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Thermodesorption of impurities from a transparent crystal surface
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Thermodesorption of impurities from a dielectric crystal surface can be stimulated by absorption of high-
frequency phonons, e.g., Debye phonons. We study this process in the framework of a truncated-harmonic-
oscillator model and find the desorption rate by methods of quantum statistics. In this paper, we present the
estimates for the mean desorption rates that are simple, realistic, and at the same time allow us to predict a
series of physical effects in thermodesorption processes.
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[. INTRODUCTION the nonequilibrium processes. Hence carrying out the quan-
tum calculations in the analytical form all the way to the final
Many of the modern high technologies are based upon theesults that can be compared to experiment is not usually
processes caused by intense external impacts in solids or @ossible. With that in mind, we study the process of thermal
their surfaces. The effects of laser, plasma, and particle beadesorption of impurities from a transparent crystal surface
impacts are believed to be the most pertinent to this contextfrom a dielectri¢ as an extension of our earlier wofk].
All such impacts lead to nonequilibrium transport processe$Ve will utilize a simple model of a truncated harmonic os-
whose physical description is often unclear or incompletecillator, which is widely used for description of various pro-
The most typical examples of such processes are catalyticesses involving bound atoms or moleculeg., see Refs.
chemical reactions on solid surfaces, desorption and subl[2—4] and quotations thereinIn this model, thermodesorp-
mation, generation of defects and surfégeometri¢ struc-  tion is caused by stochastic forces that arise from the phonon
tures, surface and volume nonequilibrium diffusion, andemission and absorption.
others. The truncated-oscillator model allows for an analytical
A physical description of these kinds of processes cannadescription of an impurity bound on the crystal surface with
be based on the standard quantum-mechanical methods. very few parameters, all of which are well knogtl. This is
most such problems, the variation of particles’ energy andne important aspect that contrasts the present work as well
momentum distribution functions needs to be taken into acas Ref.[1] from Refs.[2,3], describing thermal desorption,
count, which requires the use of more complex quantumand from Ref[4] describing photodesorption. In R¢2], a
statistical or quantum-kinetic methods. Appropriatemixed quantum-classical description is used, similar to the
quantum-kinetic equations therefore need to be derived anapproach proposed in R¢b]. Its drawback is that the intro-
solved for stimulatednonthermal processes, such as photo- duced friction kernel spectrum(t) is not sufficiently well
desorption or electron-beam sublimation, as well as for traknown. As a result, the final expressions of H&fl depend
ditionally “thermal” processes taking place in the presenceon the absolute value square of this kernel’s Fourier compo-
of intense external perturbations. For example, photostimurents, but the way these parameters can be estimated is not
lated processes are often accompanied by heating of the budipecified. The choice of functional forms fg(t) (exponen-
material, which in turn causes various thermal but nonequitial and Gaussian functiori€]) is not justified, and in any
librium processes. case does not provide the values of preexponential param-
The lucky exceptions from the above general trend are theters. Therefore the estimates in R&fl may be considered
processes of photodesorption and thermodesorption of impwas mere illustrations. Another parameter that is not numeri-
rities from a solid surfac€as well as the sublimation of the cally determined is the oscillator frequen€y (in our ap-
solid’s own atomgs The desorbed or sublimated particles proach, this frequency and the number of levels in the poten-
usually depart into vacuum and do not have any “back actial well are derived from the size of the well and the
tion” on the initial system. This eliminates the need for a full dissociation energy
guantum-statistical description and allows us to consider An interesting and relevant wofl8] reports the study of a
quasiequilibrium distribution functions for the initial system variety of thermal processes on a metal surface, including
of particles. For the “heavy” atoms or ions we can adoptthermal desorption. In Ref3], a very solid and complex
guasiclassical Boltzmann distribution. Yet a description oftheory is developed, that describes interaction of chemically
even these “simple” processes remains very complicated anddsorbed particles with the electron and phonon systems of
is often carried out by phenomenological methods because dfie metal. The particle is assumed to be an impurity ion with
the difficulties in constructing the initial physical model for some effective charge, some surface-binding energy, and
with the equilibrium distancd; from the surface. The ion is
bound in the surface-potential well that has a set of discrete
*Email address: stvn@stankin.ru energy levels. Transitions between these leyrlst broad-
TEmail address: Dmitry.V.Strekalov@jpl.nasa.gov ened are studied in the harmonic approximations, with se-
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lection rules v—v=*1. The anharmonic transitions— v  desorption of a particle replacing one of the surface’s own
+2 that are 100 to 1000 times less probable than the haatoms in terms of the truncated-harmonic-oscillator model.
monic transitions are also considered. The mean first passadédis is especially interesting because the model of the type
time (after which the ion reaches the upper level, or thegiven in Ref.[1] allows us to complete the calculations of
predissociation statds then determined. This time is com- Matrix elements, transition probabilities, and desorption rate
pared with the desorption rate. The analyd$ largely re-  in & compact analytical form.

produces and generalizes the results by Montroll and Shuler

[6], and by Kim[7]. Il. PHYSICAL MODEL AND ITS APPLICATION

f ?ﬁlckj/:at'ons '? RtgfI[S] zlalre cgrfrledthou: for tvglodrﬂodels:_ A full description of the model is available in Ref,1].

or the Morse-potential wetl, and for the truncated harmonic o ;g briefly go over its main concepts and methods of
oscillator. The latter model is considered to be less accurat

) ; . §pplicati0n. We consider an impurity with maglg, bound in
in Ref.[3]. However, analysis of the numerical results frorr)a surface-potential well. The spring constindf this poten-

Ref. [3] makes us take this statement carefully. The plots Mial can be derived from the fact that the oscillator is trun-
Ref. [3] show that the results for these two models differ bycated at the level of the binding energy, which is empiri-
less than an order of magnitude, and have the same temper&i"y Known '
ture dependendd@oltzmann, or Arrhenius dependence of the '

form exd—e,/T}, wheree, is the desorption activation en-

ergy andT is the temperature of the system in energy ynits EKIZ:Saa 1)
This reminds us of Feynman’s remd&] that constructing

an evaporation or thermoemission theory, or chemical kinetigyhere 2=a, anda is about the lattice period, see RET].

(We would like to add to this list other thermoactivated pro- In the above modeL the energy Spectrum of a bound im-
cesses such as diffusion and desorptioever gives an exact pyrity is [11]
I

preexponential temperature-dependent factor. One could

have assumed other types of potentials for description of en=—¢eat(N+1/2hwy, n=012..., 2

desorption, e.g., Slater potent[&], Lennard-Jones potential

[8—10, and so on. Any of these potentials would lead to theWith

same generic Arrhenius exponent but with different preexpo-

nential factors. Therefore the numerical variation of the re- 2e4 3

sults by a small factor could not make for a justified selection Ml? ®

of the model for the potential. This selection requires more

Clear, functional distinctions. As for the reSLﬂtﬂ, it is clear Coup”ng with phonons arises as a random disp'acerf]ent

from their Fig. 7 that one could make the “Morse” and of the center of surface potential

“truncated oscillator” results to practically coincidequally

outstanding from the experimental data they are compared - 1o N

to) by only a small variation of the parameters. Ux,)= EK(|X+ ) ~U(X) +Kx(i-{). 4
Note that the kinetic equatiof2.10 in Ref.[3] used for

deriVing the e|eCtr0n diStribution funCtion in meta|S doeS nOtDisplacemenf can be expressed in terms Of phonon Creation

account for the Pauli pr|n0|ple_ that is important for_descrlb-and annihilation operatorlst andb; , with quasimomen-
ing degenerate electron gas in metals. Linearization of the q.x ’

kinetic equation in Ref[3] effectively makes the electron UM 7#q and with the unitary polarization vectey, , [12],
gas classicaldespite involving the Fermi energy in the fur- . .
ther considerationby disregarding the prohibition for elec- Z: FE g(C)(ba MeiQ-r+bT e lam, (5)
tron transitions into already occupied states. This is a purely q ' dr
classical approach known to lead to more than an order
magnitude errors, e.g., in the theory of metal conductivity.
Studying an ion in the immobile potential above the sur-
face significantly simplifies the problef8], but it is also ©)_ h
: . . : (=1 : (6)
important and interesting to determine the role of the poten- 3pVowg .
tial's rotation degrees of freedom in the plane perpendicular
to the metal surfacdéthe “rotator” type oscillations. The  wherep andV, are the crystal density and volume, respec-
“rotator” collisions with the surface cause additional transfer tively, and w, is the phonon frequency.
of energy and momentum from the lattice to the adsorbed The complete Hamiltonian for the studied system,
particle. This transfer may noticeably affect the desorption o R A
rate. Considering these observations, the agreement of the H=Hin+Hpn+Hine, 7
theoretical results from Ref3] with the experimental data
for an ion above a meta' Surface, When on|y phonon mechdncludes the fO”OWing terms: the Unperturbed Hamiltonian
nism of stimulated transitions between the ion’s levels in thewith the kinetic-energy operatdt,
well is considered, is strikingly surprising. R .
In the present work we carry out the study of thermal Hin=K+U(x), 8

QI‘he normalization constargt® is
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the unperturbed energy operator for phonons, _
Hin( @) =K f dxyfig (X)X€P (). (15
Aon=2> fiwgbibg: 9 :

ph % @a%q"a © Now we can write the Schdinger equation with pertur-

) _ _ o bation(14) in the interaction representation as
and the interaction operator of the impurity with the random

oscillations of the lattice, 0y

ih—-=Vin(O) (16
Fine=Kx(T- ) =Kx>, {©(bse™ +ble 7). (10)
a 4 where
In the following we will use the harmonic approximation ~pa (i1h) At

for phonons. This means that we will neglect anharmonism Vim(t)=n2kq [ 1kn(@)BrAnbge

resulting in multiphonon processes, e.g., broadening the os- o

cillator energy levels. We will only consider the displace- +,u:n(q)A;I§kbge*(”ﬁ)5t]. (17)

ments along the axis perpendicular to the crystal surface,

i.e., the phonons with the wave vectars-iq and use the In Eq.(17), we introduced

scalar indexq in Egs.(9) and (10). Operator(10) is consid- B

ered to be small perturbations added to operdi@rand(9), B=sgx—en—hogq (18)

which allows us to use perturbation theory. : . .
o - and retained only the terms representing desorption of an
Now we will introduce the second quantization represen-

. . . X o impurity with absorption of a phonon, discarding the terms
tation for the impurity[1]. Let us defines,=—=z,+¢(n) representing desorption with emission of a phonon.
<0 as negative discrete energy levels aid(x) as

harmonic-oscillator eigenfunctions for a bound impurity. For  Substituting y/(t) = u(t,to) ¥(to) into Schralinger equa-
a desorbedfree) particle, we define positive continuous en- fion (16), we obtain for the evolution operatft3] the fol-

ergiese, >0, lowing equation:
z a(t,to) A
Pk . o _,,
KT 2My (1D ih——=Vin(DU(t,to), (19
and the corresponding wave functioig(x) that are plane Whereu(to,to)=1.
waves. Solving Eq.(19), we will be able to find the desorption
The field operator for the impurity in this case is rate and energy distribution of the desorbed particles. This

and the following equations are formally similar to the ones
- - ~ that appear in Ref.1], however, with a different interaction
W(X):En‘f Anwn(XH}k} Biihi(X), (12) termVF:,?t(t), see E{q(]17). Note that this term was derived in
the framework of the modél], along with the term describ-
whereA, andB, are the annihilation operators of the ion in iNg interaction of the impurity with light and photodesorp-
the n andk states, respectively. For calculations, we assumd&©n, which then was dominant. Now we study thermodes-
that they have fermionic statistics. We will see in the follow- OrPtion as the leading process, when light is not present.

ing that this assumption will not affect the final results. The statistical operator found by solving H49),
Carrying out second quantization with the field operator - ~y
(12), we find from Eq.(8), p(t)=u(t,ty) pou'(t,tp), (20

R R wherep, is the equilibrium(unperturbegstatistical operator,
Him=> eAlA -+, £B/By, (13)  allows us to find the distribution function of the desorbed
n K particles over thé states

and from Eq.(10), f(k,t)=(B]By)

Hint= n;q BEAn[Mkn(q)bq"' Hin( — Q)bg] = tr{fﬂélékapo}

. ~tr{(1+Uu})B{By(1+Uy)po}, (2D)
+ 2 AlB i~ Dbg+ (@bl - -, , o
nk,q as well as the desorption part of collision integig(k).
(14) The total desorption rat®y will be found by averaging
the collision integrall4(k) over the initial states and sum-
where we disregard all processes other than desorption amdation over the final statds It will be sufficient to evaluate
the reverse process. The transitions matrix elements in Edghe evolution operator in the first order of perturbation
(14) are theory,
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Ut t)=1+Uy(t,ty), where

. i [t _ | ly2e— (1122
tto)= - [ dtviu(o). (22 1= | dyyere ) 30
0

To derive equations that are of practical use for an anatSing properties of Hermitian polynomia(s.g., Ref.[14])
lytical study of the thermodesorption process, we need t§'€ find
know the transition-matrix elements and the initial distribu-

—9.n— _ 2
tion functionf,(n) of the impurities. The energy spectrum of (@) =K OV2aNO@ g 20 1g (122
the bound patrticles is given by E). We assume that the X[2nH, _1(2)—zH(2)],

number of the potential-well levels,,,,1, that the fre-

guencywg lies in the range of acoustical-phonon frequencies

wq, and that the ratid /% wg is greater than, but close to 1 7=
and the temperaturg, is greater than, but close to 0.025 eV.

Therefore the discrete character f should be taken into

account, and one should take a sum over the initial distribu- Il. THERMODESORPTION RATE

tion instead of integration. In this sum, we pof,,— .

because of a large number of levels in the well, the Stron?mThermodesorptlon occurs as a result of energy transfer

inequalitye > T,, and a rapid decrease of thgn) for large m the phonon ensemble to an impurity. Although ther-
n. The initial distribution function of impurities is modesorption is described in the framework of the same the-

oretical approach as photodesorptidn, it differs from the
e latter in two essential aspects. First, the thermodesorption
], (23 rate does not depend on the impurity ion charge and is the
same for neutral particles and for the charged ones. Second,
whereC is found from normalization to the number of the the phonon-stimulated desorption can only occur from the
impuritiesN;,, on the sample surface highest levels of the truncated oscillator, that are close to the
binding energye, .
Let us find the first perturbation ordes for the evolution
operatoru from Eq. (22),

hg—py
ah

(31)

ngo fo(N)=Nim, (24)

so taking Eq.2) into account, - )
Uy=—2mi gk {n( Q) BEARDG + oA ATB DI 8(B).

C=Nimexp{—_|_io(sa— %ﬁwoml—exp(—ﬁT—“:))]. (32)

(25) This operator allows us to evaluate expressidh for the
time-dependent distribution functiof(k,t). Separating the

To calculate the matrix elemenisy,(q), (15 we will multiparticle distribution function§l5], we arrive at

take the initial stategs,(x) in the form of the oscillator wave

functions 20
_ 2
. k) =f(kito) + Zot[1~F(Kito) 124 |ma( Q)|
P (x)=NOH (ax)expl’ - —azxz} , (26) '
" " 2 X £(n,t)Ng(t) 8(B). (33)
whereH(ax) are Hermitian polynomials, and In Eq. (33), the minus sign in front of thé(k,ty) corre-
sponds to Fermi statistics. Assuming Bose statistics, we
N©— | «@ a=4 [MoK 27) would have obtained the plus sign instead. However, except
Jm2hn' 82 for very low temperatured,(k,ty)<<1 for all k, which corre-

sponds to Boltzmann statistics. Then th{&,ty) term in the

The final states),(x) are represented by plane waves, Ssquare brackets in Eq33) can be neglected. As a further
approximation, we will neglect the deviation of the phonon

tﬂk(X):eXp[fiL—ka}. 28 \(IjJiTrrti:Eéion functionN(t)=(b{bg), from equilibrium, and
We put the quantization volume to unity. 1 hog
Now the matrix element§l5) can be evaluated, Ng(t)~ T%em{ - T_o} (34
N© eXp[ T_o] o
ok 0) = Kgm?ln' (29 sincefiwy /Ty is greater than 1.
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The usual approxme}tmn for acoustic phonons N§. \/Z_I\/IOKZ fiog|] .
~To/hwys>1. However, in our model, we have to consider Ry~————|1—exp — Eoe e "“p'lo
high-frequency phonons near the ends of the Brillouin zone. 4aphwp 0
For acoustic phonons that are near the center of the Brillouin alAe] 1
zone,fiwq<hwy and the thermodesorption of the type we XE S — TR
are interested in is impossible. Therefore to simplify the cal- " JAe \m2"n!
culations, we can substitute the high-frequency phortang - ,
by Ziwp, wherewp is the phonon frequency corresponding xf dze {2nH,_1(2)— zH.(2)}?, (38

0

to Debye temperature. This simplification makes our descrip-
tion suitable for optical phonons too. Therefore in the final
result, one should take a sum over aibt just acoustical
modes of phonons.

Now from Eg.(33), we find the collision integral

whereAe=e(nN)+hwp—e,=(N+12)hwgthowp—¢,.

The non-negative value dfe is assured byy[Ag]. The
case of negativA ¢ would correspond to the phonon energy
insufficient to cause the thermodesorption transition. The
step functiony[ Ae] also determines the range of summation
over n, i.e., defines the truncated oscillator’s upper levels
Ja(k)= Zﬁ_w 2 |/—Lkn(q)|2f0(n)Nq5(ﬁ)a (35) from which thermodesorption transitions are possible, given

nq €4,00,0p, andTy,.

Hermitian polynomials properties allow for the following
transformation:

and the mean thermodesorption rate ,
{2nH,_1(2) —zH,(2)}

_l o N
RdENi_Ek Jq(k) _4[4n Hy-1(2) +Hi 1(2) —4nH, - 1(2)Hp41(2) ]
im -
11 .
N 22 En: fo(n)ffwdqn[q] Note that
Ha(2)=[Vm2"n! ]~ Y2022y, (2), (40)

x| d “Nyd(B). 36

fﬁ% PPl (@) a%lh) 39 where{y,,(2)} is a set of orthogonal normalized wave func-
The step functiony[q] in Eq. (36) accounts for the fact tions of an oscillator in the space of “momentura” It is

that thermodesorption only occurs with absorption of a pho€asy to prove thag,(z) are orthogonal and normalized not

non propagating from inside of the crystawards its sur- only on the interval ¢ o,), but also on the interval (8),

face Similarly, [ p,] accounts for the fact that desorbed

particles fly away from the crystal surface. f ” dzu* _ } S 41
Substituting the explicit forms of,(n), | u«n(9)|% 8, and 0 2Yn (2)¢m(2) 2 mn (41)
Ng (With wq= wp) into Eq.(36), we find an explicit form for
the thermodesorption rate Utilizing the property(41), we can easily evaluate the inte-
gral in Eq.(38),
2M0K2 ﬁwo V2M0K2 ﬁ‘l’o —hon T
=———|1-exp — —||e "p/To <5, |lmexd g |e e
Vralphop To 8a“phwp 0
1 » nlAe] _
~n(fiwg/To) X 2, (n+1/2)——¢ "(hwo/To), 42
xS e e [ dayia) 3 n+127 = (42
* 2 2 Since we only consider the upper leveis; 1, then in Eq.
Xﬁwdpk”[pk]e “{2nH,-1(2) = ZHq(2)} (42), n+1/2 can be replaced by. Now our result for the
thermodesorption rate can be put in the standard form
X 8{pg—2Mo[e(n) +fiwp— e}, (37)
&
Rd: Vg exp[ - T_Z] ' (43)

wherea andz are defined in Eqg27) and(31), respectively.

Taking the integral over momentupy and replacing in-  wherewy is the characteristic frequency of thermodesorption
tegration overm by integration over in Eq. (37), we arrive  (a term introduced analogously to the characteristic fre-
at quency of diffusion jumps in Refl16]),
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the present work are clearly distinct from the concepts, meth-
Vd:; nvg(n) ods, and results of the earlier work®,3] (although some
numerical estimates are clgs@he obtained results have a
V2M K2 fwo [Ag] T very simple and transparent analytical form, which helps in
= o7 > n ~2¢7%0, (44)  understanding the roles of physical mechanisms underlying
da pﬁwD o/ n VAe

the phonon-induced thermodesorption and can be easily used

To estimate the partial characteristic thermodesorptiorfi©r direct comparison with experimental results.
frequenciesry(n) and the total rate of thermodesorptig, . € Mixed quantum-classical approach to desorpiin
we select the following set of parametees;=2.5 eVM, IS based on the concept of a stochastic force exerted by the
—8.35x10 2 g,a=3x108 cm. From these we find the Phonon system on an impurity atom. This concept requires
value ofwy~0.0136 eV. The typical value dfwp is 0.05 introducing the Fourier transform of a friction kern],
eV. Assuming the crystal density, equal to 5 g/cr, the which is hard to define. In contrast to this approach, we carry
linear density isp~4.5x10" % g/cm. out a consistent quantum-statistical description of the process

For the above set of parameters, thermodesorption is onlgnd obtain elegant analytical results. We also rely on the
possible from four highest levels of the truncated oscillatorconcept of a phonon-raised stochastic force causing desorp-
namely,n=180,181,182,183. Characteristic frequencies fortion, but we have treated the phonon interaction with the
those levels are given in Fig. 1 as functions of temperaturégmpurity differently than in Ref{2] and the analytical results
We see that the peaks in Fig. 1 shiftsy160 K (0.0138 ey  are obtained. The role of desorption from the lower-lying
to higher temperatures for higher levels. This shift is verylevels of the potential well is emphasized. Figure 1 shows
close to the levels spacin@®.0136 eV in our calculations that each level's contribution to the cumulative desorption
which suggests the common nature of the peaks and relatégte increases as the level number decreases, as long as the
their position to the level number and the oscillation fre-energy conservation permits it. Thus, the largest thermodes-
quency. orption rate is reached for the lowest allowed level. This is a

The total desorption rat@y, on the other hand, exhibits a manifestation of modification of the energy threshold condi-
very fast increase for higher temperatures that comes frorfions[17] that is important, as we have shown, for a variety
the exponential factor in Eq43) and is to be expected. This of inelastic kinetic processes, including photodesorpfibn
rate is plotted as a function of temperature in Fig. 2. Its valuel'he reason for this desorption rate increase is the exponential
at a room temperatur€00 K) is as tiny as X 10 %6 s 1, growth of a level's population with decrease in its number.

while already at 800 K it reaches1.8 s ! which is easily The contrast of our thermodesorption model with the one
observable. in Ref. [3] is even more drastic. First, in Rdf3], the ad-
sorbed particle is considered to resileovethe surface, as

IV. RESULTS AND DISCUSSION opposed to beingn the surface as in our treatment. For a

particle abovethe surface one has to take into account its
Thermal desorption of impurities off a transparent dielec-degrees of freedom corresponding to motion in the plane
tric surface has been studied in the framework of theperpendicular to the surface, as well as to the motion on the
truncated-harmonic-oscillator model. In spite of the formalcone surface whose axis is perpendicular to the sample sur-
similarities in the ways the tasks are formulated, the physicaface. Both types of motion are sometimes called “rotator.”
concepts, mathematical methods, and qualitative results dfaking these degrees of freedom into account may signifi-
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crystals such as diamond. These systems have properties
10000 | ! very different from those of metal samples.
Let us mention other important features of the results we
001 § : obtained for our case of thermodesorption. It has been
pointed out[see Eq.(44)] that the characteristic desorption
1.x10% y : frequency vy is determined by two factors of completely
different physical nature. The first factor is the rate of ther-
1.x107 1 modesorption occurrenceg(n) that is a few times smaller
than the frequency of the “phonons’ attempf{4’6] to induce
X107 g ! thermodesorption. This factor is analogous to and has the
. . . . . . same physical meaning as the preexponential frequency fac-
400 600 B0 1000 1200 1400 tor in the equilibrium diffusion coefficienf16]. The fre-
Temperature (units of K) quencyrgy(n) is close in the order of magnitude but some-
what smaller than the phonon frequengy~10" s~ 1. The
relationvy(n) <wp implies that not every phonon oscillation

cantly change the energy and momentum conservation law&uses an actual desorption transition.
for the adsorbed particle, and hence, the probability and rate The second factor determining, appears in the present
of its desorption. The “rotator” is not considered in RE3], theoretical treatment of thermodesorption for the first time.
despite the presence of the corresponding degrees of freghis is the numbemn of the level from which desorption
dom. In our treatment these degrees of freedom are ndtccurs. The presence of this factor can be understood from
present. quasiclassical representation of an oscillator. Indeeasd the
Similarly, drastic changes in the results may come fromnumber of nodes of the quasiclassical standing wave that
taking into account the electrons and electronic excitation§orrespond to an oscillator in tieh state. The phonons can
scattering on the adsorbed particle, in addition to phonofpe interpreted to cause thermodesorption as they scatter at
scattering. The electronic mechanisms are expected to be egach maximum of the oscillator wave function. This interpre-
pecially significant in metals. tation is fundamental for understanding thermodesorption,
For these two reasons, itis surprising to see the agreememthout it, the result for the total thermodesorption rate ex-
of the results of Ref.3] (derived based on the Morse model ceeding the photon frequenciésuch asvp) appears mean-
with experiment for the K-W system but not for Xe-W, ingless.
whereas it is in the latter case that the Morse and truncated- One of the results related to description of desorption as a
oscillator models give nearly the same numeric result. Pertransition into continuum is the possibility to determine the
haps, the answer lies in the fact that the results obtained bistribution function of desorbed particles over the kinetic
these two approaches can in fact be made to agree for €nergy[see Eq.(33)]. In particular, Fig. 1 shows that each
selected system by a small tweak in parameises Fig. 7in  level yields a different contribution to the thermodesorption
Ref. [3]). rate. These contributions reach the maximum values at dif-
Another distinction of our approach from R¢g] is that ~ ferent temperatures. When the temperature is fixed, each
we define the desorption event when the impurity undergoel¢vel will give its own energy distribution function. As a
a transition into continuum and emerges as a free particléesult, the total flux of desorbed matter should contain series
flying away from the surface. In Ref3], the first passage Of peaks separated by about the energy difference between
time is defined as a transition time into a predissociatiorthe truncated oscillator levefswg. This result is especially
state. The latter state can dissociate, but it also can deexcit@portant as it provides for comparison of our theoretical
(via the v—v—1 transition which will reduce the desorp- Predictions with time-of-flight experiment data.
tion rate. Therefore our result for thermodesorption rate ap-

Rate (1/5)

FIG. 2. Total desorption rat, as a function of temperature.
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