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Atom-laser coherence and its control via feedback
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~Received 23 January 2002; published 4 June 2002!

We present a quantun-mechanical treatment of the coherence properties of a single-mode atom laser. Spe-
cifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence
function, for which we derive analytical expressions in various regimes. The decay of this function is charac-
terized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the
collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction
strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another
constant regime due to quantum revivals of the coherence function. The laser output is only coherent~Bose
degenerate! up to the linear regime. However, we show that application of a quantum nondemolition measure-
ment and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for
which it remains coherent.
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I. INTRODUCTION

The invention of the laser in the late 1950s@1# created the
field of quantum optics and continues to lead to an enorm
range of scientific and technological applications. It is e
pected that the realization of ‘‘atom lasers’’ will similarl
revolutionize the field of atom optics@2#. Atom optics is the
study of atoms where their wavelike nature becomes imp
tant, suggesting an analogy with photons@3#. An atom laser
is therefore defined as a device that produces a continu
beam of intense, highly directional, andcoherent matter
waves@4#, in analogy with the light produced by an optic
laser @5#. The ideal atom laser beam is a single frequen
~i.e., monochromatic! de Broglie wave with well-defined in
tensity and phase.

The first experimental achievements of the Bose-Eins
condensation~BEC! of gaseous atoms@6# was followed im-
mediately by several independent ideas for creating an a
laser@7#. Since then there have been experimental advan
in the coherent release of pulses@8# and quasicontinuous
beams@9# of atoms from BECs, as well as further theoretic
proposals@10#. In the experimental configurations to dat
the laser mode is the ground state of a trapped BEC, whic
pumped by evaporative cooling of uncondensed atoms,
the out-coupling~separated in time from the pumping! is
achieved by either Raman or radio-frequency~rf! transitions
to an untrapped state. Although these experimental acc
plishments do not include simultaneous pumping and ou
coupling, they do represent major steps towards achievin
operating atom laser.

Recent experimental@11–13# and theoretical@4,14–19#
studies have focused on the fundamental coherence pro
ties of BECs and atom lasers. Atoms~unlike photons! inter-
act with each other, producing strong nonlinearities that
fect the coherence of the trapped condensate and thus
the out-coupled laser field. For a single-mode condensate
dominant effect of atomic collisions is to turn number flu
tuations into fluctuations in the energy and hence fluctuati
in the frequency, thus causing increased phase uncerta
Collisional interactions therefore lead to a significant d
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crease in the atom-laser coherence time, and a correspon
increase in the linewidth, especially in the case of BE
formed by evaporative cooling. However, we have pre
ously shown that a continuous, quantum nondemolit
~QND! feedback scheme can effectively cancel the linewi
broadening due to such collisions@20#.

To study the coherence properties of an atom laser
can either focus on classical or quantum noise in the ato
field. Sources of classical noise may be technical, such
fluctuations in the trapping potential, finite temperatures, a
specific trap geometries@12#, or dynamical, such as three
body recombination@19#. The study of these effects is usu
ally based on mean-field laser models described by Gr
Pitaevskii ~GP!-type equations@21#. Quantum noise is an
intrinsic part of the atomic system as a consequence of
uncertainty relations and is the limiting contribution
coherence. The study of this requires a fully quantu
mechanical approach, of which the most common is ba
on the quantum optical master equation@22#. The complexi-
ties of either approach, which individually require approx
mations to facilitate theoretical analysis, indicate that sim
taneous analysis would not be easy@23#.

In this paper we present a fully quantum mechanical tre
ment of the coherence of a single-mode atom laser and
control via the QND feedback scheme proposed in Ref.@20#.
Specifically, we study the properties of the first-order coh
ence function~i.e., phase coherence!, which allows us to de-
rive the coherence time~and hence laser linewidth! as well as
the power spectrum of the laser output. Section II summ
rizes a set of requirements for the coherence of an atom l
first detailed in Ref.@4#. Section III presents our mathemat
cal model for the atom laser and shows the resulting li
width for increasing atomic interaction strength. Numeric
methods are presented in Sec. III B, while the analytical
sults are discussed in Sec. III C. When the collisional non
earity is very strong, the coherence function undergoe
quantum collapse and revival sequence~detailed in Sec.
III D !. This leads to an interesting regime in the power sp
trum ~detailed in Sec. III E!, which has not been considere
before. Section IV details the effects of feedback based o
©2002 The American Physical Society07-1
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physically reasonable QND measurement of the conden
number, to include all regimes of the nonlinearity. Section
concludes.

II. REQUIREMENTS FOR COHERENCE

The coherence of an atom-laser beam can be defi
analogously to that of an optical laser beam@4#. The funda-
mental assumption is that the laser output is well appro
mated by a highly directional classical wave of fixed inte
sity and phase, which is also ideally restricted to a sin
transverse mode. The output should also be a stationary
cess, i.e., its statistics should be independent of time. To
coherent, the laser output should then additionally have~1! a
relatively small spread of longitudinal spatial frequenc
~i.e., be monochromatic!; ~2! a relatively stable intensity
~i.e., be approximately second-order coherent!; and ~3! a
relatively stable phase~i.e. have a relatively slow decay o
first-order coherence!.

The first condition, monochromaticity, follows from th
requirement that the laser output approximates a class
wave. It can, therefore, be expressed in terms of the cha
teristic coherence length of the wave,l coh5(dk)21, i.e., the
reciprocal of the spatial frequency spread. Condition~I! be-
comes

l coh@l̄52p/ k̄, ~2.1!

i.e., that the coherence length be much greater than the m
atomic wavelength@4#. In terms of the spectral width or line
width, ,[dv, the monochromaticity requirement simply b
comes,!v̄, where the mean frequencyv̄ is defined by the
kinetic energy of the atoms, i.e.,v̄5\ k̄2/2m. Condition ~I!
also guarantees that the dispersion of an atomic beam wi
negligible over the coherence length@4#.

To explain the second and third conditions we requir
many-body description of the output beam; see Ref.@4# for
an in-depth discussion. Basically, the output field of a la
can be represented by the localized field annihilation op
tor b(t), which approximately satisfies thed-function com-
mutation relation

@b~ t !,b†~ t8!#5d~ t2t8! ~2.2!

at a given point in the output. Thus,I (t)5b†(t)b(t) can be
interpreted as the approximate atom-flux operator. The f
damental assumption of a laser is that the output should
well approximated by a classical wave of fixed intensity a
phase. This is, therefore, represented mathematically by

b~ t !'b~ t ![be2 i v̄t, ~2.3!

where b is a complex number and the trivial time depe
dence emphasizes that the laser output should be statio
The atomic field is not exactly a classical wave because th
are fluctuations in the field amplitude due to classical a
quantum sources of noise. These will need to be smal
somehow canceled to maximize coherence.

It can be argued that there are no mean fields in both a
and quantum optics@24#, and as such the description of
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laser as a coherent state is a ‘‘convenient fiction.’’ Desp
this, mean-field theories~e.g., based on GP equations! are
very successful in describing the properties of lasers, a
the use of initial coherent states for solving and visualiz
master equations~as done in this paper!. A vanishing mean
field means that

^b~ t !&50. ~2.4!

In the case of optical lasers the output might, in principle,
in a state with well-defined amplitude and phase. But sin
we do not know the absolute phase, an average over all
sible phases gives Eq.~2.4!. For atom lasers, only bilinea
combinations of the atom field are observable and simila
no Hamiltonian is linear in the atom field~atoms cannot be
created out of nothing!. Thus a mean-field amplitude i
physically impossible and the absolute phase is unobs
able, again giving Eq.~2.4!.

Since the mean field of a laser is zero, we cannot req
^b(t)&5b. However, for approximatingb(t) by b(t), we
can require that the mean intensity be given by

^I ~ t !&5^b†~ t !b~ t !&5ubu2, ~2.5!

and also that the fluctuations in intensity should be smal
some sense. This requirement is quantified using Glaub
normalized second-order coherence function~for a stationary
system! @25#:

g(2)~t!5^:I ~ t1t!I ~ t !:&/^I ~ t !&2, ~2.6!

where thê : :& denotes normal ordering.
For a field that is second-order coherent, i.e.,g(2)(t)51,

there is no correlation between the arrival times of boson
a detector and their distribution is Poissonian. Specifica
the probability for detecting a boson in the interval (t1t,t
1t1dt) given one detected at timet is g(2)(t)^I (t)&dt. For
the intensity fluctuations to be small we, therefore, requ
that @4#

ug(2)~t!21u!1, ~2.7!

i.e., the laser output should be approximately second-o
coherent: condition~II !.

Assuming that condition~II ! is met, the intensity of the
laser beam will be relatively stable and the only significa
variation in the output field will be due to phase fluctuation
A useful measure of the phase fluctuations is the station
first-order coherence function@25#

G(1)~t!5^b†~ t1t!b~ t !&, ~2.8!

or its normalized form

g(1)~t!5G(1)~t!/^b†~ t !b~ t !&. ~2.9!

Unlike the fieldb(t) itself, the bilinear combinations abov
are measurable even for an atom field.G(1)(t) is simply the
mean intensity~2.5! when t50 and ast increases, it de-
creases towards zero as the phase becomes decorrelated
its initial value att.
7-2
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ATOM-LASER COHERENCE AND ITS CONTROL VIA FEEDBACK PHYSICAL REVIEW A65 063607
So, the phase of the field might be undefined becaus
varies in time, i.e., the first-order coherence decays.
though we cannot expect the laser to be approximately fi
order coherent for all time@i.e., g(1)(t)'1#, we can require
the decay ofg(1)(t) to be slow in some sense. The chara
teristic time for this decay is simply the coherence tim
which can be defined as@4#

tcoh5
1
2 E

0

`

ug(1)~t!udt. ~2.10!

This is the time over which the phase of the field is relativ
constant.

But even if the phase is constant, it might also be un
fined due to a large intrinsic quantum uncertainty given
DfDn>1/2 @26#. Since typicallyDn<n̄, the quantum phase
uncertainty will be large if the mean numbern̄ is small. For
the phase to be well defined we, therefore, need the fiel
have a large intensity, i.e.,n̄@1, over the time that the phas
of the field is constant, i.e., for timesT!tcoh. The number
of bosons in the output field for a given durationT is n̄
5^I (t)&T. Thus, for a well-defined phase we requi
^I (t)&tcoh@1. In terms of the first-order coherence functio
this translates to@4#

^I ~ t !&E ug(1)~t!udt5E uG(1)~t!udt@1, ~2.11!

which quantifies the requirement that the decay of first-or
coherence be relatively slow: condition~III !.

This condition for coherence is equivalent to the requi
ment that the output field be highly Bose-degenerate@4#,
which is rarely considered for optical lasers because it is
easily satisfied. It requires that the output atom flux, i
^I (t)&, be much larger than the linewidthdv. Since the
atom-laser linewidth is the reciprocal of the coherence tim
i.e.,

,[dv51/tcoh, ~2.12!

we find that condition~I! requiresl !v̄ and condition~III !
requires

,!^I ~ t !&. ~2.13!

For single-mode optical lasers typically^I (t)&.v̄ so condi-
tion ~III ! is always satisfied. On the other hand, the co
sional interactions in atom lasers cause significant linew
broadening and so satisfying~III ! is not guaranteed. How
ever, in Sec. IV we show that this broadening can be eff
tively canceled by a QND measurement and feedb
scheme.

The linewidth, or spectral width, of a field is usually d
fined as the full width at half-maximum height~FWHM! of
the output power spectrum. In general, the power spectru
given by the Fourier transform of the first-order coheren
function @22#:
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P~v!5E
2`

`

G(1)~t!e2 ivtdt. ~2.14!

This is defined so that*2`
` P(v)dv5^I (t)& and, therefore,

can be interpreted as the steady-state flux per unit freque
@27#.

If the first-order coherence function has the for
G(1)(t)}exp(2gt) then the laser output will have a Loren
zian power spectrum. In this case the FWMH is exac
equal to the linewidth as defined in Eq.~2.12!, i.e. the recip-
rocal of the coherence time. On the other hand, ifG(1)(t)
}exp(2g2t2) then the laser has a Gaussian power spect
with a FWHM that is now only approximately equal to th
linewidth.

In any case, if the first-order coherence function has
form G(1)(t)5uG(1)(t)uexp(iv̄t), then condition~III ! for co-
herence can be restated in terms of the maximum spe
intensity P(v̄). From Eqs.~2.14! and ~2.10! and the above
assumption~Appendix A shows that this is a good approx
mation for the atom laser!, we find

P~v̄ !5E
2`

`

uG(1)~t!udt54^I ~ t !&tcoh. ~2.15!

Thus, regardless of the resultant shape of the output po
spectrum, condition~III ! becomes

P~v̄ !@1. ~2.16!

Note that the central frequencyv̄ will be shifted by any laser
dynamics that cause a rotation of the mean phase of the
field.

The remaining sections of this paper present a study of
quantum phase dynamics of the atom laser and thus the
herence properties of its output. Specifically we study
first-order coherence function as a measure of phase fluc
tions, which~in the absence of intensity fluctuations! will be
the limiting factor to the coherence time of an atom las
This function, as indicated in this section, is also intrinsica
related to the laser output characteristics of linewidth a
power spectrum.

III. ATOM-LASER LINEWIDTH

A. Atom-laser dynamics

The atom-laser model consists of a source of atoms i
versibly coupled to a laser mode, which is supported in a t
that allows an output beam to form. A broadband reserv
acting both as a pump and a sink is also coupled to
source modes. The laser mode and source can be model
the ground and excited states of a trapped boson field,
resenting the condensed and uncondensed atoms, re
tively @4#. Gain can be achieved, for example, by evaporat
cooling of the uncondensed atoms. Out-coupling from
laser mode can be accomplished, for example, by cohere
driving condensed atoms into an untrapped electronic st
This model can be simply described by a quantum opt
master equation for the laser mode alone@4,29#, obtained by
7-3
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L. K. THOMSEN AND H. M. WISEMAN PHYSICAL REVIEW A 65 063607
adiabatically eliminating the source modes and tracing o
the continuum of output modes. The system is thus cha
terized by a wave functionF(r ) and annihilation operatora
for the condensate mode.

Far above threshold, the laser mode has Poissonian n
ber statistics@30,31#. In the absence of thermal or other e
cess noise, its dynamics are modeled by the completely p
tive master equation@4,29#

ṙ5kmD@a†#A@a†#21r1kD@a#r[L0r, ~3.1!

where the superoperatorsD andA are defined as usual for a
arbitrary operatorr:

D@r #r[rrr †2A@r #r, A@r #r[ 1
2 $r †r ,r%. ~3.2!

That the master equation is of the Lindblad form follow
from the identity

D@a†#A@a†#215E
0

`

dqD@a†e2qaa†/2#. ~3.3!

The first term of Eq.~3.1! represents linear output cou
pling at ratek and the second term represents nonlin
~saturated! pumping far above threshold, wherem@1 is the
stationary mean boson number. It is the decreasing differe
between the gain and loss, as the laser is pumped a
threshold, that gives rise to the gain-narrowed laser linew
@22#. The localized output mode operatorb of the preceding
section is then related to the laser mode viab5n1Aka,
wheren represents vacuum fluctuations@32#. Note also that
we have chosen a reference potential energy for the sys
such that there is no Hamiltonian}a†a in the master equa
tion.

To include the effects of atom-atom interactions in t
laser mode we consider a simples-wave scattering model fo
two-body collisions, which is valid for low temperatures a
densities@33#. This is described by the Hamiltonian

Hcoll5\Ca†a†aa, C5
2p\as

m E uF~r !u4d3r , ~3.4!

whereF(r ) is the condensate wave function andas is the
s-wave scattering length. The total master equation for
laser mode including atomic interactions is then

ṙ5kmD@a†#A@a†#21r1kD@a#r2 iC@a†a†aa,r#[Lr,
~3.5!

where L is known as the Liouvillian for the total system
evolution.

As master equations, Eqs.~3.1! and ~3.5! are derived us-
ing the Born-Markov approximation. More complicate
mathematical models for the atom-laser dynamics may
clude a full multimode description with non-Markovia
pumping and/or damping~see, e.g., Refs.@17,18#!. However,
only the single-mode master-equation description emplo
in this paper allows a relatively straightforward analysis. A
though a single-mode scheme, e.g., Eq.~3.5!, ignores the
many source modes and the continuum of output modes,
06360
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the simplest physically reasonable model for an atom la
in that it includes the essential mechanisms of gain, loss,
self-interactions.

There are also physical justifications for using Markovi
theory. Reference@17# states that the Markov approximatio
is valid for output coupling rates satisfyingk21@Tm , where
Tm is the output memory time, which typically ranges fro
1022 to 1 ms. This condition is thus easily satisfied for typ
cal values ofk21, which range from 1022 to 1021 s @34#.
Furthermore, as discussed in Ref.@18#, the Born-Markov ap-
proximation is only valid for either weak output coupling o
large atomic densities. BECs formed by evaporative cool
have strong atom-atom interactions that correspond to la
atomic densities. We are, therefore, justified in making
Born-Markov approximation in Eq.~3.5! @but not necessarily
in Eq. ~3.1!#. In other words, we expect that strong nonline
interactions, rather than any non-Markovian dynamics, w
dominate the linewidth.

B. Numerical calculation of linewidth

As stated in Sec. II, the coherence time of a laser,tcoh, is
roughly the time for the phase of the field to become unc
related with its initial value. As shown by Eq.~2.10!, it is
determined by the stationary first-order coherence func
~2.9!, in which the output operatorsb can be replaced by the
laser mode operatorsa, sinceb5n1Aka. For the evolution
described by the master equation~3.5!, the coherence func
tion becomes

g(1)~ t !5Tr@a†eLtarss#/Tr@rssa
†a#, ~3.6!

where rss is the stationary solution to Eq.~3.5! given by
@30,31#

rss5e2m(
n

mn

n!
un&^nu5

1

2pE0

2p

duureiu&^reiuu, ~3.7!

where r 5Am. Thus, the state of the laser~3.7! can be
thought of either as a mixture of number states or equi
lently a mixture of coherent states~see@35# for a discussion
of this!.

It is a very good approximation~see Appendix A! to as-
sume that ifg(1)(t) is not real then its complex nature
simply of the form g(1)(t)5ug(1)(t)uei v̄t, where v̄ is the
central frequency of the laser output. That is, we assu
g(1)(t) is complex due to an effective detuningLv̄5

2 i v̄@a†a,r# in the evolution. This type of evolution cause
a rotation of the mean phase proportional tov̄, whereas the
decay ofug(1)(t)u indicates phase diffusion. Using Eq.~3.6!,
this allows the integral in Eq.~2.10! to be evaluated to give

tcoh.2Tr@a†~L2 i v̄ !21arss#/2Tr@rssa
†a#. ~3.8!

Equation~3.8! can be evaluated numerically, for examp
using theMATLAB quantum optics toolbox@36#. The first
guess forv̄ is found from the approximation

v̄.Im$Tr@a†Larss#%[v0 , ~3.9!
7-4
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ATOM-LASER COHERENCE AND ITS CONTROL VIA FEEDBACK PHYSICAL REVIEW A65 063607
which is exact forL5Lv̄ . Subsequent corrections are foun
by an iterative procedure. Substitutingvk in Eq. ~3.8! gives
tk , which is then used to update our guess forv̄ via the
expressionvk115vk2Im(1/2tk). Basically, this scheme
ensures that the calculatedtcoh has a vanishing imaginar
component. This is justified in Appendix B, where we al
show that, if Eq.~3.8! is valid, then only one correction tov0

is needed for an accurate determination ofv̄.

C. Analytical calculation of linewidth

Analytically, it is easier to use the fact that Eq.~3.6! is
unchanged ifrss is replaced by the initial coherent sta
ureiu&^reiuu for arbitraryu ~sayu50). We, therefore, have

g(1)~ t !5Tr@a†r~ t !#/r , r~ t !5eLtur &^r u. ~3.10!

Using any suitable phase-space (a,a* ) representation, this
expression is then equivalent to

g(1)~ t !5^a* ~ t !&/^a* ~0!&, ~3.11!

where^a* (0)&5^a(0)&5r andua& is a coherent eigenstat
of the laser field, i.e.,aua&5aua&. The state of the field a
any time can thus be described by the probability distribut
for a, or equivalently ~since a5Aneiw) the intensity,n
5uau2, and phase,w, distributions.

The fluctuations in intensity are relatively small for a las
with m@1, i.e.,dn(t);0. Then, also assuming the numb
statistics are unchanged by the evolution, we haven(t)
'n̄(t)5n̄(0), which gives

g(1)~ t !5
^An~ t !e2 iw(t)&

^An~0!e2 iw(0)&
.

^e2 iw(t)&

^e2 iw(0)&
. ~3.12!

Now the phase distribution at timet due to the laser evolu
tion is given byw(t)5w(0)1f(t), i.e., the phase distribu
tion of the initial coherent state plus the relative phase
ference f(t)5arg@a(t)/a(0)#. Assuming this phase
evolution is independent of the initial phase uncertainty,
have

g(1)~ t !.^e2 if(t)&'e2 i f̄(t)2(1/2)Vf(t), ~3.13!

where the second approximation assumes Gaussian stati
The coherence time, Eq.~2.10!, is thus found by evaluating
the integral

tcoh'
1
2 E

0

`

e2(1/2)Vf(t)dt. ~3.14!

In theQ-function representation@22#, a density operatorr
has a correspondingQ function defined by

Q~a,a* !5^aurua&/p, ~3.15!

normalized such that*Q(a,a* )d2a51. The action of an
operator onr thus has the corresponding mirror action of
06360
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differential operator acting onQ(a,a* ). This is the most
convenient representation for our laser model because o
identity ~see Appendix C!

D@a†#A@a†#21r→(
k51

` S 2
]

]nD k

Q~n,w!, ~3.16!

which, since the higher-order derivatives are negligible, c
be truncated atk52. This representation also allows us
visualize the dynamics produced by the master equation~3.5!
as shown in Fig. 1.

The master equation~3.5! thus turns into a Fokker-Planc
equation~FPE! for Q(n,w),

]

]t
Q~z,t !5

1

2 (
j ,k

]2

]zj]zk
@Bjk~z!Q~z,t !#

2(
j

]

]zj
@Aj~z!Q~z,t !#, ~3.17!

wherez5(n,w) and the drift vectorA and diffusion matrixB
are given by

A5S k~m112n!

~322n!C
D , B5S 2k~m1n! 2nC

2nC k/2nD .

~3.18!

To find equations of motion for the moments^zj& and
^zjzk& the FPE needs to be converted to an Ornste
Uhlenbeck~OU! equation. For an OU process, the drift ve
tor is linear in the variables (n,w) and the diffusion matrix
constant. Our drift vectorA is already linear, but ourB ma-
trix is not constant. The simplest option is thus to replace
the amplitudes inB with their (Q-function! mean value, i.e.,
n→m11. The equations of motion for the moments are th
d^zj&/dt5^Aj& and d^zjzk&/dt5^zjAk&1^zkAj&1(Bjk
1Bk j)/2, whereA andB are now OU parameters.

We find that the number statistics are unchanged from
of the initial coherent state, which for theQ-function repre-

FIG. 1. Typical contour plots of theQ function for m515 and
C([kx/4m)5k(2pm)21/2. Solid ring: stationary laser staterss,
given by Eq. ~3.7!. Solid circle, initial coherent state
uAm11&^Am11u; dashed contour, phase diffusion due to laser g
and loss att;0.8/k; dotted contour, state due to total evolutio
including collisions, i.e., Eq.~3.5!, also att;0.8/k.
7-5
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sentation aren̄5m11 andVn52m11. However, the phase
related moments are altered. Usingm@1, they are~for the
relative phasef)

f̄~ t !.22mCt, ~3.19!

Vf~ t !.
8mC2

k2
~e2kt1kt21!1

k

2m
t, ~3.20!

Cnf~ t !.
2mC

k
~e2kt21!. ~3.21!

As expected, there is a mean phase shift~3.19! due to the
collisions, while the nonzero covariance (Cnf5^nf&
2^n&^f&) given by Eq.~3.21! explicitly shows the number
phase correlation produced by the collisions. The phase v
ance ~3.20! contains two terms, where the second cor
sponds to standard laser phase diffusion. The first term
indicates the increase in phase fluctuations due to collisi

The effect of collisions on the phase fluctuations can
clearly seen in Fig. 1. This figure shows single contour pl
of the Q-function for the hypothetical coherent stateuAm&
and snapshots at a later time due to the evolution of
master equation~3.5!. If we ignore collisions the effect of the
laser evolution is simply phase diffusion. By including co
lisions we see two effects. First, there is a rotation of
mean phase, due to Eq.~3.19!, and second there is phas
shearing. This is due to the nonzero number-phase cor
tion, Eq. ~3.21!, indicating that if the inherent number fluc
tuations producen.n̄ the corresponding phasef will be
less thanf̄, and vice versa. The initial coherent state w
approach the actual laser staterss, Eq. ~3.7!, ast→`.

Substituting Eq.~3.20! into the expression for magnitud
of the first-order coherence function~3.13! gives

ug(1)~ t !u5e2x2(e2kt1kt21)/4me2kt/4m, ~3.22!

where we have introducedx54mC/k as a dimensionles
parameter for the atomic interaction strength. This expr
sion does not have a simple analytical solution. However
inspection, there are two limits that can be solved anal
cally. If x!Am we obtain

2tcoh'E
0

`

e2k(x211)t/4mdt54m/k~11x2!. ~3.23!

For x@Am, on the other hand, the first exponential in E
~3.22! is dominant and then expandinge2kt to second order
we obtain

2tcoh'E
0

`

e2k2x2t2/8mdt5A2pm/kx. ~3.24!

The resultant expression for the atom laser linewidth d
to collisions is thus

,5H k~11x2!/2m for x!Am

2kx/A2pm for x@Am.
~3.25!
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Clearly, forx!1, we obtain the standard laser linewidth,0

5k/2m @29–31#. These two expressions agree atx
.A8m/p, and they are an excellent fit to the numerical c
culations of Eq.~3.8!, except at the boundary between th
regimes. This is illustrated by the figure in our previous p
per @19#, and also the extended version in this paper, Fig
appearing in Sec. III D.

Equation~3.25! represents the same physical dynamics
found in similar studies by the authors of Refs.@15# and@37#.
Zobay and Meystre@15# present a three-mode atom-las
model, with the output mode adiabatically eliminated. Ign
ing collisions between pump and laser modes, they ob
phase variances@Eqs.~21! and ~22! of Ref. @15##, which are
similar and identical to the exponents of Eqs.~3.23! and
~3.24!, respectively. See also the linewidth plotted in Fig.
of Ref. @15#. Gardiner and Zoller@37# studied a Bose-
Einstein condensate in dynamical equilibrium with therm
atoms. Our first-order coherence function, Eq.~3.22!, has the
same structure as the analogous expression, Eq.~184!, de-
rived in Ref.@37#. The two regimes of Eq.~3.25! correspond
to the characteristic time constants of Eqs.~187! and~186! of
Ref. @37# respectively. The second of these expressio
where the nonlinearity is dominant, is familiar as the inve
collapse time of an initial coherent state in the absence
pumping or damping@38,39#.

Since the output power spectrum is the Fourier transfo
of G(1)(t) @see Eq.~2.14!#, the shape of the spectrum is als
determined by the form ofVf(t). For the two regimes of Eq
~3.25!, the laser output has Lorentzian and Gaussian po
spectra, respectively, as was also found in Ref.@15#. These
spectra are illustrated by Fig. 6 in Sec. IV B. See Sec. II
for a more in-depth discussion of the atom-laser power sp
trum.

The standard laser linewidth~in the absence of collisions!
is simply given byk/2m. For the preliminary atom-laser ex
periments of Refs.@8,9#, the interaction strengthC is always
found to satisfyC@k/m and hencex@1 @34#. Atom lasers,
therefore, have a linewidth far above the standard limit. F
thermore, if x*m3/2 the linewidth will be larger than the
mean output fluxkm. In other words, the atomic collision
strength does not have to become very large before the l
output does not satisfy condition~III ! for coherence@i.e., Eq.
~2.13!#. It is thus of great interest to find methods for redu
ing the linewidth due to atomic interactions. One method
continuous QND measurement and feedback as show
Sec. IV.

D. Revivals of the coherence function

In the preceding section, the atom-laser linewidth was c
culated for atom-atom interactions ranging from weakx
!1) to strong (x@Am). However, exact numerical calcula
tions based on Eq.~3.8! indicated that there is an uppe
bound to the linewidth~occurring forx*m2) that was not
included in the previous analysis. It turns out that, in addit
to linewidth broadening, the collisional interactions also le
to quantum revivals@38# of the first order coherence func
tion. Although, note that in this very strong collisional r
7-6
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gime, the output atomic beam cannot be considered a l
according to the definitions in Sec. II~since l *km for x
*m3/2).

To study the regime of revivals it is helpful to start b
ignoring all other laser dynamics apart from the collisions.
this case,ṙ52 iC@a†a†aa#r5LCr, and we can analytically
solve for the periodic structure ofg(1)(t). For an initial co-
herent stater(0)5ua&^au,

g(1)~ t !5Tr@a†r~ t !#/a* , r~ t !5eLCtua&^au.
~3.26!

Using the number state representation, i.e.,r(t)
5(pmn(t)un&^mu and ua&5exp(2uau2/2)(anun&/An!, we
find for the first-order coherence function

g(1)~ t !5exp@2m~12e2iCt!#, ~3.27!

sinceuau25m for the laser, and its magnitude is

ug(1)~ t !u5exp@2m~12cos 2Ct!#. ~3.28!

The coherence function clearly has periodic revivals wh
t5mp/C, m is an integer.

Including the other laser dynamics, i.e., gain and loss
not so straightforward. Since these terms, unlike those
LC , are not functions of the number operator we can
easily utilize the number state representation. The main
fect, however, is simply a decaying envelope applied to
revivals of Eq.~3.28!, such that the strength ofC compared
to km will determine the number of significant revivals
the coherence function. This will be shown below. The
vivals of the coherence function become significant whenx
'4pm2 or C'kpm. This regime was determined by calc
lating the exact linewidth based on numerical solutions
Eq. ~3.8! and corresponds to the interaction strength wh
the linewidth begins to approach a maximum.

To determine the value of this maximum linewidth, w
extend the work of Milburn and Holmes@40#, who model an
anharmonic oscillator coupled to a zero-temperature h
bath, via two basic assumptions for including saturated g
The master equation modeled by Milburn and Holmes
~using our notation!

ṙMH52 iC@~a†a!2,r#1kD@a#r, ~3.29!

which gives a first-order coherence function of the form

gMH
(1) ~ t !5eiCte2kt/2 expF2

m~12 ik/2C!

11k2/4C2
~12e2iCte2kt!G .

~3.30!

To add saturated gain to this model we first assume t
far above threshold, the contribution to phase diffusion
equal for both gain and loss@41# and so we replacek with
2k. Second, including gain will almost cancel the over
exponential decaye2kt/2 of the coherence due to loss, resu
ing in the smaller terme2kt/4m ~since this will give the stan-
dard laser linewidthk/2m). These assumptions give the fo
lowing results forg(1)(t) and ug(1)(t)u:
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g(1)~ t !'eiCte2kt/4m expF2
m~12 ik/C!

11k2/C2
~12e2iCte22kt!G ,

~3.31!

ug(1)~ t !u'e2kt/4m expF2
m

11k2/C2 S 12e22kt cos 2Ct

2
k

C
e22kt sin 2CtD G . ~3.32!

We only expect this expression to be valid in the ve
strong interaction regime (C@km). Here revivals of
ug(1)(t)u are significant andk/C!1 ~sincem@1). Also, as
shown by Eq.~3.28!, revivals occur atmtr5mp/C, so in the
strong regime the envelope of the coherence function
given by ~for finite m)

ug(1)~ t !uenv5ug(1)~mtr !u

.expH 2S k

4m
12km Dmtr J

.e22t/tQ, tQ51/km. ~3.33!

Here the timetQ can be interpreted as the quantum dissip
tion time, i.e., how long the state would last if it was in
superposition of coherent states. Nonunitary effects, suc
damping, cause a decay of the quantum coherence of t
states at a rate}km @42#. This is relevant because the sta
produced halfway between revivals by nonlinear interactio
such asLC is in fact a superposition of coherent states@43#.

The relationship between the quantum dissipation ti
and the revival time can be used to give an indication of
number of significant revivals in the coherence function fo
given interaction strength. That is, ift r@tQ then no revivals
will be seen, but ift r!tQ as for the above equation, th
number of significant revivals is of ordertQ /t r . Revivals
begin to appear att r.tQ , which is at x.4pm2 or C
.kpm as stated earlier.

We are now in a position to determine coherence time
linewidth in the regime of revivals. From Eq.~2.10!, the
coherence time is simply half the area under the funct
ug(1)(t)u. In the very strong interaction regime (C@km), this
area will be made up of many individual peaks which d
crease in height due to the envelope given by Eq.~3.33!. The
first of these peaks~which actually starts atug(1)(0)u51)
will be the same as the coherence function for no reviva
and its area will beA2pm/kx as given by Eq.~3.24!. The
subsequent peaks will have areas twice this area multip
by the height of the envelope at that time. Thus we have
the total area

2tcoh.
2A2pm

kx H E
0

`

e22t/tQ (
m50

`

d~ t2mtr !dt2
1

2J
5

2A2pm

kx S (
m50

`

e22mtr /tQ2
1

2D . ~3.34!
7-7
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This expression can be evaluated by usingt r!tQ and by
noting that for a geometric series,(mr m51/(12r ). The ana-
lytical expression for the linewidth in the regime of reviva
is then

,max.4kA2pm3/2. ~3.35!

This is in exact agreement with the numerical results
tained from Eq.~3.6!, which are plotted in Fig. 2.

In this figure we have plotted the approximate analyti
expressions for the linewidth in the absence@Eqs.~3.25! and
~3.35!# and presence@Eq. ~4.14!# of feedback~see Sec. IV B
for details! as a function of the nonlinearityx for m560. We
have also included numerical results~see Sec. III B for de-
tails! as a comparative test for the analytical work, which
valid for m@1. As can be seen, the agreement is very go
even for an occupation number of only 60@44#, thus con-
firming the accuracy of our analytical expressions for
linewidth. Without feedback we see four distinct regime
There is the standard laser linewidth forx!1, a quadratic
dependence onx for 1!x!Am, and a linear regime for
Am!x!m2. The latter two correspond to the regimes of E
~3.25!. Finally there is a constant regime given by Eq.~3.35!
for x@m2, which is due to the collapses and revivals of t
coherence function.

Note that the approximation used in the numerical cal
lation of Eq. ~3.8!, i.e., g(1)(t)5ug(1)(t)uei v̄t, is no longer
necessarily valid in the regime of revivals, as indicated
the multi-complex-exponential nature of Eq.~3.28!. Never-
theless, our numerical results are still correct because
have taken the mean atom numberm to be an integer. At
revivals the approximation tog(1)(t) becomes

ug(1)~mtr !ueiv0mtr5ug(1)uei2mpm, ~3.36!

where we have only used the first guess forv̄, since the
iterative procedure will be inaccurate in this regime~see Ap-
pendix B!. This expression clearly equalsug(1)u for integer
m. Thus, the same numerical simulation can be used for
values ofC as long asm is an integer

FIG. 2. Atom laser linewidth in units ofk for h51 and m
560, plotted with and without feedback using both analytic
~lines! and numerical~points! methods. The dotted line correspon
to ,5km, i.e., interaction strengths with corresponding linewidt
below this line satisfy the coherence condition of Bose degene
~condition III!. For the feedback results, see Sec. IV B.
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E. Power spectrum

As stated in Sec. II, condition~III ! for coherence requires
that the integral ofuG(1)(t)u be much greater than unity@Eq.
~2.11!#. This was reinterpreted as requiring the linewidth
be much less than the output flux~Bose degeneracy!, or
equivalently requiring the maximum spectral intensity to
much greater than unityP(v̄)@1. Now the linewidth is only
the FWHM of the power spectrum if it is Lorentzian. A
discussed after Eq.~3.25!, this will only be the case in the
weak-interaction regimex!Am. As x ~or C) is increased
the power spectrum becomes Gaussian, and asx enters the
very strong interaction regime it will no longer have a simp
structure at all. At these strong values of the nonlinearity
see quantum revivals ofg(1)(t).

In terms of normalized first-order coherence function t
power spectrum becomes

P~v!5kmE
2`

`

g(1)~ t !e2 ivtdt, ~3.37!

where we have recognized that^I &5^b†b&5k^a†a&5km.
From this equation it is clear that as long asg(1)(t) has a
simple structure, i.e., no revivals, then the spectrum w
have a simple~Lorenztian or Gaussian! line shape for a given
interaction strengthC, with the intensity and width deter
mined by how fastg(1)(t) decays.

The maximum spectral intensity was defined in Sec. II
Eq. ~2.15!, which was based on the assumption thatg(1)(t)
5ug(1)(t)uei v̄t. Since we are in a reference frame with ze
mean frequency before including collisions,v̄ is the detun-
ing frequency due to collisions which causes the mean ph
shift of an initial coherent state~see Fig. 1!. At this fre-
quency, the output power spectrum will, therefore, have
maximum value given by

P~v̄ !54kmtcoh. ~3.38!

As stated above, in the regime of revivals this approximat
will only be accurate for the first guess forv̄, i.e., v0
52mC.

The linewidth in the strong atomic interaction regim
(C*kpm) was calculated in the preceding section to
4kA2pm3/2, i.e., Eq.~3.35!. Thus, from the above equation
we expect the maximum spectral intensity to reach

P~v0!54km/,max51/A2pm, ~3.39!

as the atomic interaction strengthC is increased far above
kpm.

Figure 3 illustrates both the simple line shape of t
power spectrum when there are no revivals and the com
cation of the spectrum asC is increased. Since all the plotte
spectra haveP(v̄),1, the atom-laser output clearly does n
satisfy condition ~III ! for coherence, Eq.~2.16!, in the
strong-interaction regime. The first spectrum in Fig. 3 is
the rangeAm,C,kpm, and thus although revivals are no
seen, the output is still above the cutoff for Bose degener

l

cy
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The remaining spectra illustrate the increasing effect
quantum revivals due to increasing interaction strength.
central peak of the power spectrum, which can be defi
regardless of revivals as shown in Eq.~2.15!, clearly ap-
proaches the predicted maximum of 1/A2pm, i.e., Eq.
~3.39!, for C@kpm. For examples of the spectrum in th
weak-interaction regimes of Eq.~3.25!, see Sec. IV B.

IV. REDUCING THE LINEWIDTH VIA FEEDBACK

Section III A showed that the atomic interactions do n
directly cause phase diffusion. Rather, they cause a shea
of the field in phase space, with higher amplitude fields h
ing higher energy and hence rotating faster. The resul
linewidth broadening is a known effect for optical lasers w
a Kerr (x (3)) medium@45#. The shearing of the field is man
fest in the finite value acquired by the covarianceCnf(t) in
Eq. ~3.21!. It means that information about the condens
number is also information about the condensate ph
Hence, we can expect that feedback based on atom num
measurements could enable the phase dynamics to be
trolled, and the linewidth reduced.

A. QND feedback scheme

QND atom number measurements can be performed
the condensatein situ via the homodyne detection of a fa
detuned probe field@46–49#. This dispersive interaction
causes a phase shift of the probe proportional to the num
of atoms in the condensate. We consider a far-detuned p
laser beam of frequencyvp and cross-sectional areaA that
passes through the condensate@50#. Figure 4 shows an ex
perimental schematic for our QND measurement and fe
back scheme.

For a single atom the interaction with the optical pro
field can be approximated by the Hamiltonian

V5\
Vp

2

4D
5\S \vpg2

8ADI sat
D p†p[\up†p, ~4.1!

where Vp ,D,g have their usual meaning andI sat
52phcg/l3 @51#. Herep is the annihilation operator for th
probe beam, normalized so that\vpp†p is the beam power

The effective interaction Hamiltonian for the whole co
densate can thus be taken to be

FIG. 3. Output power spectrumP(v) wherev has units ofk,
plotted form515 and various values ofC in the strong-interaction
regime. The dotted line corresponds to the value 4km/,max, i.e, the
maximum height of the power spectrum in the regime of reviva
Note the log scale forv.
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H int5\u~a†a2m!p†p, ~4.2!

whereu, defined in Eq.~4.1!, is the phase shift of the prob
field due to a single atom. Here we have also subtracted
mean phase shift such that the probe optical laser is a m
sure of the atom number fluctuations only~see Fig. 4!.

The back action on the condensate due to this interac
can be evaluated using the techniques of Sec. III B of R
@52#. Assuming the input probe field is in a coherent state
amplitude% and mean powerP, the evolution of the atomic
system due the measurement is

ṙ5%2D@e2 iu(a†a2m)#r.MD@a†a#r, ~4.3!

where the measurement strength is given by

M5%2u25Pu2/\vp . ~4.4!

The approximation in Eq.~4.3! requires u(a†a2m)!1,
which for Poissonian number fluctuations is simplyAmu
!1.

The above result represents decoherence of the atom
due to photon number fluctuations in the probe field, res
ing in increased phase noise. In a recent theoretical stud
Dalvit and co-workers@49#, it was shown that dispersive
measurements of BECs cause both phase diffusion@as in Eq.
~4.3!# and atom losses. Nevertheless, they also show
phase diffusion dominates the decoherence rate for la
atom numbers, i.e., form@1, and so the depletion contribu
tion can generally be neglected@53#. Equation ~4.3! is
equivalent to the corresponding phase diffusion term in th
work, since it can be shown that bothM and the phase dif-
fusion rate given by Eq. ~14! of @49# reduce to
;g2l5I /hcAD2.

The effect of the interaction~4.2! on the output probe field
is to cause a phase shift proportional to the number fluc
tions,a†a2m. The output field operator is given by@52#

pout5e2 iu(a†a2m)pin.pin2 i%u~a†a2m!, ~4.5!

where again the approximation requiresAmu!1. Homodyne
detection of theY quadrature of the output probe field wi
thus be a measure of the condensate number fluctuat
The homodyne photocurrent operator is given by@52#

.

FIG. 4. Experimental schematic. A far-detuned probe laser
amplitude% interacts with the condensate~i.e., the laser cavity!
causing a phase shift in the probe proportional to the conden
number. The ‘‘anti-mean’’ lens subtracts the mean phase shift le
ing the probe with a phase shift proportional to the number fluct
tions dn. The photocurrentI hom(t) from the homodyneY detection
of this field is then used to modulate an externalB field uniformly
applied to the condensate.
7-9
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I out
Y 52 ipout1 ipout

† .I in
Y22AM ~a†a2m!. ~4.6!

In order to control the phase dynamics of the condens
we wish to use this homodyne current to modulate its ene
This can be done, for example, by applying a uniform m
netic field or far-detuned light field across the whole cond
sate. In the ideal limit of instantaneous feedback, we mo
this by the Hamiltonian

H fb~ t !52\a†aFIhom~ t !/AM , ~4.7!

whereF is the feedback strength andI hom(t) is the classical
photocurrent corresponding to the operatorI out

Y .
The total evolution of the system including feedback

obtained by applying the Markovian theory of Ref.@52#. The
master equation becomes

ṙ5L0r2 iC@a†a†aa,r#1MD@a†a#r1 iF @a†a†aa,r#

1
F2

hM
D@a†a#r, ~4.8!

where we have allowed for a detection efficiencyh @52# and
dropped terms corresponding to a frequency shift.

The terms in Eq.~4.8! describe, respectively, the standa
laser gain and loss (L0), the collisional interactions (C), the
measurement back action (M ), the feedback phase alteratio
(F), and the noise introduced by the feedback. As before
can visualize the effect of the measurement and feedb
terms on the evolution of an arbitrary coherent state. Thi
illustrated by theQ-function contours in Fig. 5. In this figure
we have ignored the mean phase shift due to collisions
make the comparison clearer.

To completely remove that unwanted nonlinearity, the o
vious choice for the feedback strength isF5C. We also
want to minimize the phase diffusion introduced by both
measurement and feedback. A weak measurement will
poor information about the atom number, with a high noi
to-signal ratio, which will increase the noise due to feedba
On the other hand, if the measurement is too strong the m
surement back action itself will dominate. This leads us
guess the optimal regime for both measurement and fe
back to beF5AhM5C, which simply leaves

ṙ5kmD@a†#A@a†#21r1kD@a#r1
2C

Ah
D@a†a#r.

~4.9!

B. Linewidth results

Proceeding as before, we can find the exact effect of
general feedback scheme on the atom-laser linewidth. N
ther the measurement nor the feedback affect the atom n
ber statistics. The change in the phase statistics are refle
by the new Fokker-Planck equation forQ(n,f). The altered
terms in the drift vector and diffusion matrix areA25(3
22n)(C2F), B125B2152n(C2F), and B225k/2n1M
1F2/hM . After linearizing, we again find the phase-relat
moments:
06360
e,
y.
-
-

el

e
ck
is

to

-

e
ve
-
.
a-

o
d-

e
i-

m-
ted

f̄~ t !.22m~C2F !t, ~4.10!

Vf~ t !.
8m~C2F !2

k2
~e2kt1kt21!1S k

2m
1M1

F2

hM D t,

~4.11!

Cnf~ t !.
2m~C2F !

k
~e2kt21!, ~4.12!

where again the approximations have usedm@1.
These equations clearly show that all the unwanted ph

statistics are canceled by choosing a feedback regime
F5C and furthermore the minimum phase variance is wh
M5C/Ah. Specifically, both the mean phase shift and t
correlation between number and phase fluctuations are
moved, and the phase variance is simply given by

Vf~ t !5S k

2m
1

2C

Ah
D t. ~4.13!

This is exactly the phase variance from the master equa
~4.9!.

In this case, Eq.~3.14! has a simple analytical solution

,5tcoh
215

k

2m S 11
x

Ah
D , ~4.14!

where we have again used the dimensionless atomic inte
tion strengthx54mC/k. Note that unlike Eq.~3.25!, this
linewidth is valid for all x. The derivation of Eq.~4.14!
above is based on preselecting the feedback and mea
ment parameters~i.e., F5AhM5C). On the other hand
Ref. @20# presented the analytical solution for the linewid
independent of the choice of these parameters and proce
to find the minimum with respect to the feedback streng
The result†Eq. ~24! of Ref. @20#‡ only differs from Eq.~4.14!
by the termk(21/4h)/2m.

FIG. 5. Contour plots of theQ function for m510 and C
5k(2pm)21/2 ~ignoring any mean phase shifts!. Black circle, ini-
tial coherent stateuAm&^Amu; black ring, stationary laser staterss,
Eq. ~3.7!. The other contours correspond to the evolution at timt
;1.5/k due to successive terms in the master equation. Das
contour, phase diffusion due toL0; dotted contour, including atomic
collisions, i.e.,L0 and C; dot-dash contour, including QND mea
surement back action, i.e.,L0 and C and M; and finally the solid
contour corresponds to Eq.~4.9!. All contours are for the optimal
feedback regimeF5AhM5C.
7-10
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From Fig. 2 ~in Sec. III C! and the above result, Eq
~4.14!, it is evident that our QND feedback scheme offers
linewidth much smaller than that without feedback for mo
values ofx. In fact forAm&x&4pm2 the reduction in line-
width due to feedback is a factor ofA8m/p. Most impor-
tantly, the laser output is Bose degenerate@satisfies condition
~III ! for coherence#, up tox'm2 with feedback, as oppose
to x'm3/2 in the absence of feedback. Thus, the atom la
with feedback remains coherent for much stronger ato
nonlinearities than without feedback. It is interesting that t
corresponds to the ‘‘conditionally coherent’’ regimem3/2

,x,m2 as discussed in Ref.@34#.
Since the nonlinearityC is effectively canceled by this

feedback scheme, the output power spectrum, Eq.~3.37!,
will never have the complicated structure as shown in S
III C. Also, since Eq.~4.13! has a linear dependence on tim
~rather than higher powers! the first-order coherence functio
decays exponentially and as such will produce a Lorentz
output power spectrum@see discussion after Eq.~2.14!#.

This line shape is illustrated in Fig. 6, which also plots t
corresponding spectra that would be produced by the l
~for the same values ofx) without feedback. These latte
spectra have a Gaussian line shape as discussed afte
~3.25!. Also, as indicated by Eq.~4.10!, the rotation of the
mean phase due to collision is canceled by our feedb
scheme, i.e.,g(1)(t) is no longer complex and hencev̄50.
The power spectrum for the atom laser including feedb
will thus be centered around zero frequency regardless o
atomic interaction strength, which is confirmed in the figu

The spectra in Fig. 6 are plotted at the two cutoff valu
for Bose degeneracy, which arex'm3/2 for no feedback and
x'm2 when feedback is included. If the output is cohere
i.e., satisfies Bose degeneracy, then it clearly has a m
narrower and thus more intense spectrum than if the outp
not coherent. This figure thus illustrates the link between
three definitions of linewidth@discussed after Eq.~2.15!# and
its relation to coherence. That is, a narrow intense ou
spectral line corresponds to a long phase coherence time
more specifically, if the FWHM linewidth is much less tha
the value of the output flux, then the laser output will satis
the conditions of coherence.

C. Experimental realizability

We will now briefly examine some issues of experimen
realizability. A question of interest is, how easy is it to obta

FIG. 6. Output power spectrumP(v) for m515 vsv in units of
k, plotted with and without feedback for interaction strengths
x5m3/2 andx5m2. The dotted spectrum (x5m3/2 with feedback!
has a maximum intensity of;31.
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a QND measurement of sufficient strength to optimize
feedback? We have shown in Sec. IV B that the optim
feedback scheme requiresN5C/Ah. From Ref. @34# we
know that most current experiments work in the regim
where the Thomas-Fermi approximation can be made, all
ing an analytical expression to be found forx† Eq. ~6.25! in
@34#‡ and C. Typical values arex;103, m;106, and C
;1022 s21. To determineu and henceM we use typical
87Rb imaging parameters@48,49#, which include l
5780 nm, A;10211 m2, g;5 Mhz, D;2 GHz, and
I sat;10 W/m2. For these values,u;3.331026, and thus
M;4.2310243I . To obtain a measurement strength of t
order of C, we therefore require a probe-laser intensity
only ;30 W/m2, which is quite reasonable.

A related question is, how much of a problem is atom lo
due to spontaneous emission by atoms excited by the
tuned probe beam? The rate of this loss~ignoring reabsorp-
tion! is g3(excited population). We would like the ratio o
this loss rate to the output loss ratekm to be small. In the
optimal feedback regime and forD@g, this ratio is given by

gmVp
2/4D2

km
5

4mM

k

2AIsat

\vpgm
'x

2AIsat

\vpgm
. ~4.15!

For the typical values stated above, Eq.~4.15! is indeed
small (;1021).

Another practical question is, how realistic is the zer
time-delay assumption for the feedback? It can be sho
using the techniques of Ref.@52# that this assumption is jus
tified providing the feedback delay time is much less th
k21, the lifetime of the trap due to the output coupling.
recent experiments@8,9# are a useful guide, trap lifetimes ar
of order 1022 s @34#. Feedback much faster than this shou
not be a problem. In fact, the time delay could be complet
eliminated by feeding forward rather than feeding ba
Linewidth reduction can be achieved equally well by co
trolling the phase of the atom field once it has left the trap
by controlling it inside the trap~but of course an integrated
rather than instantaneous, current would be used for
control!.

V. SUMMARY

The coherence of an atom laser can be defined@4# analo-
gously to that of an optical laser: it should be monochroma
with small intensity and phase fluctuations. We used the n
malized first-order coherence functiong(1)(t)5G(1)(t)/^I &
@25# as a measure of the phase fluctuations. Ast increases,
ug(1)(t)u decreases from unity as the phase of the field
comes decorrelated from its initial value. Its decay is ch
acterized by the coherence timetcoh5

1
2 *0

`ug(1)(t)udt, or by
its reciprocal, the linewidth,. G(1)(t) also determines the
output power spectrum, where the peak spectral heigh
given by 4̂ I &/, regardless of line shape, while for a Loren
zian the FWHM is also equal to,.

We examined the linewidth as a function of the dime
sionless atomic interaction strength,x54mC/k, wherek is
the output coupling rate andC is the atomic self-energy
There are four distinct regimes: the standard laser linew

f
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for x!1, a quadratic dependence onx for 1!x!Am, a
linear regime forAm!x!m2, and finally another constan
regime whenx@m2. The second and third regimes ha
Lorentzian and Gaussian output spectra, respectively.
last regime is a consequence of quantum revivals ofug(1)(t)u,
which are a direct effect of strong atomic collisions@38#.
This leads to a complicated structure in the power spect
with many peaks contained in a Gaussian-like envelope.

An important condition for atom-laser coherence is th
the phase fluctuations be small in a particular sense. Th
equivalent to requiring Bose degeneracy in the output,
that the linewidth, be much less than the the output flu
^I &5km. From the results presented here, this means tha
laser output is only coherent for interaction strengths sati
ing x&m3/2, i.e., somewhere in the third linewidth regim
Therefore, collisions will be a problem for atom-laser coh
ence, especially for BECs formed by evaporative cool
where collisions are the dominant mechanism. On the o
hand, if the atom-atom interactions are strong enough,
laser output will exhibit the interesting feature of quantu
revivals.

We also show, expanding upon Ref.@20#, that this line-
width broadening can be significantly reduced by a QN
feedback scheme. Basically, by feeding back the results
QND measurement of the number fluctuations to control
condensate energy, it is possible to compensate for the
width caused by the frequency fluctuations. The ve
number-phase correlation created by the collisions is utili
to cancel their effect. We have shown that this linewid
reduction allows the output to remain coherent for inter
tion strengths up tox.m2 rather thanm3/2, which is an
improvement by a factor ofAm. For the reasonable param
eters ofC;1022 s21 andm;106, this improvement in line-
width is of the order of 103 and, in principle, could increas
coherent values ofx54mC/k from ;109 to ;1012.
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APPENDIX A: SINGLE COMPLEX EXPONENTIAL
APPROXIMATION FOR g„1…

„t…

For the majority of the calculations in this paper we a
sume that the first-order coherence function can be given

g(1)~ t !5ug(1)~ t !uei v̄t. ~A1!

That is, we assume that the complex nature ofg(1)(t) ~which
is due only to collisions as shown in Sec. III D! is described
by a single complex exponential for most regimes of
collisional nonlinearity. When the collisions are stron
enough to cause revivals this approximation necessa
breaks down.

To determine the relative error caused by this approxim
tion we continue the analysis of evolution due to collisio
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presented in Sec III D, i.e., forṙ5LCr. Specifically, we
quantify the relative difference between

texact5
1
2 E

0

`

e2m(12cos 2Ct)dt ~A2!

and

tapprox5
1
2 E

0

`

e2m[12exp(2iCt)] 2 i v̄tdt. ~A3!

This is done by multiple Taylor expansions@first of cos 2Ct
and exp(2iCt), and then expanding resultant exponenti
apart from exp(at2)# and using the equality

E
0

`

tne22mC2t2dt5
G@~n11!/2#

2~2mC2!(n11)/2
, ~A4!

whereG@n# is the Gamma function.
Now, tapproxdiffers fromtexactby both real and imaginary

terms. The dominant@for t,(mC2)21/2# real term is

2
~2mC2v̄ !2

32
Ap

2 S 1

mC2D 3/2

1•••, ~A5!

while the first three imaginary terms are

~2mC2v̄ !

8mC2
2F2

3
mC31

1

12
~2mC2v̄ !3G 1

8~mC2!2
1•••.

~A6!

We can thus determinev̄ by requiring that the imaginary
terms vanish. This is essentially what the iterative proced
of Appendix B achieves.

The series of imaginary terms above leads to a first cho
of v052mC, i.e., this sets the first term to zero and we a
left with terms ofO@(mC)21#. To cancel the first two imagi-
nary term we require 2mC2v̄52C/3, leaving terms of
O@(m2C)21#. Hence,v152mC22C/3 will largely ensure
that tapprox is real ~sincem@1). The question now is, how
much different istapprox from texact usingv1?

The dominant term in the difference is simply found b
substitutingv1 into Eq. ~A5!, giving

1

36m3/2C
Ap

2
. ~A7!

The relative size of this error term is obtained by compar
to texact, which using the Taylor expansion equals

texact.
1

2E0

`

e22mC2t2dt5
1

4m1/2C
Ap

2
. ~A8!

This corresponds to a relative error, given by (tapprox
2texact)/texact, of the order ofm21. We have also verified
the size of this error numerically for the full system dynam
ics by simulations ofug(1)(t)u and g(1)(t)exp(2iv1t) ~here
7-12
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v1 is found in the same way as shown in Appendix B!. These
results also confirmed that the single complex exponen
approximation breaks down whenC;kpm ~or x;4pm2),
as expected.

APPENDIX B: ITERATIVE PROCEDURE FOR THE
COHERENCE TIME tcoh

As stated in Sec. III B, the coherence time can be eva
ated numerically using Eq.~3.8!, where the first guess forv̄
is given by Eq.~3.9!. Subsequent corrections tov̄ are found
by applying the procedure

tk52Tr@a†~L2 ivk!
21arss#/2^a†a&,

vk115vk2Im~1/2tk!. ~B1!

At each step we have

2tk5E
0

`

g(1)~ t !e2 ivktdt, ~B2!

which is simply a reexpression of Eq.~B1!. Then using the
assumption of Appendix A thatg(1)(t)'ug(1)(t)uei v̄t, we
have

2tk'E
0

`

ug(1)~ t !uei (v̄2vk)tdt. ~B3!

The simplest form forug(1)(t)u is a decaying exponentia
exp(2gt), which gives rise to a Lorentzian power spectru
as discussed at the end of Sec. II. In this case

2tk'E
0

`

e2[g2 i (v̄2vk)] tdt5
1

g2 i ~v̄2vk!
, ~B4!

and hence

Im~1/2tk!'vk2v̄. ~B5!

The more complicated form ofug(1)(t)u5exp(2g2t2), which
gives rise to a Gaussian power spectrum, also obeys
~B5!, since in this case

2tk'E
0

`

e2[g2t22 i (v̄2vk)t]dt

5
Ap

2g
e2(v̄2vk)2/4g2

erfcF2 i ~v̄2vk!

2g
G

.21/i ~v̄2vk!. ~B6!

Thus, if the coherence function is in the regime where
output spectrum is Lorentzian or Gaussian, thenvk11'v̄,
and the first correction,v1, will be sufficient for an accurate
06360
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calculation. On the other hand, if the coherence function is
the regime of revivals then the approximationg(1)(t)
'ug(1)(t)uei v̄t itself is no longer valid. Therefore, the abov
numerical method will be wildly inaccurate and we requ
another method for obtaining the coherence time and li
width. This is detailed in Sec. III D.

APPENDIX C: Q-FUNCTION CORRESPONDENCE FOR
SATURATED GAIN

As stated in Sec. III C the master equation can be re
pressed as a Fokker-Planck equation for a convenient p
ability distribution. In this appendix we show that, for theQ
function, the operator correspondence for the gain term
given by Eq.~3.16!. The individual superoperators in thi
expression have the corresponding differential operators

D@a†#r→2
]

]n
nQ~n,w!, ~C1!

A@a†#r→S n1
]

]n
nDQ~n,w!. ~C2!

Combining these leads to the following correspondence
the saturated gain term:

D@a†#A@a†#21r→2
]

]n
nS n1

]

]n
nD 21

Q~n,w!,

~C3!

which can be expanded in two different ways to give

H S 11
1

n

]

]n
nD 21

21J Q~n,w!, ~C4!

or

2
]

]n S 11
1

n

]

]n
nD 21

Q~n,w!. ~C5!

Equating these expressions leads to

S 11
1

n

]

]n
nD 21

5S 11
]

]nD 21

, ~C6!

and hence

D@a†#A@a†#21r→H S 11
]

]nD 21

21J Q~n,w!. ~C7!

By then applying the Taylor expansion, (11x)21

5(k50
` (2x)k, we obtain the identity

D@a†#A@a†#21r→(
k51

` S 2
]

]nD k

Q~n,w!. ~C8!
7-13
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