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Spectral fitting method for the solution of time-dependent Schro¨dinger equations:
Applications to atoms in intense laser fields
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A spectral fitting method for solving the time-dependent Schro¨dinger equation has been developed and
applied to the atom in intense laser fields. This method allows us to obtain a highly accurate time-dependent
wave function with a contribution from the high-order term ofnt. Moreover, the time-dependent wave
function is determined on a small number of discrete mesh points, thus making calculations simple and
accurate. This method is illustrated by computing wave functions and harmonic generation spectra of a model
atom in laser fields.
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I. INTRODUCTION

The multiphoton phenomena of atoms in intense la
fields have been observed in experiments@1–3#. The pertur-
bative quantum theoretical approaches are unable to exp
all these phenomena. Among those quantum nonperturba
methods, the early analytic methods can obtain some ana
or semianalytic results by using a simple Coulomb poten
model or rough approximations@4–12#, of course, the results
are not very accurate. The time-independent non-Hermi
Floquet Hamiltonian method@13–15# is an important one of
accurate nonperturbative basis set expansion approache
this method, solving the time-dependent Schro¨dinger equa-
tion is reduced to the solution of a set of coupled line
equations. But this approach can be used only for atom
periodic fields, and cannot be used to treat atoms in chir
laser fields. Another basis set expansion approach is
close-coupling method@16–19,21–24# in which the time-
dependent wave function is expanded in some tim
independent basis set and the problem is reduced to so
the time-dependent expansion coefficients by a set
coupled first-order differential equations in time. This a
proach is suitable for laser fields with any time and sp
profile. However, it does require the evaluation of a lar
number of matrix elements, and solving a set of coup
differential equations, which makes the calculations comp
when large numbers of basis sets are used. The Cr
Nicholson method is one of the nonperturbative direct
merical grid approaches@25,26#. Evaluation of matrix ele-
ments can be avoided by this method, but the accu
representation of a rapidly oscillating wave function requi
dense grid points, thus computer memory and time cons
ing is tremendous. TheR-matrix-Floquet method is anothe
commonly used approach@27–32#. It possesses good nu
merical accuracy, but needs much memory and CPU c
suming. Recently, a linear-least-squares-fitting method
been proposed@33,34#. In this method, the time-depende
wave function is expanded in a basis set, but the expan
coefficients are determined by the linear-least-squares fit
of the wave function on discrete mesh points@34#, thus
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avoiding complex calculations of many matrix elements. A
other simple grid points method is split the operator one
which the time-dependent wave function is propagated al
time on discrete grid points@35–40,42#, thus allowing the
evaluation of matrix elements to be avoided too. By us
the pseudospectral split-operator method@41,42#, the time-
dependent wave function can be more accurately determ
on sparser grid points than on the traditional split opera
Both the linear-least-squares fitting and pseudospectral s
operator methods possess advantages of numerical acc
and computation efficiency. But the orders of accuracy of
two methods are (nt)2 and (nt)3, respectively. It requires
much more complex calculations to consider contribut
from the high-order term ofnt.

In this paper we introduce a spectral fitting method.
this method, the time-dependent wave function is propaga
on discrete and far between grid points, thus avoiding
calculations of many matrix elements. By using the Tay
series method@20#, the high accuracy of wave function wit
a contribution from the high-order item ofnt, is obtained
with simple calculations.

II. METHOD

We illustrate this method by a one-dimensional atom@43#
in a laser field. In the dipole approximation, the tim
dependent Schro¨dinger equation in atomic units is

i
]C~r ,t !

]t
5@Ĥ0~r !1Ĥt~r !#C~r ,t !, ~1!

whereH0 andHt are

Ĥ0~r !52
1

2

d2

dr2
2

1

Ar 211
, ~2!

Ĥt~r !52E~ t !r sin~vt !. ~3!

Generally, the wave function is considered in the range
@2Rmax,Rmax#. In order to map this large domai
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@2Rmax,Rmax# to @21,1#, a suitable algebraic mapping fo
atomic structure calculations is given by the following form

r 5r ~x!5R0

x

11
R0

Rmax
2x2

, ~4!

whereR0 is the mapping parameter. This mapping allows
dense grid points near the nucleus and sparse ones far
the nucleus, thus leading to a more accurate wave func
and the use of a considerably smaller number of grid po
than those of the equal-spacing grid method. But it is nec
sary to choose a suitable value ofR0. For the cases wher
both localized and very extended wave functions are
volved, it is suitable to increase the value ofR0. Then by
defining

c~x,t !5
C@r ~x!,t#

Ar 8~x!
, ~5!

the time-dependent Schro¨dinger equation can be transforme
into the following form:

i
]c~x,t !

]t
5@Ĥ0~x!1Ĥt~x!#c~x,t !, ~6!

Ĥ0~x!52
1

2

1

@r 8~x!#2

d2

dx2
2

1

A@r ~x!#211

2

1.5S 11
R0

Rmax
D

S 11
R0

Rmax
1x2D 2

@r 8~x!#2

, ~7!

Ĥt~x!52E~ t !r ~x!sin~vt1w!, ~8!

wherer 8(x)5dr(x)/dx. The following absorber:

f @r ~x!#55
cos1/8F r ~x!1R0

2~Rmax2R0!
pG , r ~x!<2RA

1, 2RA,r ~x!,RA

cos1/8F r ~x!2R0

2~Rmax2R0!
pG , r ~x!>RA ,

~9!

is used to filter out the wave function reaching the outw
boundary. So, the boundary condition of the wave function
c(21,t)5c(1,t)50. For the normal spectral metho
@44,45#, the wave function can be approximately expand
with N Legendre polynomials,

c~x,t !5C0~ t !1 (
i 51

N21

Ci~ t !Pi~x!1CN~ t !PN~x!. ~10!

If N is odd, under the boundary condition,C0(t) andCN(t)
are expressed as
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C0~ t !52 (
i 51

N21
11~21! i

2
Ci~ t !, ~11!

and

CN~ t !52 (
i 51

N21
12~21! i

2
Ci~ t !. ~12!

The expansion coefficientsCi(t) are obtained by Gauss
Legendre-Lobatto quadrature

Ci~ t !5E
21

1 2i 11

2
c~x,t !Pi~x!dx

5 (
j 51

N21
2i 11

2
Wjc~xj !P~xj !, ~13!

whereWj andxj are integral weights and collocation point
respectively.xj are zeros ofPN8 (x), and Wj possesses the
following form:

Wj5
2

N~N11!

1

@PN~xj !#
2

. ~14!

Equation~10! is substituted by Eqs.~11!, ~12!, ~13!, and~14!,
and the wave functions are expanded on collocation poin

c~x,t !5 (
j 51

N21

f j~x!c~xj ,t !, ~15!

where f j (x) is the cardinal function given by

f j~x!5
1

N~N11!PN~xj !

~x221!PN8 ~x!

x2xj
, ~16!

and possesses the unique property on grid pointsf j (xi)
5d i j . In the polynomial approximation, the time-depende
Schrödinger equation can be written on grid points$xm ,m
51,N21% as

i
]c~x,t !

]t U
x5xm

5 (
n51

N21

@Ĥ0~x!1Ĥt~x!# f n~x!c~xn ,t !U
x5xm

.

~17!

For the matrix Hmn
t 5Ĥt(x) f n(x)ux5xm

52E(t)r (xm)sin(vt)dmn is diagonal; it can be defined as
vector Hm

t 52E(t)r (xm)sin(vt), and the values of thenth
derivative of the wave function on grid points ca
be expressed as a vectorc (n)5@]nc(x1 ,t)/]tn,
]nc(x2 ,t)/]tn, . . . ,]nc(xN21 ,t)/]tn#. Defining an opera-
tion matrixHmn

0 5Ĥ0(x) f n(x)ux5xm
, the matrix elements can

be given analytically as
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Hmn
0 55 N~N11!

6~12xn
2!

1

@r 8~xn!#2
2

1

Ar 2~xn!11
2

1.5S 11
R0

Rmax
D

S 11
R0

Rmax
1xn

2D 2

@r 8~xn!#2

, m5n

~21!n1mAWn

Wm

1

~xm2xn!2

1

@r 8~xm!#2
, mÞn

. ~18!
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Imposing the time-dependent Schro¨dinger equation, the de
rivatives of the wave function can be obtained by simp
multiplying matrix and vector, using the following recu
rence formula:

ic (1)~xm ,t !5 (
n51

N21

Hmn
0 c~xn ,t !1Hm

t c~xm ,t !, ~19!

ic (2)~xm ,t !5 (
n51

N21

Hmn
0 c (1)~xn ,t !1Hm

t c (1)~xm ,t !

1Hm
t(1)c~xm ,t !, ~20!

ic (K)~xm ,t !5 (
n51

N21

Hmn
0 c (K21)~xn ,t !1Hm

t c (K21)~xm ,t !

1 (
j 51

K21

~K2 j !Hm
t( j )c (K2 j 21)~xm ,t !, ~21!

whereHm
t(n)5dnHm

t /dtn is thenth derivative ofHm
t . There-

fore, the wave function att1nt can be obtained by the
Taylor series method@20#,

c~xj ,t1nt !5 (
n50

K
1

n!
c (n)~xj ,t !~nt !n1O@~nt !K11#.

~22!

III. RESULTS AND DISCUSSION

To illustrate the present method, we use the laser fi
profile

E~ t !5H E0 sin2S pt

6TD sinvt, 0<t<3T

E0 sinvt, t.3T,

~23!

whereE0 is the amplitude of the laser field, andT52p/v.
At first, we consider these laser field parameters:E0
50.1 a.u andv50.148 a.u. At this frequency, it take
about five photons to ionize the model atom from the grou
states@34#. In our calculations, we take mapping paramet
R05200, Rmax5300 a.u, and propagate the time tot516T.
In Fig. 1, we show the harmonic generation spectra obtai
by 600 grid points. The peaks occur at the odd harmo
orders only, and are quite visible up to the 13th harmon
This agrees with other numerical calculations@34# and clas-
06340
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sic conclusions@46,47#. In Fig. 2, we show the convergenc
of the wave functions. The agreement between wave fu
tions obtained by using 400 and 600 grid points is qu
good. For other laser field parameters:E050.08 a.u andv
50.06 a.u, we take the mapping parametersR05200,
Rmax5200 a.u. The harmonic generation spectra obtained
using 600 grid points are presented in Fig. 3. The peaks
harmonic generation spectra are cut off quickly at the 3
harmonic order. This agrees with classic conclusions@46,47#
too.

Now we analyze the errors of our method. The errors st
from two aspects. The first one is space operation, suc
approximate expansion presented in Eq.~10!, and multiply-
ing matrix and vector presented in Eqs.~19!, ~20!, and~21!.
The second one is from the time propagation of the wa
function presented in Eq.~22!. The errors from different
sources are defined as space error and time error, res
tively. In the Legendre-polynomials-expansion approxim
tion presented in Eq.~10!, Eq. ~13! is exact according to the
properties of Gauss quadrature. Imposing the time-depen
Schrödinger equation, Eqs.~18!, ~19!–~21! are also exact;
therefore, the space-error stems only from Legend
polynomials expansion, and has nothing to do with oth
calculation processes. It makes the time-propagation calc
tions highly numerically stable and highly accurate. On t
other hand, the time propagation of the wave function fromt

FIG. 1. Harmonic generation spectra obtained by using 600
points, with mapping parameters:R05200, Rmax5300 a.u., and
laser field of strengthE050.1 a.u., v50.148 a.u.; propagation
time, t516T.
3-3
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to t1nt presented in Eq.~22!, is an approximation of the
Taylor series; therefore, the contribution from the high-ord
item of nt can be considered by using suitableK. This result
in few time errors and a high accuracy of time-propagat
calculations.

In summary, we have presented a spectral fitting met
for solving the time-dependent Schro¨dinger equations. There
are four advantages to our method:~a! the time-dependen
wave function can be determined on sparse discrete
points by using suitable mapping and Gauss quadrature
location points, as is presented in Eqs.~5! and~13!; ~b! in the
Legendre-polynomials-expansion approximation, the ope
tion matrix can be exactly conducted by analytical metho
thus achieving numerical stability with little space error;~c!

FIG. 2. Logarithm~to the base 10! probability for model atom in
a laser field of strengthE050.1 a.u.,v50.148 a.u., andt516T.
The solid line presents the result obtained by using 600 grid po
and the dotted one presents the result obtained by using 400
points.
ys

TP

r,

s.
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the contribution from the high-order term ofnt, which is
difficult to obtain by other methods, can be easily obtain
by using the Taylor series and a few multiplications of mat
and vectors,~d! our calculations are simple and less tim
consuming, because of the time propagation being reduce
a few matrix-vector products. We have compared the ti
consumption of the linear-least-squares-fitting method
our method. In our method, it takes about 15 min CPU
obtain the result presented in Fig. 1 by using 600 grid poi
and ‘‘alpha500au’’ workstation. But in linear least squares
takes about 13 h CPU.

This method has been illustrated by calculations fo
one-dimension problem, but it can be conveniently exten
to a three-dimensional real atomic system. Detailed ded
tions and discussions are in progress.

s,
rid

FIG. 3. Harmonic generation spectra obtained by using 600
points, with mapping parameters:R05200, Rmax5200 a.u., and
laser field of strengthE050.08 a.u.,v50.06 a.u.; propagation
time, t516T.
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