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Thermodesorption of impurities from a transparent crystal surface

Vladimir N. Strekalov1,* and Dmitry V. Strekalov2,†

1Department of Physics, Moscow State University of Technology ‘‘STANKIN,’’ 3a Vadkovsky per., Moscow 101472, Russia
2JPL, MS 300-123, 4800 Oak Grove Drive, Pasadena California 91109

~Received 5 November 2001; published 19 June 2002!

Thermodesorption of impurities from a dielectric crystal surface can be stimulated by absorption of high-
frequency phonons, e.g., Debye phonons. We study this process in the framework of a truncated-harmonic-
oscillator model and find the desorption rate by methods of quantum statistics. In this paper, we present the
estimates for the mean desorption rates that are simple, realistic, and at the same time allow us to predict a
series of physical effects in thermodesorption processes.
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I. INTRODUCTION

Many of the modern high technologies are based upon
processes caused by intense external impacts in solids o
their surfaces. The effects of laser, plasma, and particle b
impacts are believed to be the most pertinent to this cont
All such impacts lead to nonequilibrium transport proces
whose physical description is often unclear or incomple
The most typical examples of such processes are cata
chemical reactions on solid surfaces, desorption and su
mation, generation of defects and surface~geometric! struc-
tures, surface and volume nonequilibrium diffusion, a
others.

A physical description of these kinds of processes can
be based on the standard quantum-mechanical method
most such problems, the variation of particles’ energy a
momentum distribution functions needs to be taken into
count, which requires the use of more complex quantu
statistical or quantum-kinetic methods. Appropria
quantum-kinetic equations therefore need to be derived
solved for stimulated~nonthermal! processes, such as phot
desorption or electron-beam sublimation, as well as for
ditionally ‘‘thermal’’ processes taking place in the presen
of intense external perturbations. For example, photosti
lated processes are often accompanied by heating of the
material, which in turn causes various thermal but noneq
librium processes.

The lucky exceptions from the above general trend are
processes of photodesorption and thermodesorption of im
rities from a solid surface~as well as the sublimation of th
solid’s own atoms!. The desorbed or sublimated particl
usually depart into vacuum and do not have any ‘‘back
tion’’ on the initial system. This eliminates the need for a fu
quantum-statistical description and allows us to consi
quasiequilibrium distribution functions for the initial syste
of particles. For the ‘‘heavy’’ atoms or ions we can ado
quasiclassical Boltzmann distribution. Yet a description
even these ‘‘simple’’ processes remains very complicated
is often carried out by phenomenological methods becaus
the difficulties in constructing the initial physical model fo
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the nonequilibrium processes. Hence carrying out the qu
tum calculations in the analytical form all the way to the fin
results that can be compared to experiment is not usu
possible. With that in mind, we study the process of therm
desorption of impurities from a transparent crystal surfa
~from a dielectric! as an extension of our earlier work@1#.
We will utilize a simple model of a truncated harmonic o
cillator, which is widely used for description of various pro
cesses involving bound atoms or molecules~e.g., see Refs
@2–4# and quotations therein!. In this model, thermodesorp
tion is caused by stochastic forces that arise from the pho
emission and absorption.

The truncated-oscillator model allows for an analytic
description of an impurity bound on the crystal surface w
very few parameters, all of which are well known@1#. This is
one important aspect that contrasts the present work as
as Ref.@1# from Refs.@2,3#, describing thermal desorption
and from Ref.@4# describing photodesorption. In Ref.@2#, a
mixed quantum-classical description is used, similar to
approach proposed in Ref.@5#. Its drawback is that the intro
duced friction kernel spectrumg(t) is not sufficiently well
known. As a result, the final expressions of Ref.@2# depend
on the absolute value square of this kernel’s Fourier com
nents, but the way these parameters can be estimated i
specified. The choice of functional forms forg(t) ~exponen-
tial and Gaussian functions@2#! is not justified, and in any
case does not provide the values of preexponential par
eters. Therefore the estimates in Ref.@2# may be considered
as mere illustrations. Another parameter that is not num
cally determined is the oscillator frequencyV ~in our ap-
proach, this frequency and the number of levels in the pot
tial well are derived from the size of the well and th
dissociation energy!.

An interesting and relevant work@3# reports the study of a
variety of thermal processes on a metal surface, includ
thermal desorption. In Ref.@3#, a very solid and complex
theory is developed, that describes interaction of chemic
adsorbed particles with the electron and phonon system
the metal. The particle is assumed to be an impurity ion w
some effective charge, some surface-binding energy,
with the equilibrium distanced1 from the surface. The ion is
bound in the surface-potential well that has a set of disc
energy levels. Transitions between these levels~not broad-
ened! are studied in the harmonic approximations, with s
©2002 The American Physical Society01-1
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lection rules n→n61. The anharmonic transitionsn→n
62 that are 100 to 1000 times less probable than the
monic transitions are also considered. The mean first pas
time ~after which the ion reaches the upper level, or t
predissociation state! is then determined. This time is com
pared with the desorption rate. The analysis@3# largely re-
produces and generalizes the results by Montroll and Sh
@6#, and by Kim@7#.

Calculations in Ref.@3# are carried out for two models
for the Morse-potential well, and for the truncated harmo
oscillator. The latter model is considered to be less accu
in Ref. @3#. However, analysis of the numerical results fro
Ref. @3# makes us take this statement carefully. The plots
Ref. @3# show that the results for these two models differ
less than an order of magnitude, and have the same tem
ture dependence~Boltzmann, or Arrhenius dependence of t
form exp$2«a /T%, where«a is the desorption activation en
ergy andT is the temperature of the system in energy uni!.
This reminds us of Feynman’s remark@8# that constructing
an evaporation or thermoemission theory, or chemical kin
~we would like to add to this list other thermoactivated pr
cesses such as diffusion and desorption! never gives an exac
preexponential temperature-dependent factor. One c
have assumed other types of potentials for description
desorption, e.g., Slater potential@8#, Lennard-Jones potentia
@8–10#, and so on. Any of these potentials would lead to
same generic Arrhenius exponent but with different preex
nential factors. Therefore the numerical variation of the
sults by a small factor could not make for a justified select
of the model for the potential. This selection requires m
clear, functional distinctions. As for the results@3#, it is clear
from their Fig. 7 that one could make the ‘‘Morse’’ an
‘‘truncated oscillator’’ results to practically coincide~equally
outstanding from the experimental data they are compa
to! by only a small variation of the parameters.

Note that the kinetic equation~2.10! in Ref. @3# used for
deriving the electron distribution function in metals does n
account for the Pauli principle that is important for descr
ing degenerate electron gas in metals. Linearization of
kinetic equation in Ref.@3# effectively makes the electro
gas classical~despite involving the Fermi energy in the fu
ther consideration! by disregarding the prohibition for elec
tron transitions into already occupied states. This is a pu
classical approach known to lead to more than an orde
magnitude errors, e.g., in the theory of metal conductivit

Studying an ion in the immobile potential above the s
face significantly simplifies the problem@3#, but it is also
important and interesting to determine the role of the pot
tial’s rotation degrees of freedom in the plane perpendicu
to the metal surface~the ‘‘rotator’’ type oscillations!. The
‘‘rotator’’ collisions with the surface cause additional transf
of energy and momentum from the lattice to the adsor
particle. This transfer may noticeably affect the desorpt
rate. Considering these observations, the agreement o
theoretical results from Ref.@3# with the experimental data
for an ion above a metal surface, when only phonon mec
nism of stimulated transitions between the ion’s levels in
well is considered, is strikingly surprising.

In the present work we carry out the study of therm
06290
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desorption of a particle replacing one of the surface’s o
atoms in terms of the truncated-harmonic-oscillator mod
This is especially interesting because the model of the t
given in Ref.@1# allows us to complete the calculations
matrix elements, transition probabilities, and desorption r
in a compact analytical form.

II. PHYSICAL MODEL AND ITS APPLICATION

A full description of the model is available in Refs.@2,1#.
Let us briefly go over its main concepts and methods
application. We consider an impurity with massM0 bound in
a surface-potential well. The spring constantK of this poten-
tial can be derived from the fact that the oscillator is tru
cated at the level of the binding energy«a , which is empiri-
cally known,

1

2
Kl 25«a , ~1!

where 2l 5a, anda is about the lattice period, see Ref.@1#.
In the above model, the energy spectrum of a bound

purity is @11#

«n52«a1~n11/2!\v0 , n50,1,2, . . . , ~2!

with

v05A 2«a

M0l 2
. ~3!

Coupling with phonons arises as a random displacemezW
of the center of surface potential

U~x,zW !5
1

2
K~ iWx1zW !2'U~x!1Kx~ iW•zW !. ~4!

DisplacementzW can be expressed in terms of phonon creat
and annihilation operatorsbqW ,m

† andbqW ,m with quasimomen-

tum \qW and with the unitary polarization vectoreWqW ,m @12#,

zW5 iW(
qW

z (C)~bqW ,meiqW •rW1bqW ,m
†

e2 iqW •rW!. ~5!

The normalization constantz (C) is

z (C)5A \

3rV0vqW ,m

, ~6!

wherer andV0 are the crystal density and volume, respe
tively, andvq is the phonon frequency.

The complete Hamiltonian for the studied system,

Ĥ5Ĥ im1Ĥph1Ĥ int , ~7!

includes the following terms: the unperturbed Hamiltoni
with the kinetic-energy operatorK̂,

Ĥ im5K̂1U~x!, ~8!
1-2
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THERMODESORPTION OF IMPURITIES FROM A . . . PHYSICAL REVIEW A65 062901
the unperturbed energy operator for phonons,

Ĥph5(
qW

\vqbqW
†
bqW ; ~9!

and the interaction operator of the impurity with the rando
oscillations of the lattice,

Ĥ int5Kx~ iW•zW !5Kx(
qW

z (C)~bqWe
iqW •rW1bqW

†
e2 iqW •rW!. ~10!

In the following we will use the harmonic approximatio
for phonons. This means that we will neglect anharmon
resulting in multiphonon processes, e.g., broadening the
cillator energy levels. We will only consider the displac
ments along thex axis perpendicular to the crystal surfac
i.e., the phonons with the wave vectorsqW 5 iWq and use the
scalar indexq in Eqs.~9! and ~10!. Operator~10! is consid-
ered to be small perturbations added to operators~8! and~9!,
which allows us to use perturbation theory.

Now we will introduce the second quantization repres
tation for the impurity@1#. Let us define«n52«a1«(n)
,0 as negative discrete energy levels andcn(x) as
harmonic-oscillator eigenfunctions for a bound impurity. F
a desorbed~free! particle, we define positive continuous e
ergies«k.0,

«k5
pk

2

2M0
, ~11!

and the corresponding wave functionsck(x) that are plane
waves.

The field operator for the impurity in this case is

Ĉ~x!5(
n

Âncn~x!1(
k

B̂kck~x!, ~12!

whereÂn andB̂k are the annihilation operators of the ion
the n andk states, respectively. For calculations, we assu
that they have fermionic statistics. We will see in the follo
ing that this assumption will not affect the final results.

Carrying out second quantization with the field opera
~12!, we find from Eq.~8!,

Him5(
n

«nÂn
†Ân1(

k
«kB̂k

†B̂k , ~13!

and from Eq.~10!,

Hint5 (
n,k,q

B̂k
†Ân@mkn~q!bq1mkn~2q!bq

†#

1 (
n,k,q

Ân
†B̂k@mkn* ~2q!bq1mkn* ~q!bq

†#1•••,

~14!

where we disregard all processes other than desorption
the reverse process. The transitions matrix elements in
~14! are
06290
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mkn~q!5Kz (c)E dxck* ~x!xeiqxcn~x!. ~15!

Now we can write the Schro¨dinger equation with pertur-
bation ~14! in the interaction representation as

i\
]c

]t
5Vint~ t !c, ~16!

where

Vint~ t !5 (
n,k,q

@mkn~q!B̂k
†Ânbqe( i /\)bt

1mkn* ~q!Ân
†B̂kbq

†e2( i /\)bt#. ~17!

In Eq. ~17!, we introduced

b5«k2«n2\vq ~18!

and retained only the terms representing desorption of
impurity with absorption of a phonon, discarding the term
representing desorption with emission of a phonon.

Substitutingc(t)5û(t,t0)c(t0) into Schrödinger equa-
tion ~16!, we obtain for the evolution operator@13# the fol-
lowing equation:

i\
]û~ t,t0!

]t
5Vint~ t !û~ t,t0!, ~19!

whereu(t0 ,t0)51.
Solving Eq.~19!, we will be able to find the desorption

rate and energy distribution of the desorbed particles. T
and the following equations are formally similar to the on
that appear in Ref.@1#, however, with a different interaction
termVint(t), see Eq.~17!. Note that this term was derived i
the framework of the model@1#, along with the term describ
ing interaction of the impurity with light and photodesor
tion, which then was dominant. Now we study thermod
orption as the leading process, when light is not present

The statistical operator found by solving Eq.~19!,

r~ t !5û~ t,t0!r0û†~ t,t0!, ~20!

wherer0 is the equilibrium~unperturbed! statistical operator,
allows us to find the distribution function of the desorb
particles over thek states

f ~k,t ![^B̂k
†B̂k& t

5tr$û†B̂k
†B̂kûr0%

'tr$~11û1
†!B̂k

†B̂k~11û1!r0%, ~21!

as well as the desorption part of collision integralJd(k).
The total desorption rateRd will be found by averaging

the collision integralJd(k) over the initial statesn and sum-
mation over the final statesk. It will be sufficient to evaluate
the evolution operator in the first order of perturbati
theory,
1-3
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VLADIMIR N. STREKALOV AND DMITRY V. STREKALOV PHYSICAL REVIEW A 65 062901
û~ t,t0!511û1~ t,t0!,

û1~ t,t0!52
i

\Et0

t

dtVint~ t !. ~22!

To derive equations that are of practical use for an a
lytical study of the thermodesorption process, we need
know the transition-matrix elements and the initial distrib
tion function f 0(n) of the impurities. The energy spectrum
the bound particles is given by Eq.~2!. We assume that the
number of the potential-well levelsnmax@1, that the fre-
quencyv0 lies in the range of acoustical-phonon frequenc
vq , and that the ratioT0 /\v0 is greater than, but close to
and the temperatureT0 is greater than, but close to 0.025 e
Therefore the discrete character of«n should be taken into
account, and one should take a sum over the initial distri
tion instead of integration. In this sum, we putnmax→`
because of a large number of levels in the well, the stro
inequality«a@T0, and a rapid decrease of thef 0(n) for large
n. The initial distribution function of impurities is

f 0~n!5C expH 2
«n

T0
J , ~23!

whereC is found from normalization to the number of th
impuritiesNim on the sample surface

(
n50

`

f 0~n!5Nim , ~24!

so taking Eq.~2! into account,

C5Nim expH 2
1

T0
S «a2

1

2
\v0D J H 12expS 2

\v0

T0
D J .

~25!

To calculate the matrix elementsmkn(q), ~15! we will
take the initial statescn(x) in the form of the oscillator wave
functions

cn~x!5N(0)Hn~ax!expH 2
1

2
a2x2J , ~26!

whereHn(ax) are Hermitian polynomials, and

N(0)5A a

Ap2nn
, a5A4 M0K

\2
. ~27!

The final statesck(x) are represented by plane waves,

ck~x!5expH i

\
pkxJ . ~28!

We put the quantization volume to unity.
Now the matrix elements~15! can be evaluated,

mkn~q!5Kz (c)
N(0)

a2
I n , ~29!
06290
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I n5E
2`

`

dy yeiyze2(1/2)y2
Hn~y!. ~30!

Using properties of Hermitian polynomials~e.g., Ref.@14#!
we find

mkn~q!5Kz (c)A2pN(0)a22i n21e2(1/2)z2

3@2nHn21~z!2zHn~z!#,

z5
\q2pk

a\
. ~31!

III. THERMODESORPTION RATE

Thermodesorption occurs as a result of energy tran
from the phonon ensemble to an impurity. Although th
modesorption is described in the framework of the same
oretical approach as photodesorption@1#, it differs from the
latter in two essential aspects. First, the thermodesorp
rate does not depend on the impurity ion charge and is
same for neutral particles and for the charged ones. Sec
the phonon-stimulated desorption can only occur from
highest levels of the truncated oscillator, that are close to
binding energy«a .

Let us find the first perturbation orderû1 for the evolution
operatorû from Eq. ~22!,

û1522p i (
n,q,k

$mkn~q!Bk
†Anbq1mkn* ~q!An

†Bkbq
†%d~b!.

~32!

This operator allows us to evaluate expression~21! for the
time-dependent distribution functionf (k,t). Separating the
multiparticle distribution functions@15#, we arrive at

f ~k,t !5 f ~k,t0!1
2p

\
t@12 f ~k,t0!#(

n,q
umkn~q!u2

3 f ~n,t !Nq~ t !d~b!. ~33!

In Eq. ~33!, the minus sign in front of thef (k,t0) corre-
sponds to Fermi statistics. Assuming Bose statistics,
would have obtained the plus sign instead. However, exc
for very low temperatures,f (k,t0)!1 for all k, which corre-
sponds to Boltzmann statistics. Then thef (k,t0) term in the
square brackets in Eq.~33! can be neglected. As a furthe
approximation, we will neglect the deviation of the phon
distribution functionNq(t)[^bq

†bq& t from equilibrium, and
will take

Nq~ t !'
1

expH \vq

T0
J 21

'expH 2
\vq

T0
J , ~34!

since\vq /T0 is greater than 1.
1-4
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The usual approximation for acoustic phonons isNq

'T0 /\vq@1. However, in our model, we have to consid
high-frequency phonons near the ends of the Brillouin zo
For acoustic phonons that are near the center of the Brillo
zone,\vq!\v0 and the thermodesorption of the type w
are interested in is impossible. Therefore to simplify the c
culations, we can substitute the high-frequency phonons\vq

by \vD , wherevD is the phonon frequency correspondin
to Debye temperature. This simplification makes our desc
tion suitable for optical phonons too. Therefore in the fin
result, one should take a sum over all~not just acoustical!
modes of phonons.

Now from Eq.~33!, we find the collision integral

Jd~k!5
2p

\ (
n,q

umkn~q!u2f 0~n!Nqd~b!, ~35!

and the mean thermodesorption rate

Rd[
1

Nim
(

k
Jd~k!

5
1

Nim

1

2p\2 (
n

f 0~n!E
2`

`

dqh@q#

3E
2`

`

dpkh@pk#umkn~q!u2Nqd~b!. ~36!

The step functionh@q# in Eq. ~36! accounts for the fac
that thermodesorption only occurs with absorption of a p
non propagating from inside of the crystaltowards its sur-
face. Similarly, h@pk# accounts for the fact that desorbe
particles fly away from the crystal surface.

Substituting the explicit forms off 0(n),umkn(q)u2,b, and
Nq ~with vq5vD) into Eq.~36!, we find an explicit form for
the thermodesorption rate

Rd5
2M0K2

Apa3r\vD
F12expS 2

\v0

T0
D Ge2\vD /T0

3(
n

1

2n11n!
e2n(\v0 /T0)E

2`

`

dqh@q#

3E
2`

`

dpkh@pk#e
2z2

$2nHn21~z!2ZHn~z!%2

3d$pk
222M0@«~n!1\vD2«a#%, ~37!

wherea andz are defined in Eqs.~27! and~31!, respectively.
Taking the integral over momentumpk and replacing in-

tegration overq by integration overz in Eq. ~37!, we arrive
at
06290
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Rd'
A2M0K2

4a2r\vD
F12expS 2

\v0

T0
D Ge2\vD /T0

3(
n

h@D«#

AD«

1

Ap2nn!
e2n(\v0 /T0)

3E
0

`

dze2z2
$2nHn21~z!2zHn~z!%2, ~38!

whereD«[«(n)1\vD2«a5(n11/2)\v01\vD2«a .
The non-negative value ofD« is assured byh@D«#. The

case of negativeD« would correspond to the phonon energ
insufficient to cause the thermodesorption transition. T
step functionh@D«# also determines the range of summati
over n, i.e., defines the truncated oscillator’s upper lev
from which thermodesorption transitions are possible, giv
«a ,v0 ,vD , andT0.

Hermitian polynomials properties allow for the followin
transformation:

$2nHn21~z!2zHn~z!%2

5
1

4
@4n2Hn21

2 ~z!1Hn11
2 ~z!24nHn21~z!Hn11~z!#.

~39!

Note that

Hn~z!5@Ap2nn! #21/2e(1/2)z2
cn~z!, ~40!

where$cn(z)% is a set of orthogonal normalized wave fun
tions of an oscillator in the space of ‘‘momentum’’z. It is
easy to prove thatcn(z) are orthogonal and normalized no
only on the interval (2`,`), but also on the interval (0,̀),

E
0

`

dzcn* ~z!cm~z!5
1

2
dmn . ~41!

Utilizing the property~41!, we can easily evaluate the inte
gral in Eq.~38!,

Rd'
A2M0K2

8a2r\vD
F12expS 2

\v0

T0
D Ge2\vD /T0

3(
n

~n11/2!
h@D«#

AD«
e2n(\v0 /T0). ~42!

Since we only consider the upper levels,n@1, then in Eq.
~42!, n11/2 can be replaced byn. Now our result for the
thermodesorption rate can be put in the standard form

Rd5nd expH 2
«a

T0
J , ~43!

wherend is the characteristic frequency of thermodesorpt
~a term introduced analogously to the characteristic f
quency of diffusion jumps in Ref.@16#!,
1-5
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FIG. 1. Characteristic partia
thermodesorption frequencie
nd(n) for n5180,181,182,183 as
functions of temperature.
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nnd~n!

5
A2M0K2

4a2r\vD

sinhS \v0

2T0
D(

n
n

h@D«#

AD«
e2D«/T0. ~44!

To estimate the partial characteristic thermodesorp
frequenciesnd(n) and the total rate of thermodesorptionRd ,
we select the following set of parameters:«a52.5 eV,M0
58.35310223 g,a5331028 cm. From these we find the
value of\v0'0.0136 eV. The typical value of\vD is 0.05
eV. Assuming the crystal densityr0 equal to 5 g/cm3, the
linear density isr'4.5310215 g/cm.

For the above set of parameters, thermodesorption is
possible from four highest levels of the truncated oscilla
namely,n5180,181,182,183. Characteristic frequencies
those levels are given in Fig. 1 as functions of temperat
We see that the peaks in Fig. 1 shift by'160 K ~0.0138 eV!
to higher temperatures for higher levels. This shift is ve
close to the levels spacing~0.0136 eV in our calculations!,
which suggests the common nature of the peaks and re
their position to the level number and the oscillation fr
quency.

The total desorption rateRd , on the other hand, exhibits
very fast increase for higher temperatures that comes f
the exponential factor in Eq.~43! and is to be expected. Thi
rate is plotted as a function of temperature in Fig. 2. Its va
at a room temperature~300 K! is as tiny as 5310226 s21,
while already at 800 K it reaches'1.8 s21 which is easily
observable.

IV. RESULTS AND DISCUSSION

Thermal desorption of impurities off a transparent diele
tric surface has been studied in the framework of
truncated-harmonic-oscillator model. In spite of the form
similarities in the ways the tasks are formulated, the phys
concepts, mathematical methods, and qualitative result
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the present work are clearly distinct from the concepts, me
ods, and results of the earlier works@2,3# ~although some
numerical estimates are close!. The obtained results have
very simple and transparent analytical form, which helps
understanding the roles of physical mechanisms underly
the phonon-induced thermodesorption and can be easily
for direct comparison with experimental results.

The mixed quantum-classical approach to desorption@2#
is based on the concept of a stochastic force exerted by
phonon system on an impurity atom. This concept requ
introducing the Fourier transform of a friction kernel@2#,
which is hard to define. In contrast to this approach, we ca
out a consistent quantum-statistical description of the proc
and obtain elegant analytical results. We also rely on
concept of a phonon-raised stochastic force causing des
tion, but we have treated the phonon interaction with
impurity differently than in Ref.@2# and the analytical results
are obtained. The role of desorption from the lower-lyi
levels of the potential well is emphasized. Figure 1 sho
that each level’s contribution to the cumulative desorpt
rate increases as the level number decreases, as long a
energy conservation permits it. Thus, the largest thermod
orption rate is reached for the lowest allowed level. This i
manifestation of modification of the energy threshold con
tions @17# that is important, as we have shown, for a varie
of inelastic kinetic processes, including photodesorption@1#.
The reason for this desorption rate increase is the expone
growth of a level’s population with decrease in its numbe

The contrast of our thermodesorption model with the o
in Ref. @3# is even more drastic. First, in Ref.@3#, the ad-
sorbed particle is considered to resideabovethe surface, as
opposed to beingon the surface as in our treatment. For
particle above the surface one has to take into account
degrees of freedom corresponding to motion in the pla
perpendicular to the surface, as well as to the motion on
cone surface whose axis is perpendicular to the sample
face. Both types of motion are sometimes called ‘‘rotato
Taking these degrees of freedom into account may sign
1-6
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cantly change the energy and momentum conservation
for the adsorbed particle, and hence, the probability and
of its desorption. The ‘‘rotator’’ is not considered in Ref.@3#,
despite the presence of the corresponding degrees of
dom. In our treatment these degrees of freedom are
present.

Similarly, drastic changes in the results may come fr
taking into account the electrons and electronic excitati
scattering on the adsorbed particle, in addition to phon
scattering. The electronic mechanisms are expected to b
pecially significant in metals.

For these two reasons, it is surprising to see the agreem
of the results of Ref.@3# ~derived based on the Morse mode!
with experiment for the K-W system but not for Xe-W
whereas it is in the latter case that the Morse and trunca
oscillator models give nearly the same numeric result. P
haps, the answer lies in the fact that the results obtained
these two approaches can in fact be made to agree f
selected system by a small tweak in parameters~see Fig. 7 in
Ref. @3#!.

Another distinction of our approach from Ref.@3# is that
we define the desorption event when the impurity underg
a transition into continuum and emerges as a free par
flying away from the surface. In Ref.@3#, the first passage
time is defined as a transition time into a predissociat
state. The latter state can dissociate, but it also can dee
~via the n→n21 transition! which will reduce the desorp
tion rate. Therefore our result for thermodesorption rate
pears to be more adequate. These arguments suggest t
fact the Morse potential model is not any more rigorous th
the truncated-oscillator model.

We have not found experimental data for the syste
matching our model. This model is designed to describe
sorption ~or similar processes! from wide zone transparen

FIG. 2. Total desorption rateRd as a function of temperature.
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crystals such as diamond. These systems have prope
very different from those of metal samples.

Let us mention other important features of the results
obtained for our case of thermodesorption. It has be
pointed out@see Eq.~44!# that the characteristic desorptio
frequencynd is determined by two factors of complete
different physical nature. The first factor is the rate of th
modesorption occurrencesnd(n) that is a few times smalle
than the frequency of the ‘‘phonons’ attempts’’@16# to induce
thermodesorption. This factor is analogous to and has
same physical meaning as the preexponential frequency
tor in the equilibrium diffusion coefficient@16#. The fre-
quencynd(n) is close in the order of magnitude but som
what smaller than the phonon frequencynD'1013 s21. The
relationnd(n),nD implies that not every phonon oscillatio
causes an actual desorption transition.

The second factor determiningnd appears in the presen
theoretical treatment of thermodesorption for the first tim
This is the numbern of the level from which desorption
occurs. The presence of this factor can be understood f
quasiclassical representation of an oscillator. Indeed,n is the
number of nodes of the quasiclassical standing wave
correspond to an oscillator in thenth state. The phonons ca
be interpreted to cause thermodesorption as they scatt
each maximum of the oscillator wave function. This interp
tation is fundamental for understanding thermodesorpti
without it, the result for the total thermodesorption rate e
ceeding the photon frequencies~such asnD) appears mean
ingless.

One of the results related to description of desorption a
transition into continuum is the possibility to determine t
distribution function of desorbed particles over the kine
energy@see Eq.~33!#. In particular, Fig. 1 shows that eac
level yields a different contribution to the thermodesorpti
rate. These contributions reach the maximum values at
ferent temperatures. When the temperature is fixed, e
level will give its own energy distribution function. As
result, the total flux of desorbed matter should contain se
of peaks separated by about the energy difference betw
the truncated oscillator levels\v0. This result is especially
important as it provides for comparison of our theoretic
predictions with time-of-flight experiment data.
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