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Spectral fitting method for the solution of time-dependent Schrdinger equations:
Applications to atoms in intense laser fields
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A spectral fitting method for solving the time-dependent Sdimger equation has been developed and
applied to the atom in intense laser fields. This method allows us to obtain a highly accurate time-dependent
wave function with a contribution from the high-order term &ft. Moreover, the time-dependent wave
function is determined on a small number of discrete mesh points, thus making calculations simple and
accurate. This method is illustrated by computing wave functions and harmonic generation spectra of a model
atom in laser fields.
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[. INTRODUCTION avoiding complex calculations of many matrix elements. An-
other simple grid points method is split the operator one, in
The multiphoton phenomena of atoms in intense lasewhich the time-dependent wave function is propagated along
fields have been observed in experimdnts3]. The pertur- time on discrete grid pointg35-40,42, thus allowing the
bative quantum theoretical approaches are unable to explafvaluation of matrix elements to be avoided too. By using
all these phenomena. Among those quantum nonperturbativ€ pseudospectral split-operator mettidd 42, the time-
methods, the early analytic methods can obtain some analyt@ependent wave function can be more accurately determined

or semianalytic results by using a simple Coulomb potentiaP™ SParser grid points than on the traditional split operator.
model or rough approximatiorig—17], of course, the results Both the linear-least-squares fitting and pseudospectral split-

are not very accurate. The time-independent non-HermitiaRPerator methods POSSESS advantages of numerical accuracy
Floquet Hamiltonian methofL3—15 is an important one of and computation efficiency. But the orders of accuracy of the

2 3 H H
accurate nonperturbative basis set expansion approaches.tY}‘nO methods are A1) and (At)”, respectively. It requires

. . . . much more complex calculations to consider contribution
this method, solving the time-dependent Sclimger equa- from the high-order term of\t,

tion is. reduced tp the solution of a set of coupled Iinear In this paper we introduce a spectral fitting method. In
equations. But this approach can be used only for- atoms I jq method, the time-dependent wave function is propagated
perlodlp fields, and cannoF be used to trgat atoms in chlrpe n discrete and far between grid points, thus avoiding the
laser fields. Another basis set expansion approach is thgyicylations of many matrix elements. By using the Taylor
close-coupling method16-19,21-24% in which the time-  geries methofi20], the high accuracy of wave function with

dependent wave function is expanded in some timey contribution from the high-order item aft, is obtained
independent basis set and the problem is reduced to solvingjth simple calculations.

the time-dependent expansion coefficients by a set of

coupled first-order differential equations in time. This ap- Il. METHOD

proach is suitable for laser fields with any time and space

profile. However, it does require the evaluation of a large We illustrate this method by a one-dimensional afe3]
number of matrix elements, and solving a set of coupledn a laser field. In the dipole approximation, the time-
differential equations, which makes the calculations complexiependent Schdinger equation in atomic units is

when large numbers of basis sets are used. The Crank-

Nicholson method is one of the nonperturbative direct nu- OW(r,t) . ~

merical grid approachef?5,26. Evaluation of matrix ele- S =[Ho(n+H(N]¥(r.v, @)
ments can be avoided by this method, but the accurate

representation of a rapidly oscillating wave function requiresvhereH, andH, are

dense grid points, thus computer memory and time consum-

ing is tremendous. Th&-matrix-Floquet method is another . 1 d2 1

commonly used approacf27-32. It possesses good nu- Ho(f):—zﬁ— ﬁ (2

merical accuracy, but needs much memory and CPU con-
suming. Recently, a linear-least-squares-fitting method has A
been proposedi33,34. In this method, the time-dependent H.(r)=—E(t)r sin(wt). 3
wave function is expanded in a basis set, but the expansion

coefficients are determined by the linear-least-squares fittinGpenerally, the wave function is considered in the range of
of the wave function on discrete mesh poif4], thus [—RpaxRnad- N order to map this large domain
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[ — Rmax:Rmad 10 [—1,1], a suitable algebraic mapping for N4 (—2)

atomic structure calculations is given by the following form: Co(t)=— Z — G, (13)
X
r=r(x)=Ry—Fp— (4 and
1+ =2 —x2

Rmax N=1., (1)

1-(-1)
_ _ _ j Cu(t)== 2, —5—Ci(t). (12

whereR, is the mapping parameter. This mapping allows the i=1

dense grid points near the nucleus and sparse ones far from

the nucleus, thus leading to a more accurate wave functiolhe expansion coefficient€;(t) are obtained by Gauss-
and the use of a considerably smaller number of grid pointéegendre-Lobatto quadrature

than those of the equal-spacing grid method. But it is neces-

sary to choose a suitable value Rf. For the cases where 12i+1
both localized and very extended wave functions are in- Ci(t):j TI#(X,I)Pi(X)dX
volved, it is suitable to increase the value Rf. Then by -t
defining N-15i11
=2 5 Wis(x)P(x)), (13)
WLr(x),t] )=t
Y1) = ——, (5)
r'(x) whereW; andx; are integral weights and collocation points,

respectively.x; are zeros ofP((x), andW; possesses the

the time-dependent Schiimger equation can be transformed . )
following form:

into the following form:

2P g0 + R0 190 © w2 14
i = X X X,t), = .
ot 0 (COly PUN(N+D) [Py(x))]?
Flo(x) = — 1 1 d_z B 1 Equation(10) is substituted by Eq¢11), (12), (13), and(14),
0 2 [r'(x)]? dx? [r()2+1 and the wave functions are expanded on collocation points,
Ro N-1
131+ RmaJ P =2, F00u(x;.0), (15
- 2 ’ (7) J::L
14 0 +x2) [r (x)]?
Rmax wheref;(x) is the cardinal function given by
H,(x)=—E(t)r(x)sin( wt+ ¢), 8 1 x2—1)P}(X)
() =—E@r(osin(wt+¢) ® 0= ( SR
i ! N(N+1)Pp(x;) X=X
wherer’(x) =dr(x)/dx. The following absorber:
r(x)+R 1 and possesses the unique property on grid pofp(s;)
cod® 0 ol r(x)<—Ry = §;j . In the polynomial approximation, the time-dependent
| 2(Rmax— Ro) Schralinger equation can be written on grid poirdts,,,m
flroo]=4 1, —Ra<r(x)<Ra (9 =1N-1}as
i R )
cosm‘%w , T(X)=Ra, ap(x,t) M .
| 2(Rmax—Ro) | . = 2 [Fo00+H (0] () (X 1)
(9t X=X n=1 X=X
is used to filter out the wave function reaching the outward " m
boundary. So, the boundary condition of the wave function is (17)
Y(—=1t)=y¢(1t)=0. For the normal spectral method i f e
[44,45, the wave function can be approximately expanded ™" the matrix Hinn=Hi) f(¥)[x=x,,
with N Legendre polynomials, =—E(t)r(Xy)sin(wt) dyy is diagonal; it can be defined as a
vector H!.= — E(t)r (x,,)sin(wt), and the values of theth
N-1

derivative of the wave function on grid points can
#(x,1) =Cp(t) + 21 Ci(OPi(X)+Cn(H)PN(X). (100 pe expressed as a vectory™=[a"y(xy,t)/at",
- Y(xy ) 1at", . " P(Xy-1,t)/0t"]. Defining an opera-
If Nis odd, under the boundary conditidBg(t) andCy(t)  tion matrix Hp, .= Ho(X) fr(X)]y=x , the matrix elements can
are expressed as be given analytically as
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| 5( ROK)
N(N+1) 1 1 LIt -
2 ’ - - 2 ! -
HO — 6(1—xq) [r'(xn)]* r¥(xn) +1 1+—Ri°ax+xﬁ) [r'(x,)]? , (18)

—1)"““\/% ! ! m#n
( Wan (X = Xp)2 [ (X) 12

\

Imposing the time-dependent ScHiager equation, the de- sic conclusion$46,47. In Fig. 2, we show the convergence
rivatives of the wave function can be obtained by simplyof the wave functions. The agreement between wave func-
multiplying matrix and vector, using the following recur- tions obtained by using 400 and 600 grid points is quite
rence formula: good. For other laser field parameteles;=0.08 a.u andv
=0.06 a.u, we take the mapping paramet&gs= 200,
. Rmax=200 a.u. The harmonic generation spectra obtained by
(¢ 1) = nzl HE (X0 )+ Hih(Xn 1), (19) using 600 grid points are presented in Fig. 3. The peaks of
harmonic generation spectra are cut off quickly at the 35th

N—-1

N-1 harmonic order. This agrees with classic conclusi@i@s47]
i (X 1) = >, HO D (X )+ HE D (X 1) too.
n=1 Now we analyze the errors of our method. The errors stem
+HD (x 1) (20 from two aspects. The first one is space operation, such as
m mes approximate expansion presented in E)), and multiply-
N—1 ing matrix and vector presented in E4%9), (20), and(21).
1 (K) _ 0 ,(K-1) t o (K-1) The second one is from the time propagation of the wave
I X, t)= H Xn,t)+H Xt : . .
Yt 1) n§="1 mnt/ O O+ Hid 2 Xin ) function presented in Eq22). The errors from different
K1 sources are defined as space error and time error, respec-

tively. In the Legendre-polynomials-expansion approxima-
tion presented in Eq10), Eq. (13) is exact according to the
properties of Gauss quadrature. Imposing the time-dependent
whereH!{" =d"H! /dt" is thenth derivative ofH!, . There- ~ Schrainger equation, Eqs18), (19—(21) are also exact;
fore, the wave function at+ At can be obtained by the therefore, the space-error stems only from Legendre-
Taylor series methof20], polynomials expansion, and has nothing to do with other
calculation processes. It makes the time-propagation calcula-
K1 tions highly numerically stable and highly accurate. On the
Y(xj 1A= n—,d/(”)(xj DAY +O[(AHKT. other hand, the time propagation of the wave function ftom

n=0
(22)

+ 21 (K=HWD &I D00, (D)
P

IIl. RESULTS AND DISCUSSION

To illustrate the present method, we use the laser field
profile

£ 07
)
t 5
Eo sinz(—) sinwt, O0<t<3T B 24
E(t)= 6T (23) S
Ey sinwt, t>3T, T 4l
whereE, is the amplitude of the laser field, afd=27/ w. .. W

At first, we consider these laser field parameteks;
=0.1 a.u andw=0.148 a.u. At this frequency, it takes
about five photons to ionize the model atom from the ground ~ ® S .
stateq 34]. In our calculations, we take mapping parameters Hamonic order(n)

Ry=200, R;,,,=300 a.u, and propagate the timette 16T.

In Fig. 1, we show the harmonic generation spectra obtained F|G. 1. Harmonic generation spectra obtained by using 600 grid
by 600 grid points. The peaks occur at the odd harmonigoints, with mapping parameterR,= 200, R,,=300 a.u., and
orders only, and are quite visible up to the 13th harmoniclaser field of strengtfE,=0.1 a.u., »=0.148 a.u.; propagation
This agrees with other numerical calculatidB4] and clas-  time, t=16T.
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FIG. 2. Logarithm(to the base 10probability for model atom in FIG. 3. Harmonic generation spectra obtained by using 600 grid

a laser field of strengtE,=0.1 a.u.,0=0.148 a.u., and=16T.  points, with mapping parameter®,= 200, Ry,,~=200 a.u., and
The solid line presents the result obtained by using 600 grid pointdaser field of strengttE,=0.08 a.u.,w=0.06 a.u.; propagation
and the dotted one presents the result obtained by using 400 griime, t=16T.

points.

the contribution from the high-order term dft, which is

to t+ At presented in Eq(22), is an approximation of the difficult to obtain by other methods, can be easily obtained
Taylor series; therefore, the contribution from the high-orderby using the Taylor series and a few multiplications of matrix
item of At can be considered by using suitakleThis result and vectors(d) our calculations are simple and less time
in few time errors and a high accuracy of time-propagationconsuming, because of the time propagation being reduced to
calculations. a few matrix-vector products. We have compared the time

In summary, we have presented a spectral fitting methodonsumption of the linear-least-squares-fitting method and
for solving the time-dependent Schiinger equations. There our method. In our method, it takes about 15 min CPU to
are four advantages to our methad) the time-dependent obtain the result presented in Fig. 1 by using 600 grid points
wave function can be determined on sparse discrete gridnd “alpha500au” workstation. But in linear least squares, it
points by using suitable mapping and Gauss quadrature colakes about 13 h CPU.
location points, as is presented in E@®.and(13); (b) in the This method has been illustrated by calculations for a
Legendre-polynomials-expansion approximation, the operasne-dimension problem, but it can be conveniently extended
tion matrix can be exactly conducted by analytical methodsto a three-dimensional real atomic system. Detailed deduc-
thus achieving numerical stability with little space err@);  tions and discussions are in progress.
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