etdt, (3.37)
There is the standard laser linewidth fpr<1, a quadratic —o
dependence ory for 1<y<+u, and a linear regime for
Jp< x<u?. The latter two correspond to the regimes of Eq.where we have recognized thét)=(b'b)=x(a'a)=«u.
(3.25. Finally there is a constant regime given by E835  From this equation it is clear that as long @d(t) has a
for x> w2, which is due to the collapses and revivals of thesimple structure, i.e., no revivals, then the spectrum will
coherence function. have a simpléLorenztian or Gaussiatine shape for a given

Note that the approximation used in the numerical calcuinteraction strengttC, with the intensity and width deter-
lation of Eq.(3.8), i.e., gV(t)=|gV(t)|e“, is no longer Mined by how fasg!)(t) decays. o
necessarily valid in the regime of revivals, as indicated by The maximum spectral intensity was defined in Sec. Il by
the multi-complex-exponential nature of E.28. Never- Ed. (2.19, which was based on the assumption thét(t)
theless, our numerical results are still correct because we |gP(t)|e'“!. Since we are in a reference frame with zero

ha\{e taken the mean atom numherto be an integer. At mean frequency before including collisions,is the detun-
revivals the approximation tg‘*)(t) becomes ing frequency due to collisions which causes the mean phase
) ) shift of an initial coherent statésee Fig. 1 At this fre-
1 womt, — 1 2mmr, <
[gH(mty) el o™= |g(V]el2mme, (338 quency, the output power spectrum will, therefore, have a

i — maximum value given by
where we have only used the first guess éar since the

iterative procedure will be inaccurate in this regifsee Ap- —
pendix B. This expression clearly equalg®)| for integer P(@)=4xp7eon- (339
u. Thus, the same numerical simulation can be used for aIA

. . s stated above, in the regime of revivals this approximation
values ofC as long asu is an integer —

will only be accurate for the first guess faw, i.e., wg

=2uC.

10" | ) ) The linewidth in the strong atomic interaction regime
without feedback ' . . .

Ao (C=zkmu) was calculated in the preceding section to be

4x\27u®? i.e., EQ.(3.39. Thus, from the above equation,

we expect the maximum spectral intensity to reach

with feedback |

P(wg) =4kl € ma=1IN2m7 10, (3.39

as the atomic interaction streng@is increased far above
KT .

- = ” — Figure 3 illustrates both the simple line shape of the
10 10 107 =4ncrc10 power spectrum when there are no revivals and the compli-
FIG. 2. Atom laser linewidth in units ok for 7=1 and g cation of the spectrum & is increased. Since all the plotted

=60, plotted with and without feedback using both analytical SP€Ctra havé(w)<1, the atom-laser output clearly does not
(lines) and numericalpoints methods. The dotted line corresponds Satisfy condition (Ill) for coherence, Eq(2.16, in the

to =Ky, i.€., interaction strengths with corresponding linewidths Strong-interaction regime. The first spectrum in Fig. 3 is in
below this line satisfy the coherence condition of Bose degeneracthe rangeyu<C< k7 u, and thus although revivals are not
(condition Il1). For the feedback results, see Sec. IV B. seen, the output is still above the cutoff for Bose degeneracy.
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0.4f
P(w)
03}

condensate  “anti-mean” lens LO

A\

probe ® = ddpocdn
\N_~

B-ficld 2%

T [Mf Thom® D

FIG. 4. Experimental schematic. A far-detuned probe laser of
amplitude ¢ interacts with the condensatee., the laser cavily
causing a phase shift in the probe proportional to the condensate
) A ! ‘ number. The “anti-mean” lens subtracts the mean phase shift leav-
plotted for =15 and various values @& in the strong-interaction g the probe with a phase shift proportional to the number fluctua-
regime. The dotted line corresponds to the valu@ul may, i€, the  tions sn. The photocurrentyyy(t) from the homodyner detection
maximum height of the power spectrum in the regime of revivals.of thjs field is then used to modulate an exterBdield uniformly

Note the log scale fow. applied to the condensate.

0.2f

0.1

0

FIG. 3. Output power spectrui(w) wherew has units ofx,

The remaining spectra illustrate the increasing effect of o To_ t
quantum revivals due to increasing interaction strength. The Hin=fi0(a:a=p)pp, “2

central peak of the power spectrum, which can be deﬁne%heree, defined in Eq(4.1), is the phase shift of the probe

regardless of revivals as shown in E@.19, clearly ap-  fig|q que to a single atom. Here we have also subtracted the
proaches the predicted maximum ofy2fru, i€., EQ.  mean phase shift such that the probe optical laser is a mea-

(3.39, for C>«mu. For examples of the spectrum in the gre of the atom number fluctuations ortee Fig. 4
weak-interaction regimes of E(3.25, see Sec. IV B. The back action on the condensate due to this interaction
can be evaluated using the techniques of Sec. IlIB of Ref.
IV. REDUCING THE LINEWIDTH VIA FEEDBACK [52]. Assuming the input probe field is in a coherent state of
Section Il A showed that the atomic interactions do notamp“tUdeQ and mean poweP, the evolution of the atomic

directly cause phase diffusion. Rather, they cause a shearir%Stem due the measurement is

of the field in phase space, with higher amplitude fields hav- -, “ip(aa— ) T

ing higher energy and hence rotating faster. The resultant p=eDle lp=MD[a’a]p, 4.3
linewidth broadening is a known effect for optical lasers with
a Kerr (x‘®)) medium[45]. The shearing of the field is mani-
fest in the finite value acquired by the covaria (t) in 202D a2
Eqg. (3.21). It means that information about the;r(q?/c)mdensate M=076"=P 0 /hwp. .4
number is also information about the condensate phasgy,e approximation in Eq(4.3 requires f(a’a—u)<1,

Hence, we can expect that feedback based on.atom nu'T'b\‘/?/'hich for Poissonian number fluctuations is simply 6
measurements could enable the phase dynamics to be con

trolled, and the linewidth reduced.

where the measurement strength is given by

The above result represents decoherence of the atom laser

due to photon number fluctuations in the probe field, result-
A. QND feedback scheme ing in increased phase noise. In a recent theoretical study by

QND atom number measurements can be performed oRalvit and co-workerg49], it was shown that dispersive
the condensatin situ via the homodyne detection of a far- measurements of BECs cause both phase diffusisrn Eq.
detuned probe field46—49. This dispersive interaction (4.3] and atom losses. Nevertheless, they also show that
causes a phase shift of the probe proportional to the numbéhase diffusion dominates the decoherence rate for large
of atoms in the condensate. We consider a far-detuned prols#om numbers, i.e., for>1, and so the depletion contribu-
laser beam of frequency, and cross-sectional argathat ~ tion can generally be neglectefd3]. Equation (4.3 is
passes through the condensfd6]. Figure 4 shows an ex- equivalent to the corresponding phase diffusion term in their
perimental schematic for our QND measurement and feedwork, since it can be shown that bolh and the phase dif-

back scheme. fusion rate given by Eq.(14) of [49] reduce to
For a single atom the interaction with the optical probe~ ¥’\°I/hcAAZ.
field can be approximated by the Hamiltonian The effect of the interactiof.2) on the output probe field

is to cause a phase shift proportional to the number fluctua-

ver a7 _, tions,a’a— u. The output field operator is given §$2]
= o=

ho,y?
P Th= T

Pou=e @3 Wp =p, —ighala—p), (45

where Q,,A,y have their usual meaning andgy

=2mhcy/\® [51]. Herep is the annihilation operator for the where again the approximation requirés < 1. Homodyne

probe beam, normalized so trfa&)ppr is the beam power. detection of theY quadrature of the output probe field will
The effective interaction Hamiltonian for the whole con- thus be a measure of the condensate number fluctuations.

densate can thus be taken to be The homodyne photocurrent operator is given5g]
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Igut:_ipout+ipgutzli\;_z\/m(afa_ﬂ)- (4.6) 3 X.

In order to control the phase dynamics of the condensate,
we wish to use this homodyne current to modulate its energy.
This can be done, for example, by applying a uniform mag-
netic field or far-detuned light field across the whole conden-
sate. In the ideal limit of instantaneous feedback, we model
this by the Hamiltonian

FIG. 5. Contour plots of theQ function for =10 andC
— T

Hio(t) = —fia"aF o)/ VM, @7 _ k(27 u) "2 (ignoring any mean phase shift8lack circle, ini-

. . . tial coherent staté\/u)(\/u|; black ring, stationary laser statgs,

whereF is the feedback §trength aighn(t) is the classical Eq. (3.7). The other contours correspond to the evolution at time

photocurrent corresponding to the opgra@._ _ ~1.5/k due to successive terms in the master equation. Dashed
The total evolution of the system including feedback iscontour, phase diffusion due tty; dotted contour, including atomic

obtained by applying the Markovian theory of RE§2]. The  cojiisions, i.e.,£, and C; dot-dash contour, including QND mea-

master equation becomes surement back action, i.ef, and C and M; and finally the solid
) contour corresponds to E¢.9). All contours are for the optimal
p=Lop—iC[a'a’aa,p]+MD[a'alp+iF[a'a’aa,p] feedback regimé& = \zM=C.
F2 _
+7’—MD[aTa]p, (4.9 d(t)=—2u(C—Ft, (4.10
where we have allowed for a detection efficiengy52] and 8u(C—F)? ot K F2
dropped terms corresponding to a frequency shift. Vy(t)= T(e trt=1)+ 2 M+ oM t,
The terms in Eq(4.8) describe, respectively, the standard (4.11)
laser gain and loss{p), the collisional interactions®), the
measurement back actioM(), the feedback phase alteration 2u(C—F)
(F), and the noise introduced by the feedback. As before we Cho(t)= 7((;— <t_1), (4.12

can visualize the effect of the measurement and feedback

terms on the evolution of an arbitrary coherent state. This is ) o

illustrated by theQ-function contours in Fig. 5. In this figure Where again the approximations have ugesd1.

we have ignored the mean phase shift due to collisions to These equations clearly show that all the unwanted phase

make the comparison clearer. statistics are canceled by chqosmg a feedbaqk regime with
To completely remove that unwanted nonlinearity, the obF=C and furthermore the minimum phase variance is when

vious choice for the feedback strength is=C. We also M =C/\/%. Specifically, both the mean phase shift and the

want to minimize the phase diffusion introduced by both thecorrelation between number and phase fluctuations are re-

measurement and feedback. A weak measurement will giveoved, and the phase variance is simply given by

poor information about the atom number, with a high noise-

to-signal ratio, which will increase the noise due to feedback. k 2C

On the other hand, if the measurement is too strong the mea- Vg(t)= ( ﬂ + \/_—

surement back action itself will dominate. This leads us to 7

guess the optimal regime _for b_Oth measurement and feedI:his is exactly the phase variance from the master equation
back to beF =/#M =C, which simply leaves 4.9

In this case, Eq(3.14 has a simple analytical solution

t. (4.13

. 2C
p=«xuD[a"]A[a’]"1p+«kD[a]p+ —=D[a’a]p.

) LK X
4.9 R S i R (4.14
( ) coh 2;“ \/;)
B. Linewidth results where we have again used the dimensionless atomic interac-

Proceeding as before, we can find the exact effect of thgon strengthy=4uC/«. Note that unlike Eq(3.25, this
general feedback scheme on the atom-laser linewidth. Nelinewidth is valid for all x. The derivation of Eq.4.14
ther the measurement nor the feedback affect the atom nurabove is based on preselecting the feedback and measure-
ber statistics. The change in the phase statistics are reflectetent parametersi.e., F=7M=C). On the other hand,
by the new Fokker-Planck equation f@x(n,¢). The altered Ref.[20] presented the analytical solution for the linewidth
terms in the drift vector and diffusion matrix a®e,=(3  independent of the choice of these parameters and proceeded
—2n)(C—F), B;,=B»=2n(C—F), and Bo,=«/2n+M to find the minimum with respect to the feedback strength.
+F2/ yM. After linearizing, we again find the phase-related The resul{Eq. (24) of Ref.[20]] only differs from Eq.(4.14)
moments: by the termx(— 1/47%)/2u.
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From Fig. 2(in Sec. IlIQ and the above result, Eq. a QND measurement of sufficient strength to optimize the
(4.14), it is evident that our QND feedback scheme offers afeedback? We have shown in Sec. IV B that the optimum
linewidth much smaller than that without feedback for mostfeedback scheme requirdé=C/\/7. From Ref.[34] we
values ofy. In fact for Jju=< y=<4mu? the reduction in line-  know that most current experiments work in the regime
width due to feedback is a factor af8u/7. Most impor-  where the Thomas-Fermi approximation can be made, allow-
tantly, the laser output is Bose degenefatisfies condition ing an analytical expression to be found fdr Eq. (6.25 in
(Ill) for coherenck up to y~ u* with feedback, as opposed [34]] and C. Typical values arey~10°, u~10°, and C
to x~u*?in the absence of feedback. Thus, the atom laser_15-2 51, Tg determined and henceM we use typical
with feedback remains coherent for much stronger atomi®7ry, imaging parameters[48,49, which include \
nonlinearities than without feedback. It is interesting that this_ ;g4 nm, A~10"* m?, y~5 Mhz, A~2 GHz, and

corresponds to the “conditionally coherent” regime®? l,~10 W/nt. For these values§~3.3x10°, and thus

5 . .
<x<w” as discussed in Ref34]. M~4.2<x10 *X|. To obtain a measurement strength of the

Since the nonlinearinC is effectively canceled by this order of C, we therefore require a probe-laser intensity of
feedback scheme, the output power spectrum, B®B7), Conly ~30 Win?, which is quite reasonable.

will never have the complicated structure as shown in Sec: S .
[l C. Also, since Eq.(4.13 has a linear dependence on time Arelated question is, how much of a problem is atom loss

(rather than higher powerthe first-order coherence function du€ to spontaneous emission by atoms excited by the de-
decays exponentially and as such will produce a Lorentziafin€d probe beam? The rate of this Iggmoring reabsorp-
output power spectrurfsee discussion after E(.14)]. tion) is yX (excited population). We would like the ratio of
This line shape is illustrated in Fig. 6, which also plots thethis loss rate to the output loss ratg to be small. In the
corresponding spectra that would be produced by the las@ptimal feedback regime and far> v, this ratio is given by
(for the same values af) without feedback. These latter 2 o
spectra have a Gaussian line shape as discussed after Eq. YRQHAAT AuM 2Algy  2Alsy
(3.25. Also, as indicated by Eq4.10, the rotation of the K Tk ﬁwpy”NXﬁwpyﬂ' (4.19
mean phase due to collision is canceled by our feedback
scheme, i.e.gM(1) is no longer complex and henee=0.  For the typical values stated above, Eg.1H is indeed
The power spectrum for the atom laser including feedbacimall (~10°1).
will thus be centered around zero frequency regardless of the Another practical question is, how realistic is the zero-
atomic interaction strength, which is confirmed in the figure.time-delay assumption for the feedback? It can be shown
The spectra in Fig. 6 are plotted at the two cutoff valuesusing the techniques of R¢b2] that this assumption is jus-
for Bose degeneracy, which age= %2 for no feedback and tified providing the feedback delay time is much less than
Y~ u? when feedback is included. If the output is coherent,x ', the lifetime of the trap due to the output coupling. If
i.e., satisfies Bose degeneracy, then it clearly has a mudigcent experimen{s3,9] are a useful guide, trap lifetimes are
narrower and thus more intense spectrum than if the output i@f order 10 s[34]. Feedback much faster than this should
not coherent. This figure thus illustrates the link between théot be a problem. In fact, the time delay could be completely
three definitions of linewidthdiscussed after E42.15] and  eliminated by feeding forward rather than feeding back.
its relation to coherence. That is, a narrow intense outpukineéwidth reduction can be achieved equally well by con-
spectral line corresponds to a long phase coherence time, aii@lling the phase of the atom field once it has left the trap as
more specifically, if the FWHM linewidth is much less than by controlling it inside the tragbut of course an integrated,
the value of the output flux, then the laser output will satisfyrather than instantaneous, current would be used for the
the conditions of coherence. control.

C. Experimental realizability V. SUMMARY

We will now briefly examine some issues of experimental

realizability. A question of interest is, how easy is it to obtain The coherence of an atom laser can be deff#¢dnalo-

gously to that of an optical laser: it should be monochromatic
with small intensity and phase fluctuations. We used the nor-

15

P(w) ~~ =" no feedback malized first-order coherence functigi®(t)=GM(t)/(1)
| T a=w nofeedback | [25] as a measure of the phase fluctuations.t Ascreases,
10 RN x= ™ with feedback |g®(t)| decreases from unity as the phase of the field be-
F — x =N with feedback

comes decorrelated from its initial value. Its decay is char-
acterized by the coherence timg,,= 3 /5|g*)(t)|dt, or by

its reciprocal, the linewidtlt. G)(t) also determines the
e output power spectrum, where the peak spectral height is

A 50 100 150 200 given by 41)/¢ regardless of line shape, while for a Lorent-
o zian the FWHM is also equal té.
FIG. 6. Output power spectruf(w) for =15 vsw in units of We examined the linewidth as a function of the dimen-

«, plotted with and without feedback for interaction strengths ofSionless atomic interaction strengph—=4uC/ k, wherex is
x= %2 and = u?. The dotted spectrumy= x*? with feedback  the output coupling rate an@ is the atomic self-energy.
has a maximum intensity of 31. There are four distinct regimes: the standard laser linewidth
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for x<1, a quadratic dependence qnfor 1<y<yu, a presented in Sec D, i.e., fop=Lcp. Specifically, we
linear regime for\u<y<u?, and finally another constant quantify the relative difference between

regime wheny> 2. The second and third regimes have
Lorentzian and Gaussian output spectra, respectively. The
last regime is a consequence of quantum revivalg'di(t)],

which are a direct effect of strong atomic collisiof@8].

This leads to a complicated structure in the power spectrurand
with many peaks contained in a Gaussian-like envelope.

An important condition for atom-laser coherence is that
the phase fluctuations be small in a particular sense. This is
equivalent to requiring Bose degeneracy in the output, i.e.,
that the linewidth¢ be much less than the the output flux This is done by multiple Taylor expansioffirst of cos Zt
(1)= K. From the results presented here, this means that thgnd exp(&Ct), and then expanding resultant exponentials

laser output is only coherent for interaction strengths satisfyapart from expgt?)] and using the equality
3/2

Texact:%Jo g~ H(I-cosThqy (A2)

TapprOX:%fo efp.[lfexp(ZCt)]fiwtdt. (A3)

ing x<u*~% i.e.,, somewhere in the third linewidth regime.
Therefore, collisions will be a problem for atom-laser coher- ° I[(n+1)/2
_ p _ _ 2L G2 [(n+1)/2]
ence, especially for BECs formed by evaporative cooling Jre™ dt= 22, G2 D (A4)

where collisions are the dominant mechanism. On the other
hand, if the atom-atom interactions are strong enough, th

fiherel'[n] is the Gamma function.
laser output will exhibit the interesting feature of quantum (n]

NOW, Tapproxdiffers from 7,y both real and imaginary

revivals. . 2v—1/ .

We also show, expanding upon RER0], that this line- terms. The dominarffor t<(xC?) "] real term is
width broadening can be significantly reduced by a QND (2,uC—Z)2 - 1 \¥?
feedback scheme. Basically, by feeding back the results of a — \ﬁ +... (AB)
QND measurement of the number fluctuations to control the 32 2\ uc?

condensate energy, it is possible to compensate for the line- ) ) )

width caused by the frequency fluctuations. The veryWhile the first three imaginary terms are
number-phase correlation created by the collisions is utilized —
to cancel their effect. We have shown that this linewidth (2#C—®) _
reduction allows the output to remain coherent for interac- 8uC?
tion strengths up toy=pu? rather thanu®? which is an (AB)
improvement by a factor of/.. For the reasonable param- .

eters ofC~10 2 s 'andu~ 1P, this improvement in line- We can thus determine by requiring that the imaginary
width is of the order of 1®and, in principle, could increase terms vanish. This is essentially what the iterative procedure
coherent values of =4uC/« from ~10° to ~10'2, of Appendix B achieves.

The series of imaginary terms above leads to a first choice
of wg=2uC, i.e., this sets the first term to zero and we are
left with terms ofO[ («C) ~*]. To cancel the first two imagi-

H.M.W. is deeply indebted to W. D. Phillips for the idea nary term we require 2C—w=2C/3, leaving terms of
of controlling atom-laser phase fluctuations using atom numeo[ (x?C) ~!]. Hence,w,=2uC—2C/3 will largely ensure
ber measurements. that 7,ppr0x IS real (since u>1). The question now is, how
much different st pprox from 7egacrusing w;?

The dominant term in the difference is simply found by
substitutingw, into Eq. (A5), giving

2 .1 —
§/.LC +1—2(2,u,C—w) —+
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APPENDIX A: SINGLE COMPLEX EXPONENTIAL
APPROXIMATION FOR g®(t)

For the majority of the calculations in this paper we as- 1 \/; (A7)
sume that the first-order coherence function can be given by 36,u3’2C 2"
g®t)=|gD(t)]el . (A1)  The relative size of this error term is obtained by comparing
t0 7Texacty Which using the Taylor expansion equals
That is, we assume that the complex naturg®i(t) (which
is due only to collisions as shown in Sec. Il] B described e Ejme—zucztzdt: \ﬁ (A8)
by a single complex exponential for most regimes of the et 2)o 4utc V2

collisional nonlinearity. When the collisions are strong

enough to cause revivals this approximation necessarily'his corresponds to a relative error, given by,jox

breaks down. — Texac)! Texact, Of the order ofu~1. We have also verified
To determine the relative error caused by this approximathe size of this error numerically for the full system dynam-

tion we continue the analysis of evolution due to collisionsics by simulations ofg®(t)| and g™V)(t)exp(—iw;t) (here
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w1 is found in the same way as shown in Appendjx Bhese calculation. On the other hand, if the coherence function is in

results also confirmed that the single complex exponentiathe regime of revivals then the approximatiagt®)(t)

approximation breaks down whe®~ ke (or x~4mu?®),  ~|g@(t)|e'“! itself is no longer valid. Therefore, the above

as expected. numerical method will be wildly inaccurate and we require
another method for obtaining the coherence time and line-
width. This is detailed in Sec. IlID.

APPENDIX B: ITERATIVE PROCEDURE FOR THE
COHERENCE TIME 7,

APPENDIX C: Q-FUNCTION CORRESPONDENCE FOR

As stated in Sec. Il B, the coherence time can be Evalu- SATURATED GAIN
ated numerically using Eq3.8), where the first guess fas
is given by Eq.(3.9). Subsequent corrections @are found As stated in Sec. Ill C the master equation can be reex-
by applying the procedure pressed as a Fokker-Planck equation for a convenient prob-
ability distribution. In this appendix we show that, for tQe
Tk=—Tr[a*(ﬁ—iwk)‘lapss]/z(a*a>, function, the operator correspondence for the gain term is
given by Eg.(3.16. The individual superoperators in this
wy+1= i~ IM(1/27). (B1)  expression have the corresponding differential operators,
At each step we have ; J
Dla'lp——--nQ(n,¢), (CY
27 = f gM(t)e edtdt, (B2)
0 J
AlaTlp—|n+ %n)Q(n,so)- (C2

which is simply a reexpression of EB1). Then using the

assumption of Appendix A thag™(t)~|g¥(t)|e'“', we  Combining these leads to the following correspondence for
have the saturated gain term:

o0 _ _1
27 ~JA M(t)|e'(@~@Wtdt, (B3) T -1, — i i
], lg™M(b)] Dla'lAla’] tp————nln+—-n| Q(n.e),

C3

The simplest form fotg*)(t)| is a decaying exponential, €3
exp(—1t), which gives rise to a Lorentzian power spectrumwhich can be expanded in two different ways to give
as discussed at the end of Sec. Il. In this case

_ 1 1+Ein)_1—1]Q(n,(p), (CH
27~ jwe*[“/*i(w*wk)]tdt: _ (B4) n dn
0 y—i(w—wy) or
and hence ; R
IM(1/27) ~ o — o. (B5) - %( S Qnge). (CH

The more complicated form ¢g*)(t)| =exp(—*t?), which ~ Equating these expressions leads to

gives rise to a Gaussian power spectrum, also obeys Eq. 1

(B5), since in this case 1+ % &inn) _1: 1+ 0% , (Co)
2~ fomef[yztzﬂ(;w")t]dt and hence

_ Z_Jje_(;_wk)zmyz erfc{—i(g; @) Dla'Ala’] 1p— (1+% _1—1]Q(n,<p)- (€7

— 1i(o—wy). (B6) By then applying the Taylor expansion, k) ?

=3r_o(—x)¥, we obtain the identity
Thus, if the coherence function is in the regime whge the

> k
output spectrum is Lorentzian or Gaussian, thgn ;~ w, D[aT]A[aT]—lpHE (_ i) Q(n,e). (o)
and the first correctiony,, will be sufficient for an accurate k=1 an '
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