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Convergence of energy-differential ionization cross sections obtained from aT-matrix approach
with R-matrix wave functions
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The T-matrix approach, as formulated by Pindzolaet al. @Phys. Rev. A62, 062718~2000!# for calculating
the single-differential ionization cross section~SDCS! has been further investigated. Using the ‘‘intermediate-
energyR-matrix method’’ to obtain the full scattering wave function needed in the matrix element, we per-
formed several case studies for the Temkin-PoetS-wave model ofe-H scattering to study the dependence of the
results on the box radius and the number of states included. Despite encouraging results before reaching
convergence, we conclude that the method will ultimately not yield the correct form of the SDCS but instead
will still suffer from unphysical oscillations.
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I. INTRODUCTION

In recent years, the Temkin-Poet~TP! model problem
@1,2# has been studied in great detail to investigate a sim
fied version of the classic three-body Coulomb break
problem, namely electron-impact ionization of atomic hyd
gen. In this model, only theSwave is considered and hydro
genic states with angular momentumL50 are accounted for
It is important to note that this problem contains most of
difficulties associated with the full problem, but because
the restriction in angular momentum, it is now possible
push numerical methods essentially to convergence. Co
quently, if the problem is formulated correctly and sufficie
computational resources are allocated, one may expect
merical convergence to the ‘‘physical’’ answer for this sim
plified model.

A milestone regarding the convergence of numerical tre
ments was achieved in the pioneering work of Bray and S
bovics @3#, who developed the so-called ‘‘convergent clos
coupling’’ ~CCC! method. The essential idea of the method
the extension of the standard discrete-state-only clo
coupling method through inclusion of a large number
square-integrable pseudo-states. While formulated
momentum-space, the CCC method is closely related to
lier pseudo-state approaches@4,5#, which were not necessa
ily pushed to convergence in all aspects due to the lim
computational resources at the time, and particularly to
R-matrix with pseudo-states~RMPS! method@6,7#. Another
close relative of the CCC method is the intermediate-ene
R-matrix ~IERM! approach@8,9#, which has been shown t
yield essentially identical results to CCC and RMPS@10,11#
if all three methods are driven to convergence. Without
tempting completeness, we also mention some of the m
other methods used for both the TP and the fulle–H colli-
sion problem, namely the eigenchannelR-matrix @12#, hyper-
spherical close-coupling@13,14#, the J-matrix method@15#,
exterior complex scaling~ECS! @16#, direct finite-difference
1050-2947/2002/65~6!/062715~6!/$20.00 65 0627
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methods~FDM! @17,18#, and time-dependent wave-pack
approaches@19–21#. Overall, it was found that the total ex
citation and ionization cross sections could be predicted w
very high accuracy by essentially all of these methods, w
the only practical limitation being the available comput
tional resources. The complete problem, however, for
present case is the distribution of the excess energy am
the two outgoing electrons. It is determined by the sing
differential ~with respect to the energy loss! cross section
~SDCS!. Interestingly, this SDCS could only be obtained in
straightforward manner by methods that either matched
exact boundary conditions or did not rely on boundary co
ditions at all in the extraction procedure.

Finally, of particular interest for the present work is th
T-matrix method suggested by Pindzola, Mitnik, and R
bicheaux@22#. They addressed the problem of the unphysi
asymmetry in the SDCS with respect to half of the availa
energy for the two outgoing electrons, found in the stand
CCC, RMPS, and IERM results. The reason for this asy
metry has been discussed in great detail@23–26#; it is effec-
tively due to the unequal treatment of the two positiv
energy electrons. For further discussion, particularly w
respect to the way the SDCS is extracted from a numer
wave function, see also the work by Rescignoet al. @27# and
by Madison et al. @28#. However, Pindzolaet al. @22#
showed how the asymmetry can be removed by usin
T-matrix formulation to extract the ionization amplitude an
consequently, the SDCS. In this formulation, the ionizati
amplitude for the TP model~in atomic units! is defined as

f ~k2 ,k1 ,k0!5E
0

`

dr1E
0

`

dr2C~k1 ,r 1!

3C~k2 ,r 2!
1

r .
C0

1~r 1 ,r 2!, ~1!

where k0 is the linear momentum of the incident electro
while k1 andk2 are the momenta of the two outgoing ele
©2002 The American Physical Society15-1
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trons in the final state.@Only the magnitudes of the momen
matter in the TP model.# Furthermore, 1/r . with r .

5max(r1,r2) is the interaction potential,C(k,r ) is a Cou-
lomb wave for an electron with momentumk, and
C0

1(r 1 ,r 2) is the full solution of the collision problem. Th
boundary conditions forC0

1(r 1 ,r 2) must be chosen in suc
a way that there is an incoming plane wave in the chan
with the target in the 1s initial state, and outgoing waves i
all collision channels~including the elastic one!. Assuming
thatC0

1(r 1 ,r 2) is properly antisymmetrized, one sees imm
diately that the above scheme is explicitly symmetric aga
interchanging the two outgoing electrons in the calculat
of the SDCS given by

ds

de
[

8

k0
2 u f ~k2 ,k1 ,k0!u2, ~2!

wheree is the energy of the ejected electron. Equation~2! is
consistent with the conventions of Pindzolaet al. @22#, ex-
cept that all continuum functions for energyk2/2 are as-
sumed to behave ask21/2 times a sine function in the
asymptotic regime.

The initial tests performed by Pindzolaet al. @22# using
the above formulation were quite promising, although so
oscillations in the SDCS results were found even in th
largest RMPS calculations. However, they attributed th
oscillations to the finite mesh size and the limited numbe
states included in the close-coupling expansion, and th
fore expressed optimism that these problems could be
solved in a more or less straightforward manner. Of cours
is known that the wave functionC0

1(r 1 ,r 2), if calculated by
the RMPS or similar methods, is asymptotically not corr
due to the finite range of the pseudo-orbitals. Although t
problem might be more obvious in the ‘‘prior form’’ of Eq
~1!, where the full scattering wave functionC f

2(r 1 ,r 2) is
needed on the left-hand-side of the matrix element while
right-hand-side is a simple product of the initial target st
and a plane wave for the projectile, it exists in the abo
‘‘post’’ form as well, sinceC0

1(r 1 ,r 2) should really contain
two outgoing Coulomb-type waves in the ionization cha
nels.

The present work was therefore motivated by the ques
of whether or not the results from the aboveT-matrix method
would ultimately converge to the correct answer or whet
problems, particularly oscillations, might still persist. W
also note that highly accurate results for this particular pr
lem have recently become available@18,29#. Because of its
numerical stability when a very large number of pseud
states are included in the close-coupling expansion, we
cided to calculate the wave functionC0

1(r 1 ,r 2) using the
IERM method. The basic ideas behind this method and
construction ofC0

1(r 1 ,r 2) from the standard IERM outpu
are summarized in the next section, followed by the disc
sion of our results and some concluding remarks.

II. THE IERM METHOD

TheR-matrix method, in general, proceeds by partitioni
configuration space into two regions by a sphere of rad
06271
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r 5a, wherer is the relative coordinate of the scattering ele
tron and the center of gravity of the target atom or ion. T
sphere is chosen to completely envelope the electronic o
als of the target atom or ion. Hence in the internal reg
(r<a) exchange and correlation effects between the sca
ing electron and the target electrons must be includ
whereas in the external region exchange effects can be
glected and the problem simplifies considerably.

In the internal region the (N11)-electron wave function
at energyE is expanded in terms of an energy-independ
basis set,ck , as

CE5(
k

AEkck . ~3!

The basis states,ck , are expanded in the form

ck~x1 , . . . ,xN11!5A(
i j

F̃ i~x1 , . . . ,xN ; r̂N11sN11!

3r N11
21 ui j ~r N11!ci jk

1(
j

x j~x1 , . . . ,xN11!djk , ~4!

where the channel functionsF̃ i are obtained by coupling the
orbital and spin angular momenta of the target statesF i with
those of the scattered electron to form eigenstates of the
orbital and spin angular momentaL and S, their
z-componentsML and MS , and the parityp. The set of
statesF i will include target eigenstates and pseudo-state
allow for the effect of the infinite number of highly excite
bound states and continuum states of the target atom or
which cannot be explicitly included in the calculation. Th
ui j are members of a complete set of numerical orbitals u
to describe the radial motion of the scattered electron and
x j are (N11)-electron configurations included to allow fo
short range correlation effects between the scattered and
get electrons. The coefficientsci jk and di j are obtained by
diagonalizing the (N11)-electron Hamiltonian matrix in the
internal region.

Each of the target eigenstates and pseudo-states is
panded in terms of a sum of orthonormal configurations

F i~x1 , . . . ,xN!5(
j

f j~x1 , . . . ,xN!ci j , ~5!

where thef j are constructed from a set of orthonormal on
electron orbitals which can be either bound physical orbit
or pseudo-orbitals, included to represent electron correla
effects or to represent the target continuum.

In the IERM method, the bound orbitals and the pseu
orbitals are members of the same numerical continuum b
which is used to describe the motion of the scattered e
tron. For the TP-model~zero angular momentum only!, the
radial functions of these orbitals are solutions of the diff
ential equation
5-2
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S d2

dr2
1

2Z

r
1kn

2D un~r !50, ~6!

subject to the boundary conditions

un~0!50,

a

un~a!

dun~r !

dr U
r 5a

5b, ~7!

whereb is a constant, usually taken as zero. The IERM ba
produced from these functions is a more densely pac
pseudo-state basis, with respect to the target state en
levels, than a typical RMPS pseudo-state basis@30#. It de-
pends, however, on theR-matrix boundary, with the density
increasing with increasing radius. It is therefore very app
priate in the study of scattering processes such as elec
impact ionization close to threshold@11,30#. In the calcula-
tion with a box radius of 400a0, for example, from which
results are shown below for an incident energy of 20 eV,
S states were included in the close-coupling expansion.
those 95 states, the lowest 12 represented very good app
mations to the physical discrete states, the next 6 still
negative energy and therefore represented coupling to
remaining members of the discrete spectrum, and the o
77 states represented the ionization continuum. For an i
dent electron energy of 20 eV, 72 of these continuum sta
represented open channels while the remaining 5 w
closed. The ability to include this very large number
pseudo-states~and more if desired! without running into
linear-dependence problems is the major strength of
IERM approach.

Finally, it is necessary to construct the wave functi
C0

1(r 1 ,r 2) using the IERM basis. We first expres
C0

1(r 1 ,r 2) in terms of the energy-independentR-matrix ba-
sis states,ck , as in Eq.~3!

C0
1~r 1 ,r 2!5(

k
AEkck , ~8!

whereAEk are complex coefficients andE is the total energy
of the two-electron system. Asymptotically, we construct
wave functionC0

1(r 1 ,r 2) to correspond to a plane wave
the incident channel together with spherical outgoing wa
in all scattering channels. For outgoing wave boundary c
ditions, the coefficientsAEk are given by@31#

AEk5
1

2a~Ek2E! (
i

wik~a!S a
dyip

dr
2byipD

r 5a

, ~9!

where the surface amplitudeswik(a) are defined in terms o
the radial basis functionsui j (a) on theR-matrix boundary by

wik~a!5(
i

ci jkui j ~a!. ~10!
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In the present IERM calculation, theui j will be members of
the basis set defined by Eqs.~6! and~7!. The radial functions,
yip(r ), in Eq. ~9! behave asymptotically as

yip~r ! ;
r→`

ki
21/2~e2 iu id ip2eiu iSip!, ~11!

whereSip is the scattering matrix,u i5kir for the TP model,
andp51 for scattering from the ground state.~As mentioned
above, however, this standard choice is problematic for
ionization channels.! We note thatyip(a) is related to its
derivative on theR-matrix boundary,r 5a, through the
R-matrix

yip~a!5(
j

Ri j S a
dyjp

dr
2byjpD

r 5a

, ~12!

where theR-matrix at energyE is given by

Ri j 5
1

2a (
k

wik~a!wjk~a!

Ek2E
1Ri j

corrd i j . ~13!

Ri j
corrd i j is the usual Buttle correction to the diagonal e

ments of theR-matrix @32#. The expansion coefficientsAEk
can then be written in matrix form as

A~E!5G"wT"RÀ1"y¿, ~14!

where we have omitted thep index for simplicity. The matrix
G is a diagonal matrix with elements

Gkk5
1

2a~Ek2E!
. ~15!

All the quantities in Eq.~14! are real except fory¿, which
satisfies the complex boundary conditions~11!. For conve-
nience,y¿ can be written in terms of the real solutions

Fi j ~r ! ;
r→`

ki
21/2~sinu id i j 1cosu iKi j !, open channels;

Fi j ~r ! ;
r→`

exp~2uki ur !d i j , closed channels. ~16!

We then find that

Rey¿52F"K ~11K2!21, ~17!

Im y¿522F"~11K2!21. ~18!

In the current IERM calculation, theR-matrix boundary is
taken sufficiently large so that Eq.~16! is satisfied atr 5a.
The K-matrix, K , can then be extracted by matching rad
solutions for the scattered electron on theR-matrix boundary
in the usual way~see, e.g.@33#!. Knowing the expansion
coefficientsci jk anddjk from the diagonalization of the two
electron Hamiltonian matrix in the internal region, we c
construct theR-matrix basis states,ck , and hence complete
the determination of the wave functionC0

1(r 1 ,r 2).
5-3
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III. RESULTS AND DISCUSSION

For direct comparison with the results of Pindzolaet al.
@22#, we also performed our case studies for an incident
ergy of 20 eV. Figure 1 displays our first set of resul
namely for a box size of 40a0. This relatively small box can
essentially accommodate the physical bound orbitals 1s, 2s,
and 3s, and hence the very good agreement between
1-state and 3-state results and those shown in Fig. 3 of
dzolaet al. @22# ~for a box size of 50a0) is not surprising but
serves as a valuable check of the numerical procedure. S
the 5-state model includes two pseudo-states that are
structed with the same philosophy but a different bound
condition compared to the RMPS method, we now exp
similar though not identical results from the IERM an
RMPS methods. This is indeed the case, as seen from a
parison of the two figures mentioned above. Most imp
tantly, however, we see that the curves for 20 and 25 st
included in the close-coupling expansion are essentially
distinguishable on the graph. We therefore conclude that
particular model~for a box radius of 40a0) is converged with
respect to the number of states.

Also shown in Fig. 1 is the result of our recent tim
dependent calculation@21# that was pushed to a radius o
480a0. Comparison with the FDM results of Jones and St
bovics @29# shows that these results are close to the ex
answer, except near the equal-energy sharing case, wher
width of the Gauss package and a very slow converge
with the box radius causes the minimum to smear out. Si
the oscillations of theT-matrix results around the TDSE an
FDM predictions are apparently not removable by includ
more states in the close-coupling expansion, we concl
that these oscillations are an artifact of the boundary co

FIG. 1. Energy-differential ionization cross section for the s
glet spin channel of the Temkin-Poet model at an incident energ
20 eV, obtained as for a fixedR-matrix radius of 40a0 as a function
of the number of target states used in the close-coupling expan
Note that the results for 20 and 25 states are indistinguish
within the thickness of the respective lines. Also shown are rec
results from time-dependent~TDSE! @21# and finite-difference
~FDM! methods@29#.
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tions imposed onC0
1(r 1 ,r 2) by the present IERM approach

which are~like those in the RMPS formulation! inappropri-
ate for the ionization problem.

Figure 2 shows the corresponding results for a box rad
of 200a0. Here the 30-state calculation corresponds to
case where already more than 20 pseudo-states are incl
in the calculation, but the highest pseudo-state energy is o
2.2 eV, i.e., 15.8 eV above the elastic threshold. As a res
the predictions from this particular model are far away fro
the correct answer and show a strange pattern near the e
energy sharing situation. Nevertheless, one could actually
gue that the individual points are still ‘‘better’’~namely
lower! than what would be obtained in 1-state and 3-st
models. The other calculations, including 40, 50, and
states, respectively, provide significantly improved answe
In these cases, pseudo-states with energies up to 4.5, 7.4
11.0 eV, respectively, were included in the calculations. Fr
the nearly identical results obtained in the 50-state and
state models, we conclude that convergence with respe
the number of states is essentially reached once a few cl
channels are included in the calculation. Note, however,
even after reaching this convergence the oscillations in
SDCS persist. We also point out that the amplitude of
oscillations in the asymmetric energy-sharing situat
(e!Emax2e) is not decreasing considerably compared
the smaller box radius~see Fig. 1!. Finally, we investigated
the triplet spin channel for this box size. As seen by t
results from the 50-state model, oscillations are essenti
negligible in this case. This finding agrees with those fro
studies using some of the other methods mentioned abo

Figure 3 shows the behavior of our results from co
verged~with respect to the number of states! calculations as
a function of the box radius. Although the results for 300a0
and 400a0 are quite similar, thereby indicating convergen
with respect to the box radius as well, these results are
parently not physical. The amplitudes of the oscillation ne
the edges~i.e., for highly asymmetric energy sharing! are

-
of

n.
le
nt

FIG. 2. Same as Fig. 1 for a radius of 200a0. Also shown are the
results from the 50-state calculation for the triplet spin chan
~multiplied by 10 with the spin factor of 3/4 included!.
5-4
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substantial, and we also note a ‘‘shoulder’’ just before en
ing the ‘‘trough’’ near the center. Around the equal-ener
sharing regime, however, theT-matrix results are apparentl
superior even to the best TDSE data that we could gene
with a comparable computational effort. Consequently
may be worthwhile to investigate the possibility of combi
ing the strengths of both methods in the respective ene
sharing regimes.

After plotting the actual wave function on the mesh,
seemed possible that the construction of the wave func
near the end of the mesh might be the reason for some, i
all, of the problems. We therefore explored even more p
sibilities to extract the ionization cross section. An exam
is shown in Fig. 4, in which we compare the results obtain
from calculations where the wave functionC0

1(r 1 ,r 2) was
determined over the full rectangular (r 1 ,r 2) mesh reaching
out to 400a0, but the radial integrations in Eq.~1! were per-
formed over the full square (0<r 1 ,r 2<400a0), a quarter
circle (r 1

21r 2
2<400a0), a smaller square (0<r 1 ,r 2

<280a0), and a smaller quarter circle (r 1
21r 2

2<280a0). Ob-
viously, the problem is not solved by either one of the
prescriptions either.

However, it is worth noting that the oscillations in Fig.
are of smaller amplitude than what is obtained in the ‘‘sta
dard’’ extraction of the SDCS from CCC, RMPS, and IER
calculations, where a trapezoidal-based integration rule
used to relate the excitation cross sections of the posit
energy pseudo-states to the SDCS@7#. Here the SDCS at a
pseudo-state energye i is simply approximated by the exc
tation cross sections i of this state divided by half the energ
difference to the two neighboring states. Although our co
putational facilities did not allow for aT-matrix IERM cal-
culation at bigger radii than 400a0, we used the two-
dimensionalR-matrix propagator approach@34# to perform a

FIG. 3. Energy-differential ionization cross section for the s
glet spin channel of the Temkin-Poet model at an incident energ
20 eV, obtained for different values of theR-matrix radius. The
calculations are converged with the number of states included in
close-coupling expansion. Also shown are recent results from ti
dependent~TDSE! @21# and finite-difference~FDM! methods@29#.
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standard IERM calculation over even bigger ranges up
800a0. As can be seen from Fig. 5, only the number but n
the amplitude of the oscillations changes substantially in
‘‘integration-rule’’ method when going from 400a0 to 800a0.
It therefore seems unlikely that the oscillations will com
pletely disappear in theT-matrix method even if the box

-
of

he
e-

FIG. 4. Energy-differential ionization cross section for the s
glet spin channel of the Temkin-Poet model at an incident energ
20 eV, obtained by performing the integration over the full squ
of side length 400a0 ~MESQ–400!, a quarter circle of radius 400a0

~MECI–400!, and a reduced square~quarter circle! of side length
~radius! 280a0 ~MESQ–280 and MECI–280!. In all cases, the wave
functionC0

1(r 1 ,r 2) was constructed on the full square. Also show
are the SDCSs obtained from the integration-rule approach u
the excitation cross sections for the various pseudo-states tog
with their energy separation, as well as the FDM result@29#.

FIG. 5. Energy-differential ionization cross section for the s
glet spin channel of the Temkin-Poet model at an incident energ
20 eV, obtained by theT-matrix approach over a square of sid
length 400a0 ~MESQ–400! and by integration-rule extractions o
the SDCS from IERM calculations with box-sizes of 400a0 and
800a0, respectively.
5-5
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radius is increased further. Nevertheless, partial success
be claimed from the fact that the amplitude of the oscil
tions is reduced when changing the procedure from the i
gration rule to theT-matrix approach. This, together with th
built-in symmetry of the SDCS results around half the exc
energy, might improve the confidence in smoothing pro
dures.

IV. SUMMARY AND CONCLUSIONS

We have used the IERM method, in combination with t
T-matrix approach, to calculate the energy-differential io
ization cross sections for the singlet channel of the TP mo
for an incident electron energy of 20 eV. For fixed box ra
between 40a0 and 400a0, it was possible to include a suffi
cient number of states in the close-coupling expansion
ensure convergence with the number of coupled states. W
their amplitude and location depending on the details of
integration procedure used in theT-matrix approach, un-
physical oscillations around the correct answer still remai
even in our largest calculations. Although we cannot rule
the possibility of convergence at a truly ‘‘infinite’’ mesh
indications are that theT-matrix method, as formulated
above, will not remove all the unphysical oscillations i
M

on

. B

. B

dy
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practical calculations. Although the results are symmetric~by
construction! around the equal-energy sharing point and
oscillations exhibit a smaller amplitude than those seen in
standard integration-rule extraction procedure of the SD
it seems very likely that the consequences of imposing inc
rect asymptotic boundary conditions on the full scatter
wave function cannot be completely eliminated by this a
proach. Although this result may not be too surprising af
all, we expect it to be very relevant in setting the directio
for future work on this fundamental collision problem.
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