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Theory of light-induced drift. I. Flat-plate geometry
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Light-induced drift(LID) of a rarefied gas in a cell with flat-plate geometry is studied in the limits of large
length and width of the cell, and exact solutions to the model rate equations are obtained, with exact analytical
solutions for the case of surface LIBLID); the special case of the limit of low radiation absorption by the gas
in SLID is given particular attention. Many results are different from those of previous work. Emphasis is
placed on considerations of comparison with experiment.
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I. INTRODUCTION Hoogeveen, Spreeuw, and Hermahg], with the first BLID
experiments reported earliegee Ref[12] for referencef all
It seems that the phenomenon of light-induced dLifD) with CC geometry, and we refer to later §€3-15] and FP
was first predicted theoretically by Gelmukhanov and Shalaf14,1€ experiments. Reference should be made to the work
gin[1,2] about two decades ago. They studied the effect novof Chernyak, Vintovkina, and Chermyaninfi/7] and of Zh-
called BLID, which stands for bulk LID and is a drift effect danov, Krylov, and Roldugif18], who provide mathemati-
that originates in the bulk of a gas in the possible absence afally involved treatments of the kinetic equations for LID,
gas-wall effects. SLID, which stands for surface LID andwith appropriate boundary conditions, and relate their results
which originates at the walls of a gas cell in the possibleto those of Hoogeveen and co-work¢t2—16.
absence of bulk effects, was first predicted by Ghiner, Stock- Theoretical models have usually been so-called strong-
mann and Vaksmaf8]; since then, a mixed LID effect has collision Maxwell-Boltzmann-type models, involving param-
been predicted by Vaksmaf4], BLID investigated by eters such as accommodation coefficients and decay rates, all
Ghiner and Vaksmafb], and SLID discussed in several pub- of which are explained below. Previous treatments have a
lications[6-11]. disadvantage, however, in that, having set up the model
The LID effect is essentially the following. A laser beam equations, approximations are made, most of which may
passes through a closed cell containing a rarefied gas, ongell be justified, although the effects of these approxima-
component of which consists of excitable gas molec(hes  tions are not always clear, at least to the present author. Just
use the terminology “molecules” for the active gas compo-a single example should suffice here, and that is the predic-
nentg, and the laser is tuned to excite molecules in a chosetion, made for FP geometry in Eql7) of Ref. [8], of a
velocity interval. The interaction properties of excited-statelogarithmic singularity (diverging for large cell length/
and ground-state molecules with othduffer) particles in  thickness ratipin a certain SLID effect, which we conclude
the bulk of the gas and/or with the cell walls, usually mod-is wrong, although the origin of the incorrect result is by no
eled in LID theory by bulk and surface “accommodation means clear, and we conclude that it must lie in the subtle
coefficients,” may be different, in which case LID may results of the seemingly reasonable, and certainly seemingly
manifest itself by an initial drift of molecules, one way or the harmless, approximations made therein.
other, parallel to the laser beam. Because the gas cell is Within the same model framework as used previously, the
closed, molecules cannot drift in steady state, and a partiahtention of the present paper is to obtain exact results, both
pressure difference builds up across the gas cell. This partimumerical and analytical, as far as is mathematically pos-
pressure difference is the main experimental manifestation ddible, of the LID effects with FP geometry in the stated lim-
the LID effect, and is studied as a function of laser radiationits. By “exact results” is meant results correct to arbitrary
intensity absorbed by the gas, although not presented in thaiccuracy with no approximatior®ther than the setting up
manner, as we explain in Sec. VI. Experiments so far havef the perforce approximate rate equations, of coubséng
been done for cases of low radiation intensity absorption irmade. It turns out that exact analytical results are impossible
cells with circular-cylindricalCC) and flat-platg FP) geom-  to obtain in the general case of LID, but are possible in either
etries. This paper, part | of this series of papers, is restrictegure BLID or pure SLID, whereas exact numerical results
to FP geometry, in the limit of large cell length and cell are always possible to obtain, but much more easily in either
width, and in the free-molecule limit. pure BLID or pure SLID, with the latter being the easier one.
Good qualitative explanations of the detailed physics be- It may be argued that having exact results for such an
hind the SLID effect have been given several times, for exapproximate model is unnecessary, particularly as experi-
ample, in Refs[5,6,9,1(, and there is no need to give an- ments are done, for example, in a low-intensity limit, and as
other here. Experiments on SLID were first reported bythe model parameters, even if they reasonably represent re-
ality, are known to usually less than one-digit accuracy.
However, exact results for a model are always important in
*Also at Department of Physics, University of Waterloo and thechecking previous models and in making/checking new and
Guelph-Waterloo Physics Institute. more general models.
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Several fresh concepts and results are presented, amade given(Appendix A by
seven of the appendixes should be regarded as reference sec-
tions for use throughout the paper. Appendix A defines im- Ci(t) =Ty (1). (2.2
portant integrals over the velocity distributions which arise.
Appendix B presents the Maxwellian and diffuse velocity
distributions. An important functiorG(u), of one variablay,

Our (FP) geometry is that used in most theoretical work to
date; that is, we consider initially free-molecule flow across

without which our results could not be called exact analyti-&" OPen cell lying between two equilibrium reservoirs with
cal, is defined, and its relevant expansions are gia@hin ~ molecular nuTber-densrcy differenakp=0 and pressure
Appendix D, and certain integrals which are needed for exacdifferenceAP=0. LID results in a gas flow across the cell,
analytical solution in SLID are evaluated in Appendix E.Which is balanced in a closed cell by the existence of non-
Some exact results are presented in Appendices F and G, af@0Ap andAP (the latter of which is measured experimen-
a discussion of free-molecule-flow transition probabilitiest@ly)- The flow is between parallel plates oriented normal to
appears in Appendix H. the z axis. The laser beam runs in tixedirection, and the

In Sec. II, we describe the model and set up the definingides Of the rectangular parallelopipétiat is, the ce)l con-
Maxwell-Boltzmann rate equatiorMBRES); a detailed de- t@ining the gas ar&,Y,Z in an obvious notatiorifor ex-
scription is given because our MBREs are different from@mPple, it is the ratiaZ/X which would be made small to
those used before. Our theoretical results are related to eghhance the SLID effectimplicit in the model is that the
perimental measurements in Sec Ill. In Sec. IV, we describdMits of largeX and largeY are understood, that is, there are
the exact numerical solution of the MBRES, with two inde- N0 Side effects or end effects. o
pendent procedures for getting exact steady-state results. In The SLID effects originate in the collisions of the gas
Sec. V, we specialize to the case of pure SLID, for which arimolecules with the(active surfaces(walls), that is, those
exact analytical solution is possible, and further specializa®riénted normal to the axis. In order to have a BLID effect,
tions are made, motivated by previous work, particularly toPuffer particles are assumed to be present in the gas and are
cases of low radiation intensity absorption. lllustrative re-assumed for simplicity to be of effectively infinite mass.
sults are shown where deemed appropriate. When a gas molecule collides with a surface or with a buffer

Although the author is not aware of extensive experimenParticle, it is assumed to be scattered into the gas according
tal data on the dependence of SLID on experimental quantf©® @ Maxwellian accommodation coefficient model. When
ties such as absorbed intensity, care is taken to relate resuf§attering from a surface, fractions; enter diffuse velocity
to possible future experimental measurements, and considefistributions, while the remaining fractions tl;) are
ations of applications to experiments, that is, the FP data igcattered “specularly,” which means that theicomponents

Refs.[14,16 are presented in Sec. VI. Sec. VIl is a brief Of velocity, v,, change sign; when scattering from a buffer
conclusion. particle, fractionsuy,; enter(differeny diffuse velocity distri-

butions, while the remaining fractions {lay;) are scattered
“specularly,” which means in this case that they undergo no
ll. DESCRIPTION OF THE MODEL AND DERIVATION OF change of velocity. The fraction of diffuse-scattering colli-
THE MAXWELL-BOLTZMANN RATE EQUATIONS sions of the atoms with the surfaces, which results in quench-

Although in the present paper, calculations are made onljd from excited state to ground state, is denotedgyand
for the case of pure SLID, the general case of LID is considihe analogous quantity for collisions with the buffer particles
ered here for ease of reference in future publications. WY Zo - In fact, the description of molecule-particle scattering
consider the problem of LID in a rarefied gas containingin terms of molecule-particle accommodation coefficients
two-level molecules with equal statistical level weights. The@s; i on far shakier ground than that of molecule-surface
levels are denoted as is customary by subscript§cattering in terms of molecule-surface accommodation co-
(g,e)=(ground, exciteyl The analysis is done using dimen- efficients agj, and needs further attention and discussion.
sional quantities at first, with dimensionless quantities intro-Similar remarks apply to the use of the quenching fractions
duced later. When BLID is involved, a model in two- Z, andzs, and we hope to address these issues in future
dimensional (2D) space may be mad§20], as it has Publications.
considerable computational advantages over that in 3D The laser excitation is modeled as in previous work, that
space; for pure BLID, a model in one-dimensional space idS, Via an excitation-frequency functiay(v,) given by
useful[20]. In this paper, however, rather than consider gen-
eral nD space, we restrict discussion =3 for ease of _
presentation. q(vx)—J T2y
It is important to bear in mind that, throughout this paper,
we use the notation that subscripstands forg,e,s,d (Ap-  where® is an Einstein coefficienty (w)dw is the laser ra-
pendix A), while subscripy stands forg,e. The respective  diation energy density in the radiation frequency intecial
distribution functions of velocity at timet are denoted by at w, w, is the resonant frequency, is the absorption half
f;(v:t), and are normalized so that the concentrations, define width at half maximuni11], and where the laser radia-

ON(w)l' 7

2.
(w—wo—kvy)?’ @3

noted byc;(t), which satisfy tion wave-number vectdk= (k,0,0).
Provided that a reasonable representation of the function
Cs(t)=c4(t) +ce(t) =1, (2.1 q(vy) is available, there is in fact no need to parametrize it
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further. However, it is convenieri8] to do so using the It ol 0t=Corrse 1= 25){|v5])eM + Corpe(1—24) (v ) B
Heaviside step function, which we denote lpyas follows:
_(ase|vz|+a'beav+V)fe'l'q(fg_fe), (2.7

94(vx) = Aol h(vx=va) =h(vx—vb)], (24 whereM(v) and B(v) are appropriate velocity distribution
functions(Appendix B. It is important to note that they are
wherev,<vy, letting q(v,) operate in the intervad,<vy  not the bulk-Maxwellian distributiom(v): for example, a
<uvyp With constant valueo, where either or both of-v,  gas molecule undergoing diffuse scattering at a surface
andvy, could bex; for example, Ref[8] uses Eq(2.4) with  chooses its velocity based on the distributMifv), and not
va=0, vp=2. onm(Vv). It is easy to see that using instead ofM andB is
Again as in previous work, a decay paramefeis intro-  wrong: for example, withy,;= y=g=0, it follows from Eqg.
duced to model the effective spontaneous quenching of ex2 7) with df;1t=0 that
cited molecules. With the definitions made so far, we may
build the MBRESs. In doing so, we need the frequencies of fJ(SS)ch(SS)<|vZ|)J-M/|vZI=(1,O)m, (2.89
collisions of the molecules with the surfaces and with the
buffer particles. For the surfaces for molecules of velogjty Where superscripts(s) denotes the steady state throughout
the frequency is|v,|/Z; the average frequencies are this paper, and this result is correct; also, witly=y=q
<|UZ|>j 1Z Where1 more genera||j,§>k(t) stands for[21] the =0, we get the same correct result, this time via
results of averaging(v:t) with respect tov over f,(v:t), ss ss
that is, in terms of the concentrationg, Eq.(2.2), f*9=c*(v)Blo=(1,0m. (2.80

Much previous work is not quite right at this point. For ex-
_ 3 . ) ample, if we putai=1, a;=y=Q=0 in Egs.(1) and(2) of
C"(t)<§>k(t)_f J j dVEv:OT(viD. 25 oy [11], we get the incorrect resul$>d = c;(|v,|);m/|v,,
and we expand on this point below.
For the buffer particles, again for molecules of velogityhe We now eliminateM andB from Eq. (2.7) in favor of m,
frequency isév, where @ is an inverse mean free path, de- using Appendix B. On defining,; and §,,; from
fined as the average of the inverse path lengths experienced

by a gas molecule between collisions; the average frequen- <|Uz|>mﬁzj:<|vz|>j ’ (2.9a
cies are(6v); . -
Before proceeding, let us make clear the parameters of the (VImBoj=(v); (2.9

model. With the excitation-frequency functigfv,) param- o MBRES(2.7) may be written as

etrized according to Eq2.4), there are the 11 parameters

o, Vab, @sj, @bj, Zsp, Y and . For the purposes of this  of /ot=[(CyasgB g+ CettseZsB2e) |Vl + (CqatngBug

paper, we assume that none of these parameters depends on

v; in the author’s opinion, it makes little sense to assume +CetheZbBre) 00 IM— (rsglv,| + apgfv) fo+ ¥fe

otherwise in a model of this type. —q(f—fo) (2.108
We now proceed to dimensionless quantities. Readers are 9 e '

asked to pretend that every dimensional quantity appearing 9f ol t=[ Coatsel 1 — Z5) Brel U 4] + Cotie( 1= 24) B, M

above has an asterisk attached, for exampé, and

f¥(v*:t*). Characteristic dimensional quantitigenergy —(asdv |+ apefv+y)feta(fy—fe). (2.10D

EZ, lengthly , temperaturel} , speedv?) are chosen to

give our dimensionless quantities, which will have no aster

isks; our choice gives Bai(t) = 771/2|zj(t)/|1j(t), (2.113

In terms of the integrals in Appendix A, thgs are given by

ﬁw=Z=b=2T/,u=1, (26) ,ij(t): %Wl/zlvj(t)/llj(t)- (2llb

whereb* is the Boltzmann constant* is the temperature, The assumptions which have been made by most of the pre-
w* is the gas molecular mass, ane&r2* is Planck’s con- Vvious work, and which are not quite right, are precisely
stant. From this point on, unless otherwise made clear, the

analysis is presented in terms of the resulting dimensionless Bzi(D)=Byj()=1, (212
guantities. . L .
With the parameter definitions made above, our MBREsand are in fact good approximations in that work because the

distributions therein are close to Maxwellian because of the
assumed small radiation intensities. The assumption made in
Ref. [11] is somewhat different, however, involving effec-
gl at=(Cqasg(|v,])g T CeaseZs(|v2l)e)M +(Cqang(v)g tively the equating ofv,| to (|v,|)m-

Interest so far has always been in approximate steady-
state solutions, which have been found by settirfg/at
—q(fg—fe), (2.7a =0 and making subsequent approximations. Although we

are[22]

+ CeltpeZn(V)e) HB_(asg|Uz| + abgav)fg'l' yfe

063409-3



FRANK O. GOODMAN PHYSICAL REVIEW A65 063409

are about to embark on obtaining exact solutions, it mustWe may combine the above results to get several formulas
always be borne in mind that use of the parametrized funcwhich are candidates for comparison with experiment. To
tion q(v,), and of the eight remaining parameters, is a grosshis end, we define the quantityby
approximation in itself.

Some discussion on how to get model equations for pure o=(APIP)/(r/p) (3.4
SLID and pure BLID from Eq.2.10 is in order. At first ) ]
sight, it may seem that the appropriate molecular collisiorfor Us€é below, particularly in Sec. VI; for example, Egs.
frequency should be set equal to zefw €0 for pure SLID ~ (2:2, (3.1), (3.3), and(3.4) give
and|v,|=0 for pure BLID). However, for pure SLID, it is

strictly only necessary that,y= ay, and, for pure BLID, 0= rlxsllqa, (3.5
that asq= as. However, neither of these equalities leads to cl(r1p)=X"1 roll g 3.6

significant simplification at the stage of EQ.10. For pure
SLID, the suggestioffsettingfv =0) made above is reason-

bl h ds that thi that th ¢ It is sometimes useful, particularly when comparison with
ablé on the grounds that this assumes that the mean rGé‘?(periment is contemplated, to express results in terms of

paths are large, Wh_en BLID \_N'” be negligible. For pure dimensionalasteriskegiquantities. To this end, we introduce
BLID, however, settingv,|=0 is perhaps not as sensible, “standard quantities,” based on experimdii,16. Using

because this neglects surface effects which will be presenf, o :
; e perfect gas law to eliminajg we ma te Egs(3.3
even in the absence of SLIDwhen agy=ase); however, and?3c5) as?‘oﬁo?v\gl- Iminaje w y write Eqs(3.3)

setting|v,|=0 does give a reasonable model of pure BLID,

and is _perhaps the cleanest way of get.tlng one. When we MR X*/10 cm\ / P*
specialize to pure SLID here, we pét =0; we do not spe- ~196 ——— || —
cialize to pure BLID here. mwW Z*/mm |\ Pa
12 12
Ill. RELATIONSHIP WITH EXPERIMENTAL X 30 aij 300 K 10 pm |qd,
MEASUREMENTS u* T* \N*
Explicit time dependences are omitted for the moment, as 3.7

are the superscripts§), since the main interest has been in . e 12 e 12 s x
steady-state measurements. The quantities of greatest interestA P*/m P3 ~511x K L) ( T ) ( A )5

are the so-called “LID fluxes,” which are defined as the (r* mm2/mw) 30am 300K 10um/lgq4’
integrals ofv, over the distributiong, and are given by, (3.9
(Appendix A). The flux suml,s may be related to potential

experimental quantities such as the resulting pressure diffewhere amu is the atomic mass unit {.7x10 2" kg) and
enceA P=XdP/dx across the cell, the laser radiation power\* is the radiation wavelength; our choice of standard quan-
intensity absorbed by the gas denotedrbir* has dimen- tities is clear from Eqs(3.7) and(5.15 and the last sentence
sions power/aréaand the concentratiog, of excited mol- ~ of Appendix H.

ecules, given by Eq2.2). With other theoretical parameters fixed, £8§.7) allows
The relation betweeA P andl,q is the calculation ofgg, via 144, from experimental data. As
expectedq, andl 44 may be of the same order, implying that
AP=kXPlysq, (3.1 small go gives an important special case for us. Contact be-

tween theory and experiment is based on E8), (3.7),
where k is a constant, which in real applications will be of and(3.8), thus highlighting the importance of the three inte-
order unity, and which depends on the actual system beingralsl,ls, andlyq.

modeled, withP on the right-hand sidéRHS) of Eq. (3.1 Finally, it must be borne in mind that the experiments are
standing for the average active-ggmartial) pressure in the not done with our idealized geometry; actual val{i$,16
cell; the choice of« is discussed further in Sec. VI. of X andY are not very large, althougkis reasonably large;

It follows from Eq.(2.10 that the contribution t@f./dt we make no attempt in the theory to account for the fact that
from the radiation igy(f,—f.), from which we deduce, by XandY may not be very large, with the hope that reasonable
integration overv, that the laser contribution tdN./dt, ~ comparisons may still be made.
whereN, is the number of excited molecules from a total of
N, is given by IV. NUMERICAL SOLUTION OF THE RATE EQUATIONS

(dNg/dt) jase Nlgq- (3.2 A. lteration of the analytical steady-state equations

The author’s opinion is that the most interesting and illu-
It takes unit energy22] to excite one molecule, so that the minating way to solve the MBRE&.10 is by numerical
absorbed radiation intensity is given by[22] integration with respect to time although this is a relatively

Y 1(dNg/dt)aser Which gives time-consuming procedure. We delay discussion of this pro-
cedure(Section IV B until the iteration solution has been
r=pXlgg- (3.3 described.
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The conditionsof;/9t=0 enable Eq(2.10 to be solved implying that cg(0)=1—c¢(0)=1, and the infinitude of

for 9 in terms of the(unknown as yetc{®9, 859,59 possible choices yields excellent checks.
We drop the superscripts$) for now. We write This integration procedure is naturally relatively time
consuming: at each time step in the computatgmust be
f(v) = f{Mmy f {den) (4.1 computed using Eq$2.1) and(2.2), as well asB,; and S,

_ _ ) ) ) ~using Eq.(2.13), involving integrations with respect to of
in an obvious notation. It is useful to define the following 1 ||, andv over both off; [23]. [Both integrations of 1

collections of terms: should be done in order to use E@®.1) and(2.2) to check
the computatior].Once convergence is attainedtatt;, we
t0j=a51|vz|+abj0v, (42&) pUt
tg= asiBjlva| + apiB,;0v, (4.2b fS9(v)=1f;(v:ty), (4.6)
te= AseZsBre U4 + @peZnByebv, (4.20  after which all steady-state properties are again readily com-

puted, the results from Sec. IV A above forming obvious
whenf (™™ andf{®" are given from the following relations: checks.

() In the computations, particularly because ﬂf\%s)(v) are

fg /M= (Cqtpgt Cele)toet (Cqt gyt Celge) (A+ ), close to(perhaps piecewigdMaxwellian distributions in im-
(438 portant cases, it is helpful to work with new velocity vari-

(num) abless, having ranges-1<s,<1 and for which the Max-
fe' IM=Ce(tge—te)togt (ColpgtCelpe)d, (4.3D  wellian distributionm(s) is constant in these ranges: such

variables are uniquely defined by

fj(den):(toe+ 7)t09+ (tog+toe)q- (4.30
s=erf,, (4.7)
The solution proceeds as follows. Values®i{g,;,5,; are _
chosen, say, as follows: when, in 3D space,
cg=1, Ce=0, B;=pB,=1. (4.4 m(s)= 3:—1<s,<1. (4.9
The distributiond; are calculated from Eq$4.1)—(4.3), and The author’s computations use the simplest step wise nu-

the five integrald g, I,;, |,; (Appendix A are computed. merical integration with respect to with t; and At chosen
More accurate values afy,3,;,3,j may now be calculated by trial and error; the integrations with resepctstase step
using Egs.(2.2) and (2.11), and then that ot, using Eq. sizesAs;, again found by trial and error.
(2.1). Updated versions of; are now calculated, and the Typically, As;~0.05 is chosen, but choices gf and At
iteration process proceeds in the obvious way until converdepend strongly on the case considered. Although trial and
gence to the desired accuracy is attained. It must be noteelror is easily the best procedure, some rough indications of
that, during the iteration, the more accurate values of botlsuitable values of; and At may be gleaned from the con-
c;’s must not be calculated from E(R.2), or else the itera- sideration of a relaxation timefor the process. Definition of
tion will converge to a solution which does not satisfy Eq. 7 is somewhat arbitrary, but it is shown in Appendix C that
(2.1); naturally, the more accurate value f rather than of one reasonable choice gives
Cgq could be calculated from Ed2.2), and then that ot L
from Eq. (2.2). T~ T Y asZst 2ap:2,0) + y+qod(erf), (4.9
Computations to several-digit accura@ntirely unneces- ) _
sary, of coursgtypically involve of the order of tens of it- With d(erf) defined by
erations, although many more are sometimes necessary, par-
ticularly for smallqg, but with each case taking less than a
second of computer time. All steady-state properties are no
readily computed, as with thénopefully the samesolution
from Sec. IV B.

d(erf)=erfv,—erfv,. (4.10

Bne may start the trial-and-error procedure by trying, say,
t;=100r andAt=7/100, making; /At (the number of time-
integration stepsas small as possible for the given desired
accuracy. To compare nicely with the relatively very fast and
B. Integration of the MBREs with respect to time accurate computations described in Sec. IV A, several-digit
The MBRESs(2.10 are integrated with respect to tinie ~ @ccuracy may require values gfconsiderably larger and/or
from an initial value {=0) to a final value (=t;) at which  Vvalues ofAt considerable smaller than the simple estimates
convergence to a desired accuracy is attained; observing tffgade above. . o
distributions relax from their initial conditions to their steady A typical computation on the SIG dual-tower Origin 2000
states is most enjoyable. Initial conditions are trivially cho-machine (with four 270-MHz R 12000 processorsalled

sen, for example, SCIENIDE at Waterloo, for a 2D model of BLID/SLID,
takes of the order of minutes. Computations with a 3D model
fg(vi0)=m(v), fe(v:0)=0, (4.5 (unnecessary for pure SL)Chave not yet been done, but,
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1000(8~1) : 50(1-8g)

e(t =)
. e
g(t =)
, g
0 4 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

FIG. 1. Time dependence of thg for a case of pure SLID: the initial conditions are E¢4.5), with a;=0.99, «,=0.98, z;=0.5,
y=0.5, 9y=0.05,v,=0, v,=%, giving relaxation timer~1.21.The curve ——— ) is related toBy and (— — — —) to B, the
horizontal lines (- - - - - ) give the steady-state values, which #@g~1.003 93 ang3,~0.872.

with As, still of order 0.05, each may take of the order of an

B=CgagBy+ Cettefe, (5.209

hour on the same machine. It must be emphasized that these
computation times of minutes or hours are totally unneces- C=agyae, (5.20
sary if only accurate steady-state results are requiBedt.

IVA). D=ay+ae, (5.2
The author regards his computations where BLID is in-

volved as incomplete, and results are presented here only for Eq=B, (5.2f)

pure SLID (fv=0). As an example, we show in Fig. 1 the

time dependence of the; (the subscriptg may be dropped Ee=0, (5.29

here with initial conditions(4.5); the parameters are listed in

the caption, andr~1.21 from Eq.(4.9). The steady-state F=ay. (5.2h

values arefy=~1.003 93, B,~0.872, which illustrates that
the assumption&.12 made by others are reasonable; ge
are close to unity because the distributidisare close to

Maxwellian, echoing the remarks made above concernin

the definition(4.7).

V. EXACT ANALYTICAL STEADY-STATE SOLUTION

FOR SLID

A. The general case

With 6v=0, andz, «;, B; standing forzg, as;, B;j, it
follows from Eqgs.(4.1)—(4.3) that thef; are given from

fi_ Ajlo+Ba(v,)+7E
m  Clv |+ Da(vy) +yF "’

with the eight constants defined by
Ag=(CqayBgt CeeZfBe) e,

A= Ceagae(l_ 2)Be,

(5.9

(5.29

(5.2b

In order to proceed, we need to do the eight integ(Als-
pendix A) I4j, Iy, 1,5, andlg;. With the functionG(u)
defined as in Appendix D, the required integrals may be done
% closed form and are presented in Appendix E, in which an
analog,d(exp), ofd(erf), Eq.(4.10, is defined Eq. (E4)].

Everything is still expressed in terms of the four as yet
unknownsc; and g;, and these are found by solving the
system of four equations

Cj= | 1j (533
CetCy=1, (5.3b
CeBBe= 2,0, (5.39

where Eq.(5.30 could have subscriptsreplaced byg, giv-
ing a check. The solution may now be completed, and the
important results fot,, 144 andl,s are given in Appendix
F.

Next, we study some simple special cases, motivated by
previous work. Bearing in mind Eq€E2) and(E3), our spe-
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cial cases involve the limit of sma#, with perhapsy=0,

z>0, orz=0, g>0 [24]. Great care is required when study-
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2. Case (b): &0 with z>0

The results are given in Appendix G. We pass on to the

ing these special cases, an origin of which is the noncommqmportant caséb’), which is the case studied in R&8].

tation of the two limitsa—0, g—0, as is made clear by the

exact result

I'(_ll'G)l'(_ll'G

Im{——Im =im| ——-Im = s

a—0 I g—0 v g—0 l v 12
(5.4)

where readers are reminded of the definit{&®) of w. This

means, for example, that if we are interested in the ease
—0 with a/g>1 (including the casg=0), then we should

setg=0 first and then lea—0; for the casea—0 with

a/g<<1l, we should lela—0 in the general case. The case

a—0 with a of the same order ag is not likely to be of

3. Case (b):

The three important integrals are, including only the nec-
essary leading terms, E¢.50 and

Case (b) with small a

I 16 o T ag d(erf)
?—> —Ina—§+ 27 Sa T (5.99
I Aa d(ex
> jna- 2|22 ( p). (5.9b
2120 w

interest and will be ignored. There is no problem in the case

a—0 for any value o because the limita—0, z—0 com-
mute.

The special casé) is the limit of smalla in the general
case >0, z>0). Case(b) hasg=0, z>0, and casgb’)
involves the limit of smalla in case(b) [8]; case(c) hasz
=0, g>0, and caséc’) involves the limit of smalk in case
(c) [3-7,9-11.

B. Special cases
1. Case (a):
The three important integrals are as follows:

a0 in the general case

lie (zGy+ygHy) ag d(erf)

a g(z+ygHy) Sa 2 (5.53
Iy Gy Aa d(ex

xs_ 9 _“u, (5.5b
a  glgla 2
lqa agae d(erf)

@ Sa 2 (559

Unlessa is very small, and perhaps outside of experimental
accessibility, the terms in square brackets in &) should

all be kept, at least at first; for example, fetin a to domi-
nate in Eqg.(5.99 with z=0.5, a must be less than about
10" °. We obtain(Sec. ll)), in particular for comparison with
the work of Ref[8], the following results:

-0 2k Aa d(exp
—— , (5.10a
(Ina+o/2) 7 agae d(erf)
Ce (5.108
(Ina+ o2— 7¥%12z)r I p 771/2Xae’ '
r2a 2
(5.1009

a= pXaga, d(erf)

To compare with Refl8] we see, from their Eq15) and
our Eg. (3.1, that they effectively interpret ouk via «
=1/lvt. They haved(exp)=d(erf)=1, and so their Eq(17)
reads as our Eq(5.109, but with an additional factor

One may manipulate the results in many ways. For exampl%_(ln a+o/2)InX/X] multiplying the RHS. We believe Eq.

the work of Sec. Ill motivates us to write

k Ggd(exp Aa
T2 g der) agae’

(5.6

If vp~v,, when @, +v,) is customarily{14,15 denoted by

(5.104 to be exactfor g=0 and smalla), so we conclude

that those differences are an artifact of their approximations.
It is interesting that, in the ca$®’), bothAP/r andc./r

are proportional, for small, to —In a rather than being con-

stant. This prediction may be testable experimentally, and so

we present Eq(5.10 in terms of our standard quantities

2v,, then we may write, in an obvious notation, a prescrip-(Sec. Il):

tion for expressing our results in termswof, that is,

2
d(ex 2ve ’d
( p)_) v i v T 5.7
dierf) 2e v dy/712
giving
Gy A
S— KU — . (5.8
g agae

—(AP*/mPa
(Ina+ o/2)(r* mmé/mw)

diexp Aa
d(erf) aga,

M* 1/2 T* 1/2 A*
“130 amy 300 K/ |10 wm/’

(5.11a
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FIG. 2. Dependence anof AP/ér for [21] é=2 (—-—-—-—), é&=&=—Ina(

the horizontal line (
=0.999,z=0.5, y=0, v,=0, v,==, with a varying as necessary to produce the results.

) gives the limit asr —0, with either{=§; or £=¢,, which is about 0.240. The parameters ajg=1, a,

r=pXgaeCe, lqa=0gcelie, (5.12

—100Q,/(r* mm?/mw)
(Ina+ o/2— 7%y [2z)
which form good checks on the computations. Apart from
S.77 Z*/mm Eq.(5.12, this case does not lead to as great a simplification
as does caséb), and we may as well use the general case

(Pa

X*/10 ¢

A

directly.

Qe P_*

/'L* 1/2 T* 1/2 *
X J ( ) ,  (5.11b .

30 am 300 K 10 um 5. Case (¢): Case (c) with small a
Wi t E . . ith (5. i
o ( 1.02% o )(r*mmz) 2% I Pa e get Egs(5.5b and (5.50 with (5.53 becoming
agaed(erf) mw X*/10 ¢ p*
lie ag d(erf)

M* 1/2 T* 1/2 * ?Hz—a 29 , (5.13)

><(30 amL) (300 K) (10 ,um)' (5.119

The situation is perhaps clarified by considering a speciatonsistently with the more general result E512). The ana-

case in Fig. 2, using the parameters listed in the captiorlog of Eq.(5.10 is Eq. (5.6) and

With our standard quantitieexcludingAP* andr*), we

show exact results forAP/ér) as functions ofr for three
values of¢ [21]: ¢é=2 gives a usual AP/r) versusr plot;

¢=¢,=—Inais a more sensible choice for very smalland
hence ofr), but é=¢,= —(Ina+o/2) is preferable here be-
cause of the form of Eq5.119 and the fact that is not
small enough fo= ¢, to be adequatfit is clear from Eq.
(5.119 that realistic values dd are of order 102, the values

Ce 1
—_
rlp  gXag’

and of Eq.(5.1)) is

d(exp GyAa

for Fig. 4 ranging from about 2 10~ to about 0.6, whereas (AP*/mPa
a< about 10° for £, to be adequate, as discussed afjove - ~288——
(r* mm?/mw) dierf) a4
4. Case (c): =0 with g>0
( \N* ) 408 kH
110 wm) | T

For this case, a little thought leads to the conclusion that

we must have
063409-8
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FIG. 3. Dependence onof AP/r for the seven values of given by —log,oy=0(0.5)3: for smallr, AP/r is a decreasing function of
v; as each curve is traced out, starting from0*, ais increasing, and, as a function of,, has a maximum value, evident here for the five

smaller values ofy. The parameters are as in Fig. 2 except #tvab andy>0.
Pa ) ) L
o+ 1300 K/\ 10 am though of_ interest mathematlcally, the limit as»o has no
real physical significance because our assumptions would be
(408 kHz) violated for sufficiently large, and analogous remarks apply

100Gc, 511
(r*mm?/mw) Qe

10 cm
X*

T* )( A* ) tently with Ref.[24], and the value of lip. .. c.(a,g). Al-

(5.159  to parts of the curves shown in Figs. 2-5.
*

Y
VI. APPLICATIONS TO EXPERIMENTS

1 ,y* Z* 300 K 172 M* 1/2
gwa_e(408—kl-|;) (Wn) T (30 amn.) ) It seems to the present guthor that rigorous tests of theory
(5.150 shou!d be m_ade via experimental measurement_&l%fas a
function ofr in order to test the results for SLID displayed in
where our standard value off has been chosen arbitrarily Shec. 5 ﬁnd _|Ilgstratedd in Figs. 2 anlg ?l;cgfwe(;e mea_ﬁurable,d .
in terms of the standard values 2f, T*, u*, that is, then other independent tests could be made, as illustrated in
Figs. 4 and 5. Such experimental data have not been pre-
* 1/2 " sented, but differences between predictions of the present
(2b%300 K/30 amy™/mm~408 kHz. (5.159 theory and of previous theories may be illustrated by the
For smallr, AP/r andc./r are now essentially indepen- limited comparisons which are possible at present.
dent ofr. Figure 3 shows exact results faP/r versusr for Experlmeilntal_ reTuItBl|2—1€] fhave “S“?‘”V dbeen %geseréted
seven values ofy using our standard quantitigagain ex- gsf_essdelgtla y single values of a quantity denoted\bgn
cluding AP* andr*) and with parameters as in the caption. efined by
An interesting saturation effect, that isas a function ofa
having a maximum value, is clearly evident for the smaller A=(AP/P)ICe, (6.2)
values ofy, the curves ending as shown. This effect is pur-
sued in Fig. 4, in which the exactis shown versua for the  whereC, (not ourc,) is the concentration of excited mol-
same conditions as in Fig. 3. That also must saturate fol- ecules which have just been excited but have not yet suffered
lows from Eq.(5.12), and exact, versusa is shown in Fig.  a velocity-randomizing collision, as clearly explained in Ref.

5, again for the same conditions. [13]. In fact, A versusP is shown, but only in order to infer
The convergence of the curves in Figs. 4 and 5 for smalh single free-molecule result for small
a is a manifestation of the result8.4), (5.12 and (5.13. A problem with this procedure is that itself is not an

Related results for=0, which are illustrated in Fig. 5, are experimentally measured quantity, but is presumably ob-
readily obtained, for example, lin,q ce(a,g)=3, consis- tained frommeasuredvalues of AP/P)/r by dividing by
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2 . , . , |
- lquo( 7)“—'00 ---------------------------

-

Iog‘lo[l"*(mW/ mm2 )]

'3 T T T K T
. -1 0 1 2
logqo(a )

FIG. 4. Dependence oa of r for the seven values of in Fig. 3;r is an increasing function o for all a. The parameters are as in
Fig. 3.

calculatedvalues ofC./r. The present author is not clear as and hope that the values reportgdt, 16 for C./(r/p) are
to why this is done, and prefers to renormalize the givercorrect; for FP geometry, with, assumed negligible, we are
values ofA to values ofé8, defined in Eq(3.5), in order to  told that[14,16

use results such as Eq.6), (5.8, and (5.10 directly.

Hence we write Ce\ =2 Y 63
rlp) X \1+Y) ©3

5_<Ce A 6.2 We note that, although our computations have been made for
rlp ' the largeY limit, we should not simplify Eq(6.3) to that

05 1 |
0.4
03 4 —log, O(“/)=3.Ov‘_,,.=’ . It
fooe > O/‘ P FIG. 5. Dependence amof ¢,
QL Y-V for the seven values of in Fig. 3;
/ /1.0 C. is a decreasing function of
0.2 1 / F0.57 B for all a. The parameters are as in
A Fig. 3.
T T
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case because it is due to the experimentalists, who use Eq. TABLE I. Comparison of results from E6.7) with those from

(6.3 as it stands in order to calculate thairffrom Eq.(6.1);
thus, (1+Y)/Y appears different from unity only in the con-

Refs.[14,16 with FP geometry. Thé@(5).L andP(5)| transitions
are for OCS with molecular angular momentulmperpendicular

text of translating the results presented in the experimentdind parallel, respectively, to the surface; the other seven transitions

papers. It follows from Eqs6.1)—(6.3) that
A=(XI7Y)(1+Y 1), (6.4)

the important low-intensity special casesdlbeing given by
Egs. (5.6) and (5.10. To compare specifically to previous
work, we write the analog of Eq6.4) which is given in Ref.
[16], that is,

~

Aa, (6.9

A= 12 v

w

2(l+8)¢(Q)X(l+Y

where ¢({) is the detuning function and is a small cor-
rection depending ol [16]; the tildes have been inserted to
avoid confusion with our quantities in Ed6.4). For our

special casdb’) in Sec. VB 3, that is, the casg=0 with
smalla, Eqg.(5.109 in Eq. (6.4 gives

100\ a 5007%2 Y \ d(erf) 66

A kX(nato/2) | 1+Y/ d(exp 6.6

where we have putry=a.=1 in the RHS, in accord with
experimen{14,16|.

Finally, we must interprek, and an attempt is presented
in Appendix H, based on free-molecule-flow transition-
probability calculations. Assuming that it is valid to use Eq.
(H5) here, we get

100\ « 2507 | In(2X)— 3|/ Y \ d(erf
A X |Ina+o2|\1¥Y d(exp
(6.7a9
25072 In(2X)— 3 |[ Y
T Xv, | Ina+o/2 |\1+Y)’ .70

where we have used our prescriptidh.7) for relating
d(exp)t(erf) tov, to get Eq.(6.7b. Thus, in any estimates
of values ofA«, our estimatef a [Eq. (6.7)] and previous
onesAw [Eq. (6.5)] are relatedon puttingA =A) as

Aa (1+e)|In(2X)— 7 |$(Q) .
Ao | 2 Ina+o/2| v, 6.8

Under general experimental conditiofi2—-16,
d(Q)~v, (6.9

resulting in a nice simplification of Eq6.8).

We recall that the result$.6)—(6.8) come from the case
g=0 with smalla. For the other special casé® and(c’) in
Secs. VB 1 and VB5, that is, the cases of snaallith and
without z=0, we should use Ed5.6) instead of Eq(5.103
in Eq. (6.4) to get the following analog of E(6.98):

are for 3CH,F. The casé&(4,3)* used a LiF001) surface, and the
other eight cases used glass surfaces. The valuds qioted for
Ref.[16] have been estimated by the present author, and the corre-
sponding values o recalculated, using = —0.06 rather than
[16] e=0; the value ofAa quoted[16] for the R(4,4) transition
does not seem to be consistent with Fig. 2 of R&6], and has
been reestimated here using the present author’s estimate of

Reference Transiion —X  —10000a —100Q\«
14 R(43F 085 14 6.9
14 R(43) 017 2.8 14
16 R(43) 048 23 14
16 R(4,4) 070 34 21
16 R(4,0/1) 0.38 1.8 1.1
16 Q(12,3) 0.0 0.0 0.0
16 P(5)L  -0.19 0.9 06
16 P5)|  0.00 0.0 0.0

Aa (1+e) ¢ L. 6(Q)

= o @015 610

which also simplifies nicely with Eq6.9).

We now use the FP data of Ref44,16 to infer values of
A« and compare them to thoder obtained therein; we use
Eqg. (6.9 throughout the working. Referendé4] presents
data on ther(4,3) transition of*3CH;F with both LiF001)
and glass surfaces; the parameters required fof@&g. are,
in both casesy, ~0.50, X~ 105, Y~6, anda~0.010 from
Eq. (5.119 (in which we user*=10 mW/6 mnf, P*
=3.3 Paand\*=9 um), giving 100Q «/A~8.1. Refer-
ence[16] contains data on thR(4k):k=0,1,3,4 transitions
of 3CHF and theP(5) transition of OCS, all on glass sur-
faces; now | ~0.6, X~265, Y~4.2, anda~0.010(coinci-
dentally: r*=10 mW/4.2 mm here, giving 1000\ /A
~3.0. The comparisons are shown in Table I.

In the author’s opinion, although our FP computations
may reasonably model FP experiments, at least to a certain
degree, they do not correctly model CC experiments. For
example, the CC analog of E(.6) cannot have logarithmic
behavior, and it would be meaningless to use a CC interpre-
tation of k therein. Therefore, we do not compare with CC
work in this paper.

VII. CONCLUSION

Given the model equation§2.10 for LID, we have
shown how exact solutions may be obtained. For the case of
SLID, we have given explicit exact numerical and analytical
solutions, and specialized them to cases of present interest.
Differences between the present and previous work have
been discussed, and some have been illustrated by limited
applications to experiments. However, almost any theory
would agree with existing experimental data due to their lim-
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ited nature, and to test this or any other theory more rigor-
ously, much more “fine-grained” experimental data are Izk(t):f J f d3v]v,|fi(v:t). (A2e)
needed, say, on the dependence on absorbed radiation inten-
sity of LID properties.
Our result that, for exampleAP is not necessarily di- APPENDIX B: DIFFUSE VELOCITY DISTRIBUTION

rectly proportional to absorbed radiation intensity, even in FUNCTIONS

the limit of low intensity, is of interest, as all previous work The distributionsm.M B discussed here are normalized
has a_ssu_med th|_s prpporhonahty; the d_eV|at|on from Propory, unity. The usual bulk-Maxwellian distributiom(v) is
tionality is logarithmic, however, and if correct would no well known:

doubt be difficult to detect experimentally. The ideas pre-
sented here concerning the interpretation of the transmission
parameterx are also liable to test, but again the deviation
from previous results is logarithmic.

Experimenters using FP geometry should bear in mind th
largeX and largeY assumptions made in FP computations;
our applications to experimen(Sec. V) are made with ex-
perimental valued14,16 of Y~6 and 4.2, respectively,
which are unlikely to be sufficiently large to give reliable
comparisons, although the values€ 105 and 265, respec- M (V)= v M)/ {[v ] ), (B2a)
tively, are satisfactory.

It is hoped that other geometries and/or BLID will be Where(é)n, stands for the value af(v) averaged ovem(v)

subjects of future parts of this series of papers. [21]. As ([v l)m=7""2 we get

m(v)=7 3% v’ (B1)

dhe analog of Eq(B1), denoted byM(v), for molecules
crossing a fixed permeable surface oriented normal tathe
axis, is proportional tdv,m(v) [25], and is accordingly
given by

2

ACKNOWLEDGMENTS M(V)=(lv l/m)e™". (B2b)
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analytical properties of the functio®(u). The work was
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B(v)=(v/2m)e” (B3b)
APPENDIX A: SOME DISTRIBUTIONS AND INTEGRALS

ENTERING THE ANALYSIS APPENDIX C: DERIVATION OF THE RELAXATION-TIME

The distributionsfy (d = difference and fs (s = sum FORMULA (4.9

are defined by Integration of Eq.(2.10b with respect tov gives

fa(vit)=fg(vit) —fe(vit), (Ala) de
d_te = qu_ (asezs<|vz|>e+ abezb0<v>e+ ¥)Ce, (CD
fo(vit) =fg(vit) +fo(vit). (Alb)
We define the following integrals over the distributions, Wherelqa, ([vzl)e. (v)e, and of course., are functions of
wherek stands forg,e,s,d: t. Puttinglqq=(Cq—Ce){(q)q, We get
dece/dt=(q)q—Ce/, (C29
Ilk(t)=f f f d3vf(vit), (A2a)
with 7 defined from
w0= [ | [ evawaravn, a2 = agzyv Yot avob(v)et v+ 2()g. (€20
Assuming that the distribution, are approximately Max-
|,,k(t)=f f f dPvufi(vit), (A2¢)  wellian, then
(@) a~qo(erfop,—erfvy)/2 (C3)
— 3 .
IXk(t)_f f fd Vofi(v:), (A2 ng Eq.(4.9 follows.
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FIG. 6. Our functionG(u) defined in appendix D, in which expansions for small and largee given, Eq(D2) [19].

APPENDIX D: THE FUNCTION G(u) AND SOME
OF ITS PROPERTIES

The functionG(u) is defined, foru>0, by

GiU)— 2u jwd e X
(U)_Wl/2 o X(x+u)

with G(0)=0, and we includeG(u) under the heading
“closed form.” The expansions o (u) for small and large
values ofu are as followq19]:

(D1)

2ulnu  ou 5
——— 42U+ -,

71_1/2 77_1/2

G(u)=— (D2a)

1
+--, (D2b)

G(U):l_ 771/2u + E

whereo(~0.58) is Euler’s constant. Thu§(u) is continu-
ous for Osu<, and has limit unity for largel. We show
G(u) in Fig. 6. A function complementary tG(u), denoted
by H(u), is defined by

H(u)=1-G(u). (D3)

APPENDIX E: INTEGRALS IN THE ANALYTICAL
SOLUTION FOR SLID WITH FP GEOMETRY

We defineX; andY; in terms of the eight constan(s.2)
as follows:
2CDX;=CB—DA;, (El1a

2CFY;=CE;—FA,. (E1b

Quantitiesa andg are defined by

a=Dqo/C=(ay+ae)do/agae, (E2)
g=Fy/C=vla,. (E3

A quantity d(exp) is defined by
d(exp =exp—v2)—exp —vd), (E4)

and readers are reminded of the analogous defin{#iol0)
of d(erf). Finally in this development of notatioiG(a),

G(9), andG(a+g), and their complementary counterparts,

are written in abbreviated forms as follows:

G=G(§), (E5a
H=H($), (ESb
where¢ stands fora,g, or w, with w defined by
w=a+g. (E6)
With the definitions
W;=(aX;+gY;)/w, (E7)
J=2—d(erf), (E®)

the results of calculating the required integrégpendix A
may be written as follows:
Ilj:Aj /C+WJ'GWd(erf)+JYng, (E96)

4j=(A}/2C+W,G,,)q d(erf), (E9b)

063409-13



FRANK O. GOODMAN

Lj=(W;Gy—Y,;Gy) d(exp)/ 72, (E99

|ZJ':AJ'/771/2C+WV\/ijd(erf)+gJY]Hg' (Eg(])

APPENDIX F: EXACT RESULTS FOR THE GENERAL
CASE OF SLID WITH FP GEOMETRY

With £=14¢, l4q, andlys, we write
é—: g(num)/g(den) (Fl)

in an obvious notatiofi21]. With the definitions in Appendix
E and the definitions

y=m"{(1-2), (F2)
Aa=ay—ae, (F3)
Sa=agtae, (F4)
V=y[wGy—(g+aGy)G,]d(erf)/2, (F5)
K=z+ygHjy, (F6)

the results may be written as follows:
W™= (ywHgH,,+ KG,+V)aagd(erd), (F7)
IN™=[K(w—aG,)+gV]aagacd(erf),  (F8
| (M= (K G,,+V)aAad(exp), (F9)

1{&V=2KwE a+{azG,Aa+y[a(2wag—aGgAa)H,,
_g(Zaae+ gzaf)(Hg— HW)]+aVAa}d(erf),

(F10

(F11

[ ((qc:jen)z [ Egen)/ 71_1/2= I (1c'iaen)'

APPENDIX G: EXACT RESULTS FOR THE CASE g=0,
z>0 OF SLID WITH FP GEOMETRY
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WM = (2G,+yaH,) agd(erf)/2, (G
1= zaH,aqaed(erf)/2, (G2

| (M= 7G,A ad(exp)/2, (G3)

1= Z3 a+ (2yaH,ay+2G,Aa)d(erh/2. (G4

APPENDIX H: CHOICE OF THE PARAMETER «

We use results from free-molecule-flow, with diffuse sur-
face scattering¢=1), transition-probability calculations for
an open cell lying between two equilibrium reservoirs with
number-density differencAp and pressure differenc&P.

The transmission probability of a molecule across the system
is denoted by, and the number ratdN/dt of molecules
which cross the cell is given by WAAp(|vy|)m, that is
(Appendix B,

dN/dt=VAAp/27Y2, (H1)

whereA is the flow cross-sectional area. The average veloc-
ity of molecules in the cell i3, in the x direction, giving

dN/dt=Apl . (H2)

Now Egs.(3.1), (H1), and(H2) give our interpretation ok
in the form

kX=27Y3Vp. (H3)

A good compilation of values of¥ for several systems/
geometries is given by Bermd26]; for our FP geometry
[26],

¥ =(In(2X)— 3)/X+0O(In X/X)?, (H4)
where we choose the largé-expansion. We note thaf is
absent because the limit of lardeis understood. From Egs.
(H3) and (H4) we get

k— 27 (In(2X) - ), (H5)

With the notation used in Appendix F, the results are Eqand our standard value of is that in Eq.(H5) with X

(F11) and as follows:

=100.
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