
ia

PHYSICAL REVIEW A, VOLUME 65, 062708
„e,2e… ionization of H2
¿ by fast electron impact: Application of the exact nonrelativistic
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The multiply differential cross section of the dissociative ionization of H2
1 by fast~2 keV! electron impact

is determined theoretically using a two-center continuum wave function constructed using the exact solutions
of the separable two-center Schro¨dinger equation in prolate spheroidal coordinates for the slow~50 eV! ejected
electron. The comparison of the results to those obtained by approximate approaches, like those using an
effective center Coulomb wave or Pluvinage-type two-center wave or the wave packet evolution approach,
shows the limits of these approximate methods. Additionally, the variation of the sevenfold differential cross
section, which corresponds to the ionization of aligned molecules, reveals interesting mechanisms and gives
some insight into the optimal conditions for the dissociative ionization of more complex diatomic targets.
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I. INTRODUCTION

The dissociative ionization of diatomic molecules is t
object of growing interest, especially in the domain
atomic collisions, because of the rapid development of a
riety of coincidence detection techniques@1–5#. These tech-
niques measure the momenta of the emerging fragme
such as the residual ions and the electrons, and deduc
coincidence counting the corresponding multiply different
cross sections. Studying these cross sections can deliver
cious information about the electronic structure, the mec
nism of the fragmentation process, and the influence of
molecular alignment.

In the particular domain of (e,2e) collisions, which cor-
responds to ionization by electron impact with coinciden
detection of the two emerging electrons, diatomic targets
less frequently studied than atomic ones@6#, especially in the
theoretical domain, in spite of the fact that gases exist n
rally in diatomic molecular form. This can be explained
the fact that theoretically the construction of a wave desc
ing a free electron in the field of two fixed centers is a som
what difficult task. Usually, the description of the eject
slow electron is realized by one-center continuum wa
functions in the form of partial wave development@7–9# or
of a closed Coulomb wave judiciously centered@10,11# on
the center of the diatomic molecule or on the nuclei.

The simple (e,2e) ionization of H2
1 is one of the rare

experimental situations, with (g,e) on H2
1 , where a free

electron with measurable wave vectorke is found in the field
of two positively charged nuclei which can reasonably
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considered as fixed. From this point of view this uniq
physical situation can serve as an excellent test for differ
theoretical models concerning this basic problem. In the p
many attempts have been made to find a proper approx
tion for the description of this electron. Joulakianet al. @12#
used an approximate wave function inspired by the Plu
nage model@13# constructed as the product of two Coulom
functions centered on the nuclei. Serovet al. @14#, on the
other hand, followed a completely different method by n
merically solving the Schro¨dinger equation with a wave
packet evolution approach. The fact that for the Coulo
potential the two-center Schro¨dinger equation is separable i
prolate spheroidal coordinates@15–17#, and thus gives exac
analytical or numerical solutions, is very rarely exploited
real physical situations involving two-center continuum ele
trons @18#. To our knowledge, in simple (e,2e) ionization,
the partial wave development in prolate spheroidal exact
lutions for the description of the slow ejected electron in t
field of two fixed nuclei has not yet been realized. The aim
our paper is to determine and study the multiply different
cross section of this process, see the limits of the validity
the other existing approximate models, and explore ph
cally interesting situations for experimental applications.

In what follows we will present briefly our numerical ap
proach to the basic two-center Schro¨dinger equation in pro-
late spheroidal coordinates; then we will introduce our p
tial wave development into the transition matrix element
the (e,2e) ionization of aligned H2

1 systems. In Sec. V we
will compare the variation of the sevenfold differential cro
section obtained by these exact solutions to recent res
cited above.
©2002 The American Physical Society08-1
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II. THE TWO-CENTER PROBLEM

We begin this section by presenting the solution of
Schrödinger equation of an electron in the field of two fixe
Coulomb centers:

~Ĥ02E!c~r !50 ~1!

with

Ĥ052
1

2
D r2

Za

ur2R/2u
2

Zb

ur1R/2u
. ~2!

The wave function of the two-center problem with charg
Za andZb separated by a distanceR can be factored into the
form @17,19#

cEml~j,h,w!5Tml~c,j!Sml~c,h!
exp~ imw!

A2p
~3!

wherejP@1,̀ ), hP@21,21#, andwP@0,2p) are the pro-
late spheroidal coordinates. We put the chargeZa in the left
focus (j51,h521) and the chargeZb in the right focus
(j51,h51). The functionsTml(c,j) and Sml(c,h) are so-
lutions of the following system of equations obtained by t
separation of the two-center Hamiltonian:

F d

dj
~j221!

d

dj
1RZ1j2

m2

j221
1c2j21AG ~4!

3Tml~c,j!50,

F d

dh
~12h2!

d

dh
1RZ2h2

m2

12h2
2c2h22AG ~5!

3Sml~c,h!50.

Here, c5AER2/2, m is the eigenvalue of the projection o
the angular momentum operator on the internuclear axisR,
andA52l2(R2/2)E represents the eigenvalue of the co
stant of separation. The integerl identifies the eigenvaluesl
of the angular operator. These eigenvalues tend tol ( l 11)
for R→0. Finally, Z15Za1Zb andZ25Zb2Za .

We suppose thatuTml(c,1)u,1`, uSml(c,61)u,1`,
and express the asymptotic behavior forj→1` of the func-
tion Tml(c,j) in the form

Tml~c,j!→ 1

cj
sinS cj1

a

2c
ln~2cj!2

lp

2
1dmlD , ~6!

wherea5RZ1 anddml is the phase shift of the radial func
tion.

III. NUMERICAL SOLUTION OF THE SPHEROIDAL
EQUATIONS

We begin by the following transformation@20,23# in Eq.
~4!:
06270
e

s

-

Y~h!5~12h2!Sml~c,h!,

which permits us to write

F ~12h2!
d2

dh2
12h

d

dh
1

2~11h2!

12h2

1RZ2h2
m2

12h2
2c2h22AGY~h!

50, ~7!

with the new boundary conditions

Y~21!50, Y~1!50, ~8!

and the normalization condition

E
21

1

Y2~h!dh2150. ~9!

For a given value of the energyE we can find the numerica
value ofA. We solve Eqs.~7!–~9! for the quasiangle function
Y(h) and A by using the continuous analog of the Newto
method and a finite-difference scheme of fourth order.

Similarly, we apply in Eq.~5! the following transforma-
tion @20#:

X~j!5~j21!Tml~c,j!,

and write forX(j) the equation

F ~j221!
d2

dj2
22j

d

dj
1

2

j21

1RZ1j2
m2

j221
1c2j21AGX~j!50, ~10!

with the new boundary condition

X~1!50 ~11!

and the asymptotic

X~j!→ 1

c
sinS cj1

a

2c
ln~2cj!2

lp

2
1d D ,

j→1`. ~12!

Using the modified analog of the Newton method@21# we
look for jmax@2p/c such that

X~jmax!50 ~13!

for a given valueE* of the energy. We begin withE(0),
which may be different from the given valueE* .0, and fix
the pointjmax

(0) such thatX(jmax
(0) )50. To close the system we

introduce the artificial normalization condition
8-2
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E
1

jmax
X2~j!dj51. ~14!

The eigenvalue problem Eqs.~10!–~14! is solved with the
help of the continuous analog of the Newton method an
finite-difference scheme of fourth order. The next appro
mation is calculated by the relation

jmax
(1) 5jmax

(0) 1
DE(0)

E*
jmax

(0) ,

jmax
(k11)5

j (k)DE(k)2j (k21)DE(k21)

DE(k)2DE(k21)
,

where DE(k)5E(k)2E* . The iteration process is stoppe
when uE2E* u,«, the desired precision.

The phasedml is calculated by the formula

dml~jmax!5p j 2S cjmax1
a

2c
ln~2cjmax!2

lp

2 D ,

where j is even forX(jmax2h),0, h!2p/c, or odd for
X(jmax2h).0. The magnitude ofj is chosen so as to kee
the phased in the interval@0,2p). Taking into account the
asymptotic correctionDd,

Ddml~jmax!5(
i 52

`
wi

i 21 S 1

jmax
D i 21

,

with wi the coefficients of the expansion of the potent
V1/2(j) @22#,

V1/2~j!5(
i 50

`

wi S 1

j D i

,

V~j!5
A

j221
1

RZ1j

j221
1

ER2

2

j2

j221
1

12m2

~j221!2
,

in power series, we obtain the value of the phase

dml5dml~jmax!1Ddml~jmax!.

IV. THE MULTIPLY DIFFERENTIAL CROSS SECTION OF
IMPACT IONIZATION OF H 2

¿

We start from the usual expression for the amplitude
transition between an initial and final state given by the fi
term of the Born series in which the fast incident and sc
tered electrons are described by plane waves:

f f i~K ,VR!52
1

2pE dr0E drC f* ~r !

3exp~ iK•r0!
1

ur2r0u
C i~r !. ~15!

The direction of the quantization axis of the diatomic m
ecule is defined by the polaruR and the azimuthalwR angles
06270
a
-

l

f
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t-

designated in compact notation by the solid angleVR with
respect to the laboratory frame of reference.K5k i2ks de-
fines the momentum transfer, withk i andks the wave vectors
of the incident and scattered electrons, respectively. Integ
ing over the coordinates of the fast incident electronr0 by
application of the relation

E dr0

ur2r0u
exp~ iK•r0!5

4p

K2
exp~ iK•r !, ~16!

we obtain

f f i~K ,VR!52
2

K2E drC f* ~r !exp~ iK•r !C i~r !. ~17!

Here C i(r ) represents the wave function of the molecu
electron in its initial bound state.C f(r )5Cke

2 (r ), on the

other hand, represents the wave function of the ejected e
tron having wave vectorke . Now Cke

2 (r ) is a solution of Eq.

~1! with Coulomb wave asymptotics atr→`,

Cke

2 ~r ! →~2p!23/2

3expH ike•r2
iZ1

ke
ln~ker 1ke•r !J . ~18!

The construction ofCke

2 (r … and exp(iK•r ) in spheroidal co-

ordinates with the above solutions of the separable Sc¨-
dinger equation will be done in the following way. We intro
duce first the spheroidal harmonics which will be given li
spherical harmonics in the form

Y lm~c,u,w!5Sml~c,cosu!
exp~ imw!

A2p
. ~19!

With this definitionY lm(c→0,u,w)5Ylm(u,w). The expan-
sion of the plane wave@19# can be written as

exp~ iK•r !54p (
m52`

`

(
l 5umu

`

Y lm* ~c0 ,uKR ,wKR!

3 i lY lm~c0 ,u,w! jeml~c0 ,j!. ~20!

HereuKR andwKR are the angles between the molecular a
and the direction ofK , and c05KR/2. Sml(c0 ,h) and
jeml(c0 ,j) are, respectively, solutions of the quasiangu
and quasiradial equations forZb5Za50 having the
asymptotic behavior

jeml~c,j→`!5
1

cj
sinS cj2

p

2
l D . ~21!

Similarly,

Cke

2 ~r !5~2p!23/24p (
m52`

`

(
l 5umu

`

Y lm* ~ce ,ueR,weR!
8-3
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3 i le2 idmlY lm~ce ,u,w!Tml~ce ,j!, ~22!

wherece5keR/2, andueR andweR give the direction ofke in
the molecular coordinate system whoseZ axis coincides with
the internuclear axis. HereTml(ce ,j) are solutions of the
quasiradial equation for an electron in the field of two nuc
with Za5Zb51 and they satisfy the asymptotic conditio
~6!. The initial state wave function representing the fund
mental 1sg state of H2

1 will also be given by the solution o
the above Schro¨dinger equation for the equilibrium distanc
corresponding toR52 a.u.:

F1sg
~r !5

1

A2p
f1sg

~j!S00~cb ,h!. ~23!

Now the above wave functions are defined in the molecu
frame with the quantizationz axis on the internuclear axis o
the molecular target, whose direction in the laboratory fra
is given byVR(uR ,wR). In what follows we will choose the
laboratory frame of reference such that itsz axis coincides
with the direction of incidence, i.e.,k i , and thexOz plane
with that formed by the two vectorsks and k i . Performing
the necessary rotational transformations on the wave vec
we can write the scattering amplitude for a givenVR as

f ~K ,ke ,VR!52
2

K2
^Cke

2 uexp~ iK•r !uF1sg
&. ~24!

Replacing the different terms by their expressions~22! and
~20! we can write Eq.~24! in terms of sums of products o
one-dimensional integrals:

f ~K ,ke ,VR!52
8

K2 (
m52`

`

(
l 5umu

`

(
l 85umu

`

Y lm* ~ce ,ueR,weR!

~25!
3Y l 82m

* ~c0 ,uKR ,wKR!i l 82 leidmlAmll8 ,

with

Amll85
R3

8 E
1

`E
21

1

~j22h2!djdh Q~j!P~h!, ~26!

where

Q~j!5Tml~ce ,j! jeml8~c0 ,j!f1sg
~j!,

P~h!5Sml~ce ,h!Sml8~c0 ,h!S00~cb ,h!.

Finally, the multiply differential cross section of the ioniz
tion of H2

1 by a fast electron for given incidence and eje
tion energy valuesEi and Ee , respectively, and for given
directions of the scatteringVs(us ,ws), ejectionVe(ue ,we),
and molecular alignmentVR(uR ,wR), is given by

s~Ei ,Ee ,VR ,Vs ,Ve!5
keks

ki
u f ~k i2ks ,ke ,VR!u2.

~27!
06270
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V. RESULTS

In what follows we will consider situations where the in
ternuclear axis and the directions of incidence, scatter
and ejection are all in the same plane. For comparison w
recent results we will fix the energy value of the eject
electron to 50 eV, and that of the incident electron to 2 ke
for which its description by a plane wave is justified. Befo
using our procedure on H2

1 , we verified it for zero nuclear
charge, i.e., by consideringZa5Zb50 in the calculation of
the final state spheroidal functions. In this case the final s
wave function can be given simply be a plane wave, rend
ing the determination of the transition amplitude in Eq.~24!
very simple. Once we obtained the same numerical value
our procedure and the analytical formula, we could pass
the comparison of our results for a real physical situat
Za5Zb51 to those obtained by the wave packet evoluti
~WPE! approach@14#, which gives very reliable results in th
case of small scattering angles, and to those obtained
Pluvinage-type two-center Coulomb~PTTC! wave function
@12#. Now in Figs. 1 and 2 we present, for fixed orientatio
of the internuclear axiswR50°, uR50° and 90°, respec-
tively, the variation of the sevenfold differential cross secti
of the (e,2e) ionization of H2

1 in terms of the ejection angle
defined with respect to the incidence direction in the case
a small scattering angleus53°. We see that our results re
produce with quite good fidelity those of@14#. The small
differences should be attributed to the approximation m

FIG. 1. Sevenfold differential cross section~7DCS! versus ejec-
tion angle ue for fixed scattering and molecular axis anglesus

53° and uR50°, calculated by different methods: present a
proach ~solid line!, WPE approach~dashed line!, and PTCC ap-
proach with two-parametric variational bound state~dotted line!.

FIG. 2. The same as in Fig. 1 for molecular angleuR590°.
8-4
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in the latter in the determination of the modulus of the m
mentum transfer. The agreement between these two c
pletely different approaches, one based on the direct appr
mated numerical solution of the Schro¨dinger equation
~WPE!, and the present work employing an approach ba
on the determination of the transition matrix elements us
the first term of the Born series with the exact~numerical!
solutions of the two-center problem, shows as expected
the first term of the Born series that we are considering is
dominant part of this series. The comparison with the res
of the PTTC method shows that good agreement is obta
only for ejection directions near the momentum transfer
rection in the caseuR50°. This can be explained by the fa
that, in contrast to the present work, the initial and final st
wave functions used in@12# are not solutions of the sam
Hamiltonian.

We consider next in Figs. 3 and 4 the variation of t
7DCS for a fixed direction of the molecular axisuR50° and
90°, respectively, in terms of the scattering angle. In this c
we compare our results to those of the PTTC method and
two-effective-centers~TEC! approximation. We see that i
this case our results reproduce the same structures due t
two-center effect of the problem, which creates optical-ty
interferences. This shows first the feasibility of our calcu
tions for very large momentum transfer and second that th

FIG. 3. Sevenfold differential cross section versus scatte
angle us for keiK for given molecular axis direction angleuR

50°: present approach~solid line!, TEC approximation with one-
parametric variational bound state~dashed line!, and PTCC method
~dotted line!.

FIG. 4. The same as in Fig. 3 for molecular angleuR590°.
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interference structures~whose shape depends on the ene
of the incident electron, the direction of the internuclear ax
and the distance between the two scattering centers! seem to
be common to all types of physical processes involving tw
center targets@24#. Now an eventual experimental reprodu
tion of these minima and the structure of their distributi
might be a very efficient method for the determination of t
alignment of two-center targets and the incident energy
collision.

In Fig. 5 we present the variation of the 7DCS in terms
the orientation of the moleculeuR and the scattering angleus
simultaneously. The ejection direction here is taken para
to that of the momentum transfer, which itself~the direction!
varies but very slowly withus . We consider the domain o
us between 0° and 20°. For intermediate values ofus , we
are in what we call the Bethe ridge region, where the m
mentum transfer is relatively large (.1 a.u.) and where the
maximum 7DCS is obtained at zero recoil momentum of
target, for situations where the momentum transfer is eq
and parallel to the momentum of the ejected electron. N
the Bethe ridge is found atus59° for the given energy val-
ues. It is interesting to see that as expected the 7DCS is

g

FIG. 5. Sevenfold differential cross section for ejection in t
momentum transfer directionkeiK versus scattering angleus and
molecular axis direction angleuR .

FIG. 6. Sevenfold differential cross section versus two anglesus

andue for given molecular angleuR50°.
8-5
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VLADISLAV V. SEROV et al. PHYSICAL REVIEW A 65 062708
very sensitive to the variation of the orientation of the m
eculeuR . This can be explained by the fact that in the Bet
ridge region the collision between the incident and tar
electrons is frontal@6# and the shape of the rest of the targ
has only a small effect on the result of the collision. We c
nevertheless observe that the maximum does not occu
constantus . This means that the zero of the recoil mome
tum of the center of mass of the molecule is not, as in
atomic case, the most favorable situation for ionization in
momentum transfer direction.

In Figs. 6 and 7 we present a gray scale map of the 7D
for a fixed direction of the molecular axisuR50° and 90°,
respectively, in terms of the ejection and scattering ang
The regularity of the structures that one observes in th
figures shows that our calculations do not have accident
divergent points. More, the shape of the structure shows
clear way the alignment of the molecule and the energy
the impact. These two pieces of information could be v
valuable in the case of other dissociative ionization exp
ments on more complex diatomic targets.

FIG. 7. The same as in Fig. 6 foruR590°.
m

l,

L

.
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VI. CONCLUSION

We have presented our procedure for the determinatio
the sevenfold differential cross section of the simple (e,2e)
ionization of H2

1 using the exact numerical two-center wa
functions for the bound and continuum states in the const
tion of the necessary partial wave development in the fi
term of the Born series of the transition matrix element. T
comparison of our results to those obtained by the w
packet evolution method and using Pluvinage-type tw
center continuum wave functions shows the feasibility of t
type of calculation and confirms the results of the WP
method for small scattering angles. For large scatter
angles our results reproduce the optical structures obta
by the PTTC approach. These structures seem to be inde
dent of the wave functions used and common to all types
collision process on diatomic targets. Our work opens
way for wider application in other processes, like electr
capture and photoionization on more complex diatomic s
tems, of the spheroidal waves developed in this work.
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