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Theory of light-induced drift. I. Flat-plate geometry

Frank O. Goodman*
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 1 May 2001; published 17 June 2002!

Light-induced drift~LID ! of a rarefied gas in a cell with flat-plate geometry is studied in the limits of large
length and width of the cell, and exact solutions to the model rate equations are obtained, with exact analytical
solutions for the case of surface LID~SLID!; the special case of the limit of low radiation absorption by the gas
in SLID is given particular attention. Many results are different from those of previous work. Emphasis is
placed on considerations of comparison with experiment.
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I. INTRODUCTION

It seems that the phenomenon of light-induced drift~LID !
was first predicted theoretically by Gelmukhanov and Sha
gin @1,2# about two decades ago. They studied the effect n
called BLID, which stands for bulk LID and is a drift effec
that originates in the bulk of a gas in the possible absenc
gas-wall effects. SLID, which stands for surface LID a
which originates at the walls of a gas cell in the possi
absence of bulk effects, was first predicted by Ghiner, Sto
mann and Vaksman@3#; since then, a mixed LID effect ha
been predicted by Vaksman@4#, BLID investigated by
Ghiner and Vaksman@5#, and SLID discussed in several pu
lications @6–11#.

The LID effect is essentially the following. A laser bea
passes through a closed cell containing a rarefied gas,
component of which consists of excitable gas molecules~we
use the terminology ‘‘molecules’’ for the active gas comp
nents!, and the laser is tuned to excite molecules in a cho
velocity interval. The interaction properties of excited-sta
and ground-state molecules with other~buffer! particles in
the bulk of the gas and/or with the cell walls, usually mo
eled in LID theory by bulk and surface ‘‘accommodatio
coefficients,’’ may be different, in which case LID ma
manifest itself by an initial drift of molecules, one way or th
other, parallel to the laser beam. Because the gas ce
closed, molecules cannot drift in steady state, and a pa
pressure difference builds up across the gas cell. This pa
pressure difference is the main experimental manifestatio
the LID effect, and is studied as a function of laser radiat
intensity absorbed by the gas, although not presented in
manner, as we explain in Sec. VI. Experiments so far h
been done for cases of low radiation intensity absorption
cells with circular-cylindrical~CC! and flat-plate~FP! geom-
etries. This paper, part I of this series of papers, is restric
to FP geometry, in the limit of large cell length and ce
width, and in the free-molecule limit.

Good qualitative explanations of the detailed physics
hind the SLID effect have been given several times, for
ample, in Refs.@5,6,9,10#, and there is no need to give an
other here. Experiments on SLID were first reported
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Hoogeveen, Spreeuw, and Hermans@12#, with the first BLID
experiments reported earlier~see Ref.@12# for references!, all
with CC geometry, and we refer to later CC@13-15# and FP
@14,16# experiments. Reference should be made to the w
of Chernyak, Vintovkina, and Chermyaninov@17# and of Zh-
danov, Krylov, and Roldugin@18#, who provide mathemati-
cally involved treatments of the kinetic equations for LID
with appropriate boundary conditions, and relate their res
to those of Hoogeveen and co-workers@12–16#.

Theoretical models have usually been so-called stro
collision Maxwell-Boltzmann-type models, involving param
eters such as accommodation coefficients and decay rate
of which are explained below. Previous treatments hav
disadvantage, however, in that, having set up the mo
equations, approximations are made, most of which m
well be justified, although the effects of these approxim
tions are not always clear, at least to the present author.
a single example should suffice here, and that is the pre
tion, made for FP geometry in Eq.~17! of Ref. @8#, of a
logarithmic singularity ~diverging for large cell length/
thickness ratio! in a certain SLID effect, which we conclud
is wrong, although the origin of the incorrect result is by
means clear, and we conclude that it must lie in the su
results of the seemingly reasonable, and certainly seemi
harmless, approximations made therein.

Within the same model framework as used previously,
intention of the present paper is to obtain exact results, b
numerical and analytical, as far as is mathematically p
sible, of the LID effects with FP geometry in the stated lim
its. By ‘‘exact results’’ is meant results correct to arbitra
accuracy with no approximations~other than the setting up
of the perforce approximate rate equations, of course! being
made. It turns out that exact analytical results are imposs
to obtain in the general case of LID, but are possible in eit
pure BLID or pure SLID, whereas exact numerical resu
are always possible to obtain, but much more easily in eit
pure BLID or pure SLID, with the latter being the easier on

It may be argued that having exact results for such
approximate model is unnecessary, particularly as exp
ments are done, for example, in a low-intensity limit, and
the model parameters, even if they reasonably represen
ality, are known to usually less than one-digit accura
However, exact results for a model are always importan
checking previous models and in making/checking new a
more general models.
©2002 The American Physical Society09-1
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FRANK O. GOODMAN PHYSICAL REVIEW A65 063409
Several fresh concepts and results are presented,
seven of the appendixes should be regarded as reference
tions for use throughout the paper. Appendix A defines
portant integrals over the velocity distributions which aris
Appendix B presents the Maxwellian and diffuse veloc
distributions. An important function,G(u), of one variableu,
without which our results could not be called exact analy
cal, is defined, and its relevant expansions are given@19# in
Appendix D, and certain integrals which are needed for ex
analytical solution in SLID are evaluated in Appendix
Some exact results are presented in Appendices F and G
a discussion of free-molecule-flow transition probabiliti
appears in Appendix H.

In Sec. II, we describe the model and set up the defin
Maxwell-Boltzmann rate equations~MBREs!; a detailed de-
scription is given because our MBREs are different fro
those used before. Our theoretical results are related to
perimental measurements in Sec III. In Sec. IV, we desc
the exact numerical solution of the MBREs, with two ind
pendent procedures for getting exact steady-state result
Sec. V, we specialize to the case of pure SLID, for which
exact analytical solution is possible, and further speciali
tions are made, motivated by previous work, particularly
cases of low radiation intensity absorption. Illustrative
sults are shown where deemed appropriate.

Although the author is not aware of extensive experim
tal data on the dependence of SLID on experimental qua
ties such as absorbed intensity, care is taken to relate re
to possible future experimental measurements, and cons
ations of applications to experiments, that is, the FP dat
Refs. @14,16# are presented in Sec. VI. Sec. VII is a bri
conclusion.

II. DESCRIPTION OF THE MODEL AND DERIVATION OF
THE MAXWELL-BOLTZMANN RATE EQUATIONS

Although in the present paper, calculations are made o
for the case of pure SLID, the general case of LID is cons
ered here for ease of reference in future publications.
consider the problem of LID in a rarefied gas containi
two-level molecules with equal statistical level weights. T
levels are denoted as is customary by subscr
(g,e)[~ground, excited!. The analysis is done using dimen
sional quantities at first, with dimensionless quantities int
duced later. When BLID is involved, a model in two
dimensional ~2D! space may be made@20#, as it has
considerable computational advantages over that in
space; for pure BLID, a model in one-dimensional space
useful@20#. In this paper, however, rather than consider g
eral nD space, we restrict discussion ton53 for ease of
presentation.

It is important to bear in mind that, throughout this pap
we use the notation that subscriptk stands forg,e,s,d ~Ap-
pendix A!, while subscriptj stands forg,e. The respective
distribution functions of velocityv at time t are denoted by
f j (v:t), and are normalized so that the concentrations,
noted bycj (t), which satisfy

cs~ t !5cg~ t !1ce~ t !51, ~2.1!
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are given~Appendix A! by

ck~ t !5I 1k~ t !. ~2.2!

Our ~FP! geometry is that used in most theoretical work
date; that is, we consider initially free-molecule flow acro
an open cell lying between two equilibrium reservoirs w
molecular number-density differenceDr50 and pressure
differenceDP50. LID results in a gas flow across the ce
which is balanced in a closed cell by the existence of n
zeroDr andDP ~the latter of which is measured experime
tally!. The flow is between parallel plates oriented normal
the z axis. The laser beam runs in thex direction, and the
sides of the rectangular parallelopiped~that is, the cell! con-
taining the gas areX,Y,Z in an obvious notation~for ex-
ample, it is the ratioZ/X which would be made small to
enhance the SLID effect!. Implicit in the model is that the
limits of largeX and largeY are understood, that is, there a
no side effects or end effects.

The SLID effects originate in the collisions of the ga
molecules with the~active! surfaces~walls!, that is, those
oriented normal to thez axis. In order to have a BLID effect
buffer particles are assumed to be present in the gas and
assumed for simplicity to be of effectively infinite mas
When a gas molecule collides with a surface or with a buf
particle, it is assumed to be scattered into the gas accor
to a Maxwellian accommodation coefficient model. Wh
scattering from a surface, fractionsas j enter diffuse velocity
distributions, while the remaining fractions (12as j) are
scattered ‘‘specularly,’’ which means that theirz components
of velocity, vz , change sign; when scattering from a buff
particle, fractionsab j enter~different! diffuse velocity distri-
butions, while the remaining fractions (12ab j) are scattered
‘‘specularly,’’ which means in this case that they undergo
change of velocity. The fraction of diffuse-scattering col
sions of the atoms with the surfaces, which results in quen
ing from excited state to ground state, is denoted byzs , and
the analogous quantity for collisions with the buffer particl
by zb . In fact, the description of molecule-particle scatteri
in terms of molecule-particle accommodation coefficie
ab j is on far shakier ground than that of molecule-surfa
scattering in terms of molecule-surface accommodation
efficients as j , and needs further attention and discussi
Similar remarks apply to the use of the quenching fractio
zb and zs , and we hope to address these issues in fut
publications.

The laser excitation is modeled as in previous work, t
is, via an excitation-frequency functionq(vx) given by

q~vx!5E dv
Ql~v!G/p

G21~v2v02kvx!
2

, ~2.3!

whereQ is an Einstein coefficient,l(v)dv is the laser ra-
diation energy density in the radiation frequency intervaldv
at v, v0 is the resonant frequency,G is the absorption half
line width at half maximum@11#, and where the laser radia
tion wave-number vectork5(k,0,0).

Provided that a reasonable representation of the func
q(vx) is available, there is in fact no need to parametrize
9-2
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THEORY OF LIGHT-INDUCED DRIFT. I. FLAT- . . . PHYSICAL REVIEW A 65 063409
further. However, it is convenient@8# to do so using the
Heaviside step function, which we denote byh, as follows:

q~vx!5q0@h~vx2va!2h~vx2vb!#, ~2.4!

whereva,vb , letting q(vx) operate in the intervalva,vx
,vb with constant valueq0, where either or both of2va
andvb could be`; for example, Ref.@8# uses Eq.~2.4! with
va50, vb5`.

Again as in previous work, a decay parameterg is intro-
duced to model the effective spontaneous quenching of
cited molecules. With the definitions made so far, we m
build the MBREs. In doing so, we need the frequencies
collisions of the molecules with the surfaces and with
buffer particles. For the surfaces for molecules of velocityv,
the frequency is uvzu/Z; the average frequencies a
^uvzu& j /Z where, more generally,̂j&k(t) stands for@21# the
results of averagingj(v:t) with respect tov over f k(v:t),
that is, in terms of the concentrationsck , Eq. ~2.2!,

ck~ t !^j&k~ t !5E E E d3vj~v:t ! f k~v:t !. ~2.5!

For the buffer particles, again for molecules of velocityv, the
frequency isuv, whereu is an inverse mean free path, d
fined as the average of the inverse path lengths experie
by a gas molecule between collisions; the average frequ
cies arê uv& j .

Before proceeding, let us make clear the parameters o
model. With the excitation-frequency functionq(vx) param-
etrized according to Eq.~2.4!, there are the 11 paramete
q0 , va,b , as j , ab j , zs,b , g andu. For the purposes of this
paper, we assume that none of these parameters depen
v; in the author’s opinion, it makes little sense to assu
otherwise in a model of this type.

We now proceed to dimensionless quantities. Readers
asked to pretend that every dimensional quantity appea
above has an asterisk attached, for example,Z* and
f k* (v* :t* ). Characteristic dimensional quantities~energy
Ec* , length l c* , temperatureTc* , speedvc* ) are chosen to
give our dimensionless quantities, which will have no as
isks; our choice gives

\v5Z5b52T/m51, ~2.6!

whereb* is the Boltzmann constant,T* is the temperature
m* is the gas molecular mass, and 2p\* is Planck’s con-
stant. From this point on, unless otherwise made clear,
analysis is presented in terms of the resulting dimension
quantities.

With the parameter definitions made above, our MBR
are @22#

] f g /]t5~cgasĝ uvzu&g1ceasezs^uvzu&e!M1~cgabg^v&g

1ceabezb^v&e!uB2~asguvzu1abguv ! f g1g f e

2q~ f g2 f e!, ~2.7a!
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] f e /]t5cease~12zs!^uvzu&eM1ceabe~12zb!u^v&eB

2~aseuvzu1abeuv1g! f e1q~ f g2 f e!, ~2.7b!

whereM (v) and B(v) are appropriate velocity distribution
functions~Appendix B!. It is important to note that they ar
not the bulk-Maxwellian distributionm(v): for example, a
gas molecule undergoing diffuse scattering at a surf
chooses its velocity based on the distributionM (v), and not
on m(v). It is easy to see that usingm instead ofM andB is
wrong: for example, withab j5g5q50, it follows from Eq.
~2.7! with ] f j /]t50 that

f j
(ss)5cj

(ss)^uvzu& jM /uvzu5~1,0!m, ~2.8a!

where superscript (ss) denotes the steady state througho
this paper, and this result is correct; also, withas j5g5q
50, we get the same correct result, this time via

f j
(ss)5cj

(ss)^v& jB/v5~1,0!m. ~2.8b!

Much previous work is not quite right at this point. For e
ample, if we putaj51, a j5g5Q50 in Eqs.~1! and~2! of
Ref. @11#, we get the incorrect resultsf j

(ss)5cj^uvzu& jm/uvzu,
and we expand on this point below.

We now eliminateM andB from Eq. ~2.7! in favor of m,
using Appendix B. On definingbz j andbv j from

^uvzu&mbz j5^uvzu& j , ~2.9a!

^v&mbv j5^v& j , ~2.9b!

the MBREs~2.7! may be written as

] f g /]t5@~cgasgbzg1ceasezsbze!uvzu1~cgabgbvg

1ceabezbbve!uv#m2~asguvzu1abguv ! f g1g f e

2q~ f g2 f e!, ~2.10a!

] f e /]t5@cease~12zs!bzeuvzu1ceabe~12zb!bveuv#m

2~aseuvzu1abeuv1g! f e1q~ f g2 f e!. ~2.10b!

In terms of the integrals in Appendix A, theb ’s are given by

bz j~ t !5p1/2I z j~ t !/I 1 j~ t !, ~2.11a!

bv j~ t !5 1
2 p1/2I v j~ t !/I 1 j~ t !. ~2.11b!

The assumptions which have been made by most of the
vious work, and which are not quite right, are precisely

bz j~ t !5bv j~ t !51, ~2.12!

and are in fact good approximations in that work because
distributions therein are close to Maxwellian because of
assumed small radiation intensities. The assumption mad
Ref. @11# is somewhat different, however, involving effec
tively the equating ofuvzu to ^uvzu&m .

Interest so far has always been in approximate stea
state solutions, which have been found by setting] f j /]t
50 and making subsequent approximations. Although
9-3
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FRANK O. GOODMAN PHYSICAL REVIEW A65 063409
are about to embark on obtaining exact solutions, it m
always be borne in mind that use of the parametrized fu
tion q(vx), and of the eight remaining parameters, is a gr
approximation in itself.

Some discussion on how to get model equations for p
SLID and pure BLID from Eq.~2.10! is in order. At first
sight, it may seem that the appropriate molecular collis
frequency should be set equal to zero (uv50 for pure SLID
and uvzu50 for pure BLID!. However, for pure SLID, it is
strictly only necessary thatabg5abe , and, for pure BLID,
that asg5ase. However, neither of these equalities leads
significant simplification at the stage of Eq.~2.10!. For pure
SLID, the suggestion~settinguv50! made above is reason
able on the grounds that this assumes that the mean
paths are large, when BLID will be negligible. For pu
BLID, however, settinguvzu50 is perhaps not as sensibl
because this neglects surface effects which will be pre
even in the absence of SLID~when asg5ase); however,
settinguvzu50 does give a reasonable model of pure BLI
and is perhaps the cleanest way of getting one. When
specialize to pure SLID here, we putuv50; we do not spe-
cialize to pure BLID here.

III. RELATIONSHIP WITH EXPERIMENTAL
MEASUREMENTS

Explicit time dependences are omitted for the moment
are the superscripts (ss), since the main interest has been
steady-state measurements. The quantities of greatest in
are the so-called ‘‘LID fluxes,’’ which are defined as th
integrals ofvx over the distributionsf k and are given byI xk
~Appendix A!. The flux sumI xs may be related to potentia
experimental quantities such as the resulting pressure di
enceDP5XdP/dx across the cell, the laser radiation pow
intensity absorbed by the gas denoted byr (r * has dimen-
sions power/area!, and the concentrationce of excited mol-
ecules, given by Eq.~2.2!.

The relation betweenDP and I xs is

DP5kXPIxs , ~3.1!

wherek is a constant, which in real applications will be
order unity, and which depends on the actual system be
modeled, withP on the right-hand side~RHS! of Eq. ~3.1!
standing for the average active-gas~partial! pressure in the
cell; the choice ofk is discussed further in Sec. VI.

It follows from Eq. ~2.10! that the contribution to] f e /]t
from the radiation isq( f g2 f e), from which we deduce, by
integration overv, that the laser contribution todNe /dt,
whereNe is the number of excited molecules from a total
N, is given by

~dNe /dt! laser5NIqd . ~3.2!

It takes unit energy@22# to excite one molecule, so that th
absorbed radiation intensity is given by@22#
Y21(dNe /dt) laser, which gives

r 5rXIqd . ~3.3!
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We may combine the above results to get several formu
which are candidates for comparison with experiment.
this end, we define the quantityd by

d5~DP/P!/~r /r! ~3.4!

for use below, particularly in Sec. VI; for example, Eq
~2.2!, ~3.1!, ~3.3!, and~3.4! give

d5kI xs /I qd , ~3.5!

ce /~r /r!5X21I 1e /I qd . ~3.6!

It is sometimes useful, particularly when comparison w
experiment is contemplated, to express results in terms
dimensional~asterisked! quantities. To this end, we introduc
‘‘standard quantities,’’ based on experiment@14,16#. Using
the perfect gas law to eliminater, we may write Eqs.~3.3!
and ~3.5! as follows:

S r * mm2

mW D'196S X* /10 cm

Z* /mm
D S P*

PaD
3S 30 amu

m*
D 1/2S 300 K

T*
D 1/2S 10 mm

l*
D I qd ,

~3.7!

~DP* /m Pa!

~r * mm2/mW!
'511kS m*

30amuD
1/2S T*

300KD 1/2S l*

10mmD I xs

I qd
,

~3.8!

where amu is the atomic mass unit ('1.7310227 kg) and
l* is the radiation wavelength; our choice of standard qu
tities is clear from Eqs.~3.7! and~5.15! and the last sentenc
of Appendix H.

With other theoretical parameters fixed, Eq.~3.7! allows
the calculation ofq0, via I qd , from experimental data. As
expected,q0 andI qd may be of the same order, implying tha
small q0 gives an important special case for us. Contact
tween theory and experiment is based on Eqs.~2.2!, ~3.7!,
and~3.8!, thus highlighting the importance of the three int
grals I 1e ,I xs , andI qd .

Finally, it must be borne in mind that the experiments a
not done with our idealized geometry; actual values@14,16#
of X andY are not very large, althoughX is reasonably large
we make no attempt in the theory to account for the fact t
X andY may not be very large, with the hope that reasona
comparisons may still be made.

IV. NUMERICAL SOLUTION OF THE RATE EQUATIONS

A. Iteration of the analytical steady-state equations

The author’s opinion is that the most interesting and il
minating way to solve the MBREs~2.10! is by numerical
integration with respect to timet, although this is a relatively
time-consuming procedure. We delay discussion of this p
cedure~Section IV B! until the iteration solution has bee
described.
9-4



g

:

e
e

ot
o

q

p
a
o

t
y
o

e

om-
us

i-

ch

nu-

and
s of
-

at

ay,

ed
nd
igit
r
tes

0

,
del
t,

THEORY OF LIGHT-INDUCED DRIFT. I. FLAT- . . . PHYSICAL REVIEW A 65 063409
The conditions] f j /]t50 enable Eq.~2.10! to be solved
for f j

(ss) in terms of the~unknown as yet! cj
(ss) ,bz j

(ss) ,bv j
(ss) .

We drop the superscripts (ss) for now. We write

f j~v!5 f j
(num)/ f j

(den) ~4.1!

in an obvious notation. It is useful to define the followin
collections of terms:

to j5as juvzu1ab juv, ~4.2a!

tb j5as jbz juvzu1ab jbv juv, ~4.2b!

te5asezsbzeuvzu1abezbbveuv, ~4.2c!

when f j
(num) and f j

(den) are given from the following relations

f g
(num)/m5~cgtbg1cete!toe1~cgtbg1cetbe!~q1g!,

~4.3a!

f e
(num)/m5ce~ tbe2te!tog1~cgtbg1cetbe!q, ~4.3b!

f j
(den)5~ toe1g!tog1~ tog1toe!q. ~4.3c!

The solution proceeds as follows. Values ofcj ,bz j ,bv j are
chosen, say, as follows:

cg51, ce50, bz j5bv j51. ~4.4!

The distributionsf j are calculated from Eqs.~4.1!–~4.3!, and
the five integralsI 1g , I z j , I v j ~Appendix A! are computed.
More accurate values ofcg ,bz j ,bv j may now be calculated
using Eqs.~2.2! and ~2.11!, and then that ofce using Eq.
~2.1!. Updated versions off j are now calculated, and th
iteration process proceeds in the obvious way until conv
gence to the desired accuracy is attained. It must be n
that, during the iteration, the more accurate values of b
cj ’ s must not be calculated from Eq.~2.2!, or else the itera-
tion will converge to a solution which does not satisfy E
~2.1!; naturally, the more accurate value ofce rather than of
cg could be calculated from Eq.~2.2!, and then that ofcg
from Eq. ~2.1!.

Computations to several-digit accuracy~entirely unneces-
sary, of course! typically involve of the order of tens of it-
erations, although many more are sometimes necessary,
ticularly for smallq0, but with each case taking less than
second of computer time. All steady-state properties are n
readily computed, as with the~hopefully the same! solution
from Sec. IV B.

B. Integration of the MBREs with respect to time

The MBREs~2.10! are integrated with respect to timet,
from an initial value (t50) to a final value (t5t f) at which
convergence to a desired accuracy is attained; observing
distributions relax from their initial conditions to their stead
states is most enjoyable. Initial conditions are trivially ch
sen, for example,

f g~v:0!5m~v!, f e~v:0!50, ~4.5!
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implying that cg(0)512ce(0)51, and the infinitude of
possible choices yields excellent checks.

This integration procedure is naturally relatively tim
consuming: at each time step in the computation,cj must be
computed using Eqs.~2.1! and ~2.2!, as well asbz j andbv j
using Eq.~2.11!, involving integrations with respect tov of
1,uvzu, and v over both of f j @23#. @Both integrations of 1
should be done in order to use Eqs.~2.1! and ~2.2! to check
the computation.# Once convergence is attained att5t f , we
put

f j
(ss)~v!5 f j~v:t f !, ~4.6!

after which all steady-state properties are again readily c
puted, the results from Sec. IV A above forming obvio
checks.

In the computations, particularly because thef j
(ss)(v) are

close to~perhaps piecewise! Maxwellian distributions in im-
portant cases, it is helpful to work with new velocity var
ablessl having ranges21,sl,1 and for which the Max-
wellian distributionm(s) is constant in these ranges: su
variables are uniquely defined by

sl5erfv l , ~4.7!

when, in 3D space,

m~s!5 1
8 :21,sl,1. ~4.8!

The author’s computations use the simplest step wise
merical integration with respect tot, with t f andDt chosen
by trial and error; the integrations with resepct tos use step
sizesDsl , again found by trial and error.

Typically, Dsl;0.05 is chosen, but choices oft f and Dt
depend strongly on the case considered. Although trial
error is easily the best procedure, some rough indication
suitable values oft f and Dt may be gleaned from the con
sideration of a relaxation timet for the process. Definition of
t is somewhat arbitrary, but it is shown in Appendix C th
one reasonable choice gives

t21;p21/2~asezs12abezbu!1g1q0d~erf!, ~4.9!

with d(erf) defined by

d~erf!5erfvb2erfva . ~4.10!

One may start the trial-and-error procedure by trying, s
t f5100t andDt5t/100, makingt f /Dt ~the number of time-
integration steps! as small as possible for the given desir
accuracy. To compare nicely with the relatively very fast a
accurate computations described in Sec. IV A, several-d
accuracy may require values oft f considerably larger and/o
values ofDt considerable smaller than the simple estima
made above.

A typical computation on the SIG dual-tower Origin 200
machine~with four 270-MHz R 12000 processors! called
SCIENIDE at Waterloo, for a 2D model of BLID/SLID
takes of the order of minutes. Computations with a 3D mo
~unnecessary for pure SLID! have not yet been done, bu
9-5
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FIG. 1. Time dependence of theb j for a case of pure SLID: the initial conditions are Eqs.~4.5!, with ag50.99, ae50.98, zs50.5,
g50.5, q050.05, va50, vb5`, giving relaxation timet'1.21.The curve ( ) is related tobg and (2 2 2 2) to be ; the
horizontal lines (••••••) give the steady-state values, which arebg'1.003 93 andbe'0.872.
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with Dsk still of order 0.05, each may take of the order of
hour on the same machine. It must be emphasized that t
computation times of minutes or hours are totally unnec
sary if only accurate steady-state results are required~Sec.
IV A !.

The author regards his computations where BLID is
volved as incomplete, and results are presented here onl
pure SLID (uv50). As an example, we show in Fig. 1 th
time dependence of theb j ~the subscriptsz may be dropped
here! with initial conditions~4.5!; the parameters are listed i
the caption, andt'1.21 from Eq.~4.9!. The steady-state
values arebg'1.003 93, be'0.872, which illustrates tha
the assumptions~2.12! made by others are reasonable; theb j
are close to unity because the distributionsf j are close to
Maxwellian, echoing the remarks made above concern
the definition~4.7!.

V. EXACT ANALYTICAL STEADY-STATE SOLUTION
FOR SLID

A. The general case

With uv50, andz, a j , b j standing forzs , as j , bz j , it
follows from Eqs.~4.1!–~4.3! that thef j are given from

f j

m
5

Aj uvzu1Bq~vx!1gEj

Cuvzu1Dq~vx!1gF
, ~5.1!

with the eight constants defined by

Ag5~cgagbg1ceaezbe!ae , ~5.2a!

Ae5ceagae~12z!be , ~5.2b!
06340
se
s-

-
for

g

B5cgagbg1ceaebe , ~5.2c!

C5agae , ~5.2d!

D5ag1ae , ~5.2e!

Eg5B, ~5.2f!

Ee50, ~5.2g!

F5ag . ~5.2h!

In order to proceed, we need to do the eight integrals~Ap-
pendix A! I 1 j , I x j , I z j , and I q j . With the functionG(u)
defined as in Appendix D, the required integrals may be d
in closed form and are presented in Appendix E, in which
analog,d(exp), ofd(erf), Eq. ~4.10!, is defined@Eq. ~E4!#.

Everything is still expressed in terms of the four as y
unknownscj and b j , and these are found by solving th
system of four equations

cj5I 1 j , ~5.3a!

ce1cg51, ~5.3b!

cebe5p1/2I ze, ~5.3c!

where Eq.~5.3c! could have subscriptse replaced byg, giv-
ing a check. The solution may now be completed, and
important results forI 1e , I qd and I xs are given in Appendix
F.

Next, we study some simple special cases, motivated
previous work. Bearing in mind Eqs.~E2! and~E3!, our spe-
9-6
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THEORY OF LIGHT-INDUCED DRIFT. I. FLAT- . . . PHYSICAL REVIEW A 65 063409
cial cases involve the limit of smalla, with perhapsg50,
z.0, or z50, g.0 @24#. Great care is required when stud
ing these special cases, an origin of which is the noncom
tation of the two limitsa→0, g→0, as is made clear by th
exact result

lim
a→0

S 21

a ln a
lim
g→0

GwD 5 lim
g→0

S 21

g ln g
lim
a→0

GwD 5
2

p1/2
,

~5.4!

where readers are reminded of the definition~E6! of w. This
means, for example, that if we are interested in the casa
→0 with a/g@1 ~including the caseg50), then we should
set g50 first and then leta→0; for the casea→0 with
a/g!1, we should leta→0 in the general case. The ca
a→0 with a of the same order asg is not likely to be of
interest and will be ignored. There is no problem in the c
a→0 for any value ofz because the limitsa→0, z→0 com-
mute.

The special case~a! is the limit of smalla in the general
case (g.0, z.0). Case~b! hasg50, z.0, and case~b8!
involves the limit of smalla in case~b! @8#; case~c! hasz
50, g.0, and case~c8! involves the limit of smalla in case
~c! @3–7,9–11#.

B. Special cases

1. Case (a): a\0 in the general case

The three important integrals are as follows:

I 1e

a
→~zGg1ygHg!

g~z1ygHg!

ag

Sa

d~erf!

2
, ~5.5a!

I xs

a
→ Gg

p1/2g

Da

Sa

d~exp!

2
, ~5.5b!

I qd

a
→agae

Sa

d~erf!

2
. ~5.5c!

One may manipulate the results in many ways. For exam
the work of Sec. III motivates us to write

d→ k

p1/2

Gg

g

d~exp!

d~erf!

Da

agae
. ~5.6!

If vb'va , when (vb1va) is customarily@14,15# denoted by
2vL , then we may write, in an obvious notation, a prescr
tion for expressing our results in terms ofvL , that is,

d~exp!

d~erf!
→ 2ve2v2

dv

2e2v2
dv/p1/2

5p1/2vL , ~5.7!

giving

d→kvL

Gg

g

Da

agae
. ~5.8!
06340
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2. Case (b): gÄ0 with zÌ0

The results are given in Appendix G. We pass on to
important case~b8!, which is the case studied in Ref.@8#.

3. Case (b8): Case (b) with small a

The three important integrals are, including only the ne
essary leading terms, Eq.~5.5c! and

I 1e

a
→F2 ln a2

s

2
1

p1/2y

2z G ag

Sa

d~erf!

p1/2
, ~5.9a!

I xs

a
→F2 ln a2

s

2GDa

Sa

d~exp!

p
. ~5.9b!

Unlessa is very small, and perhaps outside of experimen
accessibility, the terms in square brackets in Eq.~5.9! should
all be kept, at least at first; for example, for2 ln a to domi-
nate in Eq.~5.9a! with z50.5, a must be less than abou
1025. We obtain~Sec. III!, in particular for comparison with
the work of Ref.@8#, the following results:

2d

~ ln a1s/2!
→2k

p

Da

agae

d~exp!

d~erf!
, ~5.10a!

2ce

~ ln a1s/22p1/2y/2z!r /r
→ 2

p1/2Xae

, ~5.10b!

a→ rSa

rXagae

2

d~erf!
. ~5.10c!

To compare with Ref.@8# we see, from their Eq.~15! and
our Eq. ~3.1!, that they effectively interpret ourk via k
51/vT . They haved(exp)5d(erf)51, and so their Eq.~17!
reads as our Eq.~5.10a!, but with an additional factor
@2(ln a1s/2)lnX/X# multiplying the RHS. We believe Eq
~5.10a! to be exact~for g50 and smalla), so we conclude
that those differences are an artifact of their approximatio

It is interesting that, in the case~b8!, bothDP/r andce /r
are proportional, for smallr, to 2 ln a rather than being con
stant. This prediction may be testable experimentally, and
we present Eq.~5.10! in terms of our standard quantitie
~Sec. III!:

2~DP* /mPa!

~ ln a1s/2!~r * mm2/mW!

'326k
d~exp!

d~erf!

Da

agae

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD , ~5.11a!
9-7
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FIG. 2. Dependence onr of DP/jr for @21# j52 (2•2•2•2), j5j152 ln a ( ), andj5j252 ln a2s/2 (2 2 2 2);
the horizontal line (••••••) gives the limit asr→0, with eitherj5j1 or j5j2, which is about 0.240. The parameters areag51, ae

50.999,z50.5, g50, va50, vb5`, with a varying as necessary to produce the results.
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21000ce /~r * mm2/mW!

~ ln a1s/22p1/2y/2z!

'
5.77

ae
S Pa

P*
D S Z* /mm

X* /10 cm
D

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD , ~5.11b!

100a'S 1.023Sa

agaed~erf! D S r * mm2

mW D S Z* /mm

X* /10 cm
D S Pa

P*
D

3S m*

30 amuD
1/2S T*

300 KD 1/2S l*

10 mmD . ~5.11c!

The situation is perhaps clarified by considering a spe
case in Fig. 2, using the parameters listed in the capt
With our standard quantities~excluding DP* and r * ), we
show exact results for (DP/jr ) as functions ofr for three
values ofj @21#: j52 gives a usual (DP/r ) versusr plot;
j5j152 ln a is a more sensible choice for very smalla ~and
hence ofr ), but j5j252(ln a1s/2) is preferable here be
cause of the form of Eq.~5.11a! and the fact thata is not
small enough forj5j1 to be adequate@it is clear from Eq.
~5.11c! that realistic values ofa are of order 1022, the values
for Fig. 4 ranging from about 231024 to about 0.6, wherea
a, about 1025 for j1 to be adequate, as discussed abov#.

4. Case (c): zÄ0 with gÌ0

For this case, a little thought leads to the conclusion t
we must have
06340
al
n.

t

r 5rXgaece , I qd5gaeI 1e , ~5.12!

which form good checks on the computations. Apart fro
Eq. ~5.12!, this case does not lead to as great a simplificat
as does case~b!, and we may as well use the general ca
directly.

5. Case (c8): Case (c) with small a

We get Eqs.~5.5b! and ~5.5c! with ~5.5a! becoming

I 1e

a
→ ag

Sa

d~erf!

2g
, ~5.13!

consistently with the more general result Eq.~5.12!. The ana-
log of Eq. ~5.10! is Eq. ~5.6! and

ce

r /r
→ 1

gXae
, ~5.14!

and of Eq.~5.11! is

~DP* /mPa!

~r * mm2/mW!
'288k

d~exp!

d~erf!

GgDa

ag
S mm

Z*
D S T*

300 KD
3S l*

10 mmD S 408 kHz

g*
D , ~5.15a!
9-8
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FIG. 3. Dependence onr of DP/r for the seven values ofg given by2 log10g50(0.5)3: for smallr, DP/r is a decreasing function o
g; as each curve is traced out, starting fromr 501, a is increasing, andr, as a function ofa, has a maximum value, evident here for the fi
smaller values ofg. The parameters are as in Fig. 2 except thatz50 andg.0.
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1000ce

~r * mm2/mW!
'

5.11

ae
S 10 cm

X*
D S Pa

P*
D S T*

300 KD S l*

10 mmD
3S 408 kHz

g*
D , ~5.15b!

g'
1

ae
S g*

408 kHzD S Z*

mmD S 300 K

T*
D 1/2S m*

30 amuD
1/2

,

~5.15c!

where our standard value ofg* has been chosen arbitraril
in terms of the standard values ofZ* , T* , m* , that is,

~2b* 300 K/30 amu!1/2/mm'408 kHz. ~5.15d!

For smallr, DP/r andce /r are now essentially indepen
dent ofr. Figure 3 shows exact results forDP/r versusr for
seven values ofg using our standard quantities~again ex-
cludingDP* andr * ) and with parameters as in the captio
An interesting saturation effect, that is,r as a function ofa
having a maximum value, is clearly evident for the smal
values ofg, the curves ending as shown. This effect is p
sued in Fig. 4, in which the exactr is shown versusa for the
same conditions as in Fig. 3. Thatce also must saturate fol
lows from Eq.~5.12!, and exactce versusa is shown in Fig.
5, again for the same conditions.

The convergence of the curves in Figs. 4 and 5 for sm
a is a manifestation of the results~3.4!, ~5.12! and ~5.13!.
Related results forz50, which are illustrated in Fig. 5, ar
readily obtained, for example, limg→0 ce(a,g)5 1

2 , consis-
06340
.

r
-

ll

tently with Ref. @24#, and the value of lima→` ce(a,g). Al-
though of interest mathematically, the limit asa→` has no
real physical significance because our assumptions woul
violated for sufficiently largea, and analogous remarks app
to parts of the curves shown in Figs. 2–5.

VI. APPLICATIONS TO EXPERIMENTS

It seems to the present author that rigorous tests of the
should be made via experimental measurements ofDP as a
function ofr in order to test the results for SLID displayed
Sec. 5 and illustrated in Figs. 2 and 3. Ifce were measurable
then other independent tests could be made, as illustrate
Figs. 4 and 5. Such experimental data have not been
sented, but differences between predictions of the pre
theory and of previous theories may be illustrated by
limited comparisons which are possible at present.

Experimental results@12–16# have usually been presente
as essentially single values of a quantity denoted byD and
defined by

D5~DP/P!/Ce , ~6.1!

whereCe ~not our ce) is the concentration of excited mo
ecules which have just been excited but have not yet suffe
a velocity-randomizing collision, as clearly explained in R
@13#. In fact, D versusP is shown, but only in order to infer
a single free-molecule result for smallP.

A problem with this procedure is thatD itself is not an
experimentally measured quantity, but is presumably
tained frommeasuredvalues of (DP/P)/r by dividing by
9-9
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FIG. 4. Dependence ona of r for the seven values ofg in Fig. 3; r is an increasing function ofg for all a. The parameters are as i
Fig. 3.
s
e e

for
calculatedvalues ofCe /r . The present author is not clear a
to why this is done, and prefers to renormalize the giv
values ofD to values ofd, defined in Eq.~3.5!, in order to
use results such as Eqs.~5.6!, ~5.8!, and ~5.10! directly.
Hence we write

d5S Ce

r /r DD ~6.2!
06340
n
and hope that the values reported@14,16# for Ce /(r /r) are
correct; for FP geometry, withnk assumed negligible, we ar
told that @14,16#

S Ce

r /r D5
p1/2

X S Y

11YD . ~6.3!

We note that, although our computations have been made
the large-Y limit, we should not simplify Eq.~6.3! to that
n

FIG. 5. Dependence ona of ce

for the seven values ofg in Fig. 3;
ce is a decreasing function ofg
for all a. The parameters are as i
Fig. 3.
9-10
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THEORY OF LIGHT-INDUCED DRIFT. I. FLAT- . . . PHYSICAL REVIEW A 65 063409
case because it is due to the experimentalists, who use
~6.3! as it stands in order to calculate theirD from Eq.~6.1!;
thus, (11Y)/Y appears different from unity only in the con
text of translating the results presented in the experime
papers. It follows from Eqs.~6.1!–~6.3! that

D5~X/p1/2!~11Y21!d, ~6.4!

the important low-intensity special cases ofd being given by
Eqs. ~5.6! and ~5.10!. To compare specifically to previou
work, we write the analog of Eq.~6.4! which is given in Ref.
@16#, that is,

D̃5
2~11«!f~V!X

p1/2 S 11Y

Y DDã, ~6.5!

wheref(V) is the detuning function and« is a small cor-
rection depending onY @16#; the tildes have been inserted
avoid confusion with our quantities in Eq.~6.4!. For our
special case~b8! in Sec. V B 3, that is, the caseg50 with
small a, Eq. ~5.10a! in Eq. ~6.4! gives

1000Da

D
→2

500p3/2

kX~ ln a1s/2! S Y

11YD d~erf!

d~exp!
, ~6.6!

where we have putag5ae51 in the RHS, in accord with
experiment@14,16#.

Finally, we must interpretk, and an attempt is presente
in Appendix H, based on free-molecule-flow transitio
probability calculations. Assuming that it is valid to use E
~H5! here, we get

1000Da

D
→2

250p

X
F ln~2X!2 1

2

ln a1s/2
G S Y

11YD d~erf!

d~exp!
~6.7a!

→2
250p1/2

XvL
F ln~2X!2 1

2

ln a1s/2
G S Y

11YD , ~6.7b!

where we have used our prescription~5.7! for relating
d(exp)/d(erf) to vL to get Eq.~6.7b!. Thus, in any estimate
of values ofDa, our estimatesDa @Eq. ~6.7!# and previous
onesDã @Eq. ~6.5!# are related~on puttingD5D̃) as

Da

Dã
→2

~11«!

2
F ln~2X!2 1

2

ln a1s/2
Gf~V!

vL
. ~6.8!

Under general experimental conditions@12–16#,

f~V!'vL , ~6.9!

resulting in a nice simplification of Eq.~6.8!.
We recall that the results~6.6!–~6.8! come from the case

g50 with smalla. For the other special cases~a! and~c8! in
Secs. V B 1 and V B 5, that is, the cases of smalla with and
without z50, we should use Eq.~5.6! instead of Eq.~5.10a!
in Eq. ~6.4! to get the following analog of Eq.~6.8!:
06340
q.

al

.

Da

Dã
→~11«!

p1/2

g

Gg
@ ln~2X!2 1

2 #
f~V!

vL
, ~6.10!

which also simplifies nicely with Eq.~6.9!.
We now use the FP data of Refs.@14,16# to infer values of

Da and compare them to thoseDã obtained therein; we use
Eq. ~6.9! throughout the working. Reference@14# presents
data on theR(4,3) transition of13CH3F with both LiF~001!
and glass surfaces; the parameters required for Eq.~6.7! are,
in both cases,vL'0.50, X'105, Y'6, anda'0.010 from
Eq. ~5.11c! ~in which we user * 510 mW/6 mm2, P*
53.3 Pa andl* 59 mm), giving 1000Da/D'8.1. Refer-
ence@16# contains data on theR(4,k):k50,1,3,4 transitions
of 13CH3F and theP(5) transition of OCS, all on glass su
faces; nowvL'0.6, X'265, Y'4.2, anda'0.010~coinci-
dentally: r * 510 mW/4.2 mm2 here!, giving 1000Da/D
'3.0. The comparisons are shown in Table I.

In the author’s opinion, although our FP computatio
may reasonably model FP experiments, at least to a ce
degree, they do not correctly model CC experiments.
example, the CC analog of Eq.~6.6! cannot have logarithmic
behavior, and it would be meaningless to use a CC interp
tation of k therein. Therefore, we do not compare with C
work in this paper.

VII. CONCLUSION

Given the model equations~2.10! for LID, we have
shown how exact solutions may be obtained. For the cas
SLID, we have given explicit exact numerical and analytic
solutions, and specialized them to cases of present inte
Differences between the present and previous work h
been discussed, and some have been illustrated by lim
applications to experiments. However, almost any the
would agree with existing experimental data due to their li

TABLE I. Comparison of results from Eq.~6.7! with those from
Refs.@14,16# with FP geometry. TheP(5)' andP(5)i transitions
are for OCS with molecular angular momentumJ perpendicular
and parallel, respectively, to the surface; the other seven transi
are for 13CH3F. The caseR(4,3)* used a LiF~001! surface, and the

other eight cases used glass surfaces. The values ofD̃ quoted for
Ref. @16# have been estimated by the present author, and the co
sponding values ofDã recalculated, using«520.06 rather than
@16# «50; the value ofDã quoted@16# for the R(4,4) transition
does not seem to be consistent with Fig. 2 of Ref.@16#, and has

been reestimated here using the present author’s estimate ofD̃.

Reference Transition 2D̃ 21000Dã 21000Da

14 R(4,3)* 0.85 14 6.9
14 R(4,3) 0.17 2.8 1.4
16 R(4,3) 0.48 2.3 1.4
16 R(4,4) 0.70 3.4 2.1
16 R(4,0/1) 0.38 1.8 1.1
16 Q(12,3) 0.00 0.0 0.0
16 P(5)' -0.19 -0.9 -0.6
16 P(5)i 0.00 0.0 0.0
9-11
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FRANK O. GOODMAN PHYSICAL REVIEW A65 063409
ited nature, and to test this or any other theory more rig
ously, much more ‘‘fine-grained’’ experimental data a
needed, say, on the dependence on absorbed radiation i
sity of LID properties.

Our result that, for example,DP is not necessarily di-
rectly proportional to absorbed radiation intensity, even
the limit of low intensity, is of interest, as all previous wo
has assumed this proportionality; the deviation from prop
tionality is logarithmic, however, and if correct would n
doubt be difficult to detect experimentally. The ideas p
sented here concerning the interpretation of the transmis
parameterk are also liable to test, but again the deviati
from previous results is logarithmic.

Experimenters using FP geometry should bear in mind
large-X and large-Y assumptions made in FP computation
our applications to experiments~Sec. VI! are made with ex-
perimental values@14,16# of Y'6 and 4.2, respectively
which are unlikely to be sufficiently large to give reliab
comparisons, although the values ofX'105 and 265, respec
tively, are satisfactory.

It is hoped that other geometries and/or BLID will b
subjects of future parts of this series of papers.
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APPENDIX A: SOME DISTRIBUTIONS AND INTEGRALS
ENTERING THE ANALYSIS

The distributionsf d (d [ difference! and f s (s [ sum!
are defined by

f d~v:t !5 f g~v:t !2 f e~v:t !, ~A1a!

f s~v:t !5 f g~v:t !1 f e~v:t !. ~A1b!

We define the following integrals over the distribution
wherek stands forg,e,s,d:

I 1k~ t !5E E E d3vf k~v:t !, ~A2a!

I qk~ t !5E E E d3vq~vx! f k~v:t !, ~A2b!

I vk~ t !5E E E d3vv f k~v:t !, ~A2c!

I xk~ t !5E E E d3vvxf k~v:t !, ~A2d!
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I zk~ t !5E E E d3vuvzu f k~v:t !. ~A2e!

APPENDIX B: DIFFUSE VELOCITY DISTRIBUTION
FUNCTIONS

The distributionsm,M ,B discussed here are normalize
to unity. The usual bulk-Maxwellian distributionm(v) is
well known:

m~v!5p23/2e2v2
. ~B1!

The analog of Eq.~B1!, denoted byM (v), for molecules
crossing a fixed permeable surface oriented normal to thz
axis, is proportional touvzum(v) @25#, and is accordingly
given by

M ~v!5uvzum~v!/^uvzu&m , ~B2a!

where^j&m stands for the value ofj(v) averaged overm(v)
@21#. As ^uvzu&m5p21/2, we get

M ~v!5~ uvzu/p!e2v2
. ~B2b!

For molecules striking buffer particles in the bulk, the anal
of Eq. ~B1!, denoted byB(v), is naturally proportional to
vm(v), and is therefore given by

B~v!5vm~v!/^v&m . ~B3a!

As ^v&m52p21/2, we get

B~v!5~v/2p!e2v2
. ~B3b!

APPENDIX C: DERIVATION OF THE RELAXATION-TIME
FORMULA „4.9…

Integration of Eq.~2.10b! with respect tov gives

dce

dt
5I qd2~asezs^uvzu&e1abezbu^v&e1g!ce , ~C1!

whereI qd , ^uvzu&e , ^v&e , and of coursece , are functions of
t. PuttingI qd5(cg2ce)^q&d , we get

dce /dt5^q&d2ce /t, ~C2a!

with t defined from

t215asezs^uvzu&e1abezbu^v&e1g12^q&d . ~C2b!

Assuming that the distributionsf k are approximately Max-
wellian, then

^q&d'q0~erfvb2erfva!/2 ~C3!

and Eq.~4.9! follows.
9-12
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FIG. 6. Our functionG(u) defined in appendix D, in which expansions for small and largeu are given, Eq.~D2! @19#.
ts,
APPENDIX D: THE FUNCTION G„u… AND SOME
OF ITS PROPERTIES

The functionG(u) is defined, foru.0, by

G~u!5
2u

p1/2E0

`

dx
e2x2

~x1u!
~D1!

with G(0)50, and we includeG(u) under the heading
‘‘closed form.’’ The expansions ofG(u) for small and large
values ofu are as follows@19#:

G~u!52
2u ln u

p1/2
2

su

p1/2
12u21•••, ~D2a!

G~u!512
1

p1/2u
1

1

2u2
1•••, ~D2b!

wheres('0.58) is Euler’s constant. Thus,G(u) is continu-
ous for 0<u,`, and has limit unity for largeu. We show
G(u) in Fig. 6. A function complementary toG(u), denoted
by H(u), is defined by

H~u!512G~u!. ~D3!

APPENDIX E: INTEGRALS IN THE ANALYTICAL
SOLUTION FOR SLID WITH FP GEOMETRY

We defineXj andYj in terms of the eight constants~5.2!
as follows:

2CDXj5CB2DAj , ~E1a!

2CFYj5CEj2FAj . ~E1b!
06340
Quantitiesa andg are defined by

a5Dq0 /C5~ag1ae!q0 /agae , ~E2!

g5Fg/C5g/ae . ~E3!

A quantity d(exp) is defined by

d~exp!5exp~2va
2!2exp~2vb

2!, ~E4!

and readers are reminded of the analogous definition~4.10!
of d(erf). Finally in this development of notation,G(a),
G(g), andG(a1g), and their complementary counterpar
are written in abbreviated forms as follows:

Gj5G~j!, ~E5a!

Hj5H~j!, ~E5b!

wherej stands fora,g, or w, with w defined by

w5a1g. ~E6!

With the definitions

Wj5~aXj1gYj !/w, ~E7!

J522d~erf!, ~E8!

the results of calculating the required integrals~Appendix A!
may be written as follows:

I 1 j5Aj /C1WjGwd~erf!1JYjGg , ~E9a!

I q j5~Aj /2C1WjGw!q0 d~erf!, ~E9b!
9-13
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I x j5~WjGw2YjGg! d~exp!/p1/2, ~E9c!

I z j5Aj /p1/2C1wWjHw d~erf!1gJYjHg . ~E9d!

APPENDIX F: EXACT RESULTS FOR THE GENERAL
CASE OF SLID WITH FP GEOMETRY

With j[I 1e , I qd , andI xs , we write

j5j (num)/j (den) ~F1!

in an obvious notation@21#. With the definitions in Appendix
E and the definitions

y5p1/2~12z!, ~F2!

Da5ag2ae , ~F3!

Sa5ag1ae , ~F4!

V5y@wGg2~g1aGg!Gw#d~erf!/2, ~F5!

K5z1ygHg , ~F6!

the results may be written as follows:

I 1e
(num)5~ywHgHw1KGw1V!aagd~erf!, ~F7!

I qd
(num)5@K~w2aGw!1gV#aagaed~erf!, ~F8!

I xs
(num)5~KGw1V!aDad~exp!, ~F9!

I 1e
(den)52KwSa1$azGwDa1y@a~2wag2aGgDa!Hw

2g~2aae1gSa!~Hg2Hw!#1aVDa%d~erf!,

~F10!

I qd
(den)5I xs

(den)/p1/25I 1e
(den). ~F11!

APPENDIX G: EXACT RESULTS FOR THE CASE gÄ0,
zÌ0 OF SLID WITH FP GEOMETRY

With the notation used in Appendix F, the results are E
~F11! and as follows:
or

-

tt.
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I 1e
(num)5~zGa1yaHa!agd~erf!/2, ~G1!

I qd
(num)5zaHaagaed~erf!/2, ~G2!

I xs
(num)5zGaDad~exp!/2, ~G3!

I 1e
(den)5zSa1~2yaHaag1zGaDa!d~erf!/2. ~G4!

APPENDIX H: CHOICE OF THE PARAMETER k

We use results from free-molecule-flow, with diffuse su
face scattering (a51), transition-probability calculations fo
an open cell lying between two equilibrium reservoirs w
number-density differenceDr and pressure differenceDP.
The transmission probability of a molecule across the sys
is denoted byC, and the number ratedN/dt of molecules
which cross the cell is given by12 CADr^uvxu&m , that is
~Appendix B!,

dN/dt5CADr/2p1/2, ~H1!

whereA is the flow cross-sectional area. The average vel
ity of molecules in the cell isI xs in the x direction, giving

dN/dt5ArI xs . ~H2!

Now Eqs.~3.1!, ~H1!, and~H2! give our interpretation ofk
in the form

kX52p1/2/C. ~H3!

A good compilation of values ofC for several systems
geometries is given by Berman@26#; for our FP geometry
@26#,

C5~ ln~2X!2 1
2 !/X1O~ ln X/X!2, ~H4!

where we choose the large-X expansion. We note thatY is
absent because the limit of largeY is understood. From Eqs
~H3! and ~H4! we get

k→2p1/2/~ ln~2X!2 1
2 !, ~H5!

and our standard value ofk is that in Eq. ~H5! with X
5100.
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