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Theory of light-induced drift. II. Circular-cylindrical geometry
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Light-induced drift~LID ! of a rarefied gas in a cell with circular-cylindrical geometry is studied, and exact
solutions to the model rate equations are obtained, with exact analytical solutions for the case of surface LID
~SLID!; the special case of the limit of low radiation absorption by the gas in SLID is given particular
attention. Many results are different from those of previous work. Emphasis is placed on considerations of
comparison with experiment. This is part II of a series of papers, part I having studied LID with flat-plate
geometry@F. O. Goodman, preceding paper, Phys. Rev. A65, 063409~2002!#.
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I. INTRODUCTION

In part I ~Ref. @1#! of this series of papers, the phenom
enon of light-induced drift~LID ! was discussed in detail, an
an exact treatment of a model of surface LID~SLID! was
presented for the case of flat-plate~FP! geometry in the limit
of large cell length and cell width and in the free-molecu
limit @1#. Motivated by previous work, both theoretical an
experimental, certain specializations were made, particul
to cases of low radiation intensity absorption@1#. Emphasis
was placed on relating theoretical results to experime
measurements, and considerations of applications to exis
experimental data on FP SLID were presented@1#.

In the present paper~‘‘in the present paper’’ is abbreviate
from now on to ‘‘here’’!, we consider a model of LID with
circular-cylindrical~CC! geometry, specializing eventually t
the case of CC SLID in the limit of large cell length, and
the free-molecule limit, for which an exact treatment
given. Specializations analogous to those in part I are a
made here, emphasis again being placed on relating theo
experiment, and considerations of applications to exist
CC SLID experimental data are presented.

In order to understand the material here, it is necessary
readers to have read and understood part I, and to have
hand, as detailed references to its contents are made thro
out. The following examples explain the notation used
brevity when references are made to part I: Eq.~4.10! of part
I is denoted by~I. 4.10!, Appendix H of part I is denoted by
Appendix I-H, and so on; naturally, absence of the rom
numeral I implies reference to an entity here.

Unless otherwise indicated, a symbol used in part I
the same meaning here. Important differences stem from
different geometry. The characteristic dimensional length@2#
l c* was the cell thicknessZ* in part I, whereas it is the cel
radiusR* here. The cell lengthX* and cell widthY* in part
I are replaced by only the cell lengthX* here; hence the
dimensionless triplet (X,Y,Z)5(X* /Z* ,Y* /Z* ,1) in part I
is replaced here by the doublet (X,R)5(X* /R* ,1), leading
to the obvious difference between the two meanings oX
~neitherY nor Z appears in the CC analysis!. Both the mo-
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lecular system transition probabilityC and the system pa
rameterk are different in FP and CC geometries:~I.H4! is
replaced here by@3#

C58/3X1O~ ln X/X2!, ~1.1!

and then Eq.~I.H3! implies that Eq.~I.H5! is replaced here
by

k→3p1/2/4, ~1.2!

now nicely independent ofX, and giving our standard~only!
value ofk here. Also, the parametersa,g, andy have differ-
ent definitions here from those in part I: Eqs.~I.E2!, ~I.E3!,
and ~I.E2! are replaced, respectively, by

a5~p/2!Dq0 /C5~p/2!~ag1ae!q0 /agae , ~1.3!

g5~p/2!Fg/C5~p/2!g/ae , ~1.4!

y512z. ~1.5!

The analog of the material in Secs. II–IV in Paper I
given here in Sec. II, and that of the material in Sec. V
Paper I appears in Sec. III. As in part I, care is taken to re
results to future possible experimental measurements.
analog of Sec VI of Paper I is Sec. IV, that is, consideratio
of applications to existing experiments, namely, the data
Refs.@4,5#. Section V is a brief conclusion.

II. THE MODEL: THE RATE EQUATIONS AND THEIR
NUMERICAL SOLUTION, RELATIONSHIP WITH

EXPERIMENTAL MEASUREMENTS

With the CC geometry used here, we consider initial fre
molecule flow in an open circular-cylindrical tube, oriente
with its axis in thex direction, which is also the direction in
which the laser beam runs. The cylinder length/radius ra
that is, its dimensionless lengthX, would be made large to
enhance the SLID effect, and the limit of largeX is under-
stood here, leading to the absence of end effects. Chara
istic dimensional quantities are chosen to give our dim
sionless quantities, our choice giving

\v5R5b52T/m51. ~2.1!
©2002 The American Physical Society10-1
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FRANK O. GOODMAN PHYSICAL REVIEW A65 063410
Unless otherwise made clear, the analysis is presente
terms of the resulting dimensionless quantities.

To build the CC Maxwell-Boltzmann rate equation
~MBREs!, we need the average frequency of collisions
molecules of velocityv with the surface, that is, 2V/p,
wherev is written as

v5~vx ,vy ,vz!5~vx ,V!. ~2.2!

In order to enable the results here to be obtained dire
from those in part I, we introduce replacements as follow

M→W, ~2.3!

uvzu→2V/p, ~2.4a!

bz→BV . ~2.4b!

In Eq. ~2.3!, the distributionW(v) is the appropriate analo
of the distributionM (v) @1#:

W~v!5Vm~v!/^V&m5~2/p2!Ve2v2
; ~2.5!

in Eq. ~2.4b!, the quantitiesBV j are defined from the analo
of Eq. ~I.2.9a!:

^V&mBV j5^V& j . ~2.6!

For example, the CC MBREs, that is, the analog of E
~I.2.7!, are just Eq.~I.2.7! with the replacements~2.3! and
~2.4a!, and the analog of Eq.~I.2.10! is just Eq.~I.2.10! with
the replacements~2.4!. The analog of Eq.~I.2.11a! is

BV j~ t !5~2/p1/2!I V j~ t !/I 1 j~ t !, ~2.7!

where the integralsI Vk(t) are defined by the analog of Eq
~I.A1.2e!:

I Vk~ t !5E E E d3vV fk~v,t !. ~2.8!

Section III of Paper I is essentially unchanged, the o
important difference being the replacement ofZ by R in Eq.
~I.3.7!. A trivial change occurs just before Eq.~I.3.3!, that is,
the absorbed radiation intensity is given here
p21(dNe /dt) laserbecause the cross-sectional area of the
is equal toY in part I andp here; this affects nothing els
becauseN5prX here instead ofN5rXY in Eq. ~I.3.2!. As
we saw in Sec. I above, the parameterk is more nicely
defined@Eq. ~1.2!# for CC geometry.

Section IV A of Paper I is also essentially unchange
provided that the replacements~2.4! are made everywher
therein. Section IV B of Paper I needs modification beca
of the different geometry. In part I, it was natural to choo
rectangular Cartesian coordinates (vx ,vy ,vz) for the veloc-
ity space, and hence get Eqs.~I.4.7! and~I.4.8!, for example.
Here, it is natural to choose cylindrical polar coordina
(vx ,V,z), defined from Eq.~2.2! and

V5V~ cosz, sinz!, ~2.9!

and to replace Eq.~I.4.7! by
06341
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s5~s1 ,s2 ,s3!5~erfvx ,e2V2
,z/2p!, ~2.10!

which leads to replacing Eq.~I.4.8! by

m~s!5 1
2 :21,s1,1, 0,s2,3,1. ~2.11!

With pure SLID, the quantity which integrated out triviall
in part I wasvy , that is,sy , whereas here it isz, that is,s3.

III. EXACT ANALYTICAL STEADY-STATE SOLUTION
FOR SLID

A. The general case

For Sec. V of Paper I, in which the subscriptz was
dropped fromb, the replacement~2.4a! remains as is but Eq
~2.4b! becomes simplyb→B, and the integralI V j is now
important instead of the integralI z j , Eq. ~I.5.3c! having the
analog

ceBe5~2/p1/2!I Ve . ~3.1!

The closed-form results for the eight integralsI 1 j , I q j , I x j ,
andI V j are given in Appendix A, and it is important to reca
definitions made in part I, for example, those ofGj ,Hj , and
w in Eqs.~I.E5! and~I.E6!, and ofd(erf) andd(exp) in Eqs.
~I.4.10! and ~I.E4!; the new definitions~1.3!–~1.5! of a,g,
andy must also be recalled, and that Eq.~A2! of Wj noted.
The exact results forI 1e , I qd , andI xs are given in Appendix
B.

B. The special casea\0 in the general case

With CC geometry, there are no problems with the tw
limits a→0, g→0, as there are with FP geometry, becau
they now commute, and the only special case which ne
reporting is that in this section. The analogs of Eq.~I.5.5! are
as follows:

I 1e

a
→@2y1p1/2~p1/2z22gy!Hg#

@2gy1p1/2~z22g2yHg!#

ag

Sa

d~erf!

2
, ~3.2a!

I xs

a
→Hg

Da

Sa

d~exp!

2
, ~3.2b!

I qd

a
→agae

Sa

d~erf!

p
, ~3.2c!

and those of Eqs.~I.5.6! and ~I.5.8! are

d→ 3p3/2Hg

8

d~exp!

d~erf!

Da

agae
→ 3p2vLHg

8

Da

agae
. ~3.3!

Results forg50 are trivially obtained (Hg51) from Eqs.
~3.2! and ~3.3!, and the analog of Eq.~I.5.11! is @2#
0-2
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FIG. 1. Dependence onr of DP/r for the ten values ofDa given by 1000Da51(1)10. Theparameters areag51, z50.5, g50, va

50, vb5`, with a varying as necessary to produce the results. The meanings of the symbols are as follows:r is the absorbed laser radiatio
power intensity,DP is the across-cell pressure difference,Da5ag2ae , whereag,e are the ground- and excited-state accommodat
coefficients,z is the diffuse-scattering quenching fraction,g is the spontaneous decay-rate parameter,@va ,vb# is the interval ofvx in which
the laser excitation functionq(vx) equalsqo , anda is defined by Eq.~1.3!.
n
lu

rs

:

f

~DP* /mPa!

~r * mm2/mW!
'1068

d~exp!

d~erf!

Da

agae
S m*

30 amuD
1/2

3S T*

300 KD 1/2S l*

10 mmD , ~3.4a!

1000ce /~r * mm2/mW!

~112y/pz!

'
14.24

ae
S Pa

P*
D S R* /mm

X* /10 cm
D

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD ,

~3.4b!

100a'S 1.606Sa

agaed~erf! D S r * mm2

mW D S R* /mm

X* /10 cm
D S Pa

P*
D

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD . ~3.4c!

With our standard quantities~excludingDP* andr * ), we
show exact results forDP/r as a function ofr for ten values
of Da in Fig. 1, using the parameters listed in the captio
Figure 2 shows analogous exact results for the seven va
of g used in Fig. 3 of Ref.@1#, again using the paramete
listed in the caption.
06341
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IV. APPLICATIONS TO EXPERIMENTS

Section VI of Paper I is unchanged down to Eq.~I.6.2!,
with the reported values ofCe /(r /r) for CC geometry com-
ing from Refs.@4,5#, with their nk andn assumed negligible

Ce /~r /r!5p1/2/X, ~4.1!

which is the analog of Eq.~I.6.3!; that of Eq.~I.6.4! is

D5Xd/p1/2, ~4.2!

with the low-intensity special case ofd given by Eq.~3.3!.
The analog of Eq.~I.6.5! is

D̃5 3
4 p1/2f~V!XDã, ~4.3!

and that of Eq.~I.6.7! is

1000Da

D
→8000

3pX

d~erf!

d~exp!
~4.4a!

→ 8000

3p3/2XvL

~4.4b!

with the value~1.2! of k, leading to the following analog o
Eq. ~I.6.8!:

Da

Dã
→ 2

p

f~V!

vL
. ~4.5!
0-3
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FIG. 2. Dependence onr of DP/r for the seven values ofg given by2 log10g50(0.5)3. The parameters are as in Fig. 1 except t
ae50.999,z50, andg.0. The meanings of the symbols are as in Fig. 1.
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The simplification~I.6.9! holds here also@4,5#. The analog of
Eq. ~I.6.10! is

Da

Dã
→ 2

pHg

f~V!

vL
, ~4.6!

of which Eq.~4.5! is the special case withg50.
We now use the CC data of Refs.@4,5# to infer values of

Da and compare them to those,Dã, obtained therein, again
using Eq.~I.6.9! throughout the working.

Reference@4# contains results for CC geometry on th
R(4,3) transition of13CH3F on teflon, quartz, and stainles
steel surfaces, and on theP(5) transition of OCS on a quart
surface@6#. Table I shows a comparison of results from E
~4.4! with those of Table I of Ref.@4#; we use parameter

vL50.50 andX5400. It seems that their@4# results forDã
in column 4 of their Table I are not consistent with the
stated@4# parametersf(V)'0.50 andX'400, and so col-
umn 5 of our Table I has been calculated by the pres
author, assuming that their parameters are as stated.@It is
interesting that the different choicef(V)5p21/2, which in

TABLE I. Comparison of results from Eq.~4.4! with those of
Ref. @4# with CC geometry; column 5 has been calculated here
described in Sec. IV.

Molecule Transition Surface 2D̃ 21000Dã 21000Da

13CH3F R(4,3) Teflon 0.74 2.8 1.8
13CH3F R(4,3) Quartz 0.57 2.1 1.4
13CH3F R(4,3) Steel 0.30 1.1 0.72
OCS P(5) Quartz 20.16 20.60 20.38
06341
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fact corresponds to ourd(exp)/d(erf)51 according to Eqs.
~I.5.7! and ~I.6.9!, renders the entries in their@4# Table I
consistent.# Columns 5 and 6 of our Table I are now cons
tent with Eq.~4.5!, but this would not be so if theDã from
Ref. @4# were used instead.

Reference@5# contains results for CC geometry onP(k
11) andR(k) transitions, withk50(1)3, of HF on LiF and
stearic acid surfaces@6#. The experimental values ofD̃ are
not quoted~although they may be inferred from their@5#

Figs. 4 and 5!, but their@5# calculated values ofDã are given
in their Fig. 6. However, if all is well, reexamining their da
should not be necessary here, as our values ofDa are pre-
sumably just their values@6# multiplied by 2/p according to
Eq. ~4.5!, although the problem with the results from Ref.@4#
in column 5 of Table I, discussed in the previous paragra
should perhaps be borne in mind.

If their @5# procedure of inferring the vibrational and ro
tational parts ofDa ~we drop the tilde now! separately via
their assumption~4! were followed here, then presumab
our results would be those in their Table I@6#, also multiplied
by 2/p. Their results@5# suggest the following attempt a
correlating their data:

a~v,J!'a~0,0!1vav~0,0!1JaJ~0,0!, ~4.7!

that is, the start~the first three terms! of a Taylor series abou
the origin, with partial derivativesav and aJ , ignoring the
discrete nature ofv andJ. Our Eq.~4.7! is nothing more than
a special case of their@5# assumption~4!, but it has more
physical content if it were to fit the data well, as is sugges
by their Fig. 7. In fact, the overall fit is good, and we infe
by means of nonsophisticated averaging over the data in t
@5# Table I, that 1000av(0,0)'20.7 for both surfaces, and

s

0-4
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THEORY OF LIGHT-INDUCED DRIFT. II. . . . PHYSICAL REVIEW A65 063410
that 1000aJ(0,0)'1.3 and 1.9, respectively, for the LiF an
stearic acid surfaces. If their@5# ‘‘cross terms’’ are inter-
preted as the second-order term 2vJavJ(0,0) of the Taylor
series started in Eq.~4.7!, then ~because the first partial de
rivatives are so small! it is perhaps not surprising that the
as well as any other higher-order terms, are unnecessa
Eq. ~4.7! or their @5# assumption~4!. It is a pity that more
information about thea(0,0) values, other than that they a
expected@5# to be close to 1, is not available.

V. CONCLUSION

The first paragraph of Sec. VII in Paper I applies he
also. With hindsight, it is clear that CC geometry is far mo
preferable than FP geometry for LID experiments, becaus
their resulting much easier and cleaner interpretation.
complicated dependencies onX,Y, anda with FP geometry
do not exist with CC geometry: for example, the direct p
portionality of DP to absorbed radiation intensity~in the
low-intensity limit! leads to an obvious advantage of C
geometry; these remarks concerning CC versus FP geom
are further illustrated by comparison of Figs. 1 and 2 w
Figs. 2 and 3 of Paper I, respectively.

Experimenters using CC geometry should always bea
mind the large-X assumption made in the computations, b
they @4,5# are clearly well aware of this point. An estimate
how largeX needs to be for validity of at least part of ou
analysis may be gleaned from the fact@3# that the second
term in the expression~1.1! for C is equal to23 lnX/4X
times the first term. For example,X524 and 60 give errors
of about 10% and 5%, respectively, while the experimen
@4,5# valueX'400 gives an error of only about 1% , whic
is obviously adequate.
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APPENDIX A: INTEGRALS IN THE ANALYTICAL
SOLUTION FOR SLID WITH CC GEOMETRY

With the definitions~I.E8! and @7#

Uj512p1/2jHj , ~A1!
J.F
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Wj5aXj1gYj , ~A2!

where we note that Eq.~A2! is different from Eq.~I.E7!, the
results of calculating the required integrals may be written
follows:

I 1 j5Aj /C1p1/2WjHwd~erf!1p1/2gJYjHg , ~A3a!

I q j5~Aj /2C1p1/2WjHw!q0d~erf!, ~A3b!

I x j5~WjHw2gYjHg!d~exp!, ~A3c!

I V j5p1/2Aj /2C1WjUwd~erf!1gJYjUg . ~A3d!

APPENDIX B: EXACT RESULTS FOR THE GENERAL
CASE OF SLID WITH CC GEOMETRY

In the notation~I.F1!, with the definitions~I.E8! and

DH5Hg2Hw , ~B1!

K52g2yHg2z, ~B2!

the results may be written as follows:

I 1e
(num)5„2y2p1/2$y@2aHw12gHg2gDHd~erf!#

2p1/2@z1agyJHg#Hw%…aagd~erf!, ~B3!

I qd
(num)52$2gy2p1/2@K12agyHw2g2yDHd~erf!

1p1/2a~z2g2yJHg!Hw#%aagaed~erf!, ~B4!

I xs
(num)5$gy@2Hw1DHd~erf!#

2p1/2@K1agyHgd~erf!#Hw%aDad~exp!,

~B5!

I 1e
(den)54y@gSa1aagd~erf!#2p1/2$2KSa

1@2y~2agHwSa12a2Hwag1agHgDa

2g2DHSa!2agyDHDad~erf!#d~erf!

2p1/2~z1agyJHg!HwaDad~erf!%, ~B6!

I xs
(den)5I qd

(den)/p5I 1e
(den). ~B7!
nd
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