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(e,2e) ionization of H,* by fast electron impact: Application of the exact nonrelativistic
two-center continuum wave
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The multiply differential cross section of the dissociative ionization gf By fast(2 keV) electron impact
is determined theoretically using a two-center continuum wave function constructed using the exact solutions
of the separable two-center ScHinnger equation in prolate spheroidal coordinates for the $kfe\) ejected
electron. The comparison of the results to those obtained by approximate approaches, like those using an
effective center Coulomb wave or Pluvinage-type two-center wave or the wave packet evolution approach,
shows the limits of these approximate methods. Additionally, the variation of the sevenfold differential cross
section, which corresponds to the ionization of aligned molecules, reveals interesting mechanisms and gives
some insight into the optimal conditions for the dissociative ionization of more complex diatomic targets.
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[. INTRODUCTION considered as fixed. From this point of view this unique

physical situation can serve as an excellent test for different

The dissociative ionization of diatomic molecules is thetheoretical models concerning this basic problem. In the past,

object of growing interest, especially in the domain of Many attempts have been made to find a proper approxima-
atomic collisions, because of the rapid development of a vation for the description of this electron. Joulakiahal.[12]
riety of coincidence detection techniquds-5]. These tech- used an approximate wave function inspired by the Pluvi-
niques measure the momenta of the emerging fragment329€ mode[13] constructed as the product of two Coulomb

such as the residual ions and the electrons, and deduce %ctlohns ge?tﬁred ((j)n the nt:c!{e:. ?j_ef;et/al.t[m]t,hog :)he
coincidence counting the corresponding multiply differentialO"€r hand, foliowed a compietely difierént method by nu-
cross sections. Studying these cross sections can deliver Ijg_encally solving the Schudinger equation with a wave

' ying ppacket evolution approach. The fact that for the Coulomb

clous information abouF the electronic structgre, the mech potential the two-center Schiimger equation is separable in
nism of the fragmentatlon process, and the influence of th rolate spheroidal coordinatEs5—17), and thus gives exact
molecular alignment. " _ analytical or numerical solutions, is very rarely exploited in
In the particular domain ofé2e) collisions, which cor- 5| hhysical situations involving two-center continuum elec-
responds to ionization by electron |mpact. with .commdence[rons [18]. To our knowledge, in simplee(2e) ionization,
detection of the two emerging electrons, diatomic targets argye partial wave development in prolate spheroidal exact so-
less frequently studied than atomic o6} especially in the  |utions for the description of the slow ejected electron in the
theoretical domain, in spite of the fact that gases exist natufield of two fixed nuclei has not yet been realized. The aim of
rally in diatomic molecular form. This can be explained by our paper is to determine and study the multiply differential
the fact that theoretically the construction of a wave describeross section of this process, see the limits of the validity of
ing a free electron in the field of two fixed centers is a somethe other existing approximate models, and explore physi-
what difficult task. Usually, the description of the ejectedcally interesting situations for experimental applications.
slow electron is realized by one-center continuum wave In what follows we will present briefly our numerical ap-
functions in the form of partial wave developmdit-9] or  proach to the basic two-center Schirmger equation in pro-
of a closed Coulomb wave judiciously centerfld®,11] on  late spheroidal coordinates; then we will introduce our par-
the center of the diatomic molecule or on the nuclei. tial wave development into the transition matrix element of
The simple €,2e) ionization of B, is one of the rare the (e,2e) ionization of aligned H™ systems. In Sec. V we
experimental situations, withy(e) on H,", where a free will compare the variation of the sevenfold differential cross
electron with measurable wave veckqris found in the field  section obtained by these exact solutions to recent results
of two positively charged nuclei which can reasonably becited above.
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IIl. THE TWO-CENTER PROBLEM Y(7)=(1- 5?)Sn(C,7),

We begin this section by presenting the solution of theWhich ermits us to write
Schralinger equation of an electron in the field of two fixed P

Coulomb centers: 2 d 201+ 772)
- A=)+ 2ng +———
(Ho—E)#(r)=0 1) d»n? dn 1— 7?
with m?
+RZ_ p— S —C* P —A|Y(7)
4 i Z, Z, X 1=7
" 27" |r=RI2| [r+R/2" @ =0, (7

The wave function of the two-center problem with chargeswith the new boundary conditions
Z, andZ, separated by a distan€ecan be factored into the

form [17,19 Y(—=1)=0, Y(1)=0, (8
expime) and the normalization condition
'ﬂEml(g-ﬂ’@):Tml(C,f)Sml(C:ﬂ)— (3)
N 1
f_le( 7)dn—1=0. 9)

whereée[1x>), ne[—1,—1], andp e[0,27) are the pro-
late spheroidal coordinates. We put the chafgen the left
focus ¢=1,7=—1) and the charg&, in the right focus
(é=1,7=1). The functionsT ,/(c,&) and S,(c,») are so-
lutions of the following system of equations obtained by the
separation of the two-center Hamiltonian:

For a given value of the enerdywe can find the numerical
value of A. We solve Eqgs(7)—(9) for the quasiangle function
Y(7) andA by using the continuous analog of the Newton
method and a finite-difference scheme of fourth order.
Similarly, we apply in Eq.(5) the following transforma-

[d (£2-1) d +RZ. € m’ +c2E2+A (4) ron izt
—(&-1)— - c
dé S X(&)=(£=1)Tmi(c,8),
X Tm(c,&)=0, and write forX(¢) the equation
d? d 2
d 2, d ° 2.2 5) (£2-1) 26—+
T (1=7)— +RZ 79— —c*n*—A R ity
2
X Smi(c,7)=0. +RZ, é— Iz +C2E2+A[X(€)=0, (10
Here,c=JER?/2, mis the eigenvalue of the projection of
the angular momentum operator on the internuclear Rxis With the new boundary condition
andA= —\ —(R?/2)E represents the eigenvalue of the con-
stant of separation. The integeidentifies the eigenvalues X(1)=0 (13)
of the angular operator. These eigenvalues tent{Ite 1) .
for R—0. Finally, Z, =Z,+Z, andZ_=2Z,~Z,. and the asymptotic
We suppose thatT(c,1)|<+%, |Sy(c, 1)<+,
a_md express 'ghe asymptotic behavior §er + o of the func- X(&)— Esin cé+ iln(ch)— |_7T+ s,
tion T.y(c,&) in the form C 2c 2
E—+o. (12)

1 a |7
Tm,(c,g)—>c—§sm cé+ zln(ch)— 7+ Smil,  (6)
Using the modified analog of the Newton methi@i]| we
wherea=RZ, andd,, is the phase shift of the radial func- 100k for &, 27/c such that

tion.
X(gmax)zo (13)

IIl. NUMERICAL SOLUTION OF THE SPHEROIDAL

- * in witle©
EQUATIONS for a given valueE* of the energy. We begin witte'™,

which may be different from the given vali >0, and fix
We begin by the following transformatidi20,23 in Eq.  the point£%), such thatX(£L) )=0. To close the system we
(4): introduce the artificial normalization condition
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max_, designated in compact notation by the solid anglg with
L Xe(§)dé=1. (14 respect to the laboratory frame of referenies k; —k de-
fines the momentum transfer, wikh andk the wave vectors
The eigenvalue problem Eq&l0)—(14) is solved with the Of the incident and scattered electrons, respectively. Integrat-
help of the continuous analog of the Newton method and 49 over the coordinates of the fast incident electrgrby
finite-difference scheme of fourth order. The next approxi-application of the relation

mation is calculated by the relation
4

expiK-rg)= 2 expiK-r), (16)

o J drg
gD —g0) | A:_*g(m r=ro|

max_ Smax max’

we obtain

K [3 k—1 k—1

(k+1):§( JAE( )_g( IAE(-1)
max AEW—AEK-D

2
fH(K,Qp)=— PJ drv ¥ (rexpliK-r)¥;(r). (17

where AEW=E®_—E* The iteration process is stopped

when|E—E*|<e, the desired precision. Here W,(r) represents the wave function of the molecular
The phases,, is calculated by the formula electron in its initial bound statelIff(r)=‘If,Ze(r), on the

other hand, represents the wave function of the ejected elec-

tron having wave vectdt,. Now \If[e(r) is a solution of Eq.

(1) with Coulomb wave asymptotics at—x,

Omi(Emax) =) —

a |7
Cfmax"’ % ln(20§max) - ?

wherej is even forX(&max—h)<0, h<2sx/c, or odd for

X(&max—h)>0. The magnitude of is chosen so as to keep W () —(2m)~%
the phases in the interval[ 0,277). Taking into account the iz
asymptotic correction §, X exp{ i ke' r— k_Jr |n(ker + ke' rt. (18
e
* Wi 1 i—1
A5m|(§max)=i§2 A e The construction off, (r) and expiK -r) in spheroidal co-

ordinates with the above solutions of the separable Schro
with w; the coefficients of the expansion of the potentialdinger equation will be done in the following way. We intro-
VY &) [22], duce first the spheroidal harmonics which will be given like
. i spherical harmonics in the form
1/2, — 1)
\ (f) i—EOWI(f ) eX[iim(p)
Y m(c,8,¢)=Sy(c,cosl)———. (19
V2w
A Rz, ¢ ER? & 1-m?
2-1 £-1 2 #-1 (@17 With this definition ,(c—0,6,¢) =Y|n(6,¢). The expan-
sion of the plane wavgl9] can be written as

V(§)=

in power series, we obtain the value of the phase

Omi= Smi(Emax) T A Smi(Emax) - exp(iK-r) :4Wm=§;m I;m\ Yin(Co, Okr: Pkr)
IV. THE MULTIPLY DIFFERENTIAL CROSS SECTION OF Xi'"Ym(Co, 0, ¢) jemi(Co,&). (20

IMPACT IONIZATION OF H ,* )
Here 6xr and ¢y are the angles between the molecular axis

We start from the usual expression for the amplitude ofang the direction ofK, and c,=KR/2. S, (Co,7) and

term of the Born series in which the fast incident and scatyng quasiradial equations foZ,=Z,=0 having the

tered electrons are described by plane waves: asymptotic behavior
fr(K QR)z—ij droj dr¥¥(r) . 1 T
e 27 f Jeml(c,§—>°c)=&sm cé— 51 (21
1
Xexp(iK- ro)m\lﬁ(r). (15  Similarly,
— 1o

The direction of the quantization axis of the diatomic mol- T (r)=(2m) 32 Y* (c. 0
ecule is defined by the polak and the azimuthapg angles (1) =(2m) Wm;—oc I;m\ im(Ce. fer Per)
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Xi'e™ MY i (Ce, 6,) Tmi(Ce ,€), (22)
wherec.=k.R/2, andf.g and ¢ give the direction ok, in
the molecular coordinate system whasaxis coincides with
the internuclear axis. Her&,,(c.,£) are solutions of the

guasiradial equation for an electron in the field of two nuclei

with Z,=Z,=1 and they satisfy the asymptotic condition

(6). The initial state wave function representing the funda-

mental loy state of B™* will also be given by the solution of
the above Schdinger equation for the equilibrium distance
corresponding tiR=2 a.u.:

1

(I)l(rg(r): E¢1og(f)soo(cba77)- (23
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—— Spheroidal Waves
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Pluvinage Type Waves
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0 —————————T———————
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FIG. 1. Sevenfold differential cross sectiGfiDCS versus ejec-
tion angle 6, for fixed scattering and molecular axis angleés

=3° and 0r=0°, calculated by different methods: present ap-
proach (solid line), WPE approachdashed ling and PTCC ap-

Now the above wave functions are defined in the moleculaproach with two-parametric variational bound stédetted ling.

frame with the quantizatiom axis on the internuclear axis of

the molecular target, whose direction in the laboratory frame

is given byQg(6r,¢r). In what follows we will choose the
laboratory frame of reference such that ztsxis coincides
with the direction of incidence, i.ek;, and thexOz plane
with that formed by the two vectois; andk;. Performing

V. RESULTS

In what follows we will consider situations where the in-
ternuclear axis and the directions of incidence, scattering,
and ejection are all in the same plane. For comparison with

the necessary rotational transformations on the wave vectoricent results we will fix the energy value of the ejected

we can write the scattering amplitude for a giv@p as
2 :
f(K,ke,Qr)=— P(‘Ifke|exp(| K- r)|<I>1(,g>. (24

Replacing the different terms by their expressi¢2g) and
(20) we can write Eq(24) in terms of sums of products of
one-dimensional integrals:

o0 [

f(Kakea‘Q‘R): -

8 o
E 2 E Yl*m(ceaeeRv‘PeR)
m=—cc [=[m| 7=y

K2
L (25)
XY, (Co,Okr ekR)i! € MAL,

with

R3 (= (1
Amw=§fl fﬁl(éz—nz)dﬁan(f)P(n), (26)

where

Q(f):TmI(Cevg)jeml’(CO1§)¢’1ag(§),
P(7)=Smi(Ce»7) Smir(Co, 17)Soo(Ch » 7)-

Finally, the multiply differential cross section of the ioniza-
tion of H,™ by a fast electron for given incidence and ejec-
tion energy value€; and E., respectively, and for given
directions of the scatterin@(0s,¢s), ejectionQq(0e, o),
and molecular alignmerf2g(6r,¢R), is given by

 Keks X
o(Ei Ee, Qg s, 0Q¢) = 7 —f(ki—ks ke, Q)|
1
27)

electron to 50 eV, and that of the incident electron to 2 keV,
for which its description by a plane wave is justified. Before
using our procedure onH , we verified it for zero nuclear
charge, i.e., by considering,=Z,=0 in the calculation of
the final state spheroidal functions. In this case the final state
wave function can be given simply be a plane wave, render-
ing the determination of the transition amplitude in E24)

very simple. Once we obtained the same numerical values by
our procedure and the analytical formula, we could pass to
the comparison of our results for a real physical situation
Z,=Z,=1 to those obtained by the wave packet evolution
(WPE) approach 14], which gives very reliable results in the
case of small scattering angles, and to those obtained by a
Pluvinage-type two-center Coulom{PTTC) wave function
[12]. Now in Figs. 1 and 2 we present, for fixed orientations
of the internuclear axispg=0°, 6g=0° and 90°, respec-
tively, the variation of the sevenfold differential cross section
of the (e,2e) ionization of H in terms of the ejection angle
defined with respect to the incidence direction in the case of
a small scattering anglé;=3°. We see that our results re-
produce with quite good fidelity those ¢14]. The small
differences should be attributed to the approximation made

— Spheroidal Waves
Wave Packet Evolution
Pluvinage Type Waves

0.=3°
8,=90°

10"y

0 T T T T T T T 1
0 45 90 135 180 225 270 315 360
6, (deg)

FIG. 2. The same as in Fig. 1 for molecular angje=90°.
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118? —— Spheroidal Waves k ||K
102 ---- Two Effective Centers e o
10j Pluvinage Type Waves GR=0
10,
107,
107
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0107
"0 \\\\\\* )
107 “\\i
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i
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FIG. 3. Sevenfold differential cross section versus scattering
angle 65 for kg|K for given molecular axis direction anglég
=0°: present approacfsolid line), TEC approximation with one-
parametric variational bound stafdashed ling and PTCC method
(dotted ling.

FIG. 5. Sevenfold differential cross section for ejection in the
momentum transfer directiok,||K versus scattering anglé, and
molecular axis direction angléy .
in the latter in the determination of the modulus of the mo-
mentum transfer. The agreement between these two coniiterference structuresvhose shape depends on the energy
pletely different approaches, one based on the direct approx®f the incident electron, the direction of the internuclear axis,
mated numerical solution of the Schiinger equation and the distance between the two scattering censem to
(WPE), and the present work employing an approach basef€ common to all types of physical processes involving two-
on the determination of the transition matrix elements usingenter target§24]. Now an eventual experimental reproduc-
the first term of the Born series with the exdnumerica) tion of these minima and the structure of their distribution
solutions of the two-center problem, shows as expected thaRight be a very efficient method for the determination of the
the first term of the Born series that we are considering is th@lignment of two-center targets and the incident energy of
dominant part of this series. The comparison with the result§ollision.
of the PTTC method shows that good agreement is obtained In Fig. 5 we present the variation of the 7DCS in terms of
only for ejection directions near the momentum transfer dithe orientation of the molecul@; and the scattering angl
rection in the cas@z=0°. This can be explained by the fact Simultaneously. The ejection direction here is taken parallel
that, in contrast to the present work, the initial and final statd0 that of the momentum transfer, which itsélie direction
wave functions used ifil2] are not solutions of the same varies but very slowly withgs. We consider the domain of
Hamiltonian. 65 between 0° and 20°. For intermediate valuesdgf we

We consider next in Figs. 3 and 4 the variation of theare in what we call the Bethe ridge region, where the mo-
7DCS for a fixed direction of the molecular axdig=0° and  mentum transfer is relatively largex1 a.u.) and where the
90°, respectively, in terms of the scattering angle. In this casgaximum 7DCS is obtained at zero recoil momentum of the
we compare our results to those of the PTTC method and thi@rget, for situations where the momentum transfer is equal
two-effective-center§ TEC) approximation. We see that in and parallel to the momentum of the ejected electron. Now
this case our results reproduce the same structures due to tie Bethe ridge is found a;=9° for the given energy val-
two-center effect of the problem, which creates optical-typeues. It is interesting to see that as expected the 7DCS is not
interferences. This shows first the feasibility of our calcula-

tions for very large momentum transfer and second that thes: 360 0,=0° 102 - 10°
s 5- 10* - 10?
100 —— Spheroidal Waves k [|K )} 10°® - 10*
10, % 7 ---- Two Effective Centers e 2704 110® - 10°
10244\ i 6_=90° F
1 Oj Pluvinage Type Waves R - g Tk 0™. 10°
18_5 a . - 10-12 _ 10-10
107 2180 NI I 10™ - 10™
10, 3 | 107 - 10
8 =1 —pip
g 107 - 10
Q1 0 -
1072
10" 45-
107
1078 ‘
18:1: 20 40 60 80 100 120 140 160 180
0 20 40 60 80 100 120 140 160 180 6, (deg)
6, (deg)
FIG. 6. Sevenfold differential cross section versus two angles
FIG. 4. The same as in Fig. 3 for molecular angje=90°. and 6, for given molecular anglé@z=0
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eR=90° VI. CONCLUSION

360- 10? - 10°

315- 1°: - 1°j We have presented our procedure for the determination of

270 -:gs 134 f[he_ seyenfold differ_ential Cross section_ of the simpe2¢)

— B 107 - 10° ionization of H,* using the exact numerical two-center wave
= B 1072- 10 functions for the bound and continuum states in the construc-
5 180 B 10™- 10™ tion of the necessary partial wave development in the first
;}135- Il 10”- 10" term of the Born series of the transition matrix element. The

90 10 - 10" comparison of our results to those obtained by the wave
451 packet evolution method and using Pluvinage-type two-
0. center continuum wave functions shows the feasibility of this
0 20 40 60 80 100 120 140 160 180 type of calculation and confirms the results of the WPE
0, (deg) method for small scattering angles. For large scattering

angles our results reproduce the optical structures obtained

FIG. 7. The same as in Fig. 6 féiz=90°. by the PTTC approach. These structures seem to be indepen-

dent of the wave functions used and common to all types of

very sensitive to the variation of the orientation of the mol-collision process on diatomic targets. Our work opens the
eculedg. This can be explained by the fact that in the Bethe?@ for wider application in other processes, like electron
ridge region the collision between the incident and targef@Pture and photoionization on more complex diatomic sys-
electrons is frontal6] and the shape of the rest of the target€MS, Of the spheroidal waves developed in this work.
has only a small effect on the result of the collision. We can
nevertheless observe that the maximum does not occur at
constantds. This means that the zero of the recoil momen- ACKNOWLEDGMENTS
tum of the center of mass of the molecule is not, as in the
atomic case, the most favorable situation for ionization in the Most of this work was performed during the three-month
momentum transfer direction. stay of V.V.S. at Laboratoire de Physique Malaire et des

In Figs. 6 and 7 we present a gray scale map of the 7DCE&ollisions, Universitele Metz. The authors thank the CINES
for a fixed direction of the molecular axg;=0° and 90°, (Center Informatique Nationale de I'Enseignement Su-
respectively, in terms of the ejection and scattering anglegperieun for computational facilities. V.V.S. and S.I.V. were
The regularity of the structures that one observes in thessupported in part by Award No. REC-0060f the U.S. Civilian
figures shows that our calculations do not have accidentalliResearch and Development Foundation for the Independent
divergent points. More, the shape of the structure shows in &tates of the Former Soviet Unigl@RDF) and by Grants
clear way the alignment of the molecule and the energy ofNo. 00-01-00617, No. 00-02-16337, and No. 00-02-81023
the impact. These two pieces of information could be veryBel-2000 of the Russian Foundation for Basic Research
valuable in the case of other dissociative ionization experi{RFBR). The authors would like to thank Professor V. L.
ments on more complex diatomic targets. Derbov for helpful discussions.

[1] S.E. Corche, H.F. Busnengo, and R.D. Rivarola, Nucl. Instrum[10] A. Messiah,Quantum Mechanic$Wiley, New York, 19635,

Methods Phys. Res. B49 247 (1999. Chap. XIX, Sec. 24.
[2] R. Darner, J.M. Feagin, C.L. Cocke, H. Bmaing, O. Jagutzki, [11] P. Weck, O.A. Fojon, J. Hanssen, B. Joulakian, and R.D. Ri-
M. Jung, E.P. Kanter, H. Khemliche, S. Kravis, V. Mergel, varola, Phys. Rev. A3, 042709(2001).
M.H. Prior, H. Schmidt-Boking, L. Spielberger, J. Ullrich, M. [12] B. Joulakian, J. Hanssen, R. Rivarola, and A. Motassim, Phys.
Unversagt, and T. Vogt, Phys. Rev. LetiZ, 1024(1996. Rev. A54, 1473(1996.
[3] A. Lafosse, J.C. Houver, and D. Dowek, J. Phys348 819 [13] P. Pluvinage, J. Phys. Radiub®, 789 (1951).
(2002). [14] V.V. Serov, V.L. Derbov, B.B. Joulakian, and S.I. Vinitsky,
[4] A.K. Edwards and Q. Zheng, J. Phys.38, 1539(2001). Phys. Rev. A63, 062711(2001).
[5] Th. Weber, O. Jagutzki, M. Hattass, A. Staudte, A. Nauert, L.[15] K. Helfrich and H. Hartman, Theor. Chim. Act&6, 263
Scmidt, M.H. Prior, A.L. Landers, A. Buming-Demian, H. (1970.
Brauning, C.L. Cocke, T. Osipov, I. Ali, R. Bz Muiro, D. [16] J.D. Power, Philos. Trans. R. Soc. London, SeAZV4, 663
Rolles, F.J. Garal de Abajo, C.S. Fadley, M.A. Van Hove, A. (1973.
Cassimi, H. Scmidt-Beking, and R. Deer, J. Phys. B34, [17] 1. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyan8phe-
3669(2001). roidal and Coulomb Spheroidal Functioridlauka, Moscow,
[6] E. Weigold and I.E. McCarthy, Phys. Rep7, 275 (1976. 1976.
[7] A. Temkin and K.V. Vasavada, Phys. Reé\60, 109 (1967). [18] H. Takagi and H. Nakamura, J. Phys.1B, 2619(1980.
[8] P.G. Burke, Adv. At. Mol. Phys15, 471(1979. [19] P. M. Morse and H. Feshbadkilethods of Theoretical Physics.
[9] F. EIBoudali and B. Joulakian, J. Phys.3&, 4877(2002). Part Il (McGraw-Hill, New York, 1953, pp. 1502-1512.

062708-6



(e,2e) IONIZATION OF H,™ BY FAST ELECTRON ... PHYSICAL REVIEW A 65 062708

[20] T. Zhanlav, D. V. Pavlov, and I. V. Puzynin, JINR Report No. published.

E11-91-138, Dubna, 199npublished [23] D. V. Pavlov, I. V. Puzynin, and S. I. Vinitsky, JINR Report
[21] S.I. Vinitsky, I.V. Puzynin, and Yu.S. Smirnov, Yad. Fiz2, No. E4-99-141, Dubna, 199@inpublished

1176(1990. [24] O.A. Fojon, R.D. Rivarola, J. Hanssen, and M.A. Ourdane,
[22] V. I. Puzynin, IHEPH Report No. 92-119, Protvino, 19Qh- Phys. Rev. A55, 4613(1997).

062708-7



