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The T-matrix approach, as formulated by Pindzelaal. [Phys. Rev. A62, 062718(2000] for calculating
the single-differential ionization cross secti®DCS has been further investigated. Using the “intermediate-
energyR-matrix method” to obtain the full scattering wave function needed in the matrix element, we per-
formed several case studies for the Temkin-F&Bve model ok-H scattering to study the dependence of the
results on the box radius and the number of states included. Despite encouraging results before reaching
convergence, we conclude that the method will ultimately not yield the correct form of the SDCS but instead
will still suffer from unphysical oscillations.
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[. INTRODUCTION methods(FDM) [17,18, and time-dependent wave-packet
approache$19-21]. Overall, it was found that the total ex-
In recent years, the Temkin-PoéTP) model problem citation and ionization cross sections could be predicted with
[1,2] has been studied in great detail to investigate a simplivery high accuracy by essentially all of these methods, with
fied version of the classic three-body Coulomb break-ughe only practical limitation being the available computa-
problem, namely electron-impact ionization of atomic hydro-tional resources. The complete problem, however, for the
gen. In this model, only th& wave is considered and hydro- Present case is the dlstrlbutlon' of the excess energy among
genic states with angular momenturs 0 are accounted for. e two outgoing electrons. It is determined by the single-
It is important to note that this problem contains most of thedifferential (with respect to the energy I9ssross section
difficulties associated with the full problem, but because of(SD.CS' Interestingly, this SDCS could only pe obtained in a
the restriction in angular momentum, it is now possible tostra|ghtforward manner by methods that either matched to

push numerical methods essentially to convergence. Consexact boundary conditions or did not rely on boundary con-

) ; ~ONSHiions at all in the extraction procedure.
guently, if the problem is formulated correctly and sufficient Finally, of particular interest for the present work is the
computational resources are allocated, one may expect ny- ’

ical he “phvsical” his i matrix method suggested by Pindzola, Mitnik, and Ro-
g:ilrézam%%rgergence to the “physical” answer for this Sim- picheaux22]. They addressed the problem of the unphysical
if .

k , ) asymmetry in the SDCS with respect to half of the available
A milestone regarding the convergence of numerical treaténergy for the two outgoing electrons, found in the standard
ments was achieved in the pioneering work of Bray and Stelccc, RMPS, and IERM results. The reason for this asym-
bovics[3], who developed the so-called “convergent close-metry has been discussed in great dd@@—26; it is effec-
coupling” (CCC) method. The essential idea of the method istively due to the unequal treatment of the two positive-
the extension of the standard discrete-state-only closeenergy electrons. For further discussion, particularly with
coupling method through inclusion of a large number ofrespect to the way the SDCS is extracted from a numerical
square-integrable pseudo-states. While formulated imwave function, see also the work by Rescigrna@l. [27] and
momentum-space, the CCC method is closely related to eaby Madison et al. [28]. However, Pindzolaet al. [22]

lier pseudo-state approaches5], which were not necessar- showed how the asymmetry can be removed by using a
ily pushed to convergence in all aspects due to the limited-matrix formulation to extract the ionization amplitude and,
computational resources at the time, and particularly to theonsequently, the SDCS. In this formulation, the ionization
R-matrix with pseudo-state®RMPS method[6,7]. Another  amplitude for the TP modéin atomic unit3 is defined as
close relative of the CCC method is the intermediate-energy

R-matrix (IERM) approach8,9], which has been shown to [ *

yield essentially identical results to CCC and RMPS,11] fkz ks ko) = fo drlfo draCky,ra)

if all three methods are driven to convergence. Without at-
tempting completeness, we also mention some of the many
other methods used for both the TP and the &+#H colli-

sion problem, namely the eigenchanReinatrix[12], hyper-
spherical close-couplinf13,14], the J-matrix method[15],  wherek, is the linear momentum of the incident electron
exterior complex scalingECS [16], direct finite-difference  while k; andk, are the momenta of the two outgoing elec-

1
XC(kz,rz):‘I’S(rlyrz), 1)
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trons in the final stat¢ Only the magnitudes of the momenta r = a, wherer is the relative coordinate of the scattering elec-
matter in the TP modgl. Furthermore, Y. with r.  ton and the center of gravity of the target atom or ion. This
=max(,.r;) is the interaction potentialC(k,r) is a Cou-  sphere is chosen to completely envelope the electronic orbit-
lomb wave for an electron with momenturk, and jis of the target atom or ion. Hence in the internal region
W, (ry.r2) is the full solution of the collision problem. The (r<a) exchange and correlation effects between the scatter-
boundary conditions fo g (r;,r,) must be chosen in such ing electron and the target electrons must be included,
a way that there is an incoming plane wave in the channelvhereas in the external region exchange effects can be ne-
with the target in the 4 initial state, and outgoing waves in glected and the problem simplifies considerably.
all collision channelgincluding the elastic ore Assuming In the internal region theN+ 1)-electron wave function
thatW, (r,,r,) is properly antisymmetrized, one sees imme-at energyE is expanded in terms of an energy-independent
diately that the above scheme is explicitly symmetric againsbasis sety,, as
interchanging the two outgoing electrons in the calculation
of the SDCS given by
Ve=2) Aei. 3

do 8 ) k

_Ep|f(k2,kl,k0)| ’ (2)
0

€
The basis states), are expanded in the form

wheree is the energy of the ejected electron. Equati®nis
consistent with the conventions of Pindzaaal. [22], ex-

cept that all continuum functions for enerdy/2 are as- X ’XN“):A; Pi(X1, - XNGIN+20N+1)
sumed to behave ak 2 times a sine function in the
asymptotic regime. XNt Ui (T 1) Cijk
The initial tests performed by Pindzoé& al. [22] using
the above formulation were quite promising, although some +§j: Xi(X1s -+ Xt )ik (4)

oscillations in the SDCS results were found even in their
largest RMPS calculations. However, they attributed these

oscillations to the finite mesh size and the limited number of here the channel functior®: are obtained by coupling the
. . . . |
states included in the close-coupling expansion, and thergspital and spin angular momenta of the target stdtewith

fore expressed optimism that these problems could be rep,se of the scattered electron to form eigenstates of the total
solved in a more or less straightforward manner. Of course, if pital  and spin angular momenta. and S their

is known that the wave functio\lr_g(rl,rz), if _calculated by z-componentsM, and Mg, and the parityw. The set of

the RMPS or similar methods, is asymptotically not correCisiatesd; will include target eigenstates and pseudo-states to
due to the finite range of the pseudo-orbitals. Although thisyjow for the effect of the infinite number of highly excited
problem might be more obvious in the “prior form” of EqQ. pound states and continuum states of the target atom or ion
(1), where the full scattering wave functiolf; (r;,r;) is  which cannot be explicitly included in the calculation. The
needed on the left-hand-side of the matrix element while th(g,ij are members of a complete set of numerical orbitals used
right-hand-side is a simple product of the initial target stat&o describe the radial motion of the scattered electron and the
and a plane wave for the projectile, it exists in the abovey, are (N+ 1)-electron configurations included to allow for
“post” form as well, since® ; (r,r,) should really contain  short range correlation effects between the scattered and tar-
two outgoing Coulomb-type waves in the ionization chan-get electrons. The coefficients;, and d;; are obtained by

nels. diagonalizing the I + 1)-electron Hamiltonian matrix in the
The present work was therefore motivated by the questiofhternal region.
of whether or not the results from the abovenatrix method Each of the target eigenstates and pseudo-states is ex-

would ultimately converge to the correct answer or whethehanded in terms of a sum of orthonormal configurations
problems, particularly oscillations, might still persist. We

also note that highly accurate results for this particular prob-

lem have recently become availaljls8,29. Because of its D(Xq, ... ,xN)=Z di(Xg, ... XN)Cij (5)
numerical stability when a very large number of pseudo- !

states are included in the close-coupling expansion, we de-

cided to calculate the wave functiobi] (r,,r,) using the Where theg; are constructed from a set of orthonormal one-
IERM method. The basic ideas behind this method and th&!ectron orbitals which can be either bound physical orbitals
construction of¥{ (r,,r,) from the standard IERM output ©' pseudo-orbitals, included to represent electron correlation

are summarized in the next section, followed by the discus€fT€Cts or to represent the target continuum.
sion of our results and some concluding remarks. In the IERM method, the bound orbitals and the pseudo-

orbitals are members of the same numerical continuum basis
which is used to describe the motion of the scattered elec-
tron. For the TP-modelzero angular momentum onlythe

The R-matrix method, in general, proceeds by partitioningradial functions of these orbitals are solutions of the differ-
configuration space into two regions by a sphere of radiugntial equation

Il. THE IERM METHOD
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In the present IERM calculation, the; will be members of
uy(r)=0, (6)  the basis set defined by E@8) and(7). The radial functions,

( > 2z
—+—+k;
r Yip(r), in Eq. (9) behave asymptotically as

dr?

subject to the boundary conditions yip(r) ~ ki YAe %5, —€%s,), (11)
r—o
un(0)=0, . . .
whereS;, is the scattering matrixg; =k;r for the TP model,
andp=1 for scattering from the ground stat&s mentioned
=b, 7) above, however, this standard choice is problematic for the
ionization channels.We note thaty;,(a) is related to its
derivative on theR-matrix boundary,r=a, through the

whereb is a constant, usually taken as zero. The IERM basid-matrix

produced from these functions is a more densely packed

pseudo-state basis, with respect to the target state energy Vi (a):z R.
levels, than a typical RMPS pseudo-state b&3@. It de- P T
pends, however, on the-matrix boundary, with the density

increasing with increasing radius. It is therefore very approwhere theR-matrix at energyE is given by

priate in the study of scattering processes such as electron-

impact ionization close to thresho[d1,30. In the calcula- 1 wig(@wj(a)

tion with a box radius of 408, for example, from which Ri=5a 5 EKTJFRU Sij - (13
results are shown below for an incident energy of 20 eV, 95

S states were included in the close-coupling expansion. Ohic;orréij is the usual Buttle correction to the diagonal ele-

i ) : L
thos:e 95 states, the I_owes; 12 represented very good aPProfients of theR-matrix [32]. The expansion coefficientsg,
mations to the physical discrete states, the next 6 still ha

. : an then be written in matrix form as
negative energy and therefore represented coupling to the

remaining members of the discrete spectrum, and the other A(E)=G-w'-R™Ly*, (14)
77 states represented the ionization continuum. For an inci-
dent electron energy of 20 eV, 72 of these continuum statégnere we have omitted theindex for simplicity. The matrix
represented open channels while the remaining 5 werg; g a diagonal matrix with elements
closed. The ability to include this very large number of
pseudo-stategsand more if desiredwithout running into 1
linear-dependence problems is the major strength of the Gkk:m-
IERM approach. k
Finally, it is necessary to construct the wave function
Wq(ry,r,) using the IERM basis. We first express
W (ry,r,) in terms of the energy-independeRimatrix ba-
sis statesyly, as in Eq.(3)

a duy(r)

u,(a) dr

r=a

dyjp
aW_byjp)r : (12

=a

(15

All the quantities in Eq(14) are real except foy™, which
satisfies the complex boundary conditiofid). For conve-
nience,y™ can be written in terms of the real solutions

Fij(r) ~ ki Y(sin6;8;+cosé;K;;), open channels;
r—o

\I,g(rlarZ):; AEklpk! (8)
Fij(r) ~ exp(—|ki|r)&jj, closed channels. (16)
r

— 0

whereAg, are complex coefficients aridis the total energy
of the two-electron system. Asymptotically, we construct theywe then find that
wave function\lfg(rl,rz) to correspond to a plane wave in

the incident channel together with spherical outgoing waves Reyt=2F-K(1+K?) %, (17)
in all scattering channels. For outgoing wave boundary con-
ditions, the coefficienté\g, are given by[31] Imy*=—2F-(1+K?) 1, (18)

dyip In the current IERM calculation, thB-matrix boundary is

a~, b 9 taken sufficiently large so that E€L6) is satisfied af = a.
r-a The K-matrix, K, can then be extracted by matching radial

solutions for the scattered electron on Renatrix boundary
in the usual way(see, e.g[33]). Knowing the expansion
coefficientsc;;, andd;, from the diagonalization of the two-
electron Hamiltonian matrix in the internal region, we can

. _ o construct theR-matrix basis states),, and hence complete
Wik(@) Z Cik i} (8)- (19 the determination of the wave functiob (rq,r,).

1
AEk:m Z wi(a)

where the surface amplitudes,(a) are defined in terms of
the radial basis functions;(a) on theR-matrix boundary by
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FIG. 1. Energy-differential ionization cross section for the sin-  FIG. 2. Same as Fig. 1 for a radius of 2Q0Also shown are the
glet spin channel of the Temkin-Poet model at an incident energy ofesults from the 50-state calculation for the triplet spin channel
20 eV, obtained as for a fixd@matrix radius of 4@, as a function  (multiplied by 10 with the spin factor of 3/4 included
of the number of target states used in the close-coupling expansion.

Note that the results for 20 and 25 states are indistinguishabl
within the thickness of the respective lines. Also shown are rece
results from time-dependenfTDSE) [21] and finite-difference
(FDM) methodd[29].

fions imposed onv, (rq,r,) by the present IERM approach,
Which are(like those in the RMPS formulatigrinappropri-
ate for the ionization problem.

Figure 2 shows the corresponding results for a box radius

IIl. RESULTS AND DISCUSSION of 200a,. Here the 30-state calculation corresponds to the
case where already more than 20 pseudo-states are included
For direct comparison with the results of Pindzelaal.  in the calculation, but the highest pseudo-state energy is only

[22], we also performed our case studies for an incident en2.2 eV, i.e., 15.8 eV above the elastic threshold. As a result,
ergy of 20 eV. Figure 1 displays our first set of results,the predictions from this particular model are far away from
namely for a box size of 4Q,. This relatively small box can the correct answer and show a strange pattern near the equal-
essentially accommodate the physical bound orbitals2%, energy sharing situation. Nevertheless, one could actually ar-
and 3, and hence the very good agreement between ougue that the individual points are still “better{namely
1-state and 3-state results and those shown in Fig. 3 of Piewer) than what would be obtained in 1-state and 3-state
dzolaet al.[22] (for a box size of 58,) is not surprising but models. The other calculations, including 40, 50, and 60
serves as a valuable check of the numerical procedure. Sinstates, respectively, provide significantly improved answers.
the 5-state model includes two pseudo-states that are coim these cases, pseudo-states with energies up to 4.5, 7.4, and
structed with the same philosophy but a different boundani 1.0 eV, respectively, were included in the calculations. From
condition compared to the RMPS method, we now expecthe nearly identical results obtained in the 50-state and 60-
similar though not identical results from the IERM and state models, we conclude that convergence with respect to
RMPS methods. This is indeed the case, as seen from a cortite number of states is essentially reached once a few closed
parison of the two figures mentioned above. Most impor-channels are included in the calculation. Note, however, that
tantly, however, we see that the curves for 20 and 25 statemven after reaching this convergence the oscillations in the
included in the close-coupling expansion are essentially inSDCS persist. We also point out that the amplitude of the
distinguishable on the graph. We therefore conclude that thiescillations in the asymmetric energy-sharing situation
particular mode(for a box radius of 48;) is converged with  (e<E,.— €) IS not decreasing considerably compared to
respect to the number of states. the smaller box radiugsee Fig. 1 Finally, we investigated
Also shown in Fig. 1 is the result of our recent time- the triplet spin channel for this box size. As seen by the
dependent calculatiofi21] that was pushed to a radius of results from the 50-state model, oscillations are essentially
480a,. Comparison with the FDM results of Jones and Stel-negligible in this case. This finding agrees with those from
bovics [29] shows that these results are close to the exacstudies using some of the other methods mentioned above.
answer, except near the equal-energy sharing case, where theFigure 3 shows the behavior of our results from con-
width of the Gauss package and a very slow convergenceerged(with respect to the number of stateslculations as
with the box radius causes the minimum to smear out. Sinca function of the box radius. Although the results for 890
the oscillations of th&-matrix results around the TDSE and and 40@, are quite similar, thereby indicating convergence
FDM predictions are apparently not removable by includingwith respect to the box radius as well, these results are ap-
more states in the close-coupling expansion, we concludparently not physical. The amplitudes of the oscillation near
that these oscillations are an artifact of the boundary condithe edges(i.e., for highly asymmetric energy sharingre
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FIG. 3. Energy-differential ionization cross section for the sin-  FIG. 4. Energy-differential ionization cross section for the sin-
glet spin channel of the Temkin-Poet model at an incident energy oflet spin channel of the Temkin-Poet model at an incident energy of
20 eV, obtained for different values of tHematrix radius. The 20 eV, obtained by performing the integration over the full square
calculations are converged with the number of states included in thef side length 408, (MESQ-400, a quarter circle of radius 4@9
close-coupling expansion. Also shown are recent results from timetMECI-400, and a reduced squaftquarter circlg of side length
dependenfTDSE) [21] and finite-differencé FDM) methodg[29]. (radiug 2808, (MESQ-280 and MECI-280In all cases, the wave

functionW (r,,r,) was constructed on the full square. Also shown
substantial, and we also note a “shoulder” just before enter&re the.S[.)CSs obtaineq from the integration-rule approach using
ing the “trough” near the center. Around the equal-energyth_e exm_tatlon cross sectl_onS for the various pseudo-states together
sharing regime, however, thematrix results are apparently With their energy separation, as well as the FDM ref2ey.
superior even to the best TDSE data that we could generate[ . .
with a comparable computational effort. Consequently, it> andard [ERM calculation over even bigger ranges up to
may be worthwhile to investigate the possibility of combin- 800Ga,. AS. can be seen fr_om_ Fig. 5, only the numb(_ar bu_t not
ing the strengths of both methods in the respective energ)};he ampl_ltude of"the oscillations changes substantially in the
sharing regimes. integration-rule metho.d when going frorr_1 4@@ to SQCHO.

After plotting the actual wave function on the mesh, it It therefqre seems unlikely that the osc:|llat|on§ will com-
seemed possible that the construction of the wave functioRISte!Y disappear in thd-matrix method even if the box
near the end of the mesh might be the reason for some, if not

0.4
all, of the problems. We therefore explored even more pos- ' ' ' ' ' '
sibilities to extract the ionization cross section. An example MESQ-400
. . . . . . IR2D-400 *
is shown in Fig. 4, in which we compare the results obtained IRD-800 ©

from calculations where the wave functiohg (r,,r,) was
determined over the full rectangular(r,) mesh reaching
out to 40@, but the radial integrations in EqL) were per-
formed over the full square @rq,r,<4008;), a quarter
circle (rf+r5<400a,), a smaller square @@rq,r,
<280a,), and a smaller quarter circle{+r3=<280a,). Ob-
viously, the problem is not solved by either one of these
prescriptions either.

However, it is worth noting that the oscillations in Fig. 4
are of smaller amplitude than what is obtained in the “stan-
dard” extraction of the SDCS from CCC, RMPS, and IERM
calculations, where a trapezoidal-based integration rule is
used to relate the excitation cross sections of the positive- )
energy pseudo-states to the SD[7% Here the SDCS at a ejected energy (eV)
pseudo-state energy is simply approximated by the exci- g, 5. Energy-differential ionization cross section for the sin-
tation cross section; of this state divided by half the energy glet spin channel of the Temkin-Poet model at an incident energy of
difference to the two neighboring states. Although our com-20 eV, obtained by thd-matrix approach over a square of side
putational facilities did not allow for &-matrix IERM cal- length 40@, (MESQ-400 and by integration-rule extractions of

culation at bigger radii than 4@Q, we used the two- the SDCS from IERM calculations with box-sizes of 4@0and
dimensionaR-matrix propagator approa¢B4] to perform a  800a,, respectively.

cross section (Mb/eV)
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radius is increased further. Nevertheless, partial success camactical calculations. Although the results are symméhyc
be claimed from the fact that the amplitude of the oscilla-construction around the equal-energy sharing point and the
tions is reduced when changing the procedure from the intesscillations exhibit a smaller amplitude than those seen in the
gration rule to thél-matrix approach. This, together with the standard integration-rule extraction procedure of the SDCS,
built-in symmetry of the SDCS results around half the exces# seems very likely that the consequences of imposing incor-
energy, might improve the confidence in smoothing procerect asymptotic boundary conditions on the full scattering
dures. wave function cannot be completely eliminated by this ap-
proach. Although this result may not be too surprising after
IV. SUMMARY AND CONCLUSIONS all, we expect it to be very relevant in setting the directions

) o ] for future work on this fundamental collision problem.
We have used the IERM method, in combination with the
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